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Triality?

Collins Dictionary: the state of being threefold.
(Threefold: composed of three parts.)

Wikipedia: In mathematics, triality is a relationship among three
vector spaces, analogous to the duality relation
between dual vector spaces. Most commonly, it
describes those special features of the Dynkin
diagram D4 and the associated Lie group Spin8 ...
arising because the group has an outer automorphism
of order three. There is a geometrical version of
triality, analogous to duality in projective geometry.
... one finds a curious phenomenon involving 1-, 2-,
and 4-dimensional subspaces of 8-dimensional space,
historically known as “geometric triality”.

R.A.E.: “La palabra trialidad no está en el Diccionario”.

Now
that the RSME is in

good

term
s with

the RAE, should

we ask
for its

inclusio
n?
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Geometric duality

Points ←→ Hyperplanes
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Geometric Triality

(V , q): eight-dimensional vector space endowed with a
nondegenerate quadratic form of maximal Witt index.
Ui := {isotropic subspaces of dimension i}, i = 1, 2, 3, 4.

Frightened??
Just think of R8 and q(x1, . . . , x8) = x1x5 + x2x6 + x3x7 + x4x8,

or of C8 and any nondegenerate quadratic form.

Consider the quadric Q := {Fv : 0 6= v ∈ V , q(v) = 0} in
projective space P7.
U1 : points; U2 : lines; U3 : planes; U4 : “solids”.

Two solids are of the same kind if their intersection (as
vector subspaces) is of even dimension.
It turns out that two solids are of the same kind if and only if
they belong to the same orbit under the action of the special
orthogonal group. There are exactly two kinds of solids.
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Incidence relations

On the set of points and solids there is a natural incidence relation:

Two points are incident if they lie on a line (inside Q).

Two solids of the same kind are incident if their intersection is
not trivial.

Two solids of different kinds are incident if their intersection is
a plane.

A point is incident with a solid if it lies in it.
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Geometric Triality

Theorem (Eduard Study 1913)

The variety of solids of a fixed kind in Q is a quadric
isomorphic to Q.

Any proposition in the geometry of Q (about incidence
relations) remains true if the concepts of points, solids of one
kind, and solids of the other kind, are cyclically permuted.

Points

Solids 1 Solids 2

Élie Cartan (1925): On peut
dire que le principe de dualité
de la géometrie projective est
remplacé par un principe de
trialité.
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Composition algebras

R ↪→ C ↪→ H ↪→ O

Definition

A composition algebra over a field is a triple (C , ·, n) where

C is a vector space,
x · y is a bilinear multiplication C × C → C ,
n : C → F is a multiplicative (n(x · y) = n(x)n(y) ∀x , y ∈ C )
nonsingular quadratic form.

The unital composition algebras are called Hurwitz algebras.
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Hurwitz algebras

Hurwitz algebras exist only in dimension 1, 2, 4, or 8.

(These are too the possible dimensions of the
finite-dimensional arbitrary composition algebras.)

The two-dimensional Hurwitz algebras are just the quadratic
étale algebras.

The four-dimensional Hurwitz algebras are the quaternion
algebras.

The eight-dimensional Hurwitz algebras are termed octonion
(or Cayley) algebras.
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Hurwitz algebras

Theorem

Hurwitz algebras are isomorphic iff their norms are isometric.

For each dimension 2, 4, or 8, there is a unique, up to
isomorphism, Hurwitz algebra with isotropic norm:

F× F with n
(
(α, β)

)
= αβ,

Mat2(F) with n = det,
The algebra of Zorn matrices (or split Cayley algebra):

Cs =

{(
α u
v β

)
: α, β ∈ F, u, v ∈ F3

}
, with

(
α u
v β

)
·
(
α′ u′

v ′ β′

)
=

(
αα′ + (u | v ′) αu′ + β′u − v × v ′

α′v + βv ′ + u × u′ ββ′ + (v | v ′)

)
,

n

((
α u
v β

))
= αβ − (u | v).
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Octonions and Geometric Triality

Let (Cs , ·, n) be the split Cayley algebra and identify our quadric Q
with {Fx : 0 6= x ∈ Cs , n(x) = 0}.

Theorem (Felix Vaney 1929)

The solids of the two kinds are precisely the subspaces:

S1
a := {x ∈ Cs : a · x = 0}, S2

a := {x ∈ Cs : x · a = 0},

for 0 6= a ∈ Cs , n(a) = 0.

The cyclic permutation

Fā

S1
a S2

a

is a ‘geometric triality’

(it preserves incidence relations).
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Trialitarian automorphisms

The group PGO+
8 (n) admits a group of ‘outer

automorphisms’ isomorphic to the symmetric group S3.

Outer automorphisms of order 3 (or trialitarian
automorphisms) correspond to geometric trialities.

J. Tits (1959) showed that there are two different types of
geometric trialities, one of them is the one before related to
the octonions and the exceptional group G2, while the other is
related to the classical groups of type A2, unless the
characteristic is 3.

Question

Are there algebras, other than the octonions, that are ‘responsible’
of this new type of geometric triality?

Answer

Yes: Okubo algebras.

13/40



1 Geometric triality

2 Symmetric composition algebras

3 Algebraic triality

14/40



Pseudo-octonions (Okubo 1978)

Let F be a field of characteristic 6= 2, 3 containing a primitive cubic
root ω of 1.

On the vector space sl3(F) consider the multiplication:

x ∗ y = ωxy − ω2yx − ω − ω2

3
tr(xy)1,

and norm: n(x) = −1

2
tr(x2).

Then, for any x , y ,

n(x ∗ y) = n(x)n(y), (x ∗ y) ∗ x = n(x)y = x ∗ (y ∗ x).

In particular, (sl3(F), ∗, n) is a composition algebra.
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Pseudo-octonions
A couple of remarks

Denote by P8(F) the algebra thus defined (algebra of
pseudo-octonions).

P8(F) makes sense in characteristic 2, because tr(x2) ‘is a
multiple of 2’ if tr(x) = 0.

Okubo and Osborn (1981) gave an ‘ad hoc’ definition of
P8(F) over fields of characteristic 3 by means of its
multiplication table.
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Okubo algebras

In order to define Okubo algebras over arbitrary fields consider the
Pauli matrices:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 0 1
1 0 0
0 1 0

 ,

in Mat3(C), which satisfy

x3 = y3 = 1, xy = ωyx .

For i , j ∈ Z/3Z, (i , j) 6= (0, 0), define

xi ,j :=
ωij

ω − ω2
x iy j .

{xi ,j : (i , j) 6= (0, 0)} is a basis of sl3(C).
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Okubo algebras

xi ,j ∗ xk,l = ωxi ,jxk,l − ω2xk,lxi ,j −
ω − ω2

3
tr(xi ,jxk,l)1

=


xi+k,j+l

0

−xi+k,j+l

(
x0,0 := 0

)

depending on

∣∣∣∣ i j
k l

∣∣∣∣ being equal to 0, 1 or 2 (modulo 3).

Miraculously, the ω’s disappear!

Besides, n(xi ,j) = 0 for any i , j , and

n(xi ,j , xk,l) =

{
1 for (i , j) = −(k, l),

0 otherwise.
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Okubo algebras

Thus, the Z-module

OZ = Z-span {xi ,j : −1 ≤ i , j ≤ 1, (i , j) 6= (0, 0)}

is closed under ∗, and n restricts to a nonsingular multiplicative
quadratic form on OZ.

Definition

Let F be an arbitrary field. Then

OF := OZ ⊗Z F,

with the induced multiplication and nonsingular quadratic form, is
called the split Okubo algebra over F.

The twisted forms of OF are called Okubo algebras over F.
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Symmetric composition algebras

Definition

A composition algebra (C, ∗, n) is said to be symmetric if the
polar form of its norm is associative:

n(x ∗ y , z) = n(x , y ∗ z),

for any x , y , z ∈ C.

This is equivalent to the condition:

(x ∗ y) ∗ x = n(x)y = x ∗ (y ∗ x),

for any x , y ∈ C.

Markus Rost, around 1994, realized that this is the right class of
algebras to deal with the phenomenon of triality.
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Examples

Okubo algebras are symmetric composition algebras.

Given any Hurwitz algebra (B, ·, n), the algebra (B, •, n),
where

x • y = x̄ · ȳ

is called the associated para-Hurwitz algebra (Okubo-Myung
1980).

Para-Hurwitz algebras are symmetric.

Theorem (Okubo-Osborn 1981, E.-Pérez-Izquierdo 1996)

Any eight-dimensional symmetric composition algebra is either a
para-Hurwitz algebra or an Okubo algebra.
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Symmetric compositions are either para-Hurwitz or Okubo

Sketch of proof

If (C, ∗, n) is a symmetric composition algebra over F, there is
a field extension K/F of degree ≤ 3 such that (CK, ∗, n)
contains a nonzero idempotent. Hence we may assume that
there exists 0 6= e ∈ C with e ∗ e = e. Then n(e) = 1.

Consider the new multiplication

x · y = (e ∗ x) ∗ (y ∗ e).

Then (C, ·, n) is a Hurwitz algebra with unity 1 = e, and the
map τ : x 7→ e ∗ (e ∗ x) = n(e, x)e − x ∗ e is an automorphism
of both (C, ∗, n) and of (C, ·, n), such that τ3 = id.

If τ = id, (C, ∗, n) is para-Hurwitz, otherwise it may be either
para-Hurwitz or Okubo.
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Symmetric compositions and geometric triality

Let (C, ∗, n) be a symmetric composition algebra with isotropic
norm and identify our quadric Q with {Fx : 0 6= x ∈ C, n(x) = 0}.

The solids of the two kinds are precisely the subspaces

S1
a := {x ∈ Cs : a ∗ x = 0}, S2

a := {x ∈ Cs : x ∗ a = 0},

for 0 6= a ∈ C, n(a) = 0.

The cyclic permutation

Fa

S1
a S2

a

is a geometric triality.

Any geometric triality is given in this way. The one attached
to the para-Cayley algebra coincides with the familiar one,
related to the split Cayley algebra. The ones attached to
Okubo algebras constitute the other type in Tits’
classification.
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Classification of Okubo algebras

Let F be a field, charF 6= 3, containing a primitive cubic root of 1.
By restriction we obtain a natural isomorphism

PGL3 ' Aut
(
Mat3(F)

)
→ Aut

(
(sl3(F), ∗, n)

)
of affine group schemes.

Theorem (E.-Myung 1991, 1993)

The map
Isomorphism classes of
central simple degree 3

associative algebras

 −→
{

Isomorphism classes
of Okubo algebras

}
[A] 7→ [(A0, ∗, n)]

is bijective.

24/40



Classification of Okubo algebras

Let F be a field, charF 6= 3, not containing primitive cubic roots of
1. Let K = F[X ]/(X 2 + X + 1).

Theorem (E.-Myung 1991, 1993)

The map
Isomorphism classes of

pairs (B, σ), where B is a simple
degree 3 associative algebra

over K and σ a K/F-involution
of the second kind

 −→
{

Isomorphism classes
of Okubo algebras

}

[(B, σ)] 7→ [(Skew(B, σ)0, ∗, n)]

is bijective.
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Classification of Okubo algebras (charF = 3)

Theorem (Chernousov-E.-Knus-Tignol 2013)

Let (O, ∗, n) be the split Okubo algebra over a field F (charF = 3).

Aut(O, ∗, n) is not smooth: dimAut(O, ∗, n) = 8 while
Der(O, ∗, n) is a simple (nonclassical) Lie algebra of
dimension 10.

Aut(O, ∗, n) = HD, where H = Aut(O, ∗, n)red and
D ' µ3 × µ3.

The map

H1(F,µ3 × µ3)→ H1
(
F,Aut(O, ∗, n)

)
induced by the inclusion D ↪→ Aut(O, ∗, n), is surjective.
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Classification of Okubo algebras (charF = 3)

Recall that O is spanned by elements xi ,j , (i , j) 6= (0, 0) (indices
modulo 3). It is actually generated by x1,0 and x0,1. Given
0 6= α, β ∈ F, the elements

x1,0 ⊗ α
1
3 , x0,1 ⊗ β

1
3 ∈ O⊗F F

generates, by multiplication and linear combinations over F, a
twisted form of (O, ∗, n). Denote it by Oα,β.

Corollary

The following map is surjective:

F×/(F×)3 × F×/(F×)3 −→
{

Isomorphism classes
of Okubo algebras

}
(
α(F×)3, β(F×)3

)
7→ [Oα,β]
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Classification of Okubo algebras (charF = 3)

Theorem (E. 1997)

Any Okubo algebra over F (charF = 3) is isomorphic to Oα,β
for some 0 6= α, β ∈ F.

For 0 6= α, β ∈ F, let

Sα,β := spanF3

{
α±1, β±1, α±1β±1

}
.

Then Oα,β is either isomorphic or antiisomorphic to Oγ,δ if
and only if Sα,β = Sγ,δ.
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Symmetric composition algebras and triality

Let (C, ∗, n) be an eight-dimensional symmetric composition
algebra. Write

Lx(y) = x ∗ y = Ry (x).

LxRx = n(x)id = RxLx =⇒
(

0 Lx
Rx 0

)2

= n(x)id

Therefore, the map x 7→
(

0 Lx
Rx 0

)
extends to an isomorphism of

algebras with involution

Φ :
(
Cl(C, n), τ

)
−→

(
End(C⊕ C), σn⊥n

)
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Spin group

Consider the spin group:

Spin(C, n) =
{
u ∈ Cl(C, n)×

0̄
: u · C · u−1 ⊆ C, u · τ(u) = 1

}
.

For any u ∈ Spin(C, n),

Φ(u) =

(
ρ−u 0
0 ρ+

u

)
for some ρ±u ∈ O(C, n) such that

χu(x ∗ y) = ρ+
u (x) ∗ ρ−u (y)

for any x , y ∈ C, where χu(x) = u · x · u−1.

The natural and the two half-spin representations are linked!
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Spin group

Theorem

Let (C, ∗, n) be an eight-dimensional symmetric composition
algebra. Then:

Spin(C, n) ' {(f0, f1, f2) ∈ O+(C, n)3 :

f0(x ∗ y) = f1(x) ∗ f2(y) ∀x , y ∈ C}

u 7→ (χu, ρ
+
u , ρ

−
u )

Moreover, the set of related triples (the set on the right hand side)
has cyclic symmetry.

The cyclic symmetry on the right hand side induces an outer
automorphism of order 3 (trialitarian automorphism) of Spin(C, n).
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The Principle of Triality

Theorem

Let (C, ∗, n) be an eight-dimensional symmetric composition
algebra. Then, for any f0 ∈ O′(C, n), there are elements
f1, f2 ∈ O′(C, n), unique up to scalar multiplication of both by −1,
such that (f0, f1, f2) is a related triple.

Remark

All this is functorial, and we get three exact sequences

1 −→ µ2 −→ Spin(C, n) −→ O+(C, n) −→ 1.
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Trialitarian automorphisms

Theorem (Chernousov,Knus,Tignol,E. 2012-2015)

A simply connected simple group of type 1D4 admits
trialitarian automorphisms if and only if it is isomorphic to
Spin(n) for a 3-fold Pfister form; i.e., the norm of an
eight-dimensional composition algebra.

The set of conjugacy classes of these automorphisms is in
one-to-one correspondence with the set of isomorphism classes
of symmetric composition algebras with norm n.

The groups of type 2D4 and 6D4 do not admit trialitarian
automorphisms.

The trialitarian automorphisms of the groups of type 3D4 are
related too to symmetric composition algebras.
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Application: Freudenthal Magic Square
Local principle of triality

Theorem

Let (C, ∗, n) be an eight-dimensional symmetric composition
algebra. Then, for any d0 ∈ so(C, n), there are unique elements
d1, d2 ∈ so(C, n) such that d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y), for
any x , y ∈ S . Moreover,

The map θ : tri(C, ∗, n)→ tri(C, ∗, n),
(d0, d1, d2) 7→ (d1, d2, d0), is a Lie algebra automorphism.

Any of the projections tri(C, ∗, n)→ so(C, n),
(d0, d1, d2) 7→ di , is an isomorphism of Lie algebras.

The Lie algebra

tri(C, ∗, n) = {(d0, d1, d2) ∈ so(C, n)3 :

d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) ∀x , y ∈ C}
is called the triality Lie algebra of (C, ∗, n).
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Application: Freudenthal Magic Square
Symmetric construction (E. 2004)

Let (C, ∗, n) and (C′, ?, n′) be two symmetric composition algebras
over a field F of characteristic 6= 2. One can construct a Lie
algebra as follows:

g = g(C,C′) =
(
tri(C)⊕ tri(C′)

)
⊕
(
⊕2

i=0ιi (C⊗ C′)
)
,

with bracket given by:

the Lie bracket in tri(C)⊕ tri(C′), which thus becomes a Lie
subalgebra of g,

[(d0, d1, d2), ιi (x ⊗ x ′)] = ιi
(
di (x)⊗ x ′

)
,

[(d ′0, d
′
1, d
′
2), ιi (x ⊗ x ′)] = ιi

(
x ⊗ d ′i (x

′)
)
,

[ιi (x ⊗ x ′), ιi+1(y ⊗ y ′)] = ιi+2

(
(x ∗ y)⊗ (x ′ ? y ′)

)
(indices

modulo 3),

[ιi (x ⊗ x ′), ιi (y ⊗ y ′)] = ...
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Application: Freudenthal Magic Square
Symmetric construction

dimC′

g(C,C′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6

dimC
4 C3 A5 D6 E7

8 F4 E6 E7 E8
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Application: Freudenthal Magic Square
Symmetric construction: remarks

In Freudenthal’s approach to the Magic Square, each row
corresponds to a different type of Geometry: Elliptic,
Projective, Symplectic and ‘Metasymplectic’.
Tits construction (1966) of the Magic Square involves a
Hurwitz algebra and a simple Jordan algebra of degree 3.
None of these explain the symmetry of the Magic Square.

Different symmetric constructions have been given lately:
Vinberg (1966), Allison-Faulkner (1996), Barton-Sudbery and
Landsberg-Manivel (2003). They are equivalent to the
construction above using para-Hurwitz algebras.

The symmetric construction with Okubo algebras provides
nice models of the exceptional algebras. They have been used
in the study of gradings by abelian groups on these algebras:
Aranda-Orna, Draper, Guido, Kochetov, Mart́ın-González, ...
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Application: Freudenthal Magic Square
Freudenthal Magic Supersquare

In characteristic 3 there exist nontrivial symmetric composition
superalgebras.

These can be used to enlarge Freudenthal Magic Square with new
simple Lie superalgebras (Cunha-E. 2007).

Most simple nonclassical modular contragredient Lie superalgebras
appear in this Magic Supersquare.
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The saying that God is the mathematician, so that,
even with meager experimental support, a
mathematically beautiful theory will ultimately have a
greater chance of being correct, has been attributed to
Dirac. Octonion algebra may surely be called a beautiful
mathematical entity.

It is possible that this and other non-associative
algebras (other than Lie algebras) may play some
essential future role in the ultimate theory, yet to be
discovered.

Susumu Okubo

Thank you!

40/40


	Geometric triality
	Symmetric composition algebras
	Algebraic triality

