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Chapter 1

A short introduction to Lie
groups and Lie algebras

This chapter is devoted to give a brief introduction to the relationship between Lie
groups and Lie algebras. This will be done in a concrete way, avoiding the general
theory of Lie groups.

It is based on the very nice article by R. Howe: “Very basic Lie Theory”, Amer.
Math. Monthly 90 (1983), 600-623.

Lie groups are important since they are the basic objects to describe the symmetry.
This makes them an unavoidable tool in Geometry (think of Klein’s Erlangen Program)
and in Theoretical Physics.

A Lie group is a group endowed with a structure of smooth manifold, in such a way
that both the algebraic group structure and the smooth structure are compatible, in
the sense that both the multiplication ((g, k) + gh) and the inverse map (g +— g~ ') are
smooth maps.

To each Lie group a simpler object may be attached: its Lie algebra, which almost
determines the group.

Definition. A Lie algebra over a field k is a vector space g, endowed with a bilinear
multiplication

[ ]igxg—g
(z,y) = [2,9],
satisfying the following properties:
[z,2] =0 (anticommutativity)
[z, v], 2] + [[y, 2], 2] + [[z, x],y] =0 (Jacobi identity)
for any z,y,z € g.

Example. Let A be any associative algebra, with multiplication denoted by juxtaposi-
tion. Consider the new multiplication on A given by

[z,y] =y —yx

for any z,y € A. It is an easy exercise to check that A, with this multiplication, is a Lie
algebra, which will be denoted by A™.
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As for any algebraic structure, one can immediately define in a natural way the
concepts of subalgebra, ideal, homomorphism, isomorphism, ..., for Lie algebras.

The most usual Lie groups and Lie algebras are “groups of matrices” and their Lie
algebras. These concrete groups and algebras are the ones that will be considered in
this chapter, thus avoiding the general theory.

§ 1. One-parameter groups and the exponential map

Let V' be a real finite dimensional normed vector space with norm ||.||. (So that V is
isomorphic to R™.)
Then Endgr (V) is a normed space with
||Al| = sup { HH |||| 0#ve V}
=sup{||Av|| : v € V and |jv]| =1}

The determinant provides a continuous (even polynomial) map det : Endg(V) — R.
Therefore
GL(V) =det ' (R\ {0})
is an open set of Endg(V'), and it is a group. Moreover, the maps
GL(V)x GL(V) — GL(V) GL(V) — GL(V)
(A, B) — AB A — A1

are continuous. (Actually, the first map is polynomial, and the second one rational, so
they are smooth and even analytical maps. Thus, GL(V) is a Lie group.)

One-parameter groups

A one-parameter group of transformations of V' is a continuous group homomorphism
¢: (R,+) — GL(V).

Any such one-parameter group ¢ satisfies the following properties:
1.1 Properties.
(i) ¢ is differentiable.

Proof. Let F(t fo u)du. Then F'(t) = ¢(t) for any t and for any ¢, s:
t+s

F(t+s)= ; o(u)du

= /0 t d(u)du + /t " é(u)du

= [ otwau+ [ o100t

= P(t) + ot /¢>

F(t) + o(t)
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(iii)

ONE-PARAMETER GROUPS AND THE EXPONENTIAL MAP

But
F/(0) = lim 10

s—0 8

—(0) =1

(the identity map on V'), and the determinant is continuous, so

lim det (Fi8)> = lim det F(s) 1#0,

s—0 s—0 s o

and hence a small sy can be chosen with invertible F'(sy). Therefore
$(t) = (F(t +s0) = F(1)) F(s0) ™

is differentiable, since so is F'.

There is a unique A € Endgr (V') such that

o(t) _ A <:Ztnjn> |

n=0

(Note that the series exp(A) = 00 A% converges absolutely, since |A™| < ||A|",
and uniformly on each bounded neighborhood of 0, in particular on Bs(0) = {A €
Endr(V) : ||A]| < s}, for any 0 < s € R, and hence it defines a smooth, in fact

analytic, map from Endg(V') to itself.) Besides, A = ¢'(0).

Proof. For any 0 # v € V, let v(t) = ¢(t)v. In this way, we have defined a map

R — V, t — v(t), which is differentiable and satisfies

o(t +5) = g(s)o(t)

for any s,t € R. Differentiate with respect to s for s = 0 to get

which is a linear system of differential equations with constant coefficients. By

elementary linear algebra(!), it follows that
u(t) = !9 (0)y

for any t. Moreover,

.
for any v € V, and hence ¢(t) = e'®'©) for any .

Conversely, for any A € Endg(V), the map t — et4

Proof. If A and B are two commuting elements in Endg(V'), then

n

cret = i (3 5) (0 ) = i (3 5 ).

m
p=0 p: q=0 r=0

15 a one-parameter group.
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with AP B
Rn(A7 B) = E ISR
b q
1<p,g<n
pt+g>n
SO

P q 2n r
(R4, By < S JARIBE 5~ (1AL 151

)

! 1 !
1<pg<n P T S '
p+g>n

whose limit is 0. Hence, eeB = e4+5.

Now, given any A € Endr(V) and any scalars ¢, s € R, tA commutes with sA, so
Pt + 5) = etATsA = et4es4 = §(1)¢(s), thus proving that ¢ is a group homomor-
phism. The continuity is clear. O

(iv) There ezists a positive real number r and an open set U in GL(V') contained in
Bs(I), with s = €" — 1, such that the “exponential map”:

exp: B, (0) — U
A — exp(A) = et

1s a homeomorphism.

Proof. exp is differentiable because of its uniform convergence. Moreover, its dif-
ferential at O satisfies:
L gtA 0
d exp(0)(A) = lim ——— = A,
t—0 t
so that

d exp(0) = id (the identity map on Endg(V))
and the Inverse Function Theorem applies.
Moreover, et — T = S AL 5o [led — || < 300, A" — ell4ll — 1. Thus

n=1 n!> n!

U C By(I). O

Note that for V=R (dimV = 1), GL(V) = R\ {0} and exp : R — R\ {0} is not
onto, since it does not take negative values.

Also, for V' = R?, identify Endg(V) with Mata(R). Then, with A = (9 '), it

follows that A2 = (' %), A% = (% §) and A* = I. It follows that e! = (cost ~—sint)

sint cost
A — (t+2m)A 414 therefore, exp is not one-to-one.

In particular, e’
Adjoint maps

1. For any g € GL(V), the linear map Adg : Endg(V) — Endg(V), 4 + gAg~!, is
an inner automorphism of the associative algebra Endgr (V).
The continuous group homomorphism

Ad: GL(V) — GL(Endgr(V))
g +— Adg,
is called the adjoint map of GL(V').
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2. For any A € Endgr(V), the linear map ads (or ad A) : Endr(V) — Endr(V),
B [A, B] = AB—BA, is an inner derivation of the associative algebra Endg (V).
The linear map

ad : Endg (V) — Endg(Endg(V))
A +— ady (oradA),

is called the adjoint map of Endr(V).

We will denote by gl(V') the Lie algebra Endg(V')~. Then ad is a homomorphism of
Lie algebras ad : gl(V') — gl(Endg(V)).

1.2 Theorem. The following diagram is commutative:

gl(V) — gl(Endg(V))

(1.1) expl lexp

GL(V) -4, GL(Endg(V))

Proof. The map ¢ : t — Adexp(tA) is a one-parameter group of transformations of
Endgr (V) and, therefore,
Adexp(tA) = exp(tA)

with A = ¢/(0) € gl(Endr(V)). Hence,

Ad tA)) — 1
1y Mlot00)
t—0 t

and for any B € Endg(V),

A(B) = Tim exp(tA)Bexp(—tA) — B
t—0 t

= % (exp(tA)B exp(—tA)) lt=0

= ABI — IBA = ad(B).

Therefore, A = ad4 and Ad(exp(tA)) = exp(tad,) for any ¢ € R. O

§ 2. Matrix groups

2.1 Definition. Given a real vector space V', a matriz group on V is a closed subgroup
of GL(V).

Any matrix group inherits the topology of GL(V'), which is an open subset of the
normed vector space Endg(V).

2.2 Examples. 1. GL(V) is a matrix group, called the general linear group. For
V =R", we denote it by GL,(R).
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. SL(V)={A € GL(V) : det A = 1} is called the special linear group.

. Given a nondegenerate symmetric bilinear map b : V x V — R, the matrix group

O(V,b) ={A € GL(V) : b(Au, Av) = b(u,v) Yu,v € V'}
is called the orthogonal group relative to b.
Similarly, give a nondegenerate alternating form b, : V x V' — R, the matrix group
Sp(V,by) = {A € GL(V) : by(Au, Av) = by(u,v) Yu,v € V'}
is called the symplectic group relative to b,.
For any subspace U of V, P(U) = {A € GL(V) : A(U) C U} is a matrix group.

By taking a basis of U and completing it to a basis of V, it consists of the endo-
morphisms whose associated matrix is in upper block triangular form.

. Any intersection of matrix groups is again a matrix group.

Let Ty, ...,T, be elements in Endg(V), then G = {A € GL(V) : [T;, A] = 0 Vi =
1,...,n} is a matrix group.

In particular, consider C™ as a real vector space, by restriction of scalars. There
is the natural linear isomorphism

C* — R™

(x1+iy17"'axn+iyn)'_>($17-"7xn7y17"'7yn)-

The multiplication by ¢ in C™ becomes, through this isomorphism, the linear map
J R 5 R (21, T, YLy Yn) = (=YL, ooy —Uns T1,. .., Tp). Then we
may identify the group of invertible complex n x n matrices GL,(C) with the
matrix group {A € GLa,(R) : [J, A] = 0}.

If G; is a matrix group on V;, ¢ = 1,2, then G; X (G5 is naturally isomorphic to a
matrix group on Vj x V.

. Let G be a matrix group on V', and let G° be its connected component of /. Then

G° is a matrix group too.

Proof. For any x € G°, xG° is connected (homeomorphic to G°) and xG°NG° # ()
(as x belongs to this intersection). Hence zG°UG? is connected and, by maximality,
we conclude that zG° C G°. Hence G°G° C G°. Similarly, (G°)~! is connected,
(G°)~ING® # (), so that (G°)~! C G°. Therefore, G° is a subgroup of G. Moreover,
G is closed, because the closure of a connected set is connected. Hence G° is a
closed subgroup of GL(V). O

Given any matrix group on V, its normalizer N(G) = {g € GL(V) : gGg~! = G}
is again a matrix group.
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§ 3. The Lie algebra of a matrix group

Let G be a matrix group on the vector space V. Consider the set
g={Acgl(V):exp(tA) € G Vt € R}.

Our purpose is to prove that g is a Lie algebra, called the Lie algebra of G.

3.1 Technical Lemma. (i) Let A, B,C € gl(V) such that ||A|,|B|,|C| < 3 and
exp(A) exp(B) = exp(C). Then

C=A+B+= [AB] +S

. 3
with || S| < 65(||A]l + [|1BIl)".
(ii) For any A, B € gl(V),

exp(A+ B) = lim <exp (A) exp <B>> (Trotter’s Formula).
n n

n—oo

(iii) For any A, B € gl(V),

o140 = i o (4 s (2]

where, as usual, [g : h] = ghg='h~! denotes the commutator of two elements in a
group.
Proof. Note that, by continuity, there are real numbers 0 < r,r; < %, such that

exp (B, (0)) exp(Br, (0)) C exp(B,(0)). Therefore, item (i) makes sense.
For (i) several steps will be followed. Assume A, B, C satisfy the hypotheses there.

o Write exp(C) = I + C + Ri(C), with R1(C) = 320°, & Hence
n—2 e 1
(32 IB:(O)] < I Z I <oy L < e
n=2

because |[|C]| <1 and e —2 < 1.

e Also exp(A)exp(B) =1+ A+ B+ Ry(A4, B), with

1(A, B) ii (i( )AkB” k)
n=2 k=0
Hence,
(3.3) IRi(A, B)| < Z AL TED™ < ay+ 112,

because ||A|| + || B < 1.
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e Therefore, C A+B+Ri(A,B)—R:(C) and, since |C|| < 1 and || A +||B|| < 1,

equations (3.2)) and ( . give
2 1
ICT < Al + 1Bl + (1Al + 1B)" + ICI1* < 2([1All + 11B]l) + 1€l
and thus
(3.4) ICIl < (Al + 11 BIl)-
Moreover,

1€ = (A+ B)|| < [Ri(A, B)[| + [ -A (O]

(35) < (141 +181)° + (1141 +1181))’
< 17(|lAll + |1B])*.

02
Let us take one more term now, thus exp(C) = I+C+—+ Ry(C'). The arguments

2
in (3.2)) give, since e — 2 — % < %,
1 3
(3.6) I72(C)ll < S ICI”
On the other hand,

exp(A)exp(B) =1+ A+ B+ 1(A2 + 2AB + B?) + Ry(A, B),

(3.7)
=I+A+B+ - [A B] + (A+B)2+R2(A,B),

with

(3:8) [R2(A, B)|| < é(HAII +1BID)*.

But exp(C) = exp(A) exp(B), so if S = C — (A+ B+ 3[A, B]), by we get
1
S = Ra(A, B) + 5 ((A+ B)* = C%) = By(C)

and, because of (34), (B.5), (3-6) and (33),
1
1S < N B2(A, Bl + 5lI(A+ B)(A+ B = C) + (A+ B = O)C| + || R2(C)|
3 1 1
(1Al + 1| BII) +§(|\AH+HBII+HCII)IlAﬂLB—CII+§IICII3

5 1
(LAI+1BI + 5 LA+ 1B - 27 (AT -+ 1B + 542 (1Al + 11 B11)°
@
3

/—\W\HW\H

+ ) (1 + 181)° < 65141 + 1B1)’
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To prove (ii) it is enough to realize that for large enough n,

exp (21) exp <§> = exp(Ch),

A+ B A Bl|\?
Ic, — + ygw(” |+ | II) .
n n

with (because of (3.5))),

In other words,

oo (L) (2) = (52 10 )).

Therefore,

O R S —

since exp is continuous.
Finally, for (iii) use that for large enough n,

A B A+ B 1
exp (n) exp <n> = exp ( Z +—I[A,B]+ Sn> ,

2n?

(EDN
n3

with ||y < 65 , because of the first part of the Lemma. Similarly,

-1 ~1
- - 1
exp <A) exp <B> = exp < A) exp <B) = exp (—A + B + 5[4, Bl + S,Q)
n n n n n 2n

(1a+151)°
7L3

with ||S)|| < 65 . Again by the first part of the Lemma we obtain

(3.9) [exp (i) . exp (f)} — exp (T;[A,B] + o(nlg)> ,

since %[AJFTB + 55 [A, B] + Sy, —A%B + 55 [A, B] + S{I] = O(-%), and one can proceed
as before. O

3.2 Theorem. Let G be a matriz group on the vector space V and let g = {A € gl(V) :
exp(tA) € G Vt € R}. Then:

(i) g is a Lie subalgebra of gl(V'). (g is called the Lie algebra of G.)

(ii) The map exp : g — G maps a neighborhood of 0 in g bijectively onto a neighborhood
of 1 in G. (Here g is a real vector space endowed with the topology coming from
the norm of Endr (V') induced by the norm of V'.)
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Proof. By its own definition, g is closed under multiplication by real numbers. Now,
given any A, B € g and t € R, since G is closed, the Technical Lemma shows us that

exp(t(A + B)) = lim (exp <t:> exp <tf>) e

n—oo
2

exp(t[A, B]) = lim [exp <t;4> : exp (f)}n € G.

n—oo

Hence g is closed too under addition and Lie brackets, and so it is a Lie subalgebra of
gl(V).

To prove the second part of the Theorem, let us first check that, if (Ay)nen is a
sequence in exp 1 (G) with lim, o0 || An|| = 0, and (s, )nen is a sequence of real numbers,
then any cluster point B of the sequence (s, Ay )nen lies in g:

Actually, we may assume that lim, o s, A4, = B. Let t € R. For any n € N, take
my, € Z such that |m, — ts,| < 1. Then,

lmnAn —tB| = ||(my — tsn)An + t(snAn — B)|
< mn — tsal[|Anll + [t]|snAn — B

Since both ||A,|| and ||s, A, — B|| converge to 0, it follows that lim, oo m,A, = tB.
Also, A, € exp~1(G), so that exp(m,A,) = exp(A4,)™ € G. Since exp is continuous
and G is closed, exp(tB) = lim,_,~ exp(m,Ay) € G for any ¢t € R, and hence B € g, as
required.

Let now m be a subspace of gl(V') with gl(V) = g @ m, and let 7y and 7y be the
associated projections onto g and m. Consider the analytical function:

E:gl(V)— GL(V)
A — exp(ﬂg(A)) exp(wm(A)).
Then,

d <exp (mg(tA)) exp(mm (tA))) le=o

dt
- % (exp (4 (tA))) li—o exp(0) + exp(())% (exp(ﬂm(tA))) o

= mg(A) + ™ (A4) = A.

Hence, the differential of E at 0 is the identity and, thus, £ maps homeomorphically a
neighborhood of 0 in gl(V') onto a neighborhood of 1 in GL(V'). Let us take r > 0 and
a neighborhood V of 1 in GL(V) such that E|g (o) : B-(0) — V is a homeomorphism. It
is enough to check that exp(B,(0) Ng) = E(B,(0) N g) contains a neighborhood of 1 in
G.

Otherwise, there would exist a sequence (B, )nen € exp™1(G) with B, € B,-(0)Ng and
such that lim,_, B, = 0. For large enough n, exp(B,,) = F(A,,), with lim,,_,+ A, = 0.
Hence exp(mm(A4n)) = exp(7rg(An))71 exp(By) € G.

Since limy, ;00 Ay, = 0, limy, 00 Tm(Ay) = 0 too and, for large enough m, 7, (A,) # 0,
as A, € g (note that if A, € g, then exp(B,,) = E(A,,) = exp(4,,) and since exp is a
bijection on a neighborhood of 0, we would have B,, = A,, € g, a contradiction).

The sequence (WlA)HWm(AnD N is bounded, and hence has cluster points, which
m n ne

are in m (closed in gl(V'), since it is a subspace). We know that these cluster points are
in g, so in gNm = 0. But the norm of all these cluster points is 1, a contradiction. [
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3.3 Remark. Given any A € gl(V), the set {exp(tA4) : t € R} is the continuous image
of the real line, and hence it is connected. Therefore, if g is the Lie algebra of the matrix
group G, exp(g) is contained in the connected component G° of the identity. Therefore,
the Lie algebra of G equals the Lie algebra of G°.

Also, exp(g) contains an open neighborhood U of 1 in G. Thus, G° contains the open
neighborhood a2 of any x € G°. Hence G° is open in G but, as a connected component,
it is closed too: G° is open and closed in G.

Let us look at the Lie algebras of some interesting matrix groups.

3.4 Examples. 1. The Lie algebra of GL(V') is obviously the whole general linear
Lie algebra gl(V').

2. For any A € gl(V) (or any square matrix A), dete? = etr2e(4) This is better
checked for matrices. Since any real matrix can be considered as a complex matrix,
it is well known that given any such matrix there is a regular complex matrix
P such that J = PAP~! is upper triangular. Assume that \,...,\, are the
eigenvalues of A (or J), counted according to their multiplicities. Then PeAP~! =
e’ and dete? = dete’ =[], et = eXizi M = etrace(J) — ptrace(4),

Hence, for any t # 0, dete!® = 1 if and only if trace(A) = 0. This shows that
the Lie algebra of the special linear group SL(V') is the special linear Lie algebra
sl(V) ={A e gl(V): trace(A) = 0}.

3. Let b: V xV — R be a bilinear form. If A € gl(V) satisfies b(e*v, et4w) = b(v, w)
for any t € R and v, w € V, take derivatives at ¢t = 0 to get b(Av, w)+b(v, Aw) =0
for any v,w € V. Conversely, if b(Av,w) = —b(v, Aw) for any v,w € V, then
b((tA) v, w) = (—1)"b(v, (tA)"w), so b(etv, etAw) = b(v, e tet4w) = b(v,w) for
any t € R and v,w,€ V.

Therefore, the Lie algebra of the matrix group G = {g € GL(V) : b(gv, gw) =
b(v,w) Vo,we V}isg={A € gl(V) : b(Av,w) + b(v, Aw) = 0 Yv,w € V}.

In particular, if b is symmetric and nondegenerate, the Lie algebra of the orthogonal
group O(V, b) is called the orthogonal Lie algebra and denoted by o(V,b). Also, for
alternating and nondegenerate b,, the Lie algebra of the symplectic group Sp(V, b,)
is called the symplectic Lie algebra, and denoted by sp(V, b, ).

4. For any subspace U of V, consider a complementary subspace W, so that V =
U®W. Let my and 7y be the corresponding projections. For any A € gl(V') and
0#t€eR, e (U) CU if and only if my (e*4u) = 0 for any u € U. In this case, by
taking derivatives at t = 0 we obtain that 7wy (Au) = 0 forany u € U, or A(U) C U.
The converse is clear. Hence, the Lie algebra of P(U) = {g € GL(V) : g(U) C U}
isp(U)={Aegl(V): A(U) CU}.

5. The Lie algebra of an intersection of matrix groups is the intersection of the cor-
responding Lie algebras.

6. The Lie algebra of G = G1 x Go (Q GL(Vp) x GL(V2)) is the direct sum g; @ go
of the corresponding Lie algebras. This follows from the previous items because,
inside GL(V} x Vo), GL(V1) x GL(V,) = P(V1) N P(V%).
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7. Given Ty,...T, € Endg(V). With similar arguments, one checks that the Lie
algebra of G ={g € GL(V) : ¢gT; =Tig, i =1,...,n}isg={A e gl(V) : AT; =
T;A,i = 1,...,n}. In particular, the Lie algebra of GL,(C) is gl,,(C) (the Lie
algebra of complex n x n matrices).

In the remainder of this chapter, the most interesting properties of the relationship
between matrix groups and their Lie algebras will be reviewed.

3.5 Proposition. Let G be a matriz group on a real vector space V, and let G° be its
connected component of 1. Let g be the Lie algebra of G. Then G° is the group generated

by exp(g).

Proof. We already know that exp(g) C G° and that there exists an open neighborhood
UofleGwithl el Cexp(g). Let V=UNUL, which is again an open neighborhood
of 1 in G contained in exp(g). It is enough to prove that G° is generated, as a group,
by V.

Let H = U,enV", H is closed under multiplication and inverses, so it is a subgroup
of G contained in G°. Actually, it is the subgroup of G generated by V. Since V is open,
50 is V" = UyepvV" ! for any n, and hence H is an open subgroup of G. But any open
subgroup is closed too, as G\ H = Uyeq\ g H is a union of open sets. Therefore, H is
an open and closed subset of G contained in the connected component G°, and hence it
fills all of G°. O

3.6 Theorem. Let G and H be matrix groups on the real vector space V with Lie
algebras g and .

(i) If H is a normal subgroup of G, then b is an ideal of g (that is, [g,h] C h).
(ii) If both G and H are connected, the converse is valid too.

Proof. Assume that H is a normal subgroup of G and let A € h and B € g. Since H is
a normal subgroup of G, for any ¢t € R and n € N, [et% : e%} € H, and hence, by the

n2
Technical Lemma, e8! = lim,,_, [et% : e%} belongs to H (H is a matrix group,
hence closed). Thus, [A, B] € b.

Now, assume that both G and H are connected and that § is an ideal of g. Then,
for any B € g, adg(h) C b, so AdeB(h) = e*5(h) C h. In other words, ePhe=B C b.
Since G is connected, it is generated by {e” : B € g}. Hence, ghg~! C b for any g € G.
Thus, for any A € h and g € G, geg™' = €949 € ¢Y C H. Since H is connected, it is
generated by the e?’s, so we conclude that gHg~! C H for any g € G, and hence H is
a normal subgroup of G. d

3.7 Theorem. Let G be a matriz group on the real vector space V' with Lie algebra g,
and let H be a matriz group on the real vector space W with Lie algebra b.

If o : G — H is a continuous homomorphism of groups, then there exists a unique
Lie algebra homomorphism dy : g — b that makes the following diagram commutative:
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Proof. The uniqueness is easy: since exp is bijective on a neighborhood of 0 in b, d ¢ is
determined as (exp)~! o ¢ o exp on a neighborhood of 0 in g. But d ¢ is linear and any
neighborhood of 0 contains a basis. Hence d ¢ is determined by ¢.

Now, to prove the existence of such a linear map, take any A € g, then t — <p(etA)
is a one-parameter group on W with image in H. Thus, there is a unique B € § such
that @(e!t) = !B for any t € R. Define dp(A) = B. Therefore, p(et) = et@¥(A) for
any t € R and A € g. Now, for any Aq, Ay € g,

A A
o (et(A1+A2)) =y ( lim <etTletTQ>n) (Trotter’s formula)

n—oo
tAq tAg \ \ 7
= lim (cp (eT)gp(eT>> (since ¢ is continuous)
n—oo
— lim (e%dv(Al)e%dw(A2)>n
n—oo
_ tde(an+de(az)

and, hence, d ¢ is linear. In the same spirit, one checks that

2
o <et[A1,A2]> — ( lim [6“% : e%}” ) — = etlde(An).di(A2)]
n—oo
thus proving that d ¢ is a Lie algebra homomorphism. O

Several consequences of this Theorem will be drawn in what follows.

3.8 Corollary. Let G, H,g and b be as in the previous Theorem. If G and H are
isomorphic matriz groups, then g and b are isomorphic Lie algebras.

3.9 Remark. The converse of the Corollary above is false, even if G and H are con-
nected. Take, for instance,

G = S0(2) = {(COSH _Sm9> 0 R}

sinf cos@

(the special orthogonal group on R?, which is homeomorphic to the unit circle). Its Lie

algebra is
0 —«
g-{(a O).aeR}

(2 x 2 skew-symmetric matrices). Also, take

n={(5 9) aemad)

which is isomorphic to the multiplicative group of positive real numbers, whose Lie

algebra is
a 0
h_{(O(J.aER}

Both Lie algebras are one-dimensional vector spaces with trivial Lie bracket, and hence
they are isomorphic as Lie algebras. However, G is not isomorphic to H (inside G one
may find many finite order elements, but the identity is the only such element in H).
(One can show that G and H are ‘locally isomorphic’.)
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If G is a matrix groupon V,and X € g, g € G and t € R,
exp(t Ad g(X)) = g(exp(tX))g™" € G,
so Adg(g) C g. Hence, the adjoint map of GL(V') induces an adjoint map
Ad: G — GL(g),

and, by restriction in (1.1]), we get the following commutative diagram:

d
g —— gl(g)

(3.10) expl lexp

Ad

G —— GL(g)

3.10 Corollary. Let G be a matrix group on the real vector space V and let Ad : G —
GL(g) be the adjoint map. Then d Ad = ad : g — gl(g).

Remember that, given a group G, its center Z(G) is the normal subgroup consisting
of those elements commuting with every element: Z(G) = {g € G : gh = hg Yh € G}.

3.11 Corollary. Let G be a connected matriz group with Lie algebra g. Then Z(G) =
ker Ad, and this is a closed subgroup of G with Lie algebra the center of g: Z(g) = {X €
g:[X,Y]=0VY € g} (=kerad).

Proof. With g € Z(G) and X € g, exp(tX) = g(exp(tX))g_1 = exp(t Adg(X)) for any
t € R. Taking the derivative at ¢ = 0 one gets Adg(X) = X for any X € g, so that
g € ker Ad. (Note that we have not used here the fact that G is connected.)

Conversely, take an element g € ker Ad, so for any X € g we have gexp(X)g~! =
exp(Ad g(X)) = exp(X). Since G is connected, it is generated by exp(g) and, thus,
ghg™' = h for any h € G. That is, g € Z(G).

Since Ad is continuous, it follows that Z(G) = ker Ad = Ad~'(I) is closed.

Now, the commutativity of the diagram shows that exp(kerad) C ker Ad =
Z(@), and hence ker ad is contained in the Lie algebra of Z(G). Conversely, if X € g
and exp(tX) € Z(G) for any ¢t € R, then exp(tady) = Adexp(tX) = I and hence
(take the derivative at ¢ = 0) ady = 0, so X € kerad. Therefore, the Lie algebra of
Z(G) = ker Ad is ker ad which, by its own definition, is the center of g. O

3.12 Corollary. Let G be a connected matriz group with Lie algebra g. Then G is
commutative if and only if g is abelian, that is, [g,g] = 0.

Finally, the main concept of this course will be introduced. Groups are important
because they act as symmetries of other structures. The formalization, in our setting,
of this leads to the following definition:

3.13 Definition. (i) A representation of a matrix group G is a continuous homo-
morphism p : G — GL(W) for a real vector space W.

(ii) A representation of a Lie algebra g is a Lie algebra homomorphism p : g — gl(W),
for a vector space W.
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3.14 Corollary. Let G be a matriz group with Lie algebra g and let p : G — GL(W)
be a representation of G. Then there is a unique representation dp : g — gl(W) such
that the following diagram is commutative:

g — gl(W)

exp l l exp

G —2— GL(W)

The great advantage of dealing with d p above is that this is a Lie algebra homomor-
phism, and it does not involve topology. In this sense, the representation d p is simpler
than the representation of the matrix group, but it contains a lot of information about
the latter. The message is that in order to study the representations of the matrix
groups, we will study representations of Lie algebras.






Chapter 2

Lie algebras

The purpose of this chapter is to present the basic structure of the finite dimensional
Lie algebras over fields, culminating in the classification of the simple Lie algebras over
algebraically closed fields of characteristic 0.

§ 1. Theorems of Engel and Lie

Let us first recall the definition of representation of a Lie algebra, that has already
appeared in the previous chapter.

1.1 Definition. Let L be a Lie algebra over a field k. A representation of L is a Lie
algebra homomorphism p : L — gl(V'), where V' is a nonzero vector space over k.

We will use the notation z.v = p(z)(v) for elements = € L and v € V. In this case,
V' is said to be a module for L.

As for groups, rings or associative algebras, we can immediately define the concepts
of submodule, quotient module, irreducible module (or irreducible representation), ho-
momorphism of modules, kernel, image, ...

In what follows, and unless otherwise stated, all the vector spaces and algebras con-
sidered will be assumed to be finite dimensional over a ground field k.

1.2 Engel’s Theorem. Let p: L — gl(V') be a representation of a Lie algebra L such
that p(x) is nilpotent for any x € L. Then there is an element 0 # v € V such that
x.w =0 for any x € L.

Proof. The proof will be done by induction on n = dimy, L, being obvious for n = 1.

Hence assume that dimgy L = n > 1 and that the result is true for Lie algebras
of smaller dimension. If kerp # 0, then dimy p(L) < dimg L = n, but the inclusion
p(L) < gl(V) is a representation of the Lie algebra p(L) and the induction hypothesis
applies.

Therefore, we may assume that ker p = 0 and, thus, that L is a subalgebra of gl(V).
The hypothesis of the Theorem assert then that ™ = 0 for any z € L C gl(V) =
Endg(V'), where m = dimy V. Let S be a proper maximal subalgebra of L. For any
z,y € L adz =l —ry, with I;(y) = 2y = ry(x), so

2m—1
(ad2)?" () = (b — r2)*" L) = Y (1)’ <2m -

> x2m717zyzz.
=0

7

17
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But for any 0 < i < 2m — 1, either i or 2m — 1 — i is > m. Hence (adz)*™~! = 0. In
particular, the natural representation of the Lie algebra S on the quotient space L/S:

©: S —gl(L/)S)
x— @(x): L/S— L/S
y+ Sz, yl+S

(L is a module for S through ad, and L/S is a quotient module) satisfies the hypotheses
of the Theorem, but with dim; .S < n. By the induction hypothesis, there exists an
element z € L\ S such that [z, z] € S for any x € S. Therefore, S @ kz is a subalgebra
of L which, by maximality of .S, is the whole L. In particular S is an ideal of L.
Again, by induction, we conclude that the subspace W = {v € V : z.v =0 Va € S}
is nonzero. But for any x € S, z.(2.W) C [z, 2] W + z.(z.W) = 0 ([z,2] € S). Hence
z.W C W, and since z is a nilpotent endomorphism, there is a nonzero v € W such that
z.v = 0. Hence z.v =0 for any = € S and for z, so z.v =0 for any z € L. O

1.3 Consequences. (i) Let p: L — gl(V) be an irreducible representation of a Lie
algebra L and let I be an ideal of L such that p(z) is nilpotent for any = € I.
Then I C ker p.

Proof. Let W ={v €V : z.v =0 Vz € I}, which is not zero by Engel’s Theorem.
Forany x € I, y € Land w € W, z.(y.w) = [z,y].w + y.(z.w) =0, as [z,y] € I.
Hence W is a nonzero submodule of the irreducible module V' and, therefore,
W =V, as required. ]

(ii) Let p: L — gl(V') be a representation of a Lie algebra L. Let I be and ideal of L
andlet 0 =V5 G V1 G --- GV, =V be a composition series of V. Then p(z) is
nilpotent for any x € I if and only if for any i =1,...,n, I.V; C V;_;.

(iii) The descending central series of a Lie algebra L is the chain of ideals L = L' D
L?2...2 "2 ... where L"*! = [L" L] for any n € N. The Lie algebra is said
to be nilpotent if there is an n € N such that L™ = 0. Moreover, if n = 2, L is said
to be abelian. Then

Theorem. (Engel) A Lie algebra L is nilpotent if and only if ad, is nilpotent for
any x € L.

Proof. Tt is clear that if L™ = 0, then ad” ' = 0 for any 2 € L. Conversely,
assume that ad, is nilpotent for any « € L, and consider the adjoint representation
ad : L — gl(L). Let 0= Lo G --- G Lyy1 = L be a composition series of this
representation. By item (ii) it follows that L.L; = [L, L;] C L;_; for any i. Hence
L! C L, 41_; for any 4. In particular L™*! = 0 and L is nilpotent. ]

1.4 Exercise. The ascending central series of a Lie algebra L is defined as follows:
Zo(L) =0, Z1(L) = Z(L) ={x € L : [z, L] = 0} (the center of L) and Z;11(L)/Z;(L) =
Z (L/Z;(L)) for any ¢ > 1. Prove that this is indeed an ascending chain of ideals and
that L is nilpotent if and only if there is an n € N such that Z, (L) = L.



§1. THEOREMS OF ENGEL AND LIE 19

Now we arrive to a concept which is weaker than nilpotency.

1.5 Definition. Let L be a Lie algebra and consider the descending chain of ideals
defined by L®) = L and L™+t = [L(™ L] for any m > 0. Then the chain L =
L©) D) L@ D) L® D --- is called the derived series of L. The Lie algebra L is said to
be solvable if there is an n € N such that L™ = 0.

1.6 Exercise. Prove the following properties:

1. Any nilpotent Lie algebra is solvable. However, show that L = kx + ky, with
[z,y] = v, is a solvable but not nilpotent Lie algebra.

2. If L is nilpotent or solvable, so are its subalgebras and quotients.
3. If I and J are nilpotent (or solvable) ideals of L, so is I + J.

4. Let I be an ideal of L such that both I and L/I are solvable. Then L is solvable.
Give an example to show that this is no longer valid with nilpotent instead of
solvable.

As a consequence of these properties, the sum of all the nilpotent (respectively
solvable) ideals of L is the largest nilpotent (resp. solvable) ideal of L. This ideal is
denoted by N (L) (resp. R(L)) and called the nilpotent radical (resp. solvable radical)
of L.

1.7 Lie’s Theorem. Let p: L — gl(V') be a representation of a solvable Lie algebra L
over an algebraically closed field k of characteristic 0. Then there is a nonzero element
0 # v €V such that z.v € kv for any x € L (that is, v is a common eigenvector for all
the endomorphisms p(x), x € L).

Proof. Since L is solvable, [L, L] ; L and we may take a codimension 1 subspace of L
with [L, L] C S. Then clearly S is an ideal of L. Take z € L'\ S, so L = S & kz.

Arguing inductively, we may assume that there is a nonzero common eigenvector v
of p(x) for any x € S and, thus, there is a linear form A : S — k, such that z.v = \(z)v
forany x € S. Let W = {w € V : z.w = AMz)w Ya € S}. W is a nonzero subspace of
V. Let U be the linear span of {v, z.v,z.(2.v), ...}, with v as above. The subspace U is
invariant under p(z), and for any z € S and m € N:

p(x)p(2)"™ (v) = p(x)p(2)p(2) " (v) = p([z, 2])p(2)" " (v) + p(2) (p(:v)p(Z)m_l(v))-
Now arguing by induction on m we see that

(i) p(z)p(2)™(v) € U for any m € N, and hence U is a submodule of V.

(i) p(x)p(2)™(v) = M@)p(2)™(v) + X775  asp(2)i(v) for suitable scalars o; € k.

Therefore the action of p(z) on U is given by an upper triangular matrix with A\(z) on
the diagonal and, hence, trace p(z)|y = A(x) dimy U for any = € S. In particular,

Az, 2]) dimy, U

trace p([z, z])|v = {trace[p(xﬂU,P(Z”U] =0
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(the trace of any commutator is 0), and since the characteristic of k is 0 we conclude
that A([S, L]) = 0.
But then, for any 0 #w € W and xz € 5,

z.(zw) = [z, 2lw + z.(z.w) = MN[z, 2))w + 2. (A(z)w) = \(z)z.w,

and this shows that W is invariant under p(z). Since k is algebraically closed, there is a
nonzero eigenvector of p(z) in W, and this is a common eigenvector for any = € S and
for z, and hence for any y € L. O

1.8 Remark. Note that the proof above is valid even if k is not algebraically closed, as
long as the characteristic polynomial of p(z) for any = € L splits over k. In this case p
is said to be a split representation.

1.9 Consequences. Assume that the characteristic of the ground field & is 0.

(i) Let p: L — gl(V) be an irreducible split representation of a solvable Lie algebra.
Then dim V = 1.

(ii) Let p: L — gl(V') be a split representation of a solvable Lie algebra. Then there
is a basis of V such that the coordinate matrix of any p(x), x € L, is upper
triangular.

(iii) Let L be a solvable Lie algebra such that its adjoint representation ad : L — gl(L)
is split. Then there is a chain ofideal 0 = Lo C Ly C--- C L, = L withdim L; =i
for any 1.

(iv) Let p : L — gl(V') be a representation of a Lie algebra L. Then [L, R(L)] acts
nilpotently on V; that is, p(x) is nilpotent for any « € [L, R(L)]. The same is true
of [L,L] N R(L). In particular, with the adjoint representation, we conclude that
[L,R(L)] C [L,L]N R(L) C N(L) and, therefore, L is solvable if and only if [L, L]
is nilpotent.

Proof. Let k be an algebraic closure of k. Then k ®y, L is a Lie algebra over k and
k ®; R(L) is solvable, and hence contained in R(k ®; L). Then, by “extending
scalars” it is enough to prove the result assuming that k is algebraically closed.
Also, by taking a composition series of V', it suffices to prove the result assuming
that V is irreducible. In this situation, as in the proof of Lie’s Theorem, one
shows that there is a linear form A : R(L) — k such that W = {v € V : zv =
A(z)v Vo € R(L)} is a nonzero submodule of V. By irreducibility, we conclude
that z.v = A(a)v for any x € R(L) and any v € V. Moreover, for any = €
[L,L] N R(L), 0 = trace p(z) = A(z)dimy V, so A([L, L] N R(L)) = 0 holds, and
hence [L, R(L)].V C ([L,L]N R(L)).V =0.

The last part follows immediately from the adjoint representation. Note that if
[L, L] is nilpotent, in particular it is solvable, and since L/[L, L] is abelian (and
hence solvable), L is solvable by the exercise above. O

We will prove now a criterion for solvability due to Cartan.
Recall that any endomorphism f € Endg (V) over an algebraically closed field de-
composes in a unique way as f = s+ n with s,n € Endg(V), s being semisimple
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(that is, diagonalizable), n nilpotent and [s,n] = 0 (Jordan decomposition). Moreover,
s(V) C f(V), n(V) C f(V) and any subspace which is invariant under f is invariant
too under s and n.

1.10 Lemma. Let V' be a vector space over a field k of characteristic 0, and let My C Mo
be two subspaces of gl(V). Let A = {x € gl(V) : [z, Ma] C M1} and let z € A be an
element such that trace(zy) = 0 for any y € A. Then z is nilpotent.

Proof. We may extend scalars and assume that k is algebraically closed. Let m =
dimy, V. Then the characteristic polynomial of z is (X —A1) -+ - (X —Ap,), for Ay, ..., Ay, €
k. We must check that \y = --- = A\, = 0. Consider the Q subspace of k spanned by
the eigenvalues Ay,..., Apm: E = QA1 4+ --- + QAy,. Assume that £ # 0 and take
0+# f:E — Q a Q-linear form. Let z = s +n be the Jordan decomposition and let
{v1,...,vm} be an associated basis of V', in which the coordinate matrix of z is triangular
and s(v;) = \jv; for any 7. Consider the corresponding basis {E;j : 1 < i,j < m} of
gl(V), where E;j(v;) = v; and E;j(v;) = 0 for any [ # j. Then [s, E;;] = (A — Aj) Eij, so
that ad; is semisimple. Also ad,, is clearly nilpotent, and ad, = ads + ad,, is the Jordan
decomposition of ad,. This implies that ad, |y, = ads |y, + adn |a, is the Jordan
decomposition of ad, |z, and [s, Ma] = ads(Ma) C ad,(Msz) C M.

Consider the element y € gl(V') defined by means of y(v;) = f(\;)v; for any i. Then
ly, Ei;] = f(Ai — Xj)E;;. Let p(T) be the interpolation polynomial such that p(0) = 0
(trivial constant term) and p(A; — Aj) = f(A — Aj) for any 1 < i # j < m. Then
ady = p(ads) and hence [y, Ms] C M, so y € A. Thus, 0 = trace(zy) = > ;- Aif(N).
Apply f to get 0= f(\i)?, which forces, since f(\;) € Q for any i, that f(\;) =0
for any 7. Hence f = 0, a contradiction. ]

1.11 Proposition. Let V' be a vector space over a field k of characteristic 0 and let L
be a Lie subalgebra of gl(V'). Then L is solvable if and only if trace(xy) = 0 for any
z€[L,L) andy € L.

Proof. Assume first that L is solvable and take a composition series of V' as a module
for L: V=Vy 2 Vi D:-- DV, =0. Engel’s Theorem and Consequences m show that
[L,L].V; C Vi1 for any i. This proves that trace([L, L]L) = 0.

Conversely, assume that trace(xy) = 0 for any x € [L, L] and y € L, and consider
the subspace A = {x € gl(V) : [z, L] C [L,L]}. For any u,v € L and y € A,

trace([u, v]y) = trace(uvy — vuy)
= trace(vyu — yvu)
= trace([v,yJu) = 0 (since [v,y] € [L, L]).

Hence trace(zy) = 0 for any x € [L, L] and y € A which, by the previous Lemma, shows
that z is nilpotent for any = € [L, L]. By Engel’s Theorem, [L, L] is nilpotent, and hence
L is solvable. ]

1.12 Theorem. (Cartan’s criterion for solvability)
Let L be a Lie algebra over a field k of characteristic 0. Then L is solvable if and only
if trace(ad, ady) = 0 for any x € [L, L] and any y € L.

Proof. The adjoint representation ad : L — gl(L) satisfies that kerad = Z (L), which is
abelian and hence solvable. Thus L is solvable if and only if so is L/Z(L) = ad L and
the previous Proposition shows that, since [ad L, ad L] = ad[L, L], that ad L is solvable
if and only if trace(ad, ady) = 0 for any « € [L, L] and y € L. O
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The bilinear form  : L x L — k given by
k(x,y) = trace(ad, ady)

for any =,y € L, that appears in Cartan’s criterion for solvability, plays a key role in
studying Lie algebras over fields of characteristic 0. It is called the Killing form of the
Lie algebra L.

Note that k is symmetric and invariant (i.e., k([z,y], 2) = k(z, [y, z]) for any z,y, z €
L).

§ 2. Semisimple Lie algebras

A Lie algebra is said to be semisimple if its solvable radical is trivial: R(L) = 0. It is
called simple if it has no proper ideal and it is not abelian.

Any simple Lie algebra is semisimple, and given any Lie algebra L, the quotient
L/R(L) is semisimple.

2.1 Theorem. (Cartan’s criterion for semisimplicity)
Let L be a Lie algebra over a field k of characteristic 0 and let k(z,y) = trace(ad, ad,)
be its Killing form. Then L is semisimple if and only if k is nondegenerate.

Proof. The invariance of the Killing form k of such a Lie algebra L implies that the
subspace I = {x € L : k(x,L) = 0} is an ideal of L. By Proposition adl is a
solvable subalgebra of gl(L), and this shows that I is solvable. (adI = I/Z(L)N1I).

Hence, if L is semisimple I C R(L) = 0, and thus s is nondegenerate. (Note
that this argument is valid had we started with a Lie subalgebra L of gl(V') for some
vector space V, and had we replaced « by the trace form of V: B : L x L — k,
(z,y) — B(z,y) = trace(zy).)

Conversely, assume that x is nondegenerate, that is, that I = 0. If J were an abelian
ideal of L, then for any z € J and y € L, ad, ad,(L) C J and ad, ad,(J) = 0. Hence
(ady ady)? = 0 and k(z,y) = trace(adyady) = 0. Therefore, J C I = 0. Thus, L
does not contain proper abelian ideals, so it does not contain proper solvable ideals and,
hence, R(L) = 0 and L is semisimple. O

2.2 Consequences. Let L be a Lie algebra over a field &k of characteristic 0.

(i) L is semisimple if and only if L is a direct sum of simple ideals. In particular, this
implies that L = [L, L].

Proof. f L = L1 & --- & L, with L; a simple ideal of L for any ¢, and J is an
abelian ideal of L, then [J, L;] is an abelian ideal of L;, and hence it is 0. Hence
[J,L] = 0. This shows that the projection of J on each L; is contained in the
center Z(L;), which is 0 by simplicity. Hence J = 0.

Conversely, assume that L is semisimple and let I be a minimal ideal of L, take
the orthogonal I+ = {2 € L : x(z,I) = 0}, which is an ideal of L by invariance of
. Cartan’s criterion of solvability (or better Proposition shows that 1N I+
is solvable and hence, as R(L) = 0, INI+ = 0and L = I ® I*. Now, I is
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simple, since any ideal J of I satisfies [J,[+] C [[,I+] C I NI+ = 0, and hence
[J,L] = [J,I] C J. Also, k = k7 L k. is the orthogonal sum of the Killing
forms of I and I+. So we can proceed with I+ as we did for L to complete a
decomposition of L into the direct sum of simple ideals. ]

Let K/k be a field extension, then L is semisimple if and only if so is the scalar
extension K ®; L.

Proof. Once a basis of L over k is fixed (which is also a basis of K ®; L over K if
we identify L with 1 ® L), the coordinate matrices of the Killing forms of L and
K ®yp L coincide, whence the result. O

If L is semisimple and I is a proper ideal of L, then both I and L/I are semisimple.

Proof. As in (i), L = I @ I+ and the Killing form of L is the orthogonal sum of
the Killing forms of these two ideals: x; and k;1. Hence both Killing forms are
nondegenerate and, hence, both I and I+ are semisimple. Finally, L/I = [+. [

Assume that L is a Lie subalgebra of gl(V') and that the trace form B : Lx L — k,
(z,y) — B(z,y) = trace(zy) is nondegenerate. Then L = Z(L) ® [L, L] and [L, L]
is semisimple (recall that the center Z(L) is abelian). Moreover, the ideals Z (L)
and [L, L] are orthogonal relative to B, and hence the restriction of B to both
Z(L) and [L, L] are nondegenerate.

Proof. Let V.=Vy3 D Vi D --- D0 be a composition series of V' as a module for L.
Then we know, because of Consequences |1.9|that both [L, R(L)] and [L, L|NR(L)
act nilpotently on V. Therefore, B([L, R(L)],L) = 0 = B([L,L] N R(L), L) and,
as B is nondegenerate, this shows that [L, R(L)] = 0 = [L, L|NR(L). In particular,
R(L) = Z(L) and, since L/R(L) is semisimple, L/R(L) = [L/R(L),L/R(L)] =
([L,L] + R(L))/R(L). Hence L = [L,L] + R(L) and [L, L] N R(L) = 0, whence
it follows that L = Z(L) ® [L, L]. Besides, by invariance of B, B(Z(L), L, L]) =
B([Z(L),L],L) = 0 and the last part follows. O

An endomorphism d of a Lie algebra L is said to be a derivation if d([z,y]) =
[d(x),y] + [z,d(y)] for any z,y € L. For any = € L, ad, is a derivation, called
inner derivation. Then, if L is semisimple, any derivation is inner.

Proof. Let d be any derivation and consider the linear form L — k, z — trace(d ad).
Since k is nondegenerate, there is a z € L such that x(z,z) = trace(dad,) for any
x € L. But then, for any z,y € L,
k(d(x),y) = trace(ady(,) ady)

= trace([d, ad;] ad,) (since d is a derivation)

= trace(d[ad, ad,))

= trace (d ad[x’y})

= k(2 [2,9]) = w([z, 2], y)-

Hence, by nondegeneracy, d(z) = [z, z] for any x, so d = ad,. O
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Let V and W be two modules for a Lie algebra L. Then both Homy(V, W) and
V ®, W are L-modules too by means of:

(@.f)(v) = z.(f(v)) — f(z.v),
z.(v@w) = (z.v) Qw4+ v (z.w),

for any x € L, f € Homg(V,W) and v € V, w € W. (In particular, the dual V* is a
module with (z.f)(v) = —f(zw) forx € L, f e V¥ and v € V)

2.3 Proposition. Let L be a Lie algebra over an algebraically closed field k of char-
acteristic 0. Then any irreducible module for L is, up to isomorphism, of the form
V = Vo ® Z, with Vo and Z modules such that dimg Z = 1 and Vy is irreducible and
annihilated by R(L). (Hence, Vi is a module for the semisimple Lie algebra L/R(L).)

Proof. By the proof of Consequence (iv), we know that there is a linear form A :
R(L) — k such that z.v = A\(z)v for any € R(L) and v € V. Moreover, A([L, R(L)]) =
0 = A([L, L] N R(L)). Thus we may extend A to a form L — k, also denoted by A, in
such a way that A([L, L]) = 0.

Let Z = kz be a one dimensional vector space, which is a module for L by means of
zr.z = Nx)z and let W =V @y Z* (Z* is the dual vector space to Z), which is also an
L-module. Then the linear map

W2 —V
(v @z f(z)v

is easily seen to be an isomorphism of modules. Moreover, since V is irreducible, so is
W, and for any 2 € R(L),ve Vand f € Z*, z.(v® f) = (zv) @ f+v® (2.f) =
AMz)v @ f — AMz)v® f = 0 (since (z.f)(z) = —f(x.2) = —=A(x)f(2)). Hence W is
annihilated by R(L). O

This Proposition shows the importance of studying the representations of the semisim-
ple Lie algebras.
Recall the following definition.

2.4 Definition. A module is said to be completely reducible if and only if it is a direct
sum of irreducible modules or, equivalently, if any submodule has a complementary
submodule.

2.5 Weyl’s Theorem. Any representation of a semisimple Lie algebra over a field of
characteristic 0 is completely reducible.

Proof. Let L be a semisimple Lie algebra over the field k& of characteristic 0, and let
p : L — gl(V) be a representation and W a submodule of V. Does there exist a
submodule W’ such that V. =W ¢ W'?

We may extend scalars and assume that k is algebraically closed, because the exis-
tence of W' is equivalent to the existence of a solution to a system of linear equations:
does there exist 7 € Endy (V) such that 7(V) = W and 7|w = Iy (the identity map on
w)?

Now, assume first that W is irreducible and V/W trivial (that is, L.V C W). Then
we may change L by its quotient p(L), which is semisimple too (or 0, which is a trivial
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case), and hence assume that 0 # L < gl(V'). Consider the trace form by : L x L — k,
(x,y) +— trace(zy). By Cartan’s criterion for solvability, ker by is a solvable ideal of L,
hence 0, and thus by is nondegenerate. Take dual bases {z1,...,z,} and {y1,...,yn}
of L relative to by (that is, by (z;,y;) = d;; for any ¢, 7).

Then the element ¢y = >"7" | z;y; € Endg (V) is called the Casimir element and

n
trace(cy) Z trace(x;y;) Z by (x;,y;) =n = dimy, L.
i=1

Moreover, for any = € L, there are scalars such that [z;, x] = Z?: L aijzj and lyi, 2] =
> Bijy; for any . Since

by [z, 2], ;) + by (@i, [y, 2]) =0
for any i, j, it follows that «;; + 8j; = 0 for any 4, j, so
lev, 2] = Z([wi,l‘]yz' + zilyi, w]) = Y (i + Byj)ziy; = 0.
i=1 i,j=1

We then have that cy(V) € W and, by Schur’s Lemma (W is assumed here to be
irreducible), cy|w € Endr (W) = kI . Besides, trace(cy) = dimy L. Therefore,

and V = kercy @ imcy = kercy @ W. Hence W/ = kercy is a submodule that
complements W.

Let us show now that the result holds as long as L.V C W.

To do so, we argue by induction on dimg W, the result being trivial if dim; W = 0.
If W is irreducible, the result holds by the previous arguments. Otherwise, take a
maximal submodule Z of W. By the induction hypothesis, there is a submodule V such
that V/Z = W/Z®V /Z,and hence V.= W+V and WNV = Z. Now, L.V C VW = Z
and dimy, Z < dimg W, so there exists a submodule W’ of V such that V = Z & W'.
Hence V=W +W and WNW' CWNVNW =ZnNW' =0, as required.

In general, consider the following submodules of the L-module Homy(V, W):

M = {f € Homy(V,W) : there exists Ay € k such that f|w = Arid},
N = {f € Homk(V, W) : f|W = 0}

Foranyxz e L, f € M, and w € W:
(z.f)(w) = z.(f(w)) — flzw) =z.(\jw) — Ap(z.w) =0,

so L.M C N. Then there exists a submodule X of Homy(V, W) such that M = N & X.
Since L.X C X NN =0, X is contained in Homz(V,W). Take f € X with Ay =1, so
f(V) C W and f|lw = id. Then W = ker f @ W, and ker f is a submodule of V' that
complements W. O
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2.6 Consequences on Jordan decompositions. Let k& be an algebraically closed
field of characteristic 0.

(i)

(i)

(iii)

Let V be a vector space over k and let L be a semisimple Lie subalgebra of gl(V').
For any = € L, consider its Jordan decomposition x = x5 + x,,. Then x4, x,, € L.

Proof. We know that ad z is semisimple, ad x,, nilpotent, and that adz = ad z5+
ad z,, is the Jordan decomposition of ad x. Let W be any irreducible submodule
of V' and consider the Lie subalgebra of gl(V):

Ly ={ze€gl(V):2(W) CW and trace(z|w) = 0}.

Since L = [L, L], trace(x|w) = 0 for any € L. Hence L C Ly. Moreover, for
any x € L, x(W) C W, so zs(W) C W, z, (W) C W and x5, z, € Lyy.

Consider also the Lie subalgebra of gl(V):
N={zegl(V):[z2,L]C L} ={z€gl(V):adz(L) C L}.

Again, forany © € L,adx(L) C L,soadzs(L) C L,adx,(L) C L, and 4,2, € N.
Therefore, it is enough to prove that L = (ﬂWLW) N N. If we denote by L the
subalgebra (ﬂWLW) N N, then L is an ideal of L.

By Weyl’s Theorem, there is a subspace U of L such that L = L @& U and
[L,U] CU. But [L,U] C [L,N] C L, so [L,U] = 0. Then, for any z € U and
irreducible submodule W of V, z|w € Homp(W, W) = kI (by Schur’s Lemma)
and trace(z|y) = 0, since z € Ly. Therefore z|jy = 0. But Weyl’'s Theorem
asserts that V is a direct sum of irreducible submodules, so z = 0. Hence U = 0
and L = L. O

Let L be a semisimple Lie algebra. Then L = ad L, which is a semisimple sub-
algebra of gl(L). For any € L, let adz = s + n be the Jordan decomposition
in Endg(L) = gl(L). By item (i), there are unique elements xg,z, € L such that
s = adxs, n = adx,. Since ad is one-to-one, x = x4 + x,. This is called the
absolute Jordan decomposition of x.

Note that [z, zs] = 0 = [z, 2], since [ad z,ad z5] = 0 = [ad z, ad z,,].

Let L be a semisimple Lie algebra and let p : L — gl(V) be a representation.
Let x € L and let © = x5 + =, be its absolute Jordan decomposition. Then
p(x) = p(zs) + p(zy) is the Jordan decomposition of p(x).

Proof. Since p(L) = L/ker p is a quotient of L, p(zs) = p(z)s and p(zy,) = p(x),
(this is because ad, ) p(ws) is semisimple and ad,r) p(zy,) is nilpotent). Here
ad,(z) denotes the adjoint map in the Lie algebra p(L), to distinguish it from
the adjoint map of gl(V). By item (i), if p(z) = s + n is the Jordan decomposi-
tion of p(x), s,n € p(L) and we obtain two Jordan decompositions in gl(p(L)):
ad,r) p(x) = adyry s +adypyn = adyr) p(zs) + ad,yry p(@n). By uniqueness,
s = p(xs) and n = p(zp). O
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There are other important consequences that can be drawn from Weyl’s Theorem:

2.7 More consequences.

(i) (Whitehead’s Lemma) Let L be a semisimple Lie algebra over a field k of
characteristic 0, let V' be a module for L, and let ¢ : L — V be a linear map such
that

o([z,y]) = z.0(y) — y.p(z),

for any z,y € L. Then there is an element v € V such that ¢(z) = z.v for any
z € L.

Proof. ¢ belongs to the L-module Homy(L, V), and for any =,y € L:

(2.1) (z.0)(y) = v.0(y) — @([z,y]) = y-p(T) = py@) (),

where p,(z) = z.v for any x € L and v € V. Moreover, for any z,y € L and
veV,

(@p0) () = 2. (0 (y)) — po([2,9]) = 2.(yv) — [2,Y].0 = y.(2.0) = pr2o(y).

Thus, py is a submodule of Homy(L,V), which is contained in W = {f €
Homy (L, V) : x.f = pg) Yo € L}, and this satisfies L.W C py. By Weyl’s Theo-
rem there is another submodule W such that W = MV@W and L.W C Wﬁuv = 0.

But for any f € W and z,y € L, (2.1)) gives

0= (2.f)(w) == f(y) — f([2,9]) = ps)(x) = F(2,9])
= (y-N)(@) = f([z,9]) = = f ([, ).

Therefore, f(L) = f([L,L]) = 0. Hence W = 0 and ¢ € W = puy, as required. [

(ii) (Levi-Malcev Theorem) Let L be a Lie algebra over a field k of characteristic
0, then there exists a subalgebra S of L such that L = R(L) & S. If nontrivial, S
is semisimple. Moreover, if T' is any semisimple subalgebra of L, then there is an
automorphism f of L, in the group of automorphisms generated by {expad, : z €
N(L)}, such that f(T) C S.

Proof. In case S is a nontrivial subalgebra of L with L = R(L) & S, then S =
L/R(L) is semisimple.

Let us prove the existence result by induction on dim L, being trivial if dim L =1
(as L = R(L) in this case). If I is an ideal of L with 0 & I & R(L), then by
the induction hypothesis, there exists a subalgebra T of L, containing I, with
L/I =R(L)/I®T/I. Then T/I is semisimple, so I = R(T') and, by the induction
hypothesis again, T'= I @ S for a subalgebra S of L. It follows that L = R(L)® S,
as required. Therefore, it can be assumed that R(L) is a minimal nonzero ideal of
L, and hence [R(L), R(L)] = 0 and [L, R(L)] is either 0 or R(L).

In case [L, R(L)] = 0, L is a module for the semisimple Lie algebra L/R(L), so
Weyl’s Theorem shows that L = R(L) & S for an ideal S.
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Otherwise, [L, R(L)] = R(L). Consider then the module gl(L) for L (z.f = [ad, f]
for any x € L and f € gl(L)). Let p be the associated representation. Then the
subspaces

={fegl(L ) and there exists Ay € k such that f|p) = Asid},
f f

N = {fégl() () ()andf(())—o},

are submodules of gl(L), with p(L)(M) € N G M. Moreover, for any = € R(L),
f €M and z € L:

(2.2) [ada, f1(2) = &, f(2)] = f([2,2]) = —As ada(2),

since [z, f(2)] € [R(L), R(L)] = 0. Hence, p(R(L))(M) C {ad, : & € R(L)} C N.
Write R = {ad, : * € R(L)}. Therefore, M/R is a module for the semisimple
Lie algebra L/R(L) and, by Weyl’s Theorem, there is another submodule N with
RG N C M such that M/R = N/R® N/R. Take g € N\ N with A\, = —1. Since
p(L)(M) C N, p(L)(g) € R, so for any y € L, there is an element a(y) € R(L)
such that

:U:U

L)c
-

[adya g] = ada(y)7

and @ : L — R(L) is linear. Equation (2.2) shows that a|gr) = id, so that
L=R(L)@kera and kerav = {z € L : p(x)(g) = 0} is a subalgebra of L.

Moreover, if T' is a semisimple subalgebra of L, let us prove that there is a suitable
automorphism of L that embeds T" into S. Since T is semisimple, T' = [T,T] C
[L,L] = [L,R(L)]® S C N(L)® S. If N(L) = 0, the result is clear. Otherwise,
let I be a minimal ideal of L contained in N (L) (hence I is abelian). Arguing
by induction on dim L, we may assume that there are elements z1, ..., 2, in N(L)
such that

T' =expad,, - -expad,, (T) CI®S.

Now, it is enough to prove that there is an element z € I such that expad,(7”) C S.
Therefore, it is enough to prove the result assuming that L = R® S, where R is an
abelian ideal of L. In this case, let ¢ : T'— R and ¢ : T — S be the projections
of T on R and S respectively (that is, for any t € T, t = ¢(t) + 1(t)). For any
ti,to €T,
[t1, ta] = [p(t1) + ¥ (t1), p(t2) + ¥(t2)]
= [p(t1), o] + [t1, o(t2)] + [(t1), P (t2)],

since [R, R] = 0. Hence o([t1,t2]) = [p(t1),t2] + [t1, p(t2)]. Withehead’s Lemma
shows the existence of an element z € R such that ¢(t) = [t, 2] for any ¢t € T. But
then, since (ad.)? = 0 because R is abelian,

expad,(t) =t + [z, t] =t — p(t) =¢(t) € S,
for any t € T. Therefore, expad,(T) C S. O

Let L be a Lie algebra over a field k of characteristic 0, then [L, R(L)] = [L, L] N
R(L).

Proof. L = R(L) @ S for a semisimple (if nonzero) subalgebra S, so [L,L] =
(L, R(L)] @[5, 5] = [L, R(L)] ® S, and [L, L} N R(L) = [L, R(L)]. O
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§ 3. Representations of sly(k)

Among the simple Lie algebras, the Lie algebra sla(k) of two by two trace zero matrices
plays a distinguished role. In this section we will study its representations over fields of
characteristic 0.
First note that sly(k) = kh + kx + ky with h = ((1) _01), T = (8(1)) and y = (? 8),
and that
[h,a] =2z, [hy]= -2y, [z,y]=nh.

If the characteristic of the ground field k is # 2, then sla(k) is a simple Lie algebra.

Let V(n) be the vector space spanned by the homogeneous degree n polynomials in
two indeterminates X and Y, and consider the representation given by:

pn < sla(k) — gl(V(n))

0 0
h HXaiX—Yay,
:cl—>Xaay,

0

3.1 Exercise. Check that this indeed gives a representation of sly (k).

3.2 Theorem. Let k be a field of characteristic 0. Then the irreducible representations
of sla(k) are, up to isomorphism, exactly the p,, n > 0.

Proof. Let us assume first that k is algebraically closed, and let p : sly(k) — gl(V') be
an irreducible representation.

Since adx is nilpotent, the consequences of Weyl’s Theorem assert that p(z) is
nilpotent too (similarly, p(y) is nilpotent and p(h) semisimple). Hence W = {w € V :
z.aw =0} #0. For any w € W,

z.(haw) = [z, hlw + h.(zw) = —2z.w + h.(z.w) = 0,

so W is h-invariant and, since p(h) is semisimple, there is a nonzero v € W such that
h.v = Av for some \ € k.

But p(y) is nilpotent, so there is an n € Z>q such that v, p(y)(v),...,p(y)"(v) # 0
but p(y)" 1 (v) = 0. Now, for any i > 0,

p(h)p(y)' (v) = p([h, y]) p(y)' (V) + p(y)p(h)p(y)'~ (v)
= ~20(y)'(v) + () (p(W)p(y) ' (v)

which shows, recursively, that

h. (p(y)i(v)) = (A —20)p(y) (v),
and
p(@)p(y)' (v) = p([z, 9]) p(y)" " (v) + p(y)p(x)p(y) " (v)
= (A= 20~ 1))p(u) " @) + pv) (p@)oy) ')
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which proves that
2. (pw)' () =i(A = (= 1)ply) ().
Therefore, with vg = v and v; = p(y)*(v), for i > 0, we have
h.ov; = (A — 20)v;,

y.vi =vit1, (vns1 =0),
r.v; = Z()\ — (Z — 1))’07;71, (Ufl = 0).

Hence, ®}_ykv; is a submodule of V' and, since V is irreducible, we conclude that
V = @} kv;. Besides,

0=tracep(h) =A+A=2)+ -+ (A=2n)=(n+ 1A - (n+ 1)n.

So A = n. The conclusion is that there is a unique irreducible module V' of dimension
n + 1, which contains a basis {vg, ..., v,} with action given by

how; = (n—20)v;, y.v; =vi41, zv;=i(n+1—1i)v_;

(where v, 41 = v_1 = 0.) Then, a fortiori, V' is isomorphic to V(n). (One can check that
the assignment vy — X™, v; = n(n —1)--- (n — i+ 1) X" Y gives an isomorphism.)
Finally, assume now that k is not algebraically closed and that k is an algebraic
closure of k. If V is an sly(k)-module, then k& ®; V is an sly(k)-module which, by
Weyl’s Theorem, is completely reducible. Then the previous arguments show that the
eigenvalues of p(h) are integers (and hence belong to k). Now the same arguments above

apply, since the algebraic closure was only used to insure the existence of eigenvalues of
p(h) on the ground field. O

3.3 Remark. Actually, the result above can be proven easily without using Weyl’s
Theorem. For k algebraically closed of characteristic 0, let 0 # v € V' be an eigenvector
for p(h): h.v = M. Then, with the same arguments as before, h.p(z)"(v) = (A +
2n)p(xz)™v and, since the dimension is finite and the characteristic 0, there is a natural
number n such that p(z)"(v) = 0. This shows that W = {w € V : z.w = 0} # 0. In the
same vein, for any w € W there is a natural number m such that p(y)™(w) = 0. This
is all we need for the proof above.

3.4 Corollary. Let k be a field of characteristic 0 and let p : sla(k) — gl(V') be a
representation. Consider the eigenspaces Vo = {v € V : hw =0} and V; = {v € V :
h.v=wv}. ThenV is a direct sum of dimy Vy + dimy V3 irreducible modules.

Proof. By Weyl’'s Theorem, V = EBi]\L 1VVi, with W' irreducible for any i. Now, for

any i, there is an n; € Zxo such that W' = V(n;), and hence p(h) has eigenvalues

ni,n; — 2, ..., —n;, all with multiplicity 1, on W?*. Hence dim; Wg + dimy Wf =1 for
any i, where Wi = WinVy, Wi =WinVi. Since Vo = @, Wi and V; = @Y, W}, the
result follows. O

Actually, the eigenvalues of p(h) determine completely, up to isomorphism, the rep-
resentation, because the number of copies of V(n) that appear in the module V' in the
Corollary above is exactly dimy V,, — dimg, V42, where V,, = {v € V : h.v = nv} for any
n; because n appears as eigenvalue in V(n) and in V(n+2m) (m > 1) with multiplicity
1, but n 4 2 is also an eigenvalue of p(h) in V(n + 2m), again with multiplicity 1.
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3.5 Corollary. (Clebsch-Gordan formula)
Let n,m € Z>o, with n > m, and let k be a field of characteristic 0. Then, as modules

for sly(k),
Vin) @k Vim)Z2Vin+m)eV(in+m—2)®---BV(n—m).

Proof. The eigenvalues of the action of h on V(n) ®; V(m) are n — 2i +m — 2j =
(n+m)—2>i+37), (0<i<n,0<j<m). Therefore, for any 0 < p < n+m,

dimy, Vierm—2p = [{(4,J) € Z>0 X Z>0: 0<i<n,0<j<m, i+j=p}

and dimg Vi4m—2p — dimy Vo, _9(p—1) = 1 for any p=1,...,m, while dimy Vj,1m—2p —
dimy Vipm—2p-1) =0forp=m+1,..., ["';m] O

§4. Cartan subalgebras

In the previous section, we have seen the importance of the subalgebra kh of sly(k). We
look for similar subalgebras in any semisimple Lie algebra.

4.1 Definition. Let L be a Lie algebra over a field k. A subalgebra H of L is said to
be a Cartan subalgebra of L if it is nilpotent and self normalizing (N (H) = H, where
for any subalgebra S of L, N1(S) ={y € L: [y, S] C S} is the normalizer of S in L).

4.2 Example. kh is a Cartan subalgebra of sla(k) if the characteristic of k is # 2.

4.3 Definition. Let L be a semisimple Lie algebra over a field k£ of characteristic 0.
For any = € L, let * = x4 + x,, be its absolute Jordan decomposition in k ®j, L, with
k an algebraic closure of k. The element x will be said to be semisimple (respectively,
nilpotent) if x = x, (resp., if x = x,); that is, if adz € gl(L) is semisimple (resp.,
nilpotent).

A subalgebra T of L is said to be toral if all its elements are semisimple.

4.4 Lemma. (i) Let f,g be two endomorphisms of a nonzero vector space V. Let
W€ k be an eigenvalue of f, and let W ={v eV : (f — ul)"(v) =0 for some n}
be the corresponding generalized eigenspace. (I denotes the identity map.) If there
exists a natural number m > 0 such that (ad f)™(g) = 0, then W is invariant
under g.

(ii) Let p : L — gl(V) be a representation of a nilpotent Lie algebra L over an al-
gebraically closed field k of characteristic 0. Then there exists a finite subset
A of the dual vector space L* such that V. = @ caVy, where Vy = {v € V :
(p(x) — Mx)I)™(v) = 0 for some n and for any x € L}.

(iii) Any toral subalgebra of a semisimple Lie algebra over an algebraically closed field
k of characteristic 0 is abelian.
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Proof. For (i) denote by I; and 7 the left and right multiplication by f in Endg(V).
Then, for any n > 0, f"g = }(g) = (ad f+77)"(g9) = >_iLo (") (ad f)'(g)f™", and hence,
since ad(f — pul) = ad f, we obtain also (f — ul)"g = Y1 (%) (ad ) (9)(f — pI)" "
Therefore, if (f — puI)™(v) =0, then (f — puI)" ™™ 1(g(v)) =0, so g(v) € W.

For (i) note that if z € L satisfies that p(z) has more than one eigenvalue, then
V=Wi1&---®&W,, where the W;’s are the generalized eigenspaces for p(z). By item (i),
the W;’s are submodules of V, so the argument can be repeated to get a decomposition
V=Vi&---&V,, where for each i, p(z) has a unique eigenvalue on V; for any = € L.
Lie’s Theorem shows then that for any ¢ there is a linear form A; on L such that
Vi C Vy,, thus completing the proof.

For (iii) note that if 7" is a toral subalgebra of L and = € T with [z,T] # 0 then,
since x is semisimple, there is a y € T and a 0 # a € k with [z,y] = ay. But then
(ady)?(z) = 0 and, since y is semisimple, ad,(z) = 0, a contradiction. Hence T is an
abelian subalgebra of L. O

4.5 Theorem. Let L be a semisimple Lie algebra over an algebraically closed field k of
characteristic 0, and let H be a subalgebra of L. Then H is a Cartan subalgebra of L if
and only if it is a mazximal toral subalgebra of L.

Proof. Assume first that H is a Cartan subalgebra of L so, by the previous lemma,
L = ®yepy+Ly, where Ly ={z € L:Vh € H (adh — A(h)])"(z) = 0 for some n} for any
A. But then H acts by nilpotent endomorphisms on Ly, and hence on Lo/H. If H # Ly,
Engel’s Theorem shows that there is an element « € Lo\ H such that [h,z] € H for any
h € H, that is, z € Ni(H) \ H, a contradiction with H being self-normalizing. Hence
we have L = H @ (@075,\611*[/)\).

One checks immediately that [Ly, L,] C Lyy, and, thus, x(Ly, L,) = 0 if X\ # —p,
where k is the Killing form of L. Since k is nondegenerate and IQ(H , LA) = 0 for any
0 # A € H*, the restriction of x to H is nondegenerate too.

Now, H is nilpotent, and hence solvable. By Proposition applied to ad H C
gl(L), ([H,H],H) = 0 and, since x|y is nondegenerate, we conclude that [H, H] = 0,
that is, H is abelian.

For any = € H, [z,H| = 0 implies that [zs, H] = 0 = [z,, H]. Hence z,, € H
and adz, is nilpotent. Thus, for any y € H, [z,,y] = 0, so ad,, ad, is a nilpotent
endomorphism of L. This shows that x(x,, H) = 0 and hence x,, = 0. Therefore H is
toral. On the other hand, if H C S, for a toral subalgebra S of L, then S is abelian, so
[S,H] =0and S C Np(H) = H. Thus, H is a maximal toral subalgebra of L.

Conversely, let T be a maximal toral subalgebra of L. Then T is abelian. Let
{z1,...,2m} be a basis of T. Then adxy,...,adx,, are commuting diagonalizable en-
domorphisms of L, so they are simultaneously diagonalizable. This shows that L =
@xer+LA(T), where T* is the dual vector space to T and L\(T) = {y € L : [t,y] =
A(t)y Vt € T}. As before, [Lx(T),L,(T)] € Laqu(T) for any A, € T* and Lo(T) =
Cr(T)(={x € L:[z,T] =0}), the centralizer of T

For any © = x5 + x, € Cr(T), both zs,2, € Cr(T). Hence T + kxs is a toral
subalgebra. By maximality, s € T. Then ad z|c, (1) = ad xn|c, () is nilpotent, so by
Engel’s Theorem, H = C(T) is a nilpotent subalgebra. Moreover, for any x € Np(H)
andt € T, [z,t] € [x, H] C H, so [[z,t],t] = 0 and, since t is semisimple, we get [z,t] = 0,
sox € Cp(T)=H. Thus N(H) = H and H is a Cartan subalgebra of L. By the first
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part of the proof, H is a toral subalgebra which contains T' and, by maximality of T',
T = H is a Cartan subalgebra of L. O

4.6 Corollary. Let L be a semisimple Lie algebra over a field k of characteristic 0 and
let H be a subalgebra of L. Then H is a Cartan subalgebra of L if and only if it is a
mazximal subalgebra among the subalgebras which are both abelian and toral.

Proof. The properties of being nilpotent and self normalizing are preserved under ex-
tension of scalars. Thus, if k is an algebraic closure of k and H is nilpotent and self
normalizing, so is k ®; H. Hence k ®j H is a Cartan subalgebra of k ®; L. By the
previous proof, it follows that k ®j; H is abelian, toral and self centralizing, hence so is
H. But, since H = C(H), H is not contained in any bigger abelian subalgebra.
Conversely, if H is a subalgebra which is maximal among the subalgebras which are
both abelian and toral, the arguments in the previous proof show that C1,(H) is a Cartan
subalgebra of L, and hence abelian and toral and containing H. Hence H = CL(H) is
a Cartan subalgebra. O

4.7 Exercises.

(i) Let L = sl(n) be the Lie algebra of n x n trace zero matrices, and let H be
the subalgebra consisting of the diagonal matrices of L. Prove that H is a Cartan
subalgebra of L and that L = H& (®1§i;ﬁj§nLei—ej (H)), where €; € H* is the linear
form that takes any diagonal matrix to its i*" entry. Also show that Le,—e;(H) =
kE;;, where E;; is the matrix with 1 in the (7, j) position and 0’s elsewhere.

(i) Check that R3 is a Lie algebra under the usual vector cross product. Prove that
it is toral but not abelian.

4.8 Engel subalgebras. There is another approach to Cartan subalgebras with its
own independent interest.
Let L be a Lie algebra over a field k, and let x € L, the subalgebra

Er(x) ={y € L:3n € N such that (adz)"(y) = 0}

is called an Engel subalgebra of L relative to x.
Epr(z) is indeed a subalgebra and dimy, Er(x) is the multiplicity of 0 as an eigenvalue
of ad x.

The main properties of Engel subalgebras are summarized here:

1. Let S be a subalgebra of L, and let x € L such that Er(x) C S. Then N.(S) =S,
where N1(S) = {y € L: [y,S] C S} is the normalizer of S in L. (Note that N (S5)
is always a subalgebra of L and S is an ideal of N(S).)

Proof. We have x € Er(z) C S so 0 is not an eigenvalue of the action of ad z on
NL(S)/S. On the other hand ad z(N.(S)) C [S,NL(S)] € S. Hence N (S5)/S =
0, or Np(S)=S. O
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2. Assume that k is infinite. Let S be a subalgebra of L and let z € S be an element

such that Er(z) is minimal in the set {Ep(z) : « € S}. If S C FEr(z), then
Ep(z) C Er(x) for any z € S.

Proof. Put Sy = Er(z). Then S C Sy C L. Forany z € Sand a € k, z+ ax € S,
so that ad(z 4+ ax) leaves invariant both S and Sy. Hence, the characteristic poly-
nomial of ad(z + axz) is a product fu(X)ga(X), where f,(X) is the characteristic
polynomial of the restriction of ad(z + ax) to Sy and g, (X) is the characteristic
polynomial of the action of ad(z + ax) on the quotient L/Sy. Let r = dimy, Sy and
n = dimy L. Thus,

foX) = X"+ i) X"+ + fr(q),
9a(X) = X"+ gr(a) X" o+ g (),

with fi(a), gi(c) polynomials in « of degree < i, for any 4.

By hypothesis, g,—»(0) # 0, and since k is infinite, there are different scalars
at,...,0pq1 € k with gp—r(oj) # 0 for any j = 1,...,7 + 1. This shows that
Er(z+ ajz) C Sy for any j. But Sy = Er(z) is minimal, so E7(2) = Er(z + a;x)
for any j. Hence fo;(X) = X" for any j = 1,...,7 + 1, and this shows that
filej) =0forany i =1,...,7 and j = 1,...,r + 1. Since the degree of each f; is
at most 7, this proves that f; = 0 for any 7 and, thus, ad(z + az) is shown to act
nilpotently on Er(z) = Sy for any a € k: Er(z) C Er(z 4+ ax) for any z € S and
a € k. Therefore, Er(z) C Er(z) for any x € S. O

. Let L be a Lie algebra over an infinite field k£ and let H be a subalgebra of L.

Then H is a Cartan subalgebra of L if and only if it is a minimal Engel subalgebra
of L.

Proof. If H = Er(z) is a minimal Engel subalgebra of L, then by Property 1
above, H is self normalizing, while Property 2 shows that H C Ep(z) for any
x € H which, by Engel’s Theorem, proves that H is nilpotent.

Conversely, let H be a nilpotent self normalizing subalgebra. By nilpotency, H C
Ep(z) for any z € H and, hence, it is enough to prove that there is an element
z € H with H = E(z). Take z € H with Fr(z) minimal in {EFr(z) :z € H}. By
Property 2 above, H C Er(z) C Er(x) for any « € H. This means that ad z acts
nilpotently on Er(z)/H for any x € H so, if H G Er(z), Engel’s Theorem shows
that there is an element y € Er(z) \ H such that [z,y] € H for any z € H, but
then y € Np(H) \ H, a contradiction. Hence H = Ef(z), as required. O

Root space decomposition

Throughout this section, L will denote a semisimple Lie algebra over an algebraically
closed field k of characteristic 0, with Killing form . Moreover, H will denote a fixed
Cartan subalgebra of L.
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The arguments in the previous section show that there is a finite set & C H* \ {0}
of nonzero linear forms on H, whose elements are called roots, such that

(5.3)

L=H®& (SacoLa),

where Lo, = {x € L: [h,z] = a(h)z Yh € H} # 0 for any a € ®. Moreover, H = Cp(H)
and [Lq, Lg] C Lo4, where H = Lo and L, = 01if 0 # u € ®.

5.1. Properties of the roots

(i)

(iii)

If a, € ®U{0} and o + 3 # 0, then H(La,Lﬁ) =0.
Proof. adz ad xg takes each Ly, to L4 (aqp) # Ly so its trace is 0. [

If a € &, then —a € ®. Moreover, the restriction « : L, x L_, — k is nondegen-
erate.

Proof. Otherwise, x(Lq, L) would be 0, a contradiction with the nondegeneracy

of k. O
® spans H*.

Proof. Otherwise, there would exist a 0 # h € H with a(h) = 0 for any « € P, so
adh =0 and h = 0, because Z(L) = 0 since L is semisimple. O

For any o € @, [Ly, L_o] # 0.

Proof. Tt is enough to take into account that 0 # H(La, L_a) = m([H, L,], L_a) =
k(H,[La,L_0]). O

For any aw € H*, let to, € H such that k(ty, .) = o € H*. Then for any o € ®,
To € Lo and yo € L_g,
[xouya] = H(xouya)ta-

Proof. For any h € H,

= a(h)k(Ta,Ya) = K(tas h)E(Ta, Ya) = H(ha K(Zas ya)ta)

and the result follows by the nondegeneracy of the restriction of k to H = Ly. [
For any o € @, a(ty) # 0.

Proof. Take x,, € Ly and y, € L_,, such that x(x4,ys) = 1. By the previous item
[Tas Ya] = ta- In case a(ty) = 0, then [ty, o] = 0 = [ta,Yal, 50 S = kxq+kta+kya
is a solvable subalgebra of L. By Lie’s Theorem kt, = [S, S| acts nilpotently on
L under the adjoint representation. Hence ¢, is both semisimple (H is toral) and
nilpotent, hence t, = 0, a contradiction since a # 0. O
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For any a € ®, dimj, L, = 1 and ka N ® = {+a}.

Proof. With z,, y, and t, as above, S = kx,, + kto + ky, is isomorphic to sly(k),

under an isomorphism that takes h to %ta, T to o, and y to ﬁya.

Now, V=H & (@07&#@[/#&) is a module for S under the adjoint representation,
and hence it is a module for sly(k) through the isomorphism above. Besides,
Vo = {v €V : [ta,v] = 0} coincides with H. The eigenvalues taken by h = —2~t,

(ta)
are pa(h) = 2‘;%(3) = 2u and, thus, u € %Z, since all these eigenvalues are

integers. On the other hand, ker « is a trivial submodule of V', and S is another
submodule. Hence ker « & S is a submodule of V' which exhausts the eigenspace of
ad h with eigenvalue 0. Hence by Weyl’s Theorem, V is the direct sum of ker a® S
and a direct sum of irreducible submodules for S in which 0 is not an eigenvalue
for the action of h. We conclude that the only even eigenvalues of the action of h
are 0, 2 and —2, and this shows that 2a € ®. That is, the double of a root is never
a root. But then %a cannot be a root neither, since otherwise o = 2%04 would not
be a root. As a consequence, 1 is not an eigenvalue of the action of h on V', and
hence V' = ker a®S. In particular, L, = kzy, L_o = kyo and kaN® = {+a}. O
For any a € ®, let hy = ﬁtm which is the unique element h in [Ly, L_s] = ktq
such that a(h) = 2, and let z, € L, and y, € L_,, such that [z, Ya] = ha. Then,
for any 8 € ®, B(hy) € Z.

Proof. Consider the subalgebra S, = kxo + kho + kyo, which is isomorphic to
sla(k). From the representation theory of sla(k), we know that the set of eigenval-
ues of the adjoint action of h, on L are integers. In particular, 8(hy) € Z. O

More precisely, consider the S,-module V' = @,,,czL31mq- The eigenvalues of the
adjoint action of hy on V are {8(hq) + 2m : m € Z such that Lgiq # 0}, which
form a chain of integers:

Bha) +2q, B(ha) +2(qg—1), ..., B(ha) — 2,
with r,q € Z>¢ and S(ha) + 2¢ = —(8(ha) — 2r). Therefore, B(ho) =1 — q € Z.
The chain (8 +qq, ..., —ra) is called the a-string through g. It is contained in
o U {0}.

5.2 Remark. Since the restriction of x to H is nondegenerate, it induces a nonde-
generate symmetric bilinear form (. | .) : H* x H* — k, given by (a|f) = k(ta,t3)
(where, as before, t,, is determined by o = k(t4, . ) for any o € H*). Then for any
a,B € ®, B(ta) = k(tg, ta) = (Bla). Hence

For any a € ®, consider the linear map o, : H* — H*,  — [ — 2%&. (This
is the reflection through «, since o, () = —a and if 5 is orthogonal to «, that is,
(Bla) = 0, then 04(8) = 8. Hence 02 = 1.)

Then 0, (®) C ®. In particular, the group W generated by {0, : @ € ®} is a finite
subgroup of GL(H™*), which is called the Weyl group.
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Proof. For any «, 8 € ®, 0,(8) = 8 — (r —¢)a (r and ¢ as before), which is in the
a-string through S, and hence belongs to ®. (Actually, o, changes the order in
the a-string, in particular o, (8 + qa)) = 8 — rav.)

Now W embeds in the symmetric group of ®, and hence it is finite. O
(x) Let {a1,...,an} be a basis of H* contained in ®. Then ® C Qay + - - - + Qay,.

Proof. For any o € ®, o = piag + -+ + ppay with py,..., 0, € k. But for

1=1,...,n,
2(aay) - 2(aj|as)
7
(evilexi) Zjl 7 (i)
and this gives a system of linear equations on the p;’s with a regular integral
matrix. Solving by Crammer’s rule, one gets that the y;’s belong to Q. O

(xi) For any «, 8 € @, («|B) € Q. Moreover, the restriction (. |.) : QP x QP — Q is
positive definite.

Proof. Since L = H&® (@aeq>La) and dimy, L, = 1 for any o € @, given any § € ®,

2
(B18) = w(t5.15) = trace((adt5)?) = 3 aft)? = D00 5™ anyp2,
aed acd

and, therefore,

4
(/B|B) - Zaeq) Ck(hﬁ)2 € Q>0'
Now, for any «,3 € @, 2((57%) € Z, so (a|p) = ﬁlﬁ) 2((5]%)) € Q. And for any

Be€Q®, 8= pror+ -+ ppay, for some pj’s in Q, so

(B18) = alts)? =Y (malta,) + - + pmalta,))” > 0.

acd acd

Besides (5]8) = 0 if and only if a(tg) = 0 for any a € @, if and only if tg = 0 since
® spans H*, if and only if 8 = 0. O

Therefore, if the dimension of H is n (this dimension is called the rank of L, although
we do not know yet that it does not depend on the Cartan subalgebra chosen), then
Egp = Q@ is an n-dimensional vector space over Q endowed with a positive definite
symmetric bilinear form (|).

Then F = R ®qg Eg is an euclidean n-dimensional vector space which contains a
subset ® which satisfies:

(R1) @ is a finite subset that spans E, and 0 ¢ ®.
(R2) For any a € &, —a € ® too and RaN® = {+a}.

(R3) For any a € ®, the reflection on the hyperplane (Ra)* leaves ® invariant (i.e., for
any o, f € @, 0,(8) € D).
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(Bla)
(ala)

A subset @ of an euclidean space, satisfying these properties (R1)—(R4), is called
a root system, and the subgroup W of the orthogonal group O(FE) generated by the
reflections o, a € @, is called the Weyl group of the root system. The dimension of
the euclidean space is called the rank of the root system. Note that W is naturally
embedded in the symmetric group of ®, and hence it is a finite group.

(R4) For any a, f € @, (fBla) =2 €z

§ 6. Classification of root systems

Our purpose here is to classify the root systems. Hence we will work in the abstract
setting considered at the end of the last section. The arguments in this section follow
the ideas in the article by R.W. Carter: Lie Algebras and Root Systems, in Lectures
on Lie Groups and Lie Algebras (R.W. Carter, G. Segal and I. Macdonal), London
Mathematical Society, Student Texts 22, Cambridge University Press, 1995.

Let ® be a root system in a euclidean space E. Take v € E such that (v|«) # 0 for
any a € ®. This is always possible since ® is finite. (Here (|) denotes the inner product
on E.) Let @7 = {a € @ : (v|a) > 0} be the set of positive roots, so ® = &+ U d~
(disjoint union), where ®~ = —®T (the set of negative roots).

A positive root « is said to be simple if it is not the sum of two positive roots. Let
A ={a € ®T:aissimple}, A is called a system of simple roots of (E,®).

6.1 Proposition. Let ® be a root system on a euclidean vector space E and let A =
{ai,...,an} be a system of simple roots in (E,®). Then:

(i) For any o # B in A, («|B) <0.
(ii) A is a basis of E.

)

)
(iii) T C Zsoa1 + -+ + Z>oun.
(iv) For any a € A, 0, (94 {a}) = @+ \ {a}.
)

(v) If V' € E is a vector such that (V'|a) # 0 for any a € ® and A’ is the associated
system of simple roots, then there is an element o € W such that o(A) = A’.

Proof. For any «, 5 € ®, consider the integer

A(alB)?
NCYB <O[|5></B|O[> (Oé|0é)(,8‘ﬁ) EZZO-

The Cauchy-Schwarz inequality shows that 0 < N,g < 4 and that N,g = 4 if and only
if § = +a, since RaN® = {£a} by (R2).

Assume that o, § € @ with a # £ and («|8) > 0. Then 0 < Nyg = (o] 8)(Bla) <
3, so either (a|f) = 0 or (a|B) = 1 or (Bla) = 1. If, for instance, (f|la) = 1, then
oa(B)=B—{Bla)a=B—-aec® If 3—ac d", then B = a+ (8 — a) is not simple,
while if 5 —a € &7, then a =  + (o — ) is not simple. This proves item (i).

Now, for any o € 7, either « € A or o = 3 + 7, with 3,y € ®¥. But in the latter
case, (vla) = (v|B) + (v]v), with 0 < (v|a), (v|B), (v|y), so that both (v|3) and (v|y)
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are strictly lower than (v|a). Now, we proceed in the same way with 5 and . They are
either simple or a sum of “smaller” positive roots. Eventually we end up showing that
a is a sum of simple roots, which gives (iii).

In particular, this shows that A spans E. Assume that A were not a basis, then
there would exist disjoint nonempty subsets I,J C {1,...,n} and positive scalars p;
such that 0, ; pia; = ZjeJMjaj- Let v = ,cppic = Zje] pjaj. Then 0 < (v|y) =
Zlgﬁ pitej(oiloj) < 0 (because of (i)). Thus v = 0, but this would imply that 0 <
ZZeI wi(vla;) = (v|y) = 0, a contradiction that proves (ii).

In order to prove (iv), we may assume that @ = a;. Let @ # 3 € &7, then (iii)
shows that 8 = Y"7" | m;a;, with m; € Z>( for any . Since § # «, there is a j > 2 such
that m; > 0. Then 0,(8) = B— (Blaya = (m1 — (Bla))aq +maco +- - - +mpay, € ©, and
one of the coefficients, m;, is > 0. Hence a # 04(8) € 7, so that 0,(3) € @1\ {a}.

Finally, let us prove (v). We know that ® = ®+ U ®~ = &' U ®'~ (with obvious
notation). Let p = 3 3 g+ @ (Which is called the Weyl vector), and let o € W such
that (o(v/)|p) is maximal. Then, for any a € A:

(@()lp) = (gac(v)|p)
= (o

v )) (since 02 =1 and o, € O(E))
= (o(// )

;:p a (because of (iv))
= (e()lp) = (¢()]a)
= (o()lp) = (v \U (@),
so (V|o7 (a)) > 0. This shows that o~ *(A) C " s0 o L(®F) = ®'F and o1(A)
then coincides with the set of simple roots in &, which is A/, O

Under the previous conditions, with A = {ayq,...,ay,}, consider

e The square matrix C' = ((ai|aj>> e which is called the Cartan matriz of the
,]5n
root system.
Note that for any a #  in ® with (a|8) <0

_2alf) _ [(ale) [40IB)Ble) k)
B = T8y = ¢ (ﬁ\ﬁ)\/ @0)@18) sV

so we get a factorization of the Cartan matrix as C' = D]_CDQ, where D; (re-

spectively Ds) is the diagonal matrix with the elements /(ai|ay),. .., /(an|an)

(resp. L ..,——L—) on the diagonal, and
(arfon) (anlom)

2 —/Noyay -+
—/Noa )

_\/Nanoq _\/Nocnozg 2

This matrix C is symmetric and receives the name of Cozeter matriz of the root

system. It is nothing else but the coordinate matrix of the inner product (|) in

the basis {&1,. .., d&n} with &; = \/\(% Note that det C' = det C.
ajla;

vV Nalan

vV Nagan

o
I
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6.2 Exercise. What are the possible Cartan and Coxeter matrices for n = 27
Here A = {a, 8}, and you may assume that (a|a) < (5[5).

e The Dynkin diagram of ®, which is the graph which consists of a node for each
simple root o. The nodes associated to o # € A are connected by Nyg (=
0,1,20r3) arcs. Moreover, if Nog = 2 or 3, then a and (8 have different length
and an arrow is put pointing from the long to the short root. For instance,

a1 Qz a3 Oy

o The Cozeter graph is the graph obtained by omitting the arrows in the Dynkin
diagram.

In our previous example it is

Because of item (v) in Proposition these objects depend only on ® and not on
A, up to the same permutation of rows and columns in C' and up to the numbering of
the vertices in the graphs.

The root system ® is said to be reducible if ® = &1 U Py, with ) # ®; (i = 1,2) and
(<I>1|CI>2) = 0. Otherwise, it is called irreducible.

6.3 Theorem.

(a) A root system ® is irreducible if and only if its Dynkin diagram (or Coxeter graph)
s connected.

(b) Let L be a semisimple Lie algebra over an algebraically closed field k of character-
istic 0. Let H be a Cartan subalgebra of L and let ® be the associated root system.
Then ® is irreducible if and only if L is simple.

Proof. For (a), if ® is reducible with ® = ®; U ®3 and A is a system of simple roots,
then it is clear that A = (A N <I>1) U (A N @2) and the nodes associated to the elements
in AN®; are not connected with those associated to AN®,. Hence the Dynkin diagram
is not connected.

Conversely, if A = A; U Ay (disjoint union) with ) # A, Ay and (A1|A2) =0,
let £1 = RA; and Es = RA9, so that E is the orthogonal sum E = E; | E,. Then
®, = &N E; is a root system in E; with system of simple roots A; (i = 1,2). It has to
be checked that & = &1 U ®9. For any a € 1, 0,|g, is the identity. Hence, item (v)
in Proposition shows that there exists an element o € W; such that o(A;) = —Aq,
where W is the subgroup of the Weyl group W generated by {0, : @ € ®;}. Order
the roots so that A; = {aq,...,a} and Ay = {ay41,...,a,}. Then any 8 € ® can
be written as 8 = miay + -+ + mpa,, with m; € Z for any 4, and either m; > 0 or
m; < 0 for any i. But o(8) € ® and, since 0(A1) = —Aq, o(8) = mjas + -+ mlLa, +
Myt1Qrg1 + -+ Mpay, where (mf, ..., m.) is a permutation of (—my,...,—m,). Since
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the coefficients of o(f3) are also either all nonnegative or all nonpositive, we conclude
that either my = --- = m, = 0 or my41 = --- = m,, = 0, that is, either g € ®; or
B € ®s.

For (b), assume first that ® is reducible, so ® = ®; U &5 with (<I>1|<I>2) = 0 and

®y # () # ®3. Then the subspace Zae@f <La +L_o+[La, L_a]> is a proper ideal of L,
since

=0 if o+ ¢ ® U {0}, in particular if &« € &; and € Py
C Loy otherwise.

[LOH Lﬂ] {

Hence L is not simple in this case.

Conversely, if L is not simple, then L = L; & Lo with L; and Lo proper ideals
of L. Hence k(L1,Ls) = 0 by the definition of the Killing form, and H = C(H) =
Cr,(H)®Cr,(H)=(HNLy)®(HN L), because for any h € H and x; € L; (i = 1,2),
[h,x1 + x2] = [h,x1] + [h, x2], with the first summand in L; and the second one in Lo.
Now, for any o € ®, o(H N L;) # 0 for some ¢ = 1,2. Then L, = [H N L;, L,] C L;,
so the element t, such that k(ts, .) = « satisfies that to, € [Lo,L_o] € L;. As a
consequence, = & U P4 (disjoint union), with ®; = {o € & : «(H N L;) # 0}, and
(a|B) = Kk(ta,tg) = 0 for any o € ®1 and § € Py. Thus, P is reducible. O

6.4 Remark. The proof above shows that the decomposition of the semisimple Lie
algebra L into a direct sum of simple ideals gives the decomposition of its root system
® into an orthogonal sum of irreducible root systems.

Dynkin diagrams are classified as follows:

6.5 Theorem. The Dynkin diagrams of the irreducible root systems are precisely the
following (where n indicates the number of nodes):

(4,) o—o—o0-0—0—0, n>1.
(B,) o—o—o0 - 0—0==0,n>2.
(C,) o—o—0-o—o0==0,n>3.

(Dy) W%,n24,
N
GO
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(F4) o0—o0=>0—0,

(Gg) ==0.

Most of the remainder of this section will be devoted to the proof of this Theorem.

First, it will be shown that the ‘irreducible Coxeter graphs’ are the ones correspond-
ing to (Ay), (Bn = Cy), (Dy), (E6,78), (Fi) and (G2). Any Coxeter graph determines
the symmetric matrix (aij) with a;; = 2 and a;; = —m for i # j, where Nj; is the
number of lines joining the vertices i and j. We know that this matrix is the coordinate
matrix of a positive definite quadratic form on a real vector space.

Any graph formed by nodes and lines connecting these nodes will be called a ‘Coxeter
type graph’. For each such graph we will take the symmetric matrix (aij) defined as
before and the associated quadratic form on R", which may fail to be positive definite,
such that ¢(e;, e;) = ai;, where {e1,...,e,} denotes the canonical basis of R".

6.6 Lemma. Let V be a real vector space with a basis {v1,...,v,} and a positive definite
quadratic form q : V — R such that q(v;,v;) <0 for any i # j, and q(vi,v2) < 0. (Here
q(v,w) = 3 (q(v +w) — q(v) — g(w)) gives the associated symmetric bilinear form.)

Let ¢: V — R be a quadratic form such that its associated symmetric bilinear form
satisfies G(vi,vj) = q(vi,vj) for any (i,7) # (1,2), i < j, and 0 > G(v1,v2) > q(vi,v2).
Then § is positive definite too and det ¢ > det q (where det denotes the determinant of
the quadratic form in any fized basis).

Proof. We apply a Gram-Schmidt process to obtain a new suitable basis of Rvs+- - -+Ru,,
as follows:

Wn = Up,

Wp—1 = Up—1 + An—l,nwn

wy = v + A2 3w3 + - - + A pwy

where the A’s are determined by imposing that ¢(w;,w;) = 0 for any i > j > 2.
Note that ¢(w;, w;) = G(w;, w;) for any ¢ > j > 2, and that this process gives that
Xij > 0 forany 2 < i < j < nand q(v;,wj) <0 forany 1 < i < j < n. Now
take w1 = v1 + A1 3wz + - -+ + A\ Wy, and determine the coefficients by imposing that
q(wy,w;) = 0 for any i > 3. Then q(wy,w2) = q(v1,w2) < q(v1,v2) < 0, G(wy,wa) =
g(v1,w2) < G(vi,v2) <0, and 0 > G(wi,w2) > q(wi, ws).

In the basis {wq,...,w,}, the coordinate matrices of ¢ and ¢ present the form
ar B 0 -+ 0 ar B 0 -+ 0
B as 0 --- 0 B as 0 - 0
0o 0 0 - a 0 0 0 - a

with 0 Z~[§ > f3. Since g is positive definite, a; > 0 for any i and ajae — 32 > 0. Hence
ajon — 32 > ajan — 4% > 0 and the result follows. O
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Note that by suppressing a line connecting nodes ¢ and j in a Coxeter type graph,
with associated quadratic form ¢, the quadratic form ¢ associated to the new graph
obtained differs only in that 0 > G(e;, e;) > q(e;, ej). Hence the previous Lemma imme-
diately implies the following result:

6.7 Corollary. If some lines connecting two nodes on a Coxeter type graph with positive
definite quadratic form are suppressed, then the new graph obtained is a new Cozxeter
type graph with positive definite quadratic form.

Let us compute now the matrices associated to some Coxeter type graphs, as well
as their determinants.

A, (n>1) o—o——o- ....o—o0—o. Here the associated matrix is
2 -1 0 0 O
-1 2 -1 0 O
My, = :
0 0 0 2 -1
0 0 0 -1 2

whose determinant can be computed recursively by expanding along the first row:
det My, = 2det My, , — det My, ,, obtaining that det My, = n + 1 for any

n > 1.
B,=C, (n>2) o—o—o0 -...o—o—o0. Here
2 -1 0 -- 0 0
-1 2 -1 -~ 0 0
MBn: : . : . : :
o 0 0 --- 2 =2
0 0 0 V2

and, by expanding along the last row, det Mp, = 2det M4, , —2det My SO

that det Mp, = 2.

D, (n>4) o—o——o0-- O—O< The associated matrix is

n—27

2 -1 0 0 0 O
-1 2 -1 0 0 O
Mp, =] : : o : :
o o o - 2 -1 -1
o o o -~ =1 2 0
o o o -~ -1 0 2

so that det Mp, = 4 = det Mp, and by expanding along the first row, det Mp, =
2det Mp, , —det Mp, ,. Hence det Mp, = 4 for any n > 4.

FEg . Here det Mg, = 2det Mp, —det M4, = 8 — 5 = 3 (expansion

along the row corresponding to the leftmost node).
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. Here det Mg, = 2det Mgy —det Mp, =6 —4 = 2.
. Here det Mg, = 2det Mg, —det Mg, =4 -3 =1.

o——o=—=0——o0. Here det My, =det Mp, —det M4, =4 -3 =1.

a==0. Here det Mg, = det _3/3 ’23 =1.
O,
i i (n+ 1 nodes, n > 2). Then
2 -1 0 -0 -1
-1 2 -1 0 O
0 0 0 2 -1
-1 0 0 -1 2

so the sum of the rows is the zero row. Hence det MAn =0.

~.0o—o0==0 (n + 1 nodes, n > 3) Let us number the nodes so that

the leftmost nodes are nodes 1 and 2, and node 3 is connected to both of them.
Then we may expand det M = 2det Mp, —det My, det Mp, , =4—-4=0. (For
n =3, det M = 2det Mp, — dethx1 =4-4=0.)

0==0——"0 . 0—0==0 (n + 1 nodes, n > 2). Then det My = 2det Mp, —
2det Mp, , =0. (For n =2, det M, = 2det Mp, —2det Ma, =0.)

>o—o R 0—o< (n+ 1 nodes, n > 4). Here

2det Mp, — det M3, =8 -8 =0, if n =4,
det Mp = ¢ 2det Mp,; — det My, det Mo, =8 —8 =0, if n=>5,
2det Mp, —det My, det Mp, , =8 —-8 =0, otherwise.

. Here det M = 2det Mg, —det My, =6 —6=0.

. Here det M = 2det Mp, —det Mp; =4 —4 =0.
. Here detME8 =2det Mg, —det Mg, =2—-2=0.

o—o—o—0—-o0. Here detMF4 =2det Mg, —det Mp, =2—-2=0.

o—a=. Here det My, = 2det Mg, —det My, =2—-2=0.
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Now, if G is a connected Coxeter graph and we suppress some of its nodes (and
the lines connecting them), a new Coxeter type graph with positive definite associated
quadratic form is obtained. The same happens, because of the previous Lemma if
only some lines are suppressed. The new graphs thus obtained will be called subgraphs.

e If G contains a cycle, then it has a subgraph (isomorphic to) A,, and this is a
contradiction since det M ; =0, so its quadratic form is not positive definite.

e If G contains a nocle which is connected to four different nodes, then it contains a
subgraph of type Dy, a contradiction.

e If G contains a couple of nodes (called ‘triple nodes’) connected to three other
nodes, then it contains a subgraph of type D,,, a contradiction again.

e If G contains two couples of nodes connected by at least two lines, then it contains
a subgraph of type C,, which is impossible.

o If G contains a triple node and two nodes connected by at least two lines, then it
contains a subgraph of type B,,.

e If G contains a ‘triple link’, then either it is isomorphic to G or contains a subgraph
of type G, this latter possibility gives a contradiction.

e If G contains a ‘double link” and this double link is not at a extreme of the graph,
then either G is isomorphic to Fj or contains a subgraph of type Fy, which is
impossible.

e If G contains a ‘double link’ at one extreme, then the Coxeter graph is B, = C),.

e Finally, if G contains only simple links, then it is either A,, or it contains a unique
triple node. Hence it has the form:

o

with 1 < p < ¢ < r. But then either p = 1 or it contains a subgraph of type Eg,
a contradiction. If p = 1, then either ¢ < 2 or it contains a subgraph of type F,
another contradiction. Finally, with p = 1 and g = 2, either r > 4 or it contains
a subgraph of type Ejg, a contradiction again. Therefore, either p = ¢ = 1 and we
get Dy, or p=1, ¢=2 and r = 2,3 or 4, thus obtaining Fg, F; and Ejg.

Therefore, the only possible connected Coxeter graphs are those in Theorem
What remains to be proven is to show that for each Dynkin diagram (A)—(G), there
exists indeed an irreducible root system with this Dynkin diagram.

For types (A)—(D) we will prove a stronger statement, since we will show that there
are simple Lie algebras, over an algebraically closed field of characteristic 0, such that
their Dynkin diagrams of their root systems relative to a Cartan subalgebra and a set
of simple roots are precisely the Dynkin diagrams of types (A)—(D).
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Let L = sl,11(k) be the Lie algebra of n + 1 trace zero square matrices. Let H
be the subspace of diagonal matrices in L, which is an abelian subalgebra, and let
€; : H — k the linear form such that ei(diag(al, e Oén+1)) =q;,1=1,...,n+1.
Then €1 + - - - 4+ €541 = 0. Moreover,

(6.4) L=H® (@1§i;ﬁj§n+1kEij>

where E;; is the matrix with a 1 in the (4,7) entry, and 0’s elsewhere. Since
[h, Eij] = (ei — €;)(h)E;; for any i # j, it follows that H is toral and a Cartan
subalgebra of L. It also follows easily that L is simple (using that any ideal is
invariant under the adjoint action of H) and that the set of roots of L relative to
H is

O={¢—¢:1<i#j<n+1}
The restriction of the Killing form to H is determined by

w(h, h) = Z (i — ozj)Q -9 Z (ozz2 + oz]2~ — 2005)

(6.5) 1<i#j<n+1 1<i<j<n+1
=2(n+1) Z o? = 2(n 4+ 1) trace(h?)
1<i<n+1
for any h = diag(a, . .., ant1) € H,since 0 = (a1 +- -+ nt1)? = Y1 cijcppr 05 +

2 Zl§i<j§n+1 a;a. Therefore, for any i # j, te,—, = m(EZZ — Ej;) and

1

m(éih — 0jn — i + 5jk:),

(67; —€jlen — ek) = (e — ej)(teh,ek) =
where §;; is the Kronecker symbol. Thus we get the euclidean vector space £ =
R ®g Q® and can take the vector v = ne; + (n —2)ea + - - + (—n)ep41 = n(er —
€nt1)+(n—2)(e2—€n) 4+ -+ € E, which satisfies (v|e; —¢;) > 0 if and only if i < j.
For this v we obtain the set of positive roots @ = {¢; —¢; : 1 <i < j <n+1} and
the system of simple roots A = {€; —€2,€2 —€3, ..., €, —€n41}. The corresponding
Dynkin diagram is (Ay,).

Consider the following ‘orthogonal Lie algebra’:

L = s09,41(k)

1 0 0 1 0 0
:{X€g[2n+1(k):Xt 0 0 Lf+[0 0 I, X:O}
0 I, 0 0 I, 0

(6.6) 0 b —d
{ a A B ta,b € Matyx1(k),
b C At

A,B,C € Mat,(k), B' = —B, C' = —C}

where I,, denotes the identity n x n matrix. Number the rows and columns of
these matrices as 0,1,...,n,1,...,7 and consider the subalgebra H consisting
again of the diagonal matrices on L: H = {diag(0,a1,...,qn, —Q1,...,—Qp) :
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a; € ki =1,...,n}. Again we get the linear forms ¢; : H — k, such that
ei(diag(O,al, ey Qi — QU .,—an)) =qi,1=1,...,n. Then,

L=H®o (&L k(Eo — Ey)) © (©721k(Eg; — Eio)) © (S1<izj<nk(Eij — Ej7))
® (Br1<icj<nk(E; — Ej)) ® (®1<icj<nk(Ey; — By;))
=HO (@?:1[/—51-) ® (@?:11161') & (EBléi#anLGi—%)
® (Dr<icjsnLete;) ® (Br<icjnLl_(e+e;))s

where Ly, = {x € L: [h,z] = a(h)z Vh € H}. Tt follows easily from here that H
is a Cartan subalgebra of L, that L is simple and that the set of roots is

O = {te,+e £€:1<i<j<n}
Also, for any h € H as above,

k(hoh) =2(af +-+ o)+ > (=)’ +2 > (i + )

1<ij<n 1<i<j<n
6.7) =207+ +ad)+2 > ((ai —aj)2+(ai+aj)2)
' 1<i<j<n

=(2+4n—-1)(f+-+a2) =22n—1)(af+ - +a2)
= (2n — 1) trace(h?).
Therefore, t., = m(E” — E5) and (ei]ej) = €(te;) = m@-j. We can take
the element v = ne; + (n — 1)ea + - - - + €, whose inner product with any root is
never 0 and gives @7 = {¢,e; £¢j : 1 < i < j < n} and system of simple roots
A ={e; —€,€9 —€3,...,6n_1 — €n, €, }. The associated Dynkin diagram is (By,).

6.8 Exercise. Prove that soz(k) is isomorphic to sla(k). (k being algebraically
closed.)

(Cy) Consider now the ‘symplectic Lie algebra’:

L:5p2n(k)
- (0 I, 0 L\ .
(6.8) —{X€gl2n(k).X (_In O>+<_In O>X_O}
_ {(é —Zt> . A,B,C € Mat,(k), B' = B, C' — C}

where n > 2 (for n = 1 we get spy(k) = sla(k)). Number the rows and columns
as 1,...,n,1,...,7. As before, the subspace H of diagonal matrices is a Cartan
subalgebra with set of roots

O = {+2€¢,+e; £ :1<i<j<n}
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where €;(h) = a; for any i, with h = diag(a, ..., @, —aq, ..., —ay). Here
hh—2z4a+z al—oz] +QZ ozz—l—oz]
1<i#j<n 1<i<j<n
(6.9) =8(af+---+al)+2 > ( — ;) + (o + aj)2)
1<i<j<n

=B+4n—1))(f+-+a2) =4(n+1)(a]+ - +al)
= 2(n + 1) trace(h?),
te, = = (Bi—FE5), (€ilej) = 40i;. Besides, we can take v = nej+(n—1)ea++ - +ép,

which gives @7 = {2¢;,¢;4€;: 1 <i< j<n}and A ={e1—€a,...,en_1—€n, 26},
whose associated Dynkin diagram is (C),).

Finally, consider the ‘orthogonal Lie algebra’:

L = 502n(k)

(6.10) = {X € gly, (k) : X* GL Ig) + <I(1 Ig) X = 0}

- {(é _it> . A,B,C € Mat,(k), B = —B, C" = c}

with n > 4. Number the rows and columns as 1,...,n,1,...,7. As it is always
the case, the subspace H of diagonal matrices is a Cartan subalgebra with set of
roots

O ={tete:1<i<j<n}

where €;(h) = a; for any i, with h = diag(a, ..., a,, —aq, ..., —ay). Here
K(hoh) = > (o — ;) +2 > (i + )’
1<i#j<n 1<i<j<n
(6.11)

:4(n—1)(a%+"'+0¢721)
=2(n—1) trace(h2),

te, = (n 0 (B — E5), (ei|ej) = ﬁdij' Also, we can take v = ne; + (n—1)ea +
-+ + €, which gives T ={e;+¢;: 1 <i<j<n}and A={e; —€2,...,€6,-1 —
€ny En—1 + €}, whose associated Dynkin diagram is (D).

The remaining Dynkin diagrams correspond to the so called ezceptional simple Lie
algebras, whose description is more involved. Hence, we will proceed in a different way:

(FEg) Let E = R® with the canonical inner product (.].) and canonical orthonormal

basis {el, ...,eg}. Take eg = (61 + -+ +eg) and Q = {moeo + Zf 1 mie; 1 m; €
ZYi, S m,; € 27}, which is an additive subgroup of R®. Consider the set

d={veq: (vv) =2}
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For v = Z?:o me; € Q, (v|v) = Zle(mi + %mo)z, so if my is even, then m; +
%mo € Z for any 4 and the only possibilities for v to belong to ® are v = *e; - ¢;,
1 < i < j <8 On the other hand, if mg is odd, then m; + %mo € % + Z for
any ¢ and the only possibilities are v = %(j:el + ey + -+ £ eg). Moreover, since
Zle m; must be even, the number of + signs in the previous expression must be
even. In particular, ® satisfies the restrictions (R1) and (R2) of the definition of
root system.
2(v|w)
= (v[w)
(w|w)
is easily shown to be in Z, hence (R4) is satisfied too. The proof that (R3) is
satisfied is a straightforward computation. Thus, ® is a root system.

Take now v = Z?Zl 2'e;, then (v|a) # 0 for any a € ®. The associated set of
positive roots is @+ = {(te; ea £ L ey +eg), e +e; 10 < j}, and the set
of simple roots is

Besides, for any v € ®, (v|v) = 2 and for any v,w € ®, (v|jw) =

1
A= {041 25(61—62—63—64—65—66—€7+68),Oéz=€1+€2,Oé3262—61,
Qg = €3 — €2,05 = €4 — €3, = €5 — €4,Q7 = €6 — €5, 267*66}
with associated Dynkin diagram

a1 (O3 Q4 a5 GO a7 Ay

(e5))

of type (Eg).

(E7) and (Eg) These are obtained as the ‘root subsystems’ of (Fg) generated by A\

{ag} and A\ {a7,as} above.

(Fy) Here consider the euclidean vector space E = R* ey = 1(e1 + e2 + e3 + eq),

(Ga)

Q = {moeo + Z?Zl mge; : m; € Z}, and
®={veqQ: (vJv) =1lor2} = {xe;, te;te;(i <j), 2(te1testesLes)}

This is a root system and with v = 8e; + 4es + 2e3 + e4 one obtains &+ =
{ei,ei £e; (i < j), %(el +teptestey)} and

A ={es—e3,e3—eg,eq4,5(e1 — €2 — €3 —e4)},
with associated Dynkin graph (Fy).

In the euclidean vector space E = {(o,3,7) € R3 : a4+ B+~ =0} = R(1,1,1)*,
with the restriction of the canonical inner product on R®, consider the subset
Q = {mye1 + maes + mges : m; € Z, my + mg +mg = 0}, and

®={veQ:(vlv)=20r6}
= {i(ei — Ej) (Z < ]), :|:(2€1 — €9 — 63), i(—el + 262 — 63), :|:(—€1 —e9 + 263)}.

Again, @ is a root system, and with v = —2e; — ez + 3eg, T = {e; —¢; (i >
j), —2e1+e2+e3,e1 —2e+e3, —€] —ex + 263} and

A = {62 —€1,€61 — 262 + 63},

with associated Dynkin diagram of type (G3).
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This finishes the classification of the connected Dynkin diagrams. To obtain from
this classification a classification of the root systems, it is enough to check that any root
system is determined by its Dynkin diagram.

6.9 Definition. Let ®; be a root system in the euclidean space E;, i = 1,2, and let
@ : By — E5 be a linear map. Then ¢ is said to be a root system isomorphism between
&y and Py if p(P1) = $9 and for any «, 8 € D1, (p(a)|p(B)) = (a|B5).

6.10 Exercise. Prove that if ¢ is a root system isomorphism between the irreducible
(o(@)]o(e))

for a fixed
(ala)

root systems ®; and ®g, then ¢ is a similarity of multiplier

a € Pq.

The next result is already known for roots that appear inside the semisimple Lie
algebras over algebraically closed fields of characteristic 0, because of the representation
theory of sla(k).

6.11 Lemma. Let ® be a root system, a,B € ® two roots such that f # +a, let
r=max{i € Z>op: f—ia € ®} and ¢ = max{i € Z>o : f+ia € ®}. Then (Bla) =1—q,
r+q < 3 and all the elements in the chain f—ra,—(r—1)a,...,B,..., B+ qa belong
to @ (this is called the a-chain of 3).

Proof. Take v = B+ qa € ®, then (vy|a) = (B|a) + 2q. Besides, v + ia ¢ ® for any
i €ZLso,7y—(r+qaec® andy— (r+q+i)a g ® for any i € Zg.

Then o4(7) = v — {(7|o)a € @, so (y]a) < r+ ¢; while o4 (7 — (r + @)a) = v —
(Yaya + (r+ q)a € @, so 7+ q— (yla) < 0, or {(y|a) > r + q. We conclude that
(v|a) = r + q and this is < 3 by the argument in the proof of Proposition Besides,
(Bla) = (1la) — 20 =7 — g.

Thus, (yla) = 0,1,2 or 3. If (y|a) = 0, then the a-chain of § consists only of
v=p€®. If (y|]a) = 1, then the a-chain consists of 7y € ® and 7 — a = g,(y) € . If
(7]e) = 2, then (a|y) = 1 and the a-chain consists of vy € &, v —a = —0,(«) € ¢ and
v—2a = 04(y) € ©. Finally, if (y|a) = 3, then again (a|y) = 1 and the a-chain consists
of ye®, vy—a=o0,(a), vy —2a=0,(y—a) € P, and v — 3a = g,(7) € . O

6.12 Theorem. Fach Dynkin diagram determines a unique (up to isomorphism) root
system.

Proof. First note that it is enough to assume that the Dynkin diagram is connected.
We will do it.

Let A be the set of nodes of the Dynkin diagram and fix arbitrarily the length of a
‘short node’. Then the diagram determines the inner product on & = R® = RA. This
is better seen with an example. Take, for instance the Dynkin diagram (Fy), so we have
A = {1, a9, a3, a4}, with

a1 ag a3 Oy
Fix, for simplicity, (as|as) =2 = (a4]ay). Then
2
o —1=(az|lay) = M, so (aslay) = —1,

(cvaloug)
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o —2=(az]a3) = m, so (azlag) = —2.
o —1=(azloz) = 2((;7‘022))’ so (ag|ag) = 4 = (a1|a1).

o —1= <a1\a2>, SO (041’042) = —2.

Since A is a basis of E, the inner product is completely determined up to a nonzero
positive scalar (the arbitrary length we have imposed on the short roots of A). For any
other connected Dynkin diagram, the argument is the same.

Now, with A = {a1,...,a,}, any a € &+ appears as a = Y, m;a; with m; € Zxg.
Define the height of o as ht(a) = mq + --- + my,. It is enough to prove that for any
N € N, the subset {« € ®T : ht(a) = N} is determined by the Dynkin diagram, and
this is done by induction on N:

For N =1 this is obvious, since ht(«) = 1 if and only if a € A.

Assume that the result is valid for 1,...,N. Then it is enough to prove that the
roots of height NV 4 1 are precisely the vectors v = 8 + «, with ht(8) = N, o € A and
such that (8]a) < r with r = max{i € Z>¢ : f — i € ®*}. Note that the height of the
roots B —ia € ®T, with i > 0, is at most IV, and hence all these roots are determined by
A. Actually, if 5 € ® and o € A satisfy these conditions, then r > (5|a) = r — g by the
Lemma, so ¢ > 1, and 8 + « is in the a-chain of 3, and hence it is a root. Conversely,
let v = > ; myay be a root of height N + 1. Then 0 < (y|y) = Y1y mi(vy]as), so
there is an ¢ with (y|a;) > 0 and m; > 0. From the previous Lemma we know that
B =7v—a; € P, and ht(8) = N. Besides, 5+ a; € ®, so ¢ > 1 in the previous Lemma,
and hence r — ¢ = (B|ay) < r, as required. O

6.13 Remark. Actually, the proof of this Theorem gives an algorithm to obtain a root
system @, starting with its Dynkin diagram.

6.14 Exercise. Use this algorithm to obtain the root system associated to the Dynkin
diagram (G2).

6.15 Exercise. Let ® a root system and let A = {a1,...,a,} be a system of simple
roots of ®. Let « = myja+- - -+myq, be a positive root of maximal height and consider
Ay = {a;:m; #0} and Ay = A\ Ay. Prove that (A1|A2) =0.

In particular, if ® is irreducible this shows that « “involves” all the simple roots (A =

Ay).

§ 7. Classification of the semisimple Lie algebras

Throughout this section, the ground field k& will be assumed to be algebraically closed
of characteristic 0.

The aim here is to show that each root system ® determines, up to isomorphism, a
unique semisimple Lie algebra over k.
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Let L=H® (@aquLa) be the root space decomposition of a semisimple Lie algebra
over k, relative to a Cartan subalgebra H. We want to prove that the multiplication in
L is determined by .

For any o € @, there are elements z, € Ly, Yo € L_qo such that [z4,ys] = ha,
with a(hy) = 2. Besides, Lo = ko, Lo = kyo and Sy = Lo @ L_o @ [Lo, L_o] =
kxo @ kyo @ khe is a subalgebra isomorphic to sla(k). Also, for any 5 € ®\ {+a}, recall
that the a-chain of § consists of roots 5 —ra,...,[B,..., B + qa, where (Bla) =r —q.

7.1 Lemma. Under the hypotheses above, let o, B € ® with o+ € ®, then [Lq, Lg] =
Lo1p. Moreover, for any x € Lg,

Proof. This is a straightforward consequence of the representation theory of sla(k), since

@ Lgiia is a module for S, = sly(k). Hence, there are elements v; € Lgy(g—iyar © =
0,...,74q, such that [yo, vi| = vit1, [Za, vi] = i(r+q+1—1)vi—1, with v_1 = vy g41 =0
(see the proof of Theorem ; whence the result. O

Let A = {aq,...,a,} be a system of simple roots of ®. For any i = 1,...,n, let
Ti = Tays Yi = Yo, and h; = hy,. For any a € ®T, the proof of Theorem shows
that « is a sum of simple roots: a = o, + -+ + ., with a;; +--- + a;; € & for any
j=1,...,7r = ht(a). For any a € ®* we fix one such sequence I, = (iy,...,i,) and take
To =adz;, ---adx,, (x“) and y, = ady;, - - -ad y;, (y“) These elements are nonzero by
the previous Lemma, and hence L, = kx, and L_, = ky,.

7.2 Lemma. For any a € %1, let J = Jy = (j1,-..,7r) be another sequence such that

a=aj + - +aj, and let z; = adx;, ---adwzj,(z;,) and y; = ady;, ---ady;, (y;,)-

Then there are rational numbers q,q € Q, determined by ®, such that x; = qxq,
/

Yi =qYa-

Proof. Since x; € L, the previous Lemma shows that z; = q1[z;,, [yi,,2]], for some
q1 € Q which depends on ®. Let s be the largest integer with js = i,, then

Wi, 5] =adxj, ---adz;,,, ady;, adxj, (vK)
(where K = (j1,...,Js—1), since [y;, z;] = 0 for any i # j)
=qadzj, ---adwxj,_,(xx) (by the previous Lemma)

= qo2gsxp  (by induction on r = ht(«)),

where ¢z, g3 € Q depend on ® and I’ = (i1,...,i,—1). Therefore, x; = q1q2q3[x;,., x 1] =
q192q3%«, With q1, g2, q3 € Q determined by ®. The proof for y; is similar. O

Hence, we may consider the following basis for L: B = {h1,...,hn, Ta, Yo : @ € T},
with the x,’s and y,’s chosen as above.

7.3 Proposition. The product of any two elements in B is a rational multiple of another
element of B, determined by ®, with the exception of the products [xu,Ya], which are
linear combinations of the h;’s, with rational coefficients determined by P.
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Proof. First note that [hs,h;] = 0, [hi,za] = a(hi)za = (d|oi)ze and [hi,ya] =
—(a|@i)yaq, are all determined by ®.

Consider now «, 3 € ®* and the corresponding fixed sequences I, = (iy,..., i),
Ig = (J1s -+ -5 Js)-

To deal with the product [z, 2], let us argue by induction on r. If r = 1, [z4, 28] =
0if a+ B ¢ @, while [x4,25] = qroqp for some ¢ € Q determined by ® by the
previous Lemma. On the other hand, if » > 1 and I}, = (i1,...,%,—1), then (x4, 23] =
@i, 21 ], 28] = [z4,, 21, 26]] — [, [%4,, 5]] and now the induction hypothesis and the
previous Lemma yield the result. The same arguments apply to products [ya, yg].

Finally, we will argue by induction on r too to deal with the product [zq,ys]. If
r = 1and o = o, then [zq,y5) = 0if 0 # B —a &€ @, [za,y8] = hi if & = B,
while if f —a = v € ®, then yg = q[y;,y,] for some ¢ € Q determined by ®, and
[T, ys] = qlzs, [Yi, yy]] = 94'yy, determined by ®. On the other hand, if 7 > 1 then, as
before, [xq,ys] = %4, [z, ys]] = [212,, [%4,,ys]] and the induction hypothesis applies. [

What remains to be done is, on one hand, to show that for each of the irreducible root
systems FEg, E7, Eg, Fy, Go there is a simple Lie algebra L over k and a Cartan subalgebra
H such that the corresponding root system is of this type. Since we have constructed
explicitly these root systems, the dimension of such an L must be |®| + rank(®), so
dimg L = 78,133, 248,52 and 14 respectively. Later on, some explicit constructions of
these algebras will be given.

On the other hand, given a simple Lie algebra L over k and two Cartan subalgebras
H; and Hs, it must be shown that the corresponding root systems ®; and ®5 are
isomorphic. The next Theorem solves this question:

7.4 Theorem. Let L be one of the Lie algebras sl,(k) (n > 2), so,(k) (n > 3), or
spo, (k) (n > 1), and let H be any Cartan subalgebra of L. Then there is an element
g of the matriz group GLy(k), On(k) or Spa,(k) respectively, such that gHg™ ! is the
subspace of diagonal matrices in L. In particular, for any two Cartan subalgebras of L,
there is an automorphism ¢ € Aut(L) such that p(Hy) = H.

The last assertion is valid too for the simple Lie algebras containing a Cartan sub-
algebra such that the associated root system is exceptional.

Proof. For the first part, let V' be the ‘natural’ module for L (V = k™ (column vectors)
for sl,,(k) or s0,,(k), and V = k" for sp,, (k)). Since H is toral and abelian, the elements
of H form a commuting space of diagonalizable endomorphisms of V. Therefore there is
a simultaneous diagonalization: V = @xcgy+V), where Vy ={v € V : h.ov = A(h)vVh €

If L = sl,(k), then this means that there is an element g € GL,(k) such that
gHg~' C {diagonal matrices}. Now, the map x — grg~! is an automorphism of L and
hence gHg~! is a Cartan subalgebra too, in particular it is a maximal toral subalgebra.
Since the set of diagonal matrices in L is a Cartan subalgebra too, we conclude by
maximality that gHg ' coincides with the space of diagonal matrices in L.

If L = s0,(k) or L = sp,,,(k), there is a nondegenerate symmetric or skew symmetric
bilinear form b : V x V' — k such that (by its own definition) L = {x € gl(V) :
b(x.v,w) + b(v,z.w) = 0 Yo,w € V}. But then, for any h € H, \,v € H* and v € V},
w € Vy,, 0 = b(hv,w) + b(v,hw) = (A(h) + u(h))b(v,w). Hence we conclude that
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b(V,V,) = 0 unless A\ = —u. This implies easily the existence of a basis of V' consisting
of common eigenvectors for H in which the coordinate matrix of b is either

L 00 0o I, 0 I,

0 0 I,|, I 0 or I 0

0 I, O " "

3

according to L being s02,11(k), sps, (k) or s02, (k). Therefore, there is a g € SO2p,11(k),
Span (k) or SOa, (k) (respectively) such that gH g~ is contained in the space of diagonal
matrices of L. As before, we conclude that gHg~! fills this space.

Finally, let L be a simple Lie algebra with a Cartan subalgebra H such that the
associated root system @ is exceptional. Let H' be another Cartan subalgebra and &’
the associated root system. If ® were classical, then Proposition would show that L
is isomorphic to one of the simple classical Lie algebras, and by the first part of the proof,
there would exist an automorphism of L taking H' to H, so that ® would be classical too,
a contradiction. Hence @' is exceptional, and hence the fact that dimy L = |®|+rank(P),
and the same for ®’, shows that ® and ®’ are isomorphic. But by Proposition |7.3| again,
we can choose bases {hi,...,hn, Ta, Yo : @ € @} and {h),... k), 2l Y., : o € D'} with
the same multiplication table. Therefore, there is an automorphism ¢ of L such that
o(hi) = R, p(za) = 2z, and ¢(ya) =y, for any i = 1,...,n and « € ®. In particular,
o(H)=H'. O

7.5 Remark. There is a more general classical result which asserts that if H; and Hs
are any two Cartan subalgebras of an arbitrary Lie algebra over k, then there is an
automorphism ¢, in the subgroup of the automorphism group generated by {expadx :
x € L, ad z nilpotent} such that ¢(H;) = Hs. For an elementary (not easy!) proof, you
may consult the article by A.A. George Michael: On the conjugacy theorem of Cartan
subalgebras, Hiroshima Math. J. 32 (2002), 155-163.

The dimension of any Cartan subalgebra is called the rank of the Lie algebra.

Summarizing all the work done so far, and assuming the existence of the exceptional
simple Lie algebras, the following result has been proved:

7.6 Theorem. Any simple Lie algebra over k is isomorphic to a unique algebra in the
following list:

5[n+1(k> (n 2 17 An)7 502n+1(k) (Tl Z 27 Bn)a 5p2n(k) (’I’l Z 37 Cn)v
soo, (k) (n >4, D), Es, By, Eg, Fy, Gs.

7.7 Remark. There are the following isomorphisms among different Lie algebras:
s03(k) = spy(k) = sla(k), sos(k) = sla(k) @ sla(k), spy(k) = so5(k), sog(k) = sly(k).

Proof. This can be checked by computing the root systems associated to the natural
Cartan subalgebras. If the root systems are isomorphic, then so are the Lie algebras.

Alternatively, note that the Killing form on the three dimensional simple Lie alge-
bra sly(k) is symmetric and nondegenerate, hence the orthogonal Lie algebra sos(k) =
s50(sly(k), k), which has dimension 3 and contains the subalgebra adsly(k) = sly(k),
which is three dimensional too. Hence so3(k) = sly(k).
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Now consider V' = Matsq(k), which is endowed with the quadratic form det and
its associated symmetric bilinear form b(z,y) = 3(det(z + y) — det(z) — det(y)) =
— 1 (trace(zy) — trace(z) trace(y)). Then we get the one-to-one Lie algebra homomor-
phism sly(k) @ sla(k) — so(V,b) = so4(k), (a,b) — @4, Where @qp(x) = ax — zb. By
dimension count, this is an isomorphism.

Next, consider the vector space V' = k*. The determinant provides a linear iso-
morphism det : A*V =2 k, which induces a symmetric nondegenerate bilinear map
b: A%V x A’V — k. The Lie algebra sl(V) acts on A%(V), which gives an embed-
ding sly(k) = sl(V) < s0(A?V,b) = sog(k). By dimension count, these Lie alge-
bras are isomorphic. Finally, consider a nondegenerate skew-symmetric bilinear form
c on V. Then ¢ may be considered as a linear map ¢ : A2V — k and the dimension
of K = kerc is 5. The embedding sl(V) < s0(A%V,b) restricts to an isomorphism
spy(k) Zsp(V,c) = so(K,b) = so5(k). O

§ 8. Exceptional Lie algebras

In this section a construction of the exceptional simple Lie algebras will be given, thus
completing the proof of Theorem The hypothesis of the ground field k£ being al-
gebraically closed of characteristic 0 will be kept here. Many details will be left to the
reader.

Let V = k3 = Matsx1(k) and let x denote the usual cross product on V. For any
x € V, let [, denote the coordinate matrix, in the canonical basis, of the map y — = x y.
Hence for

T 0 —XI3 i)
Tr = | T2 — lx = T3 0 —I
T3 —X9 I 0

Consider also the map V3 — k, (x,9,2) = (z X y) - z (where u - v denotes the canonical
inner product on V). Then a simple computation gives that for any a € sl3(k), lo, =
—(lza+a'ly;). Also, the identity of the double cross product: (xxy)xz = (x-2)y—(y-2)z,
shows that l;x, = yz' — zy’. Using these properties, the proof of the following result
follows at once.

8.1 Proposition. The subspace

0 —2yt —2at
L= xr  a l, |:acslk), z,yck?
Yy lx —a'

is a fourteen dimensional Lie subalgebra of gl; (k).

0 —2yt —2zt
For any a € sl3(k), and z,y € k3, let M4z denote the matrix |z a ly
y ol —al

In particular we get:

[Ma,0,0)s M0,.2,0)] = M0,a2,0,  [M(a,0,0) M0,04)] = M(0,0,—aty)-
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Let H be the space of diagonal matrices in L, dimz H = 2 and let ¢; : H — k,
the linear map such that ¢; (diag(O,al,ag,ag, —ay, —Q, —ag)) = a4, 1 = 1,2,3. Thus,
€1+ €2 + €3 = 0. Let {e1,e2,e3} be the canonical basis of V = k3. Then we have a root
space decomposition

L=H®& (®acoLa),

with ® = {+(e; —€2), (€1 —€3), £(e2 —€3), L€y, teo, £e3}, where Mg,;,0,0) € Le;,—e; for
1 7é 7, M(O,ei,()) S Lei; and M(O,O,ei) S L_Ei.

8.2 Theorem. L is simple of type Gs.

Proof. Any proper ideal I of L is invariant under the adjoint action of H, so I = (INH)®
(Baca(INLy)). Also, sl3(k) is isomorphic to the subalgebra S = {M, ) : a € sl3(k)}
of L. If IN S # 0, then, since S is simple, H C S C I, and hence L = H + [H,L] C I,
a contradiction. On the other hand, if I NS = 0, then there is an ¢ = 1,2, 3 such that
L, C I with o = %¢;. But 0 # [Lo, L_o] C I NS, a contradiction again.

Therefore L is simple of rank 2 and dimension 14. Since the classical Lie algebras of
rank 2 are sl3(k) of dimension 8, and so5(k) of dimension 10, the only possibility left is
that L must be of type Ga. O

8.3 Exercise. Compute the restriction to H of the Killing form of L. Get a system of
simple roots of ® and check directly that ¢ is the root system Gs.

Let us proceed now to give a construction, due to Freudenthal, of the simple Lie
algebra of type Eg. To do so, let V' be a vector space of dimension 9 and V* its dual.
Consider a nonzero alternating multilinear map det : V¥ — k (the election of det to
name this map is natural), which induces an isomorphism A%V 2 k, and hence another
isomorphism A%V* = (A%V)* = k. Take a basis {e1,...,eg} of V with det(eq,...,e9) =
1, and consider its dual basis {e1,...,£9} (so, under the previous isomorphisms, 1 A
... Neg € A°V* corresponds to 1 € k too).

Consider now the simple Lie algebra of type Ag, S = sl(V) = slg(k), which acts
naturally on V. Then V* is a module too for S with the action given by z.¢(v) = —p(z.v)
for any z € S, v € V and ¢ € V*. Consider W = A3V, which is a module too under the
action given by x.(v1 Ava Avg) = (z.v1) Ava Avs+v1 A (z.v2) Avs+v1 Ava A (x.v3) for any
x € S and vy, ve,v3 € V. The dual space (up to isomorphism) W* = A3V* is likewise a
module for S. Here (o1 A @2 A @3)(v1 A va Avg) = det(p;(vj)) for any ¢1, 2,3 € V*
and vy, vo,v3 € V.

The multilinear map det induces a multilinear alternating map T : W x W xW — k,
such that

T(v1 A v2 A vz, vg A vs A vg,v7 A vg Avg) = det(vr,...,vg),

for any v;’s in V. In the same vein we get the multilinear alternating map 7% : W*x W™ x
W* — k. These maps induce, in turn, bilinear maps WxW — W*, (wy,ws) — wiows €
W*, with (w; o wa)(w) = T (w1, wa, w), and W* x W* — W, (¢1,192) — 1 01pe € W,
with (11 012) (W) = T* (1,12, 1), for any wy, wa,w € W and 1,9, € W*, and where
natural identifications have been used, like (W*)* = W.

Take now the bilinear map AV x A3V* — sl(V): (w,) — w ¢, given by

(v1 Avg Aws) * (p1 A w2 A p3)

1 o 1
= 5( Y D100 (1) (vr (1)) Po2) (0(2)JVr(3) ®%(3)> — 3 det(pi(v))) v,

o,7€S3
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where (—1)7 denotes the signature of the permutation o € S3, v ® ¢ denotes the endo-
morphism u — ¢(u)v, and 1y denotes the identity map on V. Then for any w € A3V,
Y € A3V* and z € sl(V), the following equation holds:

trace((w * ¥)z) = P (z.w).

(It is enough to check this for basic elements e; = e;, A ej, A ej,, where J = (j1, j2, j3)
and j1 < j2 < js, in W and the elements in the dual basis of W*: 5 =¢j, Aej, Aejy.)
Note that this equation can be used as the definition of w * 1.

Now consider the vector space L = sl(V) @ W @ W* with the Lie bracket given, for
any z,y € sl(V), w,w1,ws € W and 1, 91,12 € W* by:

[x,y] is the bracket in sl(V),
[z,w] =zw e W, [x,9¥] =x.p € W¥,
[w1, wa] = w1 0wy € WH,
(Y1, %2] = 1 09Pa €W,

[w, ] = —w x € sl(V).

A lengthy computation with basic elements, shows that L is indeed a Lie algebra.
Its dimension is dimy L = 80 + 2(3) = 80 + 2 x 84 = 248.

Let H be the Cartan subalgebra of (V') consisting of the trace zero endomorphisms
with a diagonal coordinate matrix in our basis {e1,...,e9}, and let §; : H — k be
the linear form such that (identifying endomorphisms with their coordinate matrices)
6i(diag(oz1, ... ,ag)) = ;. Then 1 +---+ 9 = 0, H is toral in L and there is a root
decomposition

L=H® (EBOZGCDLa)a

where

O ={6—0;:1#jU{E(0i+0;+0) 1 <j <k}

Here Ls, s, = kE;; C sl(V) (Ej; denotes the endomorphism whose coordinate matrix
has (i, j)-entry 1 and 0s elsewhere), L, 15,+6, = k(ei AejAep) CW and L_(5,45,45,) =
k(ei Nej Neey) C W*. Using that sl(V) is simple, the same argument in the proof of
Theorem proves that L is simple:

8.4 Theorem. L is simple of type Eg.

Proof. We have shown that L is simple of rank 8. The classical Lie algebras of rank 8,
up to isomorphism, are sly(k), so17(k), spis(k) and so16(k), which have dimensions 80,
156, 156 and 120 respectively. Hence L is not isomorphic to any of them and hence it is
of type FEs. O

Take now the simple Lie algebra L of type Es and its generators {h;, x;,y; : i =
1,...,8} as in the paragraph previous to Lemma the indexing given by the ordering
of the simple roots given in the next diagram:

ap a3 Q4 O35 Qg Q7 Qg
o0—"O0——O0—O0——O0—O0O0——=O0

Lo
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Let x be the Killing form of L. Then consider the subalgebra L generated by {hl, Ti, Y
i=1,...,7} and its subalgebra H = @®!_,kh;. Since H is toral in L, so is H in L and

L=H D <@a€<bﬂ(Za1+---Za7)La)~

From here it follows that H is a Cartan subalgebra of L. Since the restriction of s to
H is nondegenerate (recall that the restriction of k to Zl 1 Qh; is positive deﬁnite')
the restriction of x to L is nondegenerate. Thus we get a representation ad : L— gl(L)
with nondegenerate trace form, and hence L = Z (L) [L, L), with [L, L] semisimple
(recall Consequences . But H C [L,L] and Z(L) C C; i (H H) = H, so Z(L) = 0 and
Lis semisimple, with root system of type E7 (which is irreducible). Theorem |6.3| shows
that L is simple of type FE7.

The same arguments show that the Lie subalgebra Lof L generated by {h;,x;,y; :
i=1,...,6} is a simple Lie algebra of type Eg.

Finally, the existence of a simple Lie algebra of type Fy will be deduced from that
of Eg. Let now L be the simple Lie algebra of type Eg considered above, with canonical
generators {h;,z;,y; : ¢ = 1,...,6}. Since the multiplication in L is determined by the
Dynkin diagram, there is an automorphism ¢ of L such that

¢(h1) = he, p(z1) =6, ©(Y1) = Y6,
p(he) = h1, p(z6) = 21, V(Y6) = Y1,
p(hs) = hs, p(z3) = x5, V(Y3) = ys,
p(hs) = hs, p(5) = 23, V(Y5) = Y3,
p(h2) = ha, p(z2) = 22, V(y2) = Yo,
p(ha) = ha, p(z4) = 24, P(ya) = Y.

In particular, ¢? is the identity, so L=1IL® Ll, with Ly = {z € L : ¢(2) = 2}, while
Ll = {z € L:p(z) = —2z}, and it is clear that Lg is a subalgebra of L, [Lg, L7] C L1,
(L1, L7] C Lg. Forany z € LO and 2/ € L1, k(z,2') = k(p(2), (")) = k(z,—2"), where K
denotes the Killing form of L. Hence x(Lg, L1) = 0 and, thus, the restriction of % to Lg is
nondegenerate. This means that the adjoint map gives a representation ad : E() — g[(i})
with nondegenerate trace form. As before, this gives Lg = Z(Lg) ® [Lg, Lg), and [Lg, Lg)
is semisimple.
Consider the following elements of Lg:

iLl = h1 + hg, B2:h3+h5, iLgIhQ, iL4:h2,
T = x1 + Tg, To = x3 + T3, T3 = T4, T4 = T2,
91 =y1 + Y, Y2 = ys + ys, Y3 = Y4, Ys = Y2.

Note that [Z;, 7;] = h; for any i = 1,2,3,4. The element h = 10hy + 19ho + 2Ths + 14hy
satisfies _
(h) =20 —19 =1,

(h) =38 —10—27 =1,
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Thus a(h) > 0 for any o € &1, where ® is the root system of L. In particular, a(h) # 0
for any a € ®.

Note that H = ®%_ kh; is a Cartan subalgebra of L. Besides, go(H ) = H and hence
H = Hi®Hi, with Hy = HNL; = ® 1kh and H; = HNLg = k(h1—he) ®k(hs—hs).
Also, for any a € ®, z, + p(z4) € LO, and this vector is a common eigenvector for Hg
with eigenvalue «| g which is not zero since a( ) # 0 for any « € . Hence there is a
root space decomposmon

f/() = I:I() ) (Z k(xa + 90(%&)))
acd

and it follows that Z(Lg) C C; (HO) NLg=HNLy=HgC [Lg, LO] We conclude that
Z(Lg) =0, so Lg is semisimple, and Hj is a Cartan subalgebra of Lg.

The root system ® of Ly, relative to Hg, satisfies that ® C {& = a|f10 ta € O}
Also &; = ai]gé € ®, with ; € (Lg)a, and §; € (Lg)_a, for any i = 1,2,3,4. Moreover,
[Zi, 7] = h; and &;(h;) = 2 for any i. Besides, ® = ®TU®~, with T = {a € @ : a(h) >
0} € {a:a € ®*} (and similarly with ). We conclude that A = {1, do, a3, g}
is a system of simple roots of L. We can compute the associated Cartan matrix. For
instance,

o 5a] = do(h)Eo = (At )@
’ [hl + hg, x3 + 1’5] = ag(h1 + h¢)xs + as(h1 + he)xs = — (3 + x5) = — T2,

- fas(ho)®s = (Gslag)is
[ha, T3] = .
[hg + hs, 5154] = 044(}13 + hs)ry = 224 = —273,

which shows that (Go|d1) = —1 and (as|d2) = —2. In this way we can compute the
whole Cartan matrix, which turns out to be the Cartan matrix of type Fjy:

thus proving that f@ is the simple Lie algebra of type Fj.






Chapter 3

Representations of semisimple Lie
algebras

Unless otherwise stated, the following assumptions will be kept throughout the chapter:

k will denote an algebraically closed field of characteristic 0,
L will denote a semisimple Lie algebra over k,

H will be a fixed Cartan subalgebra of L, ® will denote the corresponding set of
roots and L = H @ (EBQGCPLQ) the root space decomposition.

x will denote the Killing form of L and (|) : H* x H* — k the induced nondegen-
erate bilinear form.

For any a € ®, t, € H is defined by the relation a(h) = K(tq, h) for any h € H,

p— 2t(¥
and h, = Sk

A ={ay,...,a,} denotes a fixed system of simple roots. Accordingly, ® decom-
poses as ® = ®T U &~ (disjoint union), where ®* (respectively ®~) is the set of
positive roots (resp., negative roots). Moreover, = = —®T. For a € ®T, let

ZTo € Lo and yo, € L_, with [24, Ya] = ha-
W is the Weyl group, generated by {0, : @ € ®}.
Lt = ®peqpt Loy L™ = Boca—La, so that L=L~" @ H& LT,

This chapter is devoted to the study of the finite dimensional representations of such
an algebra L. By Weyl’s theorem (Chapter 2, , any representation is completely
reducible, so the attention is focused on the irreducible representations.

§1.

Preliminaries

Let p: L — gl(V) be a finite dimensional representation of the Lie algebra L. Since the
Cartan subalgebra H is toral, V decomposes as

V= EB;,LEH*V/,H

where V), = {v € V : h.v = p(h)v Vh € H}.
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1.1 Definition. Under these circumstances, u € H™* is said to be a weight of V if
Vi # 0. The set of weights of V' is denoted P(V').

1.2 Properties of P(V).

(i)
(i)

(iii)

For any o € ® and pp € P(V), LoV € Vayp-

For any € P(V) and a € ®, (u|a) := 2((;"5‘)) is an integer.

Proof. Let So = Lo ® L_o @ [Lo, L_q], which is isomorphic to sla(k) and take
elements o € Ly and yo € L_, such that [z4,Ya] = ha. Then W = ®pezVitma
is an Sy-submodule of V. Hence the eigenvalues of the action of h, on W form an
unbroken chain of integers:

(1‘1) (M+qa)(ha)7'"7M(ha)7”'v(/~b_ra)(ha)a
with (p — ra)(ha) = — (1 + ga)(he). But u(he) = (p|a) and a(hy) = 2. Hence,

p(ha) = {pla)y =r —q € Z. O
P(V) is W-invariant.

Proof. For any € P(V) and a € ®, oo(p) = p — (ploya = p— (r — q)a € P(V),
since it belongs to the unbroken chain (|1.1]). O

Let C = ((ailoy;)) be the Cartan matrix. Then

1

(Recall that E is an euclidean vector space.)

Proof. Since A is a basis of H*, for any u € P(V), there are scalars ry,...,r, € k
such that = riay +- - +rpap. Then (ulaj) = >0 (ailag)ri, j=1,...,n. This
constitutes a system of linear equations with integer coefficients, whose matrix is
C. Solving this system using Cramer’s rule gives r; € ﬁz. O

At this point it is useful to note that det A, = n+1, det B,, = det C), = 2, det D,, = 4,
det Fg = 3, det 7 = 2 and det Eg = det Fy = det Go = 1.

1.3 Definition.

AR = ZA = 7Z® is called the root lattice of L.

Aw ={A€ H*: (Na;) €ZVi=1,...,n} (which is contained in $25A) is called
the weight lattice.

The elements of Ay are called weights of the pair (L, H).

An element A € Ay is said to be a dominant weight if (A|a) > 0 for any o € A.
The set of dominant weights is denoted by A;FV.
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e For any i = 1,...,n, let \; € H* such that (\;|a;) = d;; for any j = 1,...,n.
Then \; € A—i‘/{/, Aw = ZM + ...+ ZN,, and A—i‘/{/ = Z>oM + -+ + Z>oA,. The
weights A1,..., A, are called the fundamental dominant weights.

1.4 Proposition. Ay ={\ € H* : (Ma) € Z Va € ®}. In particular, the weight lattice
does not depend on the chosen set of simple roots A.

Proof. Tt is trivial that {\ € H* : (A\|a) € Z Va € &} C Ay. Conversely, let A € Ay
and @ € ®T. Let us check that (Aa) € Z by induction on ht(a). If this height is
1, then a € A and this is trivial. If ht(a) = n > 1, then a« = miag + -+ + mpan,
with my,...,my € Z>p. Since (a|a) > 0, there is at least one ¢ = 1,...,n such that
(a|o) > 0 and ht(oq, () = ht(a — (aas)a;) < ht(e). Then

(Ala) = (00,(Mloa, (@) = (A = (Aas)ailoa, (a))
= (Moa,; (@) = (Mai)(@iloa; (@)

and the first summand is in Z by the induction hypothesis, and so is the second since
A € Ay and (®|P) C Z. O

1.5 Definition. Let p : L — gl(M) be a not necessarily finite dimensional representa-
tion.

(i) An element 0 # m € M is called a highest weight vector if m is an eigenvector for
all the operators p(h) (h € H), and p(L™)(m) = 0.

(ii) The module M is said to be a highest weight module if it contains a highest weight
vector that generates M as a module for L.

1.6 Proposition. Let p: L — gl(V') be a finite dimensional representation of L. Then

(i) V' contains highest weight vectors. If v € V is such a vector and v € V) (A € H*),
then X € A},

(ii) Let 0 # v € V) be a highest weight vector. Then

W=ko+y > k(pas,) - (Yas, ) (v))

r=11<i1,...,ir<n

is the submodule of V' generated by v. Besides, W is an irreducible L-module and
PW)C{A—ai, ——aj:r>0,1<iy,....5 <n} (= A=D1 Z>o04).

(iii) If V is irreducible, then it contains, up to scalars, a unique highest weight vector.
Its weight is called the highest weight of V.

(iv) (Uniqueness) For any \ € AJVQ, there is, up to isomorphism, at most one finite
dimensional irreducible L-module whose highest weight is .

Proof. (i) Let | € Q® such that ({|o) > 0 for any o € A (for instance, one can take
(lla) =1 for any @ € A), and let A € P(V) such that (I|\) is maximum. Then for any
a€ed® N+adg P(V), so that L,.V)y =0. Hence LT.Vy =0 and any 0 # v € V) is a
highest weight vector.
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(ii) The subspace W is invariant under the action of L™ and the action of H (since
it is spanned by common eigenvectors for H). Therefore, since L' is generated by
{zq : @ € A}, it is enough to check that W is invariant under the action of p(z,), for
a € A. But z4.v = 0 (v is a highest weight vector) and for any «, 5 € A and w € W,
To.(Yg-w) = [Ta,ypl-w — yg.(xo.w), and [z4,yg] either is 0 or belongs to H. An easy
induction on r argument shows that Zqa.(p(yay) - - P(Ya,, )(v)) € W, as required.

Therefore, W is an L-submodule and P(W) C {A —a;; — - — a5, : 7 > 0,1 <
i1,...,0 < n}. (Note that up to now, the finite dimensionality of V" has played no role.)

Moreover, VxNW = kv and if W is the direct sum of two submodules W = W/ W”,
then Wy = kv = W] & WY. Hence either v € W or v € W{. Since W is generated by
v, we conclude that either W = W' or W = W”. Now, by finite dimensionality, Weyl’s
Theorem (Chapter 2, implies that W is irreducible.

Besides, since for any a € &+ we have A+ a ¢ P(W), (A\|a) =r — g =r > 0. This
shows that A € Aj},, completing thus the proof of (i).
(iii) If V is irreducible, then V- = W, V) = kv, and for any p € P(V) \ {A} there is
anr > 0and 1 <4y,...,4 <nsuch that p =\ —ay, — -+ — .. Hence (I|u) < (I|A).
Therefore, the highest weight is the only weight with maximum value of (I|\).
(iv) If V! and V2 are two irreducible highest weight modules with highest weight A and
vl € VI, v? € V are two highest weight vectors, then w = (v',v?) is a highest weight
vector in V'@ V2 and hence W = kw + Y o0, D 1<y, in<n k(p(yar) - p(Yay, ) (w)) is a
submodule of V1 @ V2. Let 7 : V1 @ V2 — V' denote the natural projection (i = 1,2).
Then v* € ©8(W), so (W) # 0 and, since both W and V* are irreducible by item (ii),
it follows that 7|y, : W — V' is an isomorphism (i = 1,2). Hence both V! and V? are
isomorphic to W. O

There appears the natural question of existence: given a dominant weight A € Aﬁ,,
does there exist a finite dimensional irreducible L-module V' whose highest weight is A?

Note that A = miA + -+ mpA,, with mq,...,m, € Z>¢. If it can be proved that
there exists and irreducible finite dimensional highest weight module V' ()\;) of highest
weight A;, for any ¢ = 1,...,n, then in the module

V()\l)®m1 R R V(/\n>®m"

there is a highest weight vector of weight A (the basic tensor obtained with the highest
weight vectors of each copy of V()\;)), By item (ii) above this highest weight vector
generates an irreducible L-submodule of highest weight A\. Hence it is enough to deal
with the fundamental dominant weights and this can be done “ad hoc”. A more abstract
proof will be given here.

§ 2. Properties of weights and the Weyl group

Let us go back to the abstract situation that appeared in Chapter 2.

Let E be an euclidean vector space, ® a root system in F and A = {aq,...,a,}
a system of simple roots. Consider in this abstract setting the subsets we are already
familiar with:

Ap = ZA = 79,
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Aw ={ € E: (\a) € ZVa € ®} =ZA1 + - - - + Z\,, (the weight lattice),

A, ={A€Aw : (\a) > 0Va € A} = ZsoA1 + -+ + Z>oA, (the set of dominant
weights),

0i=0q, (i=1,...,n), W= (04 :ac®) (Weyl group).

2.1 Properties.

(i)

(iii)

(iv)

The Weyl group is generated by o1,...,0p.

Proof. Let Wy be the subgroup of W generated by o1,...,0,. It is enough to
prove that o, € Wy for any o € ®*. This will be proven by induction on ht(«),
and it is trivial if ht(o) = 1. Assume that ht(a) = 7 and that og € W) for any
B € &t with ht(8) < r. The arguments in the proof of Proposition show
that there is an i = 1,...,n, such that (a|a;) > 0, so f = 04,(@) = a — (a]o)a;
satisfies that ht(3) < ht(a). Hence o3 € Wy. But for any isometry 7 and any
wek:

Or(ay 0 T(1) = 7(1) = (r(wlr(@))7(a) = 7 (1 = (ula)a) = 70 oals),
SO Or(q) =T 0040 =1, In particular, with 7 = 0, 04 = oi;080; € Wp. ]

Ift > 2, B1,....0: € A and o, 0...00p, () € ®, then there is an index
1 <s<t—1 such that

03, ©...008, =08, 0...003, ,003,,,0...003,_,.

(That is, there is a simpler expression as a product of generators.)

Proof. Let s be the largest index (1 < s <t —1) with og, 0... 005, ,(f) € ®™.

Thus o, (0,,,0-..005,,(8t)) € ™. But 0, (2+\{}) = @\ {8} (Chapter 2,
Proposition , S0 0g,,, ©...00g,_,(Bt) = Bs and, using the argument in the
proof of (i),

(U,Bsﬂ 0...0 Uﬁt—l) 00g, © (Uﬁt_1 0...0 U,Bs+1) = Ogy,, jonc0s,,(B) = TBe

whence

0B,008,,,0...008,_,008 =08,,,0...008,_,. O]

Given any o € W, item (i) implies that there are [1,...,0; € A such that o =
08, ©...00g,. This expression is called reduced if t is minimum. (For o = id,
t =0.) By the previous item, if the expression is reduced o(f;) € ®~. In particular,
for anyid # o € W, o(A) # A. Therefore, because of Chapter 2, Propasition
W acts simply transitively on the systems of simple roots.

Let 0 = 04, o --- 00y, be a reduced expression. Write 1(o) = t. Also let n(o) =
Ha € @t :0(a) € ®}|. Then (o) = n(o).



66

(v)

(vii)

(viii)
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Proof. By induction on (o) = t. If ¢t = 0 this is trivial. For ¢ > 0, 0 = g4, 0---00;,
satisfies o(a;,) € @~. But 0y, (27 \{y, }) = @7 \{ay, }. Hence n(o;,0---00y,_,) =

n(o) — 1 and the induction hypothesis applies. O
There is a unique element oo € W such that oo(A) = —A. Moreover, o3 = id and
I(o0) = [@7].

Proof. W acts simply transitively on the system of simple roots, so there is a
unique ¢ € W such that og(A) = —A. Since o2(A) = A, it follows that o = id.
Also, og(®T) = @7, s0 1(ag) = n(op) = |PT|. O

Define a partial order on E by u < X if X\ — p € Zsoaq + - - + Zsoan. If X € Ay,
then |{p € A}, : w < A} is finite.

Proof. A € Ay, 80 A =100+ -+ rpy, with r,...,r, € Q (see Properties .
It is enough to prove that if A\ € A, then r; > 0 for any i; because if 1 € A% and
i< A, then p = sy + -+ + sy, with s; € Q, s; > 0 and r; — s5; € Z>q for any
i, and this gives a finite number of possibilities.

Hence, it is enough to prove the following result: Let {vi,...,v,} be a basis of
an euclidean vector space with (v;|v;) < 0 for any i # j, and let v € E such that
(v|v;) > 0 for any i = 1,...,n, then v € R>qv; + - - - + R>qvp.

To prove this, assume v # 0 and write v = v + -+ + rv,. Then 0 < (v|v) =
oy (v|riv;), so there is an [ such that v, > 0. Then v/ = v —ruy € V' =
Rop @ ---1--- ® Roy,, and (v'|v;) = (v]v;) — ri(vfv;) > 0 for any i # I. By an
inductive argument we obtain r; > 0 for any i = 1,... n. ]

For any p € Ay, there is a unique \ € AITV NWu. That is, for any p € Ay, its
orbit under the action of W intersects A% in exactly one weight.

Proof. Let p = miA1 + -+ + mpAy,, with m; = (uloy) € Z, i = 1,...,n. Let us
prove that there is a A € A;{, NWu. If m; > 0 for any ¢, then we can take A = p.
Otherwise, if m; < 0 for some j, then 1 = o;(p) = p—mjoy satisfies that 1 > p
and pp € Wp. If yy € A?/E/ we are done, otherwise we proceed now with p; and
obtain a chain pu = pg < p1 < pe < ---, with pu; € Wpu. Since W is finite, this
process must stop, so there is an r such that u, € AIJ,FV. (This also proves pu < p,.)

To prove the uniqueness, it is enough to prove that if A\, u € AITV and there exists
a o € W with o(\) = p, then A = p. For this, take such a o of minimal length
and consider a reduced expression for o: ¢ = 0g, 0---00p,. If t =0, 0 = id and
A = p. Otherwise, ¢t > 0 and o(5;) < 0. Hence

0< (ABe) = (e(N)la(Br) = (ula(B)) <0,

so (A|B) =0, 08,(A) = X, and p = o(A\) = 0g,0---005,_,(A), a contradiction with
the minimality of the length. O

Let A\ € A;/ be a dominant weight. Then o(A) < X for any o € W. Moreover,
its stabilizer Wy = {0 € W : a(A\) = A} is generated by {o; : (A|a;) = 0}. In
particular, if X is strictly dominant (that is, (M a;) > 0 for anyi=1,...,n), then
Wy =1.
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Proof. Let 0 = 04, o--- 00, be a reduced expression of id # o € W, and let
As =04, 0---00;,(N), 0 <s <t Then, for any 1 <s <t

()\5|ais—1) = (O-is ©---0 O-it ()\)|als—1) = ()\’UZt ©0---0 O-i.s (ais—l))
and this is > 0, because item (ii) shows that o, o ---00; (a;, ,) € ®T. Hence
As—1=0i,_1 (As) = As — (Asfai, )i,y < As.

Therefore, o(A\) = A\ < Ag <--- A = Xand o(A) = A if and only if \; = A for any
s, if and only if (A|ag,) =+ = (Maz,) = 0. O

A subset 11 of Ay is said to be saturated if for any p € I, « € @, and i € Z
between 0 and (p|ar), p—ia € 1. In particular, I1 is invariant under the action of
W. If, in addition, there is a dominant weight A € 11 such that any p € 11 satisfies
w < A, then Il is said to be saturated with highest weight A.
Let \ € AITV' Then the subset 11 is saturated with highest weight X if and only if
II= UueAﬁ‘,W:““ In particular, 11 is finite in this case.

p<A

Proof. For A € AIJ,FV, let II = UueA;“VW'“'
n<A

If IT is saturated with highest weight A, and v € II, there is a ¢ € W such that
o(v) € A, But II is W-invariant, so u = o(v) € Afj, N1II, and hence v € Wy,
with u € A?/E/ and p < A. Therefore, II C II,. To check that II = II, it is enough
to check that any p € AITV with 1 < X, belongs to II. But, if ¢/ = p+ > mioy
is any weight in IT with m; € Z>o for any i, and p’ # p (that is ¢/ > ), then
0 < (i — p|p’ — p), so there is an index j such that m; > 0 and (4 — plej) > 0.
Now, since u € Ajj,, (ulaj) > 0, so (i'|aj) > 0, and since II is saturated, p” =
p' —a; € II. Starting with g/ = X and proceeding in this way, after a finite number
of steps we obtain that p € II.

Conversely, we have to prove that for any A € A;FV, II) is saturated. By its very
definition, IIy is W-invariant. Let pu € Iy, o € ® and i € Z between 0 and
(ule). It has to be proven that p — io € II. Take o € W such that o(u) € A}l
Since (o(p)|o(a)) = (u|a), we may assume that p € Ajj,. Also, changing if
necessary o by —«, we may assume that « € ®T. Besides, with m = (u|a),
oa(p —ia) = p — (m — i)a, so it is enough to assume that 0 < i < |%]. Then
(u—iaja)y =m —2i > 0.

If (u—iala) > 0and o € W satisfies o(u—ia) € A, then 0 < (o(u—ia)|o(a)), so
o(a) € @t and o(p —ia) = o(u) —io(a) < o(p) < p, since p is dominant. Hence
o(pu — ic) € Iy and so does p — ia. On the other hand, if m is even and i = %,
then (p—iala) = 0. Take again a o € W such that o(u—ia) € Afy. If o(a) € OT,
the same argument applies and o(pu — i) < o(p) < p. But if o(a) € &7, take
T = 000,, then 7(p —ia) = o(p — ia) € A}, and 7(a) = o(—a) € @7, so again
the same argument applies. ]

Let p = %Za@w a be the Weyl vector (see Chapter 2, , and let A € A"'V{, and
w € WA, Then (u+ plp+ p) < (A + p|\+ p), and they are equal if and only if
uw = A. The same happens for any u € A% with p < X. Hence, in particular,

(1t plp+p) < (A+plA+p) for any p € II \ {A}.
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Proof. Since o;(p) = p — «; for any i = 1,...,n, it follows that (p|a;) = 1 for any
i,80 p=A1+-+A, € Af;. Let p € WA\ {\} and let o € W such that g = o ().
Then,

A+pA+p) = (ntplp+p) = (A+p[A+p) = (0(A) +plo(A) +p) =2(A—a(N)|p).

But o(A\) < A (item (viii)) and p is strictly dominant, so (p|A —o(A)) > 0, and the
first assertion follows.

Now, if p € AIJ/FV with g < A, then
A+ oA +p) = (u+plu+p) = A+ pld—p) +2(A = plp) 20

since A+ pu € AJVQ,, A—pu >0 and p is strictly dominant. Besides, this is 0 if and
only if A\ —pu=0. O

Later on, it will be proven that if V' is any irreducible finite dimensional module over

L, then its set of weights P(V') is a saturated set of weights.

§ 3.

Universal enveloping algebra

In this section infinite dimensional vector spaces will be allowed.

Given a vector space V, recall that its tensor algebra is the direct sum

TV)=keoVae(VerV)e --aVog... |

with the associative multiplication determined by

(U1®”'®Un)(w1®"'®wm):Ul®"'®vn®w1®'”®’wm-

Then T'(V) is a unital associative algebra over k.

Given the Lie algebra L, let I be the ideal generated by the elements

ry—yRzr—|r,y)e L& (L® L) CT(L),

where x,y € L. The quotient algebra

is called the universal enveloping algebra of L. For x1,...,x, € L, write z1---x, =

r1 ® - ®x;+ I and denote by juxtaposition the multiplication in U(L). Let us denote
by ¢ : L — U(L) the natural map: x + «(z) = = + I. The universal property of the

tensor algebra immediately gives:

3.1 Universal property. Given a unital associative algebra A over k, let A~ be the Lie
algebra defined on A by means of [x,y] = xy — yx, for any x,y € A. Then for any Lie
algebra homomorphism @ : L — A™, there is a unique homomorphism of unital algebras
¢ U(L) — A such that the following diagram is commutative
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Remark. The universal enveloping algebra makes sense for any Lie algebra, not just for
the semisimple Lie algebras over algebraically closed fields of characteristic 0 considered
in this chapter.

3.2 Poincaré-Birkhoff-Witt Theorem. Let L be an arbitrary Lie algebra over a field
k and let {x; : i € I} be a basis of L with ordered set I (that is, I is endowed with a
total order). Then the ‘monomials’

gy "Ly WZO, il,..-,inEI, ZlSSZTw
with the understanding that the empty product equals 1, is a basis of U(L).

Proof. 1t is clear that these monomials span U(L), so we must show that they are
linearly independent.

Given a monomial x;, ® --- ® x;, in T'(L) define its inder as the number of pairs
(4,k), with 1 < j < k < n, such that i; > ;. Therefore, we must prove that the image
in U(L) of the monomials of index 0 are linearly independent.

Since the monomials form a basis of T'(L), a linear map T'(L) — T'(L) is determined
by the images of the monomials. Also, T'(L) is the direct sum of the subspaces T'(L),,
spanned by the monomials of degree n (n > 0). Define a linear map ¢ : T(L) — T'(L)
as follows:

e(l)=1, (a;)=ax; Viel,
o(x, @ Qxy) =) @---®@x;, if n>2 and the index is 0,

and, with n > 2, s > 1, assuming ¢ has been defined for monomials of degree < n (hence
in EB?;& T(L);), and for monomials of degree n and index < s, define

(@i @ ®i,) = o(Ti, @+ ®Tijy, ®Ti; @+ @ Ti,,)

(3.2)
+(,0(33‘Z'1 Q& [.Z'ij,xin] ®"'®$Z‘n),

if the index of z;, ®---®x;, is s and j is the lowest index such that i; > i;;1. (Note that
the index of 7y, ®- - ®z;,,, @y, @+ R, iss—land 7, @ - - @[z, 74, ,|Q - @@y, €
T(L)n—1, so the right hand side of is well defined.)

Let us prove that ¢ satisfies the condition in for any n > 2, any monomial
iy ® -+ @@, and any index 1 < 7 < n — 1 with ¢; > 7;4. (If this is true then, by
anticommutativity, is satisfied for any monomial of degree n > 2 and any index
1<j<n-1)

This is trivial if the index of x;, ® --- ® z;, is 1. In particular for n = 2. Assume
this is true for degree < n and for degree n and index < s, with n > 3 and s > 1. If
the index of z;, ® --- ® @;, is s, let j be the lowest index with i; > ;41 and let j' be
another index with 7;/ > ;4.
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If j+1 < 4, then n > 4 and the indices j,j + 1,5, + 1 are different. Then,

(T, @ Q)
=0(Ti; @ BTy, Ty @+ ®xy,) +0(Tiy @+ ® [Ty, Tij | @+ B y,,),
= (i, @ @iy, QT @ BE,, OTi, @ Dy,
+ (T @ R Tijy, ®Ti; ® @[22, ] Q- ®i,)
+<P($i1 R ® I::Uij’$7;j+1] ®"'®xij/+1 ®$ij/ ®"'®$in)
+ (@i ® - ® [2i), Tiyy | @ B [T, %5, ] © - @ Ti,)

:90($i1®“'®$ij,+1®l'ij,®"'®$in)+§0($i1®"'®[CCZ'],,,$¢ ®'~®xin)

j’+1]

The first equality works by definition of ¢ and the second and third because the result
is assumed to be valid for degree n and index < s and for degree < n.

Finally, if 5 + 1 = j’ nothing is lost in the argument if we assume j = 1, 7/ = 2, and
n = 3. Write z;, =z, x;, =y, and x;;, = z. Hence we have:

prRy®z)=9pyR@rez2)+ o,y @ 2)
Py®@2z@z)+ 9y @ [z,2]) + ¢([,9] ® 2)
=pzeyez)+o(y,2l®@z) + oy @ [z,2]) + o[z, y] ® 2).

by definition of ¢ and because (3.2) is valid for lower index. But since ¢ satisfies ([3.2)
in degree < n,

o([y, 2l @ ) + p(y ® [z, 2]) + ¢([2,y] ® 2)
= o([[y, 2], 2]) + @([y, [z, 2]]) + @ ([[z, y], 2])
+ oz @[y, 2]) + o[z, 2] @ y) + (2 @ [2,y])
=p(z®[y,2]) + o([z, 2] ® y) + (2 @ [z, y]),

because [[y, 2], 2] + [y, [, 21] + ([, 91, 2] = [y, 2),] + [z, ], 9] + [z, ], 2] = 0. Thus,

plrRy®=2)
=p(z@yz)+e(z® [z, y]) +o(z, 2] ®y) + vz @[y, 2])
=p(z@zey)+e(z,2]®y) + el ®y,2])
=p(z®z@yY) + ey z2]),

because (3.2)) is valid for index < s.
Therefore (3.2)) is satisfied for any n > 2, any monomial z;, ® --- ® z;,, and any
1 < j <n—1. Since the ideal I is spanned by the elements

$i1 ®®mln - xil ®®$Z]+1 ®:L"L] ®®$ln - xil ®® [xij7$ij+1] ®®$ln7
it follows that ¢(I) = 0. On the other hand, ¢ is the identity on the span of the
monomials of index 0, so the linear span of these monomials intersects I trivially, and

hence it maps bijectively on U(L), as required. O

3.3 Corollary. The natural map ¢ : L — U(L) is one-to-one.
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If S is a subalgebra of a Lie algebra L, then the inclusion map S — L = U(L)
extends to a homomorphism U (S) — U(L), which is one-to-one by Theorem 3.2| (as any
ordered basis of S can be extended to an ordered basis of L). In this way, U(S) will be
identified to a subalgebra of U(L).

Moreover, if L = .S @ T for subalgebras S and T', then the union of an ordered basis
of S and an ordered basis of 7" becomes an ordered basis of L by imposing that the
elements of S are lower than the elements in 7. Then Theorem implies that the
linear map U(S) @, U(T) — U(L), x ® y — zy, is an isomorphism of vector spaces.

§4. Irreducible representations

By the universal property of of U(L), any representation ¢ : L — gl(V) induces a
representation of U(L): ¢ : U(L) — Endg (V). Therefore a module for L is the same
thing as a left module for the associative algebra U(L).

Now, given a linear form A € H*, consider:

o JA) = pear UL)xa + o1 U(L)(hi — A(hy)1), which is a left ideal of U(L),
where h; = hq, forany i =1,...,n.
Theorem [3.2] implies that J(\) # U(L). Actually, L = L~ @& B, where B=H&L"*
(B is called a Borel subalgebra), so U(L) is linearly isomorphic to U(L™) &, U(B).
Then with J(\) = 3" cg+ U(B)za + 30, U(B)(hi—A(hi)1) (aleft ideal of U(B)),
we get J(\) = U(L™)J(A). Now the Lie algebra homomorphism p : B — k such
that p(z,) = 0, for any a € ®*, and p(h;) = A(h;), for any i = 1,...,n, extends
to a homomorphism of unital algebras 5 : U(B) — k, and J(\) C ker p. Hence
J(\) # U(B) and, therefore, J(\) # U(L).

e M(X) = U(L)/J(N), which is called the associated Verma module. (It is a left
module for U(L), hence a module for L.)

e 0:U(L) = M(\), u— u+ J(X), the canonical homomorphism of modules.
e my =0(1) =1+ J(\), the canonical generator: M(\) = U(L)m,.

Then z, € J()\) for any a € ®*, so zomy = 0. Therefore, L*.my = 0. Also,
hi — Xhi)1 € J(N), so hymy = A(h;)my for any i, and hence hmy = A(h)m) for any
he H.

Therefore, as in the proof of Proposition [1.6

M) =kma+ Y > "k (Yag, - Won, -+ (Yo, ).
r=1

(Note that Yo, -(Yas, =+ (Yau,-mr)) € M(AN)r—a;, ——ay,-)
Let K (M) be the sum of all the proper submodules of M (A). Then my ¢ K()), so
K(\) # M(\) and V(X) = M(X)/K(A) is an irreducible L-module (although, in general,

of infinite dimension). However,
dimM()‘)A—ail—"'—air < H(ﬁju e 76.77) €A™ B+ -+ By =i - + o, | <l

so for any p € H*, the dimension of the weight space V'()), is finite.
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4.1 Theorem. For any A\ € H*, dim V() is finite if and only if A € Ajj,.

Proof. The vector vy = my + K(\) is a highest weight vector of V' (\) of weight A, and
hence by Proposition if dim V/()\) is finite, then X € Ay,

Conversely, assume that \ € A;[r/. Let z; = za,, ¥Yi = Yo, and h; = hqy,, © =
1,...,n, be the standard generators of L. Denote by ¢ : L — g[(V(/\)) the associated
representation. For any i = 1,...,n, m; = (M) € Z>0, because X is dominant. Several
steps will be followed now:

L. ¢(y;)™ T (vy) =0 for any i = 1,...,n.

Proof. Let u; = ¢(y;)™ 1 (vy) = yzmﬁ'lm (as usual we denote by juxtaposition the
action of an associative algebra, in this case U(L), on a left module, here V(\)).
For any j # i, [z;,yi] = 0, so zju; = yzmiﬂ(xjv)\) = 0. By induction, it is checked
that in U(L), :L‘z-yZmJr1 = ylmﬂa:i + (m + 1)y"h; — m(m + 1)y for any m € Z>o.
Hence

ziup = 2yl oy =y o + (mg + Dy hivy — ma(mg + 1)yl

=04y ((mi 1A )ox — mg(ms + 1)m) —0

Thus L™ u; = 0 and hence u; is a highest weight vector of weight p; = A—(m;+1)a;.
Then W; = ku; + > 7, Zk(yail Yoy, uz) is a proper submodule of V()), and
hence it is 0. In particular uw; = 0, as required. 0

2. Let S; = Lo, ® L_o, ® [La,, L—o,;] = kx; + ky; + kh;, which is a subalgebra of L
isomorphic to sla(k). Then V()) is a sum of finite dimensional S;-submodules.

Proof. The linear span of vy,y;vy,...,y; "vy is an S;-submodule. Hence the sum
V' of the finite dimensional S;-submodules of V() is not 0. But if W is a finite
dimensional S;-submodule, then consider W = LW = Y 2W, where z runs over
a fixed basis of L. Hence dimW < oo. But for any w € W, z;(zw) = [z, zJw +
z(x;w) € LW = W and, also, y;(2w) € LW = W. Therefore, W = LW is a finite
dimensional S;-submodule, and hence contained in V’. Thus, V' is a nonzero
L-submodule of the irreducible module V' ()), so V! = V(\), as required. O

3. The set of weights P(V/())) is invariant under W.

Proof. It is enough to see that P(V()\)) is invariant under o;, i = 1,...,n. Let
pe P(V(X) and 0 # v € V(A),. Then v € V(A) =V, so by complete reducibil-
ity (Weyl’s Theorem, Chapter 2, there are finite dimensional S;-submodules
Wi,...,W,, such that v € W1 & --- & W,,,. Thus, v = wy + --- + wy,, with
w; € Wj for any j, and we may assume that w; # 0. Since hjv = p(h;)v, it
follows that h;w; = p(h;)w; for any j. Hence p(h;) is an eigenvalue of h; in
Wi, and the representation theory of sla(k) shows that —u(h;) is another eigen-

value. Besides, if p(h;) > 0, then 0 # yf(hi)wl € (W1)_p(hy)> 80 0 # yf(hi)v €

V(A)H*M(hi)ai = V(/\)Ui(,u); while if M(hz) < 0, then 0 7& .%i_u(hi)wl S (Wl)f,u(hi% SO
0 # m;“(hi)v € V(N u—pthas = V(Ao (u- In any case o3(u) € P(V(X)). O

oi(p
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4. For any u € P(V()\)) C{A—aj,——a, :7>0,1<i1,...,i <n} C Ay, there
is a 0 € W such that o(n) € Ajj,. Hence, by the previous item, o(u) € P(V())),
so o(pu) < X Therefore, P(V(\)) C UueA;rVW'“' Hence P(V())) is finite, and

u<A
since all the weight spaces of V'(\) are finite dimensional, we conclude that V()

is finite dimensional. O

4.2 Corollary. The map

Ay, — {isomorphism classes of finite dimensional irreducible L-modules}
A —  the class of V()\),

s a bijection.

4.3 Proposition. For any A € A, P(V(/\)) = II) (the saturated set of weights with
highest weight X\, recall Properties .

Moreover, for any p € P(V(X)), dimV(X), = dimV(})
(u+ plp+p) < (A + p|A+ p), with equality only if p= A.

o(u) for any o € W, and

Proof. For any p € P(V(\)) and any a € ®, ®nezV (A)ytma is a module for S =
Lo ® L_o & [La, L_o] = sla(k). Hence its weights form a chain: the a-string of u:
f+qo ..o ..., — ra with (ulay = 7 — g. Therefore, P(V())) is a saturated set of
weights with highest weight A, and thus P (V' (X)) = II) by Properties

The last part also follows from Properties [2.1

Now, if ¢ : L — g[(V()\)) is the associated representation, for any a € &7,
ad ¢(zq) € Endg(¢(L)) and @(z4) € Endy(V (X)) are nilpotent endomorphisms. More-
over, ad ¢(z4) is a derivation of the Lie algebra ¢(L). Hence exp(ad ¢(z,)) is an auto-
morphism of ¢(L), while exp ¢(z4) € GL(V())). The same applies to ¢(y,). Consider
the maps:

7o = exp(ad ¢(za)) exp(—ad d(ya)) exp(ad ¢(z4)) € Aut $(L),
Na = €XP ¢($a) eXp(_(b(yoz)) eXp ?b(xa) € GL(V()‘))

In Endg(V()), exp(ad¢(za)) = exp(Lora) = Ro(ra) = XD Lo(za) eXP(—Ry(a,))s

where L, and R, denote the left and right multiplication by the element a € Endy, (V(/\)),
which are commuting endomorphisms. Hence, for any z € L,

€xp (ad ¢(xa)) (¢(Z)) = (eXp ¢(xa)) ¢(Z) (exp(—qﬁ(xa)))

and 7, (¢(2)) = nad(2)n5 L.
For any h € H, exp(ad 6(za))(6(h)) = 6(h) + [6(za), 6()] = $(h — a(h)z,). Hence

exp(—ad ¢(ya)) exp(ad ¢(za)) (4(h))
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and, finally,

so for any 0 #v € V(\), and h € H,

oa(p)(h)v = (1 — (pla)a) (h)v = u(h — a(h)ha)v = 1o (6(h)) (v) = 1ad(h) (05 (v)) -

That is, ¢(h)(ng'(v)) = oa(p)(R)ngt(v) for any h € H, so ny'(v) € V(Mg (n and
Mot (VL) € V(Nga(u- But also, n5 ' (V(N)gu ) S V(A2 2() = V(A)u. Therefore,
o (V(N)u) = V(A

)ow(n) @nd both weight spaces have the same dimension. O

§ 5. Freudenthal’s multiplicity formula

Given a dominant weight A € A*VI, and a weight u € Ay, the dimension of the associated
weight space, m,, = dim V' (), is called the multiplicity of pin V(X). Of course, m, =0
unless 1 € P(V(N)).

The multiplicity formula due to Freudenthal gives a recursive method to compute
these multiplicities:

5.1 Theorem. (Freudenthal’s multiplicity formula, 1954) For any \ € A;{/ and
e Ay:

(A oI+ p) = Gt plie ) )y =2 D7 D (1 + jala) et
acedt j=1

(Note that the sum above is finite since there are only finitely many weights in
P (V()\)) Also, starting with my = 1, and using Proposition this formula allows
the recursive computation of all the multiplicities.)

Proof. Let ¢ : L — g[(V()\)) be the associated representation and denote also by ¢ the
representation of U(L), ¢ : U(L) — End(V(X)). Let {a1,...,an} and {b1,..., by} be
dual bases of L relative to the Killing form (that is, x(a;,b;) = d;; for any ,5). Then
for any z € L, [a;,2] = 277", ozgaj for any ¢ and [b;, 2] = Y ;" 5;-51' for any j. Hence,
inside U(L),

> laibi 2] = (lai, 2bi + ailbi, 2) = > (o + ) asbi,
i=1 i=1 i,j=1

but . .
0= m([ai,z],bj) + "é(aia [bj7z]) = Otg + ’BJZ’

so [Y_i", a;b;, L] = 0. Therefore, the element ¢ = " | a;b; is a central element in U(L),
which is called the universal Casimir element (recall that a Casimir element was used
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in the proof of Weyl’s Theorem, Chapter 2, . By the well-known Schur’s Lemma,
¢(c) is a scalar.

Take a basis {g1,...,9n} of H with x(gi,g;) = d;; for any 4,j. For any u € H*, let
t, € H, such that s(t,, .) = p. Then t, = rigy + - + rngn, With 7, = K(tu, 9i) = 1(9:)

for any i. Hence,
n

(lp) = p(ty) = > rislgs) Zu (9:)°

i=1
For any a € &%, take x4 € Lo and o € L_, such that x(zs,7_o) = 1 (so that
[Za,Z_o] = to). Then the element

n
C—Zgl Z (TaToq + T_aTq) :Zgiz+ Z to +2 Z T_ oo

acedt =1 acdt aedt

is a universal Casimir element.
Let 0 # vy € V(\)) be a highest weight vector, then since x,v) = 0 for any o € &,

b)x = (ZA 962+ D2 Mta)Jor = (AN +2(M0) Jor = (A + 2p)n,

acdt

because 2p = Y g+ @ Therefore, since ¢(c) is a scalar, ¢(c) = (A|X + 2p)id.
For simplicity, write V' = V()). Then tracey, ¢(c) = (A|X + 2p)m,,.
Also, for any v € V),

o= (Y nla2)o+ (3 ntta))o+2( X oo-)é(ea))o
i=1

acdt aedt

= (uln+20)0+2 > d(z_0)d(wa)v.

acdt

Recall that if f: U; — Us and g : Us — U; are linear maps between finite dimensional
vector spaces, then tracey, gf = tracey, fg. In particular,

tracey, ¢(z_a)@(Ta) = tracey, ,, ¢(za)P(r—a)
= tracey, ., ((b(ta) + ¢(x_a)¢(xa))

= (,LL + a|a)mu+a + tracevﬁa ¢($foz)¢(a7a)
Z p+ jalo)my g ja-
(The argument is repeated until V},4 ;o = 0 for large enough j.) Therefore,
oo
A +2p)my = (ulp+2p)my +2 Y > (1 + jala)ymyja,
aedt j=1
and this is equivalent to Freudenthal’s multiplicity formula. O

5.2 Remark. Freudenthal’s multiplicity formula remains valid if the inner product is
scaled by a nonzero factor.
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5.3 Example. Let L be the simple Lie algebra of type G2 and write A = {«, 8}.

The Cartan matrix is ( % 3'), so we may scale the inner product so that (ala) = 2,

(8]8) = 6 and («|3) = —3. The set of positive roots is (check it!):
&t = {a,8,a+ B,2a+ B,3a+ 3,3a + 25}

Let A1, A be the fundamental dominant weights, so:

(Mla)y =1, (M]8) =0, so A =2a+ 0,
(Ma]a)y =0, (A2]B8) =1, so Ay =3a+25.

Figure 5.1: G4, roots and weights

Then
{M S A—i‘/{/ Tu < )\} = {)\,2)\1,)\2,)\1,0},

and in order to compute the weight multiplicities of V(\) it is enough to compute
my = 1, may,, My,, my, and myg.

The Weyl group W is generated by o, and og, which are the reflections along the
lines trough the origin and perpendicular to o and 3 respectively. The composition 0,03
is the counterclockwise rotation of angle 5. Thus W is easily seen to be the dihedral
group of order 12. Therefore, P (V()\)) consists of the orbits of the dominant weights
<A , which are the weights marked in Figure

A simple computation gives that A = p = A; + A2, (A|A1) = 2, (A2]X2) = 6,

(/\1’)\2) =3 and

(A4 plA +p) = 4(A]A) = 56,

(2A1 + p|2A1 + p) = (BA1 + A2|3A1 + A2) = 42,
(A2 4 plA2 + p) = (A1 + 2X2|A1 + 2)2) = 38,
()\1 + p’)\l + ,0) = (2)\1 + )\2|2)\1 + )\2) = 26,
(plp) = 14.

p
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We start with my = 1, then Freudenthal’s multiplicity formula gives:

(56 — 42)max, =2 > (21 +7[7)maxr, 1+
~yEPT

= 2((2/\1 + ala)mon, 1o + (2A1 + B|B)mar, 15

+ (2A1 + a+ Bla + B)m2xl+a+5)
=2((50 + 2Bla) + (4o + 35/8) + (50 + 38la + 7))
- 2((10 —6) + (—12+18) + (10 — 24 + 18)) = 28,

and we conclude that mgy, = % = 2. Thus the multiplicity of the weight spaces, whose
weight is conjugated to 2\; is 2. (These are the weights marked with a vV in Figure )
In the same vein,

00
(56 = 38)my, =2 3 > (h2 +jvV)masiy
yedt j=1
- 2(()\2 + afa)mag pa + (A2 + 2ala)my, 42
+ (A2 + a+ Bla+ B)mrgtars + (A2 + 200+ B[2a + ﬁ)mA2+2a+B)
= 2((4a +28|a)2 + (ba + 28|a) + (4o + 3B|a + B) + (ba + 362« + 6))
:2((8—6)2+(10—6)+(8—12—9+18)—|—(20—15—18+18)> = 36,
and we conclude that m), = 2. Now,
(56 — 26)my, =2 > Y (M + vy )maygy
Jed+ j=1
= 2(()\1 + ala)my, 4o + (M1 + 2a]a)my, 120 + (A1 + B|B)ma, 18

+ (A1 + a4 Bla+ B)ma;yars + (M1 +2(a + B)la + B)my 120t
+ (A1 + 200+ B2+ B)mi 4248 + (A1 + 3o+ B3+ B)min, 43048
+ (

A+ 3a + 28[3a + 26)m,\1+3a+25>
- 2((3a + Ble)2 + (4o + Bla)l + (2a + 28|8)2 + (3o + 2B|a + B)2
+ (4o + 3Bla+ B)1 + (da+ 25[2a + )2 + (ba + 28|13+ 5)1
+ (5a + 38|30 + 2,6)1) — 120,

so my, = 4. Finally,

oo o
(56 — 14)mo =2 > > (v)miy =2 > Y (vI)imyy
yed+ j=1 yedPt j=1

:2(2(4+2-2)+6-2+2(4+2-2)+2(4+2.2)+6-2+6-2):168,

so mg = 4.
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Taking into account the sizes of the orbits, we get also that

dimp V(A) =12-146-2+46-2+6-4+4 = 64.

In the computations above, we made use of the symmetry given by the Weyl group.
This can be improved.

5.4 Lemma. Let A € A}, p € P(V()\)) and o € ®. Then

S+ jala)myso = 0.
JEZ

Proof. @jezV (N)u+ja is a module for S, (notation as in the proof of Proposition [4.3)).
But S, = [Sa, Sal, since it is simple, hence the trace of the action of any of its elements
is 0. In particular,

0= traceq, ., v(\) 4 ja P(ta) = Z(N + jala)myug ja. O
JEZ

Now, Freudenthal’s formula can be changed slightly using the previous Lemma and
the fact that 2p = > 4+ .

5.5 Corollary. For any A € AIJ/FV and p € Ay :

(AA+2p)my, = Z Z(N + jala)myyja + (plp)my.
acd j=1

We may change j = 1 for j = 0 in the sum above, since (u|a)my, + (| — a)my, =0
for any o € ®.
Now, if A € Afl,, p € P(V(N) NA{;, and 0 € W, (the stabilizer of y, which
is generated by the o;’s with (u|e;) = 0 by [2.1), then for any @ € ® and j € Z,
Mu+ja = My+tjo(a)-
Let I be any subset of {1,...,n} and consider
P =0nN (EBZ-gZai) (a root system in ®;crRay;!)
Wi, the subgroup of W generated by o;, i € I,
W, , the group generated by Wr and —id.

For any o € @, let Or o = W; . Then, if o € @1, —a = 04(a) € Wra, so W, o = Wra.
However, if a ¢ @7, then v = > | rj; and there is an index j ¢ I with r; # 0. For any
o €Wy, o(a) =rjo; + 3,4 o (the coefficient of a; does not change). In particular,
if € ®*, then Wyar € ®*. Therefore, W, a is the disjoint union of Wra and —W;ja.

5.6 Proposition. (Moody-Patera) Let A € A}, and € P(V(X)) NA{j,. Consider
I={ie{l,...,n}: (ulay) = 0} and the orbits O1,...O, of the action of W; on ®.
Take representatives v; € O; N®T for anyi=1,...,r. Then,

((A +pIA+p) — (n+ plp + p))my = 310> " (i + i) My -
=1 j=1
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Proof. Arrange the orbits so that &7 = O1U---UOg and &\ &; = Og41 U --- U O,.
Hence O; = Wi, for i =1,...,s, while O; = Wy, U —-Wry; fori =s+1,...,r. Then,
using the previous Lemma,

Yo (u+jala)myja

aced j=1

S o0
=Y Wl D+ 57l mye g

i=1 j=1

7 o0
+ Z Wil Z((M + 3%l My + (= il = %’)mu—j%)
i=s+1 j=1

S o
= Z]W{’m Z(N + 3% Vi) Mt

i=1 j=1

:
+ > Wl ( Z 1A G ) M + (u!%)mu)-
1=s+1 7=1

But, for any i = s+ 1,...,7, 2]Wrv;| = |O;| and
Y Wil = Y (ule) =Y (ula) = 2(ulp).
i=s+1 aE<I>+\<I>;’ acdt

Now, substitute this in the formula in Corollary to get the result. ]

5.7 Example. In the previous Example, for © = 0, W; = W and there are two orbits:
the orbit of A\; (the short roots) and the orbit of Ay (the long roots), both of size 6.
Hence,
(A + oA+ p) = (plo) )mo = (56 — 14)m
= 6<()\1\)\1)m)\1 + (2>\1|/\1)m2)\1 + ()\Q‘Ag)m)\Q)
=6(2-44+4-2+6-2) =168,

so again we get mg = 4.

§ 6. Characters. Weyl’s formulae

Consider the group algebra RAy,. To avoid confusion between the binary operation
(the addition) in Ay and the addition in RAy, multiplicative notation will be used for
Aw. Thus any A € Ay, when considered as an element of RAy, will be denoted by the
formal symbol e*, and the binary operation (the addition) in Ay becomes the product
et = er* in RAyy. Hence,

RAw = { Z rpet :r, € R, r, =0 for all but finitely many u’s}.
HEAW
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Since Ay is freely generated, as an abelian group, by the fundamental dominant
weights: Ay = ZA @ - ® ZA,, RAw is isomorphic to the ring of Laurent polynomials
in n variables by means of:

RIXTEL .., XE = RAw
p(X1,...,Xn) |—>p(e)‘1, .. .,6)\").

In particular, RAyy is an integral domain.
There appears a natural action of the Weyl group W on RAy by automorphisms:

W s Aut(RAw)
o> (e“t—)a-e“:ea(“)).

An element p € RAyy is said to be symmetric if o - p = p for any o € W, and it is
said alternating if o - p = (—1)%p for any o € W, where (—1)? = deto (= £1).
Consider the alternating map

AJ]RAWI—>RAM/
pr Y (—1)70-p.

oceWw

Then,
(i) For any p € RAw, A(p) is alternating.
(ii) If p € RAw is alternating, A(p) = |W|p.

(iii) The alternating elements are precisely the linear combinations of the elements
A(et), for strictly dominant p (that is, (u|a) > 0 for any o € ®1). These form a
basis of the subspace of alternating elements.

Proof. For any u € Ay, there is a 0 € W such that o(u) € AITV (Properties ,
and A(et) = (—1)7A(e”®). But if there is a simple root ; such that (u|oy) = 0,
then 1 = o;(p), so A(et) = (=1)% A(e” W) = —A(e#) = 0. Now, item (ii) finishes
the proof. (The linear independence is clear.) O

6.1 Lemma. Let p = %Za€¢+ o be the Weyl vector, and consider the element

g=e"’ H (e*—1) =¢” H (1—¢e)

acdt acdt
in RAw. Then g = A(e”).
Proof. For any simple root v € A, (@7 \ {7}) = @\ {7} (Proposition . Hence
oy(p) = p— and

o= (1) [ (1-e)

acdt\{y}

=e’(e77 — 1) H (1-e%) =—q

acdt\{y}
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Thus, ¢ is alternating.
But, by its own definition, ¢ is a real linear combination of elements e*, with p =
P =D aco+ €a < p (Where €, is either 0 or 1). Hence

1
= WA((]) = Z CMA(G‘LL),
uGA;
w strictly dominant

q

for some real scalars c,, such that ¢, # 0 only if u is strictly dominant, ¢ < p and
[=p =D ncot €atr as above. But then, for any such p and i =1,...,n,

(p— plai) =1 = (plog) <0,

because (p]a;) > 1, as p is strictly dominant. Hence (p — p|a) < 0 for any o € T and

0<(p—plp—p)=(p—ul Y eaa) <0,
acdt

so p = p. We conclude that ¢ = cA(e”) for some scalar ¢, but the definition of ¢ shows
that
q = €’ + a linear combination of terms e”, with v < p,

so ¢ =1 and g = A(e”). O

Consider the euclidean vector space £ = R®gQ®, and the RAy -module RAw Qg E.
Extend the inner product (.|.) on E to a RAy-bilinear map

GRAW/@%QED X URAW/@WLE)‘%]RAWM
and consider the R-linear maps defined by:

(GRADIENT) grad : RAy — RAy @ E
et — et @ u,
(LAPLACIAN) A :RAp — RAy
e s (ulp)et,

which satisfy, for any f,g € RAw:

{ grad(fg) = f grad(g) + g(grad(f),
A(fg) = FA(g) + gA(f) + 2(grad(f)| grad(g)).

6.2 Definition. Let V be a finite dimensional module for L, the element

xv =Y (dim;V,)e"
HEAW

of RAw is called the character of V.

For simplicity, we will write x instead of xy(y), for any A € A;‘r/.
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6.3 Theorem. (Weyl’s character formula) For any A € A*V{,,
A(EP) = A(eMP).

In theory, this allows the computation of ) as a closed quotient in RAy,. In practice,
Freudenthal’s multiplicity formula is more efficient.

Proof. Note (Corollary that Freudenthal’s multiplicity formula is equivalent to
(6.3) AN+ 20)m =33 (4 jale)mpjo + (plu)my,
acd j=0
for any p € Ay. Multiply by e# and sum on p to get
AA+2000= D DD (n+jala)ymuijae + A(xa)-
pEAw acd j=0

Now,

[T —n= T @ -ne"-1 =

acd acdt

with € = 1. Multiply by eg? to obtain

AN+ 2p)x00% — eA(x)

=3 30 Dotujelaymuia(ert = e T~ 1)

a€® peAy j=0 Be®
Ba
o oo
= Z e” H (e’ —1) Z <Z(M + jala)mysja — Z(M +a +j0¢\0‘)mu+a+ja> el
acd  BED pehy j=0 =0
B7a
CS L) Y e
aEd  BED pehw
Ba
= (S L@ -noa)| 3 me o)
aced ped nEAW
Ba

= (grad(eq?)| grad(x,)) = 2eq(grad(q)| grad(x»))
= eq(A(xxq) — X2 A(q) — gA(x)))-

That is,
(AIA+2p)x2q = A(xag) — X2 A(a)-
But ¢ = ZJGW(—l)"e“(p) by the previous Lemma, so

Alg) =D (a(p)lo(p)(=1)7e”? = (p|p)g,

ogeWw

SO

(6.4) A+ pIA+ p)xag = A(xrg)-
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Now, x\¢ is a linear combination of some e#t7(P)’s with p € P(V()\)) and o € W, and

A7) = (i + o (p)lu+ o(p)) e o)
= (O'_I(M) + ,0‘0'_1(/!) + p)e,lH-O’(P)'

Therefore, e#+9(?) is an eigenvector of A with eigenvalue (o~1(1) + plo (1) +p), which
equals (A =+ p|X + p) because of (6.4)). This implies (Properties that o~ !(u) = A, or
1 = o()\) and, hence, yq is a linear combination of {e”*7) : o € W}.

Since x) is symmetric, and ¢ is alternating, x,q is alternating. Also, o(\ + p) is
strictly dominant if and only if o = id. Hence y,q is a scalar multiple of A(e**?), and
its coefficient of e**” is 1. Hence, xrq = A(e**?), as required. O

If p € RAw is symmetric, then pA(e”) is alternating. Then Weyl’s character formula
shows that {yy: A € A} W} is a basis of the subspace of symmetric elements.
Wey!l’s character formula was derived by Weyl in 1926 in a very different guise.

6.4 Corollary. (Weyl’s dimension formula) For any \ € Ay},

G vy = T[ @A) At el

AL 7 W

Proof. Let R[[t]] be the ring of formal power series on the variable ¢, and for any v € Ay
consider the homomorphism of real algebras given by:

o0

1
e — exp((p|v)t) E —'
s!

s=0

For any u,v € Aw,

G (Ae) = Y (=1)7 exp((o () v)t)

oeWw

= > (=17 exp((ulo™ (v))t)

ceW
= (A(ey))'

The homomorphism ¢, will be applied now to Weyl’s character formula. First,

Co(A(e)) = Cu(Ale?)) = Culq)
=Cu (e_p) H (Cu(ea - 1))

acdt
=exp((—plw)t) ] (exp((alp)t) —1)
acdt
=11 (exp(%(a\ﬂ)t) —eXp(—%(am)t).

acdt

Hence,

¢ 00a) =G0 I] (exp(%(a\p)t) —exp(—%(alp)t),

acdt
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while

Cp(.A(eAJrP)) = H (exp(%(a!)\ + p)t) —exp(—3(a|A + p)t).

acdt

With N = |®],

H (exp(%(oem)t) - exp(—%(a!u)t) = ( H (a!u))tN + higher degree terms,

acdt acdt

so if we look at the coefficients of ¢V in Cp(x,\q) = Cp(A(eAJ“")) we obtain, since the
coefficient of % in (,(x») is dimy V(A), that

dim, V(A ] (elp) = ] (@I +p). O

acdt acdt

6.5 Example. If L is the simple Lie algebra of type Go, ®* = {«, 3, a+ 3, 2a+ 3, 3a +
B,3a+ 25} (see Example |5.3) . Take A = nA; + mAa. Then Weyl’s dimension formula
gives

. _ (n+13m+1)(n+1+3m+1))(2(n+1)+3(m+1))(3(n+1)+3(m+1))(3(n+1)+6(m+ 1))
dimy V(A) = 1-3-4-5-6-9

_ %(n—i— D (m+ 1)(n + m +2)(n + 2m + 3)(n + 3m + 4)(2n + 3m + 5).

In particular, dimg V(A1) = 7 and dimy V' (A2) = 14.

6.6 Remark. Weyl’s dimension formula is extremely easy if A is a multiple of p. Ac-
tually, if A = mp, then

((m + 1pla))

N
Py -t

dim, V() = ]

acdt

For instance, with A = A\ + Ao for Gg, dimg V(\) = 2% = 64 (compare with Example

53).

Two more formulae to compute multiplicities will be given. First, for any u € Ay
consider the integer:

o+
p(p) = ‘{(Ta)aeqw ezl n= > ma}‘.
acdt

Thus p(0) = 1 = p(«) for any o € A. Also, if o, f € A, with o # 8 and («|8) # 0,
then p(a+ ) =2, as a +  can be written in two ways as a Zx>g-linear combination of
positive roots: 1-a+1-84+0-(a+ ) and 0-a+0-8+1-(a+ ). Note, finally, that
p(u) =0if pp & Z>oA.

6.7 Theorem. (Kostant’s formula, 1959) For any A € Aj;, and i € Ay,

dimg VN, = Y (=17 p(a(A +p) = (n+p)).
oceEW
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Proof. Take the formal series
Z p(p)et = H (1+e*+e**+---) = H (1—@0‘)_1,
BEAW acdt acdt

in the natural completion of RAy, (which is naturally isomorphic to the ring of formal
Laurent series R[[XT!, ..., X;F1]]). Thus,

( > pe’) (I (1-e)) =1

Let 6 : RAyw — RAyp be the automorphism given by 0(et) = e™* for any p € Ay . If this
is applied to Weyl’s character formula (recall that ¢ = A(e”) = e [[ e+ (1 —€7%) =
e P Tlaco+ (1 —€%)), we obtain

( Z mue_“)e_p H (1—e€%) = Z (—1)06_0()\+p).

BnEAW acdt ogeW

Multiply this by ep(zyeAW p(v)e”) to get

Z mye H = (Z (—1)”6’)7"()‘“))( Z p(l/)@”)

BEAW oceWwW veEAWw
-3 et
ceEW veAy

which implies that

my, = Z (—=1)?p(vy), with v, such that p+ v, — (A +p) = —p
oeWw

=Y (-1)pla(A+p) = (u+p)). O

oeWw

6.8 Corollary. For any 0 # u € Aw,

p(r)=— > (=1)7p(n—(p—0c(p))-

1#oceWw

Proof. Take A = 0 in Kostant’s formula. Then V(0) = k and

0=dimy V(0)—, = > (=1)7p(0(p) = (=1 +p))- O
oeWw

6.9 Theorem. (Racah’s formula, 1962) For any A € A}, and pn € P(V (X)), with
B A,

My = — Z (1) Myt p—o(p)-
1#oeW

(my, = dimy V/(X\), for any v € Aw).)

Note that, since p is strictly dominant, o(p) < p for any 1 # o € W, hence p + p —
o(p) > p and thus Racah’s formula gives a recursive method starting with my = 1.



86 CHAPTER 3. REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS

Proof. If 0 € W satisfies 0(A+ p) = p+ p, then (u+plp+p) = A+ p|A+p) and =\
(Properties . Now, by Kostant’s formula and the previous Corollary,

mu =Y (=1)7p(e(A +p) — (1 +p))

oceWw
==Y > (=107 p(eA+p) = (+p) — (p—7(p))
cEW 1#TEW
== > Y0 p(eh+p) = (et p—7(0) + )
1#TeW ocW
- Z (=DMt pr(p)- a
1#TeW

6.10 Example. Consider again the simple Lie algebra of type Ga, and A = p = A\ + Aa.
For the rotations 1 # o € W one checks that (see Figure :

p—o(p)=a+28,6a+28,10a + 28,9« + 48, 4a + (3,
while for the symmetries in W,
p—o(p)=a,B,4a+ B,9a + 66, 10a + 56, 6 + 25.
Starting with m) = 1 we obtain,
Max; = M) +a T M2x 48 = My + My = 2,

since both 2\ + a and 2\; + 8 are conjugated, under the action of W, to A. In the
same spirit, one can compute:

My, = Mrgta = M2, = 2,
My, = My 4 + My 45 = My, + Moy, =4,

my = Mq + Mg — May28 — Mhats = My, + My, —Mmy —my =4.

§ 7. Tensor products decompositions

Given two dominant weights A, \” € A, Weyl’'s Theorem on complete reducibility
shows that the tensor product V(\) @ V/(N\”) is a direct sum of irreducible modules:

V(X))@ V(N = @AGA%nAV(/\).
Moreover, for any p € Ay,

(VO @ V) = @uen VN 05 VYo,

which shows that xv e,y = Xaxar. Hence

XN XN = E XX \-
+
AeAT,

The purpose of this section is to provide methods to compute the multiplicities n).
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7.1 Theorem. (Steinberg, 1961) For any N, X" € A},

na= Y (=17 p(e(N +p) + 7\ +p) = (A +2p)).
o,7eEW

Proof. From x X\ = Z)\EA% naAX\, We get

o (o Ae)) = 37 mlaAle),

+
AeAT,

which, by Weyl’s character formula, becomes

(7.5) ( 3 m;eu)(Z(—nTeT(X’ﬂ)) > m( 3 (—1)767(’\+p)>.

HEAW TEW )‘GA?/—V TEAW

The coefficient of e’* on the right hand side of (7.5)) is ny, since in each orbit W(A+p)
there is a unique dominant weight, namely A + p.
On the other hand, by Kostant’s formula, the left hand side of (7.5) becomes:

(Y S0+ - u—p)eﬂ)(2<—1>fef<”’+p>)

HEAW ceEW TEW

Z Z )\/ +p) - p)6H+T()‘N+p).

HGAW g TGW

Note that g+ 7(\" +p) = A+ pif and only if —u—p = 7(N" + p) — (A + 2p), so the
coefficient of e**” on the left hand side of (7.5) is

D (=D p(eN +p) + (N + p) — (A +29)),
o, TEW

as required. ]

7.2 Corollary. (Racah, 1962) For any \, N, )\’ € A{j, the multiplicity of V()\) in
VV) @ V(N is

nx = Z (_1)gm,>\+p—a()\”+p)'
oceWw

(For any weight p, m), denotes the multiplicity of yu in V(\').)

Proof.

na= Y (=17 p(c(XN +p)+7(X +p) — (A +2p)) (Steinberg)

o, TEW
=> (—1)T(Z (=1)7p(e(N +p) = A+ p=7(\"+p) + p)))
TEW oceW
= Z (—1)7m’>\+p_7(>\,,+p) (Kostant). O

TEW
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To give a last formula to compute y/x)# some more notation is needed. First, by

Weyl’s character formula for any A € A, x\ = Af(:; ). Let us extend this, by
defining x for any A € Ay by means of this formula. For any weight © € Ay, recall
that W, denotes the stabilizer of pin W: W, = {o € W : o(p) = p}. If this stabilizer

is trivial, then there is a unique o € W such that o(u) € A}, (Properties 2.1). Consider

then
0 it W, £ 1
s(p) = . . n
(1) if W, =1, and o(u) € A},

Denote also by {u} the unique dominant weight which is conjugate to pu. Let 0 € W
such that o(u) = {u}. If {u} is strictly dominant, then A(e#) = (—1)7A(el#) =
s(u) A(et), otherwise there is an @ = 1,...,n such that o;o(u) = o(u) (Properties
so 0 lo;0 € W, and s(u) = 0; also A(elt) = A(o; - elth) = —A(el#) = 0 and
A(e") = 0 too. Hence A(et) = s(u)A(el#) for any p € Ay. Therefore, for any A € Ay,
A(eMP) = s(A 4 p) A(elrPh), and

Xx = s(A + p)X{A+p}—p :

7.3 Theorem. (Klymik, 1968) For any N, \" € A},

X)\/X)\// = Z mLXH+A// .
ueP(V(x))

Note that this can be written as

(7.6) XN XN = Z m; s(p + N+ p)X{M+)\”+p}*p'
peP(V(x))
By Properties if v € Aw and s(v) # 0, then {v} is strictly dominant, and hence

{v} — p € A}, so all the weights {g + X 4 p} — p that appear with nonzero coefficient
on the right hand side of the last formula are dominant.

Proof. As in the proof of Steinberg’s Theorem, with P’ = P(V (X)),

o (oA (e?)) = xvA(eN )

= <Z mLe“) <Z (_1)060(>\”+p)>

pep’ oceW

= Z (—1)0<Z mLea(“)>ea(A,,+p) (aS m; = m;(#) VU € W)
oceWw neP!

- Z m; Z (_1)U€U(N+>\"+P)

pep’ oceW

= Z mLA(e“+’\l/+p). O

HEP’

7.4 Corollary. Let A\, N, ' € Afy,. If V() is (isomorphic to) a submodule of V(N') ®x
V(X'), then there exists € P(V(N)) such that X = p+ X"
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Proof. Because of (7.6), if V()) is isomorphic to a submodule of V/(X') ®; V(") there
isapu e P(V(X)) such that {u+ N+ p} = A+ p. Take p € P(V(X)) and 0 € W such
that o(u+N"+p) = A+ p and o has minimal length. It is enough to prove that 1(c) = 0.
If l(lc) =t >1,let 0 = 0p, o---00p, be areduced expression. Then o(5;) € &~ by

Properties [2.1] and

0> (A+plo(B) = (7" (A +p)IB)
= (u+ X"+ plBe) = (ulBe) + (N + plBe) > (ulBe),

since A + p and N’ + p are dominant. Hence 0 > (u + N + p|B;) > (u|B:) and i =
p—(u+ N+ p|B) B € P(V(N)). Therefore,

Ap=oc(p+ X' +p)=(c00g)(os(n+ X +p))
= (0005) (1 + A"+ p— (u+ X"+ plBr) Bt)
=coag(it+ X' +p),

a contradiction with the minimality of 1(0), as 0 0 0g, = 0g, 0--- 0 0p,_,. O

7.5 Example. As usual, let L be the simple Lie algebra of type Go. Let us decompose
V(A1) @k V(A2) using Klymik’s formula.

Recall that Ay = 2a+ 6, Ay = 3a+23, so a = 2A1 — X9 and 8 = —3A1 +2)\9. Scaling
so that (a]a) = 2, one gets (A1|la) =1, (A2|8) =3, and (A1]5) =0 = (A2|a).

Also, P(V(A1)) = WAL UWO = {0, £, £(a + ), £(2cc + )} (the short roots and
0). The multiplicity of any short root equals the multiplicity of A1, which is 1.

Freudenthal’s formula gives

(M4 oA +0) = (plp)mo =2 > > (irlvmiy =2 Y (vly) = 12,
~yedt j=1 yedt
~ short

since my, = 1, so m, = 1 for any short +, as all of them are conjugate. But (A + p|A1 +
,O) — (p’p) = (Aﬂ/\l + 2p> = (/\1’3)\1 + 2/\2) = (3/\1 + 2)\2‘20& + ,3) = 12. Thus, mgy = 1.
Hence all the weights of V(A1) have multiplicity 1, and Klymik’s formula gives then

XuXae = O S( A+ P)X (i ratp)—pe
REP(V (A1)

Let us compute the contribution to this sum of each p € P(V(\y)):

e 0+ Ao + p is strictly dominant, so s(0 + A2 + p) = 1, and we obtain the summand
1- X2

e a+ Ao+ p =2\ + p is strictly dominant, so s(aw+ A2 + p) = 1 and we get 1- xay,,

e —a+ A+ p=—A+3)\ is not dominant, and o,(—A1 +3X2) = =M\ + 3\ +a =
AL+ 2X2 = Ay + p is strictly dominant, so s(—a+ A2 + p) = —1 and get (—1) - x»,,

e a+ 3+ X+ p =3\ is stabilized by o4, so s(a+ 5+ X2+ p) =0,

e —(a+ )+ A2+ p= A + p is strictly dominant, so we get 1 - x»,,
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e 2a+ B+ A2+ p = A1+ A2 + p is strictly dominant, so we get 1 - X, +x,;
e —(2a+ ) + A2+ p = \g is stabilized by oq.
Therefore, Klymik’s formula gives:

(7.7) V(M) @k V(A2) 2 V(A 4+ A2) @ V(2M) & V().

With some insight, we could have proceeded in a different way. First, the multiplicity
of the highest possible weight A+ A" in V(X)) @, V()\") is always 1, so V(XN + )\) always
appears in V(\) @, V(\”) with multiplicity 1.

In the example above, if € P(V(A\1)) and g+ Ao € Afy, then p+ X € {A +
)\2, 2)\1, )\1, )\2} HGHCG,

V(A1) @k V(A2) 2 V(A + A2) ©pV(2A1) © ¢V (A1) ©rV(A2),

and dimg V()\l) Rk V()\Q) =7 x 14 = 98, dimy V()\l + )\2) = dimy V(p) = 20 = 64.

Weyl’s dimension formula gives

(2A\1 +ply)  3-3-6-9-12-15 _ o7
(ply)  1-3-4-5-6-9

dim; V(2M) = []

yEDT

The only possibility of 98 = 64+ p-27+¢q-7T+r-14is p=q =1, r = 0, thus recovering

)
7.6 Exercise. Let X, X" € A},. Prove that P(V(X)® V(\)) equals P(V(X + X")).
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Simple real Lie algebras

Let L be a simple real Lie algebra. By Schur’s Lemma, the centralizer algebra Endy, (L)
is a real division algebra, but for any «, 8 € Endy (L) and z,y € L,

aB([z,y]) = alz, By] = laz, By] = B([ox,y]) = Ba([z,y]),

and, since L = [L, L], it follows that Endy (L) is commutative. Hence Endp (L) is
(isomorphic to) either R or C.

In the latter case, L is then just a complex simple Lie algebra, but considered as a
real Lie algebra.

In the first case, Endy (L) = R, so End;c(L%) = C, where L® = C®g L = L ®iL.
Besides, L is semisimple because its Killing form is the extension of the Killing form of
L, and hence it is nondegenerate. Moreover, if LC is the direct sum of two proper ideals
L® = L1 ® Ly, then C = Endc(L%) D End;c(L1) ®End c(Lz), which has dimension at
least 2 over C, a contradiction. Hence L€ is simple. In this case, L is said to be central
simple and a real form of L. (More generally, a simple Lie algebra over a field k is
said to be central simple, if its scalar extension k ®y, L is a simple Lie algebra over k, an
algebraic closure of k.)

Consider the natural antilinear automorphism o of L¢ = C @g L = L @ iL given by
0 =—®id (o — @ is the standard conjugation in C). That is,

o: L% = IC

T4y = T — Y.

Then L is the fixed subalgebra by o, which is called the conjugation associated to L.

Therefore, in order to get the real simple Lie algebras, it is enough to obtain the real
forms of the complex simple Lie algebras.

§1. Real forms

1.1 Definition. Let L be a real semisimple Lie algebra.

e [ is said to be split if it contains a Cartan subalgebra H such that ady is diago-
nalizable (over R) for any h € H.

e [ is said to be compact if its Killing form is definite.

91
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e L is said to be a real form of a complex Lie algebra S if LC is isomorphic to S (as
complex Lie algebras).

1.2 Proposition. The Killing form of any compact Lie algebra is negative definite.

Proof. Let k be the Killing form of the compact Lie algebra L with dimg L = n. For any
0#x € L,let A\1,..., A\, € C be the eigenvalues of ad, (possibly repeated). If for some
j=1,...,n, \j € R\ {0}, then there exists a 0 # y € L such that [z,y] = A\;y. Then the
subalgebra T' = Rx + Ry is solvable and y € [T, T|. By Lie’s Theorem (Chapter 2,
ad, is nilpotent, so k(y,y) = 0, a contradiction with x being definite. Thus, \; ¢ R\ {0}
for any j =1,...,n. Now, if \; = a+ i with 8 # 0, then \; = a — i3 is an eigenvalue
of ad, too, and hence there are elements y, z € L, not both 0, such that [z,y] = ay+ 8z
and [z, z] = —fy + az. Then

[z, [y, 2]] = [z, y], 2] + [y, [, 2]] = 2aly, 2].

The previous argument shows that either « = 0 or [y, z] = 0. In the latter case T =
Rz + Ry + Rz is a solvable Lie algebra with 0 # ay + 8z € [T, T]. But this gives again
a contradiction.

Therefore, A\1,..., A\, € Ri and s(x,z) = Z?:l )\? <0. O

1.3 Theorem. Any complex semisimple Lie algebra contains both a split and a compact
real forms.

Proof. Let S be a complex semisimple Lie algebra and let {h;,z;,y; : j =1,...,n} be
a set of canonical generators of S relative to a Cartan subalgebra and an election of a
simple system A of roots, as in Chapter 2, For any a € ®* choose I, = (j1,-- -, Jm)
(ht(a) = m) such that 0 # ady; ---ady;, (7;,) € S and take x4 = ady; - -ady; (25,)
and yo = ady; ---ady, (yj,). Then {h1,..., hy, T, Yo : @ € PT} is a basis of S and its
structure constants are rational numbers that depend on the Dynkin diagram. Therefore,

L=) Rhj + > (Raq+Ry,)

Jj=1 acdt

is a split real form of S = L @ iL. Its associated conjugation ¢ : S — S is determined
by o(xj) = z; and o(y;) = y; for any j =1,...,n.

But there is a unique automorphism w € Autc S such that w(z;) = —y; and w(y;) =
—x; for any j = 1,...,n, because —A is another simple system of roots. Note that
w(hj) = —h; for any j and w? = id. Then

owo(zj) =w(z;) and owo(y;) = w(y;)

for any j, so owo = w, or ow = wo. Consider the antilinear involutive automorphism
T =ow = wo of S. Let us check that 7 is the conjugation associated to a compact real
form of S. Denote by « the Killing form of S.

First, by induction on ht(«), let us prove that k(za,w(zs)) is a negative rational
number:
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o If ht(o) = 1, then o = o for some j, zo = z; and k(z;,w(z;)) = —k(z),y;) =
—m < 0, since hy, = @?Wto‘ = [Za, Ya) = K(Za, Ya)ta (see Chapter 2, i for
any a € ®, and the bilinear form (. | .) is positive definite on R®.

e If ht(a) = m + 1, then z, = ¢[z;, 23] for some j = 1,...,n and ¢ € Q, with
ht(8) = m, then
’i(xaaw(xa)) = QQK([xjafﬂ]v [w(a:j),w(xg)])
= q2"£(x57 [xja [yja W(wﬁ)]])
€ Q>0/<c(a:5,w(x5)) (by Chapter 2, Lemma
€ Q<o (by the induction hypothesis).

Now take K the fixed subalgebra S™ of 7. Hence,
K= ZR(ihj) + Z (R(ma + w(za)) + Ri(za — w(z‘a))),
Jj=1 aedt

which is a real form of S = K @ ¢K. Note that
o r(ihy,ihs) = —k(hy, hs), and the restriction of x to > Rh; is positive definite,
. /{(:Ea +w(za), To + w(:za)) = 2/@($a,w(ma)) < 0, by the previous argument,
o ((i(za — w(Ta)), i(za — w(T4a))) = 26(Ta, w(za)) < 0, and
° I{(CCQ +w(xy),i(re — w(aza))) = ’ili(ﬂ?a +w(zy), To — w(:va)) =0.

Hence the Killing form of K, which is obtained by restriction of %, is negative definite,
and hence K is compact. ]

1.4 Remark. The signature of the Killing form of the split form L above is rank L,
while for the compact form K is —dim K.

1.5 Definition. Let S be a complex semisimple Lie algebra and let 01,09 be the con-
jugations associated to two real forms. Then:

e g1 and oy are said to be equivalent if the corresponding real forms S°!' and 572
are isomorphic.

e o1 and o9 are said to be compatible if they commute: o109 = 0207.

Given a complex semisimple Lie algebra and a conjugation o, this is said to be split
or compact if so is its associated real form S°.

Note that the split o and compact 7 conjugations considered in the proof of Theorem
are compatible.

1.6 Proposition. Let S be a complex semisimple Lie algebra and let 01,09 be the
conjugations associated to two real forms. Then:

(i) o1 and o9 are equivalent if and only if there is an automorphism ¢ € Autc S such

that oo = po1p L.
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(ii) o1 and o9 are compatible if and only if 0 = o109 (which is an automorphism
of S) is involutive (0% = id). In this case 6 leaves invariant both real forms

(0|se € Autg(S7), i =1,2).
(iii) If o1 and o2 are compatible and compact, then o1 = os.

Proof. For (i), if ¥ : 870 — S92 is an isomorphism, then ¢ induces an automorphism
p: 8 =8"3iS" - 8§ =5?diS? (p(x +iy) = Y(x) +iY(y) for any z,y € S7).
Moreover, it is clear that ¢o; = o9 as this holds trivially for the elements in S7!.
Conversely, if oo = po1p~! for some ¢ € Autc S, then np(S”l) C 5792 and the restriction
¢|ge1 gives an isomorphism S%' — S92,

For (ii), it is clear that if oy and oy are compatible, then § = o109 is C-linear (as
a composition of two antilinear maps) and involutive (6% = 010901092 = o303 = id).
Conversely, if 82 = id, then 1090109 = id = U%O‘%, S0 0109 = 0901 (as o1 and o9 are
invertible).

Finally, assume that o1 and o9 are compatible and compact, and let § = o109,
which is an involutive automorphism which commutes with both ¢; and o3. Then
So1 = STt @ 87!, where S{' = {z € S7' : f(x) = +x}. Let k be the Killing form of S,
which restricts to the Killing forms of S7 (i = 1,2). For any z € S7', 0 > k(z,z) =
—k(z,0(x)) = —k(z,02(x)), as 8(x) = o102(x) = 0901(x) = o2(x). But the map

hey : S xS — C
(u,v) = —k(u, o2(v))
is hermitian, since x(02(u),02(v)) = k(u,v) for any u,v, because o3 is an antilinear
automorphism, and it is also positive definite since the restriction of h,, to S72 x §92
equals —k|go2 x go2, which is positive definite, since S?2 is compact. Therefore, for any

x € S7, 0> k(z,z) = hgy(z,z) >0, so k(xz,z) = 0, and x = 0, since S?* is compact.
Hence S7' = 0 and id = 0|go1, so § = id as S = S7* &S and 01 = 03. O

1.7 Theorem. Let S be a complex semisimple Lie algebra, and let o and T be two
conjugations, with T being compact. Then there is an automorphism @ € Autc S such
that o and T~ ! (which is compact too) are compatible. Moreover, p can be taken of
the form exp(iad,) with u € K = S7.

Proof. Consider the positive definite hermitian form

h:Sx8—C
(z,y) = —r(z,7(y))

and the automorphism 6§ = o7 € Autc S. For any x,y € S,

h, (H(m),y) = —H(UT(.ZL'),T(y)) = —ﬁ(x,ﬁflT(y)) = —ﬁ(x,TUT(y)) = h, (m,&(y)).

Thus, 6 is selfadjoint relative to h, and, hence, there is an orthonormal basis {z1,...,zN}
of S over C, relative to h;, formed by eigenvectors for §. The corresponding eigenvalues
are all real and nonzero. Identify endomorphisms with matrices through this basis to
get the diagonal matrices:

0 = diag(\1, ..., \n), 6% =diag(|\|% ..., [An]?) = exp(diag(Qlog]/\ﬂ, .. ,210g\)\N|)>.
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For any r,s = 1,...,N, [z, x5] = Z;V:1 d;sa:j for suitable structure constants. With

pi = |N\2 = A? for any 7 = 1,..., N, and since 2 is an automorphism, we get i, jtsChs =

pjchs for any r,s,j = 1,..., N, and hence (either ¢s = 0 or u,us = p;) for any ¢ € R,
L tscfas = z-c,ls, which shows that, for any ¢ € R,

= diag(u}, ..., uly) = exp(diag(2t10g|>\1|, e ,2tlog|/\N\)>

is an automorphism of S.

On the other hand, 70 = 707 = 77, s0 791 = 70? = §~27 = w_17. This shows that
rdiag(u, ..., un) = diag(uy ', ..., uy' )7 and, as before, this shows that ¢ = @47
for any t € R. Let 7/ = ¢o;7p_;. We will look for a value of ¢t that makes o7/ = 7/0.
But,

ot = TOiTY_t = 0TP_9¢ = Op_a¢,

70 = piTp_10 = porTo = ot = 0oy

6~! and @9 commute as they both are diagonal.
¥
Hence o7/ = 7/ if and only if 6% = ¢4, if and only if t = . Thus we take

1

1 1
p=p1= diag(pi, ..., px) = exp(diag(% log|M,.. ., 3 log])\N\)) = expd,

with d = diag(%log])\l\,...,%log]/\ND. But ¢ € Aute S for any t € R, so exptd €

Autc S for any ¢t € R and, by differentiating at ¢ = 0, this shows that d is a derivation

of S so, by Chapter 2, Consequences there is a z € S such that d = ad,. Note that

d = ad, is selfadjoint ((ad,)* = ad,) relative to the hermitian form h,. But S = K ®iK

and for any v € K and z,y € S

hT([“?‘T]?y) - ([ ] (y))

= (2, [u,7()])
k(z,7([u,y])) (since 7(u) = u)
]

:([)

so ad,, is skew relative to h,. Therefore, ad, is selfadjoint if and only if z € ¢ K. O

1.8 Remark. Under the conditions of the proof above, for any 1) € Autg .S such that
Yo = o1 and P71 = 71, one has ¥ = 01 and hence (working with the real basis
{z1,121,...,xN,izN}) one checks that ¥y, = 1) for any t € R so, in particular, ¥y =
©y. That is, the automorphism ¢ commutes with any real automorphism commuting
with ¢ and 7.

1.9 Corollary. Let S be a complexr semisimple Lie algebra and let o, 7 be two compact
conjugations. Then o and T are equivalent. That is, up to isomorphism, S has a unique
compact form.

Proof. By Theorem there is an automorphism ¢ such that o and p7¢~! are com-

patible (and compact!). By Proposition o= rp L O
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1.10 Theorem. Let S be a complex semisimple Lie algebra, 6 and involutive automor-
phism of S and T a compact conjugation. Then there is an automorphism @ € Autc S
such that 0 commutes with pTo~t. Moreover, ¢ can be taken of the form exp(iad,) with
u e K =87. In particular, there is a compact form, namely p(K), which is invariant
under 6.

Proof. First note that (67)2 is an automorphism of S and for any z,y € S,

so (67)? is selfadjoint. Besides,

h, ((97)2(x), 1:) = 7!6((97‘)2(.%), T(SC))

0 € Aute S and 62 = id
(

so (07)? is selfadjoint and positive definite. Hence there is an orthonormal basis of S
in which the matrix of (67)? is diag(u1,...,un) with g > 0 for any j = 1,...,N.
Identifying again endomorphisms with their coordinate matrices in this basis, consider
the automorphism ¢, = diag(u}, ..., ul) for any t € R.

Since 7(07)% = (67) 27, it follows that 7¢; = ¢_47 and, as in the proof of Theorem
take 7" = @y7p_¢. Then,

(97'/ = QQOtTQO_t = QTQO_Qt,
TI9 = (ptTgo_te = (p2t<97')_1 = (97‘)_1(,0215,

where it has been used that, since (#7)? commutes with 67, so does ; for any ¢. Hence
07’ = 7'0 if and only if t = %.
The rest follows as in the proof of Theorem O

Now, a map can be defined for any complex semisimple Lie algebra S:

v Isomorphism classes of . Conjugation classes in Autc S
' real forms of S

of involutive automorphisms
[o] — [o7]

where [.] denotes the corresponding conjugation class and 7 is a compact conjugation
that commutes with o (see [1.7). Note that we are identifying any real form with the
conjugation class in Autc S of the corresponding conjugation (Proposition [1.6)).

1.11 Theorem. The map ¥ above is well defined and bijective.
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Proof. If ¢ is a conjugation and 7 and 7 are compact conjugations commuting with
o, then there is a ¢ € Autc S such that 7 = @m0 ~! (Corollary and ¢ commutes
with any real automorphism commuting with 7, and 7o (Remark . Hence oy =
oprio~t = p(om)p~!. Hence [073] = [o71] and, therefore, the image of [¢] does not
depend on the compact conjugation chosen.

Now, if 01,09 are equivalent conjugations and ¢ € Autc S satisfies o9 = o™t
if 71 is a compact conjugation commuting with o1, then 7 = @70 ~! is a compact
conjugation commuting with o9, and oo = cpalgo_lnpﬁgo_l = goalﬁgo_l. Hence, ¥ is
well defined.

Let 6 € Autc S be an involutive automorphism, and let 7 be a compact conjugation
commuting with 6 (Theorem . Then o = 07 is a conjugation commuting with 7
and VU ([o]) = [o7] = [672] = [4].

Finally, to check that ¥ is one-to-one, let 01,02 be two conjugations and let 71,7
be two compact conjugations with w,0; = o;7;, ¢ = 1,2. Write 0; = o;7;. Assume that
there is a ¢ € Autc S such that 0y = 1071, Is [01] = [02]?

By Corollary there exists ¢ € Autc S such that 5 = ¥m9~!. Thus, [01] =
(o1~ and \If([al]) = [or~ Y~ = o1~ 'm]. Hence we may assume that
TN=To=7,800;, =0;7,1=1,2.

Now, by Theorem [I.7] and Remark there is an automorphism v € Autc S such
that v7v~! and ¢~!'7¢ are compatible and v commutes with 6, since #; commutes
with 7, and also §; = ¢~ '03p commutes with o~ '7¢. But two compatible compact
conjugations coincide (Proposition , so y7y~ ! = ¢ 7. Then,

oy = 07 = ph1p T

= o017 o)™ = by T
= 017y
= (p7o1(pr) "

1

Hence [01] = [o2]. O

1.12 Remark.

(i) The proof of Theoremshows that W(['split form’]) = [w] (w(z;) = —y;, w(y;) =
—x; for any j). Trivially, ¥([‘compact form’]) = [id].

(ii) Let @ € Autc S be an involutive automorphism, and let 7 be a compact conjugation
commuting with 6. Take o = 7. Then S™ = K = Kj® Ki, where K5 = {z €
K :0(z) =z} and K1 = {x € K : §(z) = —x}. Then the real form corresponding
to o is S7 = L = Kg® iK1, and its Killing form is

Rl = /€|L = H‘K() € K"iKi = K"K@ 1 <_"€’KI)'

Since K| K and K| K; are negative definite, the signature of xp is dimg K1 —
dimg K = dim¢ S7; — dim¢ S, where S5 = { € S : 0(z) = z} and S} =
{res:0x)=—z}.

The decomposition L = K@ K7 is called a Cartan decomposition of L.
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(iii) To determine the real simple Lie algebras it is enough then to classify the involutive
automorphisms of the simple complex Lie algebras, up to conjugation. This will
be done over arbitrary algebraically closed fields of characteristic 0 by a process
based on the paper by A.W. Knapp: “A quick proof of the classification of simple
real Lie algebras”, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3257-3259.

§ 2. Involutive automorphisms

Let k£ be an algebraically closed field of characteristic 0, and let L be a semisimple Lie
algebra over k, H a fixed Cartan subalgebra of L, ® the corresponding root system and
A ={aj,...,a,} a system of simple roots. Let z1,...,%n,91,...,yn be the canonical
generators that are being used throughout.

(i) For any subset J C {1,...,n}, there is a unique involutive automorphism 6 of L
such that
Oy(xi) = x5, 05(vi) = wi, ifi & J,
GJ(.TZ) = —Z;, 9J(yi) = —Yi, ifieJ.

We will say that 6; corresponds to the Dynkin diagram of (®, A), where the nodes
corresponding to the roots «;, i € J, are shaded.

(ii) Also, if w is an ‘involutive automorphism’ of the Dynkin diagram of (®, A), that
is, a bijection among the nodes of the diagram that respects the Cartan integers,
and if J is a subset of {1,...,n} consisting of fixed nodes by w, then there is a
unique involutive automorphism 6, ; of L given by,

Ou, g (Ti) = Ty, Owg(¥i) = Yoy, iFidJ,
Ou,g(xi) = =245, O, 7(yi) = —Yis if i € J.

We will say that 6, ; corresponds to the Dynkin diagram of (®, A) with the nodes
in J shaded and where w is indicated by arrows, like the following examples:

oo L.y

These diagrams, where some nodes are shaded and a possible involutive diagram au-
tomorphism is specified by arrows, are called Vogan diagrams (see A.W. Knapp: Lie
groups beyond an Introduction, Birkh&user, Boston 1996).

2.1 Theorem. Let k be an algebraically closed field of characteristic 0. Then, up to con-
jugation, the involutive automorphisms of the simple Lie algebras are the automorphisms
that correspond to the Vogan diagrams that appear in Tables [A4.9

In these tables, one has to note that for the orthogonal Lie algebras of small di-
mension over an algebraically closed field of characteristic 0, one has the isomorphisms
503 = Ay, soq4 = Ay x A7 and sog = Az. Also, Z denotes a one-dimensional Lie al-
gebra, and so, s(R) denotes the orthogonal Lie algebra of a nondegenerate quadratic
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form of dimension r + s and signature r — s. Besides, s03, (R) denotes the Lie al-
gebra of the skew matrices relative to a nondegenerate antihermitian form on a vec-
tor space over the quaternions: so}, (R) = {z € Mat,(H) : z'h + hz = 0}, where
h = diag(i,...,i). In the same vein, sp,(H) = {z € Mat,(H) : 2! + z = 0}, while
sp, (H) = {z € Mat, 4(H) : 2'h 4+ hz = 0}, where h = diag(1,...,1,-1,...,—1) (r I’s
and s —1’s). Finally, an expression like Eg 24 denotes a real form of Eg such that the
signature of its Killing form is —24.

Proof. Let L be a simple Lie algebra over k and let ¢ € Aut L be an involutive automor-
phism. Then L =S& T, with S={r € L:p(x) =z} and T ={z € L: p(x) = —x}.
The subspaces S and T are orthogonal relative to the Killing form (since the Killing
form k is invariant under ¢).

(i) There exists a Cartan subalgebra H of L which contains a Cartan subalgebra of S
and is invariant under ¢:

In fact, the adjoint representation ad : S — gl(L) has a nondegenerate trace form, so
S =7Z(S)®[S,S] and [S, S] is semisimple (Chapter 2, . Besides, for any x € Z(5),
r = x5+ xy With x5, 2, € N(T)NCL(S) = SNCL(S) = Z(S) (as the normalizer
Np(T) is invariant under ¢ and N7 (7) N T is an ideal of L and hence trivial). Besides,
K(Tpn,S) = 0, so z, = 0. Hence Z(S) is a toral subalgebra, and there is a Cartan
subalgebra Hg of S with Hg = Z(S) & (Hg NS, S]) Then Hg is toral on L. Let
H = CL(Hs) = Hg & Hp, where Hp = CL(HS) NT. Then [H,H} = [HT,HT] c S.
Hence [[H, H|, H] = 0, so H is a nilpotent subalgebra. Thus, [H, H| acts both nilpotently
and semisimply on L. Therefore, [H, H] = 0 and H is a Cartan subalgebra of L, since
for any x € Hp, x, € H, k(z,, H) = 0 and, as H is the zero weight space relative to
Hg, the restriction of x to H is nondegenerate, hence x,, = 0 and H is toral.

(ii) Fix one such Cartan subalgebra H and let ® be the associated set of roots. Then
¢ induces a linear map ¢* : H* — H*, .+ & = a o ¢|p. Since ¢ is an automorphism,
¢©(Ly) = Lg for any a € ®, so ® = ®. Besides, for any a € ® and any h € H,
a(h) = alp(h)) = k(ta, e(h)) = k(p(ta), h), so (ta) = ts for any a € &. This shows
that ) .o Qt, is invariant under .

(iii) Consider the subsets g ={a € ®: L, C S} and &7 ={a € ®: L, CT}. Then
PsUPr={acP:a=a}:

Actually, [Hr,S] C T and [Hr,T] C S, so for any a € &g U &7, o(Hr) = 0 and
a = a. Conversely, if a(Hr) =0, then Ly, = (Lo,NS)® (L,NT) and, since dim L, = 1,
either L, C Sor L, CT.

(iv) The rational vector space E = > acg Qla is invariant under ¢ and &g is positive
definite (taking values on Q). Hence K = Fg | Ep, where Fg = FNS and Bpr = ENT.
Also, @ C F = ) .Qa = Es ® Er, where Eg = {a € E : a(Hr) = 0} and
Er ={a € E:a(Hg) =0}, with Eg and Er orthogonal relative to the positive definite
symmetric bilinear form (.|.) induced by x. Moreover, ® N Ex = (:

In fact, if « € ® and a(Hg) = 0, then for any © = g +xp € L, (xg € S, zp € T),
and any h € Hg, [h,xs + z7] = a(h)(xg + z7) = 0. Hence xg € Cg(Hg) = Hg and
[H,zs] = 0. Now, for any h € Hr, a(h)(xs + z7) = [h,xs + x7] = [h,z7] € S. Hence
xp =0 = xg, a contradiction.

(v) There is a system of simple roots A such that A = A:
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Type Vogan diagram Fixed subalgebra Real form (k = C)
An o O—O - - O——O0——0 An ((p = Zd) 5un+1(R)
o—o0-- 0B o0 Ap1 X Ap_p X Z sty n11-p(R)
1<p<[5] (Ao =0)
J/ J/ \D 1/ J/ l/ 502,41 5[n+1(R)
(n=2r>1)
\L J/ \L :l/ \L \L 502, 5[n+1(R>
(n=2r—1>1)
\L J/ \D Q/ \L J/ 5p2r 5[7'(H)
(n=2r—1>1)
B, o—o—o0- -~ 0——0===0 B, (¢ =1d) 509,41 (R)
oo 0 p. o - o==0 502p4+1—p X 50p 502,+1—p,p(R)
(1<p<n) (s01 =0, 505 = Z)
Ch o—o0—o0-- - O——0=x£=0 C, (<p = id) sp,, (]HI)
oO——O0 - O—]O?—O - O==Z=0 §p2p X 5]:’2(71710) Spnfp,p(H)
(1<p<|%))
0—0—0- .O——O===e A,_1xZ 5Py, (R)
D, ° o— 0. o 0——( D, (30 = Zd) 50271(R)
o—o- e T <: 503(n—p) X 502p 502(n—p),2p(R)
(1<p<l3])
o0—o0—o0- - ©—o<: A,_1xZ 505, (R)
(n>4)
O—0—0 o D—<§ Bn—l 5027L—1,1(R)

1<p<|23L))

: <§ 502p_92p—1 X §02p41 502 —2p—1,2p+1(R)

Table A.1: Involutive automorphisms: classical cases



§2. INVOLUTIVE AUTOMORPHISMS 101

Type Vogan diagram Fixed subalgebra Real form (k = C)
O0——O0—O0—0—=O0
Eg l Eg Eg 738
Ds x Z Eg,_14
oO0——O0—O0—O0—=O0
i As X Ay Eg o
v o Vo
l Fy Es, 26
v Vo
o ° l: ¢ Cy Eg6
O——0O0—O0—O0—0—=O0
E; l E; E7 133
oO—"O0——OO0——O0—-O0—0
l Esx Z E7 o5
D¢ x Ay Er _5
oO——O0—O0—O0—0—O0
i A; Eqq
o—"0—O0—O0—O0—O0—=O0
Es i Es Eg, 248
o—"O0—O0—O0—O0—O0—e
i E7 x Ay Eg _o4
*—O0O0—O0O0—O0—O0—O0—=O0
l Dy Ess
Fy 0——0=>—0—o0 Fy Fy_50
o—o==0—e By Fy_90
e o0 o Cs x Ay Fyq
Ga == Ga G2,-14
=" A1 X Al Gg)g

Table A.2: Involutive automorphisms: exceptional cases
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For any o € ®, « = ag + ap, with ag € Eg, ar € Er and ag # 0 because of (iv).
Choose 3 € Eg such that (f]a) = (Blas) # 0 for any o € ®. Then (a|f) = (a|3) =
(@|B) for any o € ®, so that in the total order on ® given by 3, ®+ = &+ and a € &+
is simple if and only if so is a.

(vi) Let A be a system of simple roots invariant under ¢, hence

A= {ala sy Olgy g1, - - 'aa8+2T}7

with a; = q;, fori =1,... s, and Ggy9,-1 = agqo;fori=1,...,r. Let a = miay+---+
MstorQsyor be a root with @ = « and assume that s > 1. Then a € &g (respectively
a € ®7) if and only if > g m; is even (respectively odd):

To prove this, it can be assumed that o € ®*. We will proceed by induction on ht(c).
If ht(a) = 1, then o = @, so there is an index 7 = 1, ..., s such that @ = a; and the result
is trivial. Hence assume that ht(a) = n > 1 and that « = @. If thereisani=1,...,s
such that (a|a;) > 0, then o = 8 + «, for some 3 € &+ with 3 = 3. Besides L, =
[Lg, Lq,] and the induction hypothesis applies. Otherwise, there is an index j > s such
that (afa;) > 0, so (a|ay) = (alay) = (aley) > 0 and (a—aqjla;) = (ala;)—(ajla;) >0,
since (aj|@;) < 0. Note that, since s > 1, a; and &; are not connected in the Dynkin
diagram, since ¢* induces an automorphism of the diagram (the only possibility for o;
and @; to be connected would be in a diagram As,, but with s = 0), hence a;; +a; € @,
80 if Lo, = k(zs+z7), then Ls;, = k(zs —27) and 0 = [z5+ 27,25 — 7] = —2[75, .CET_].
Therefore, o = 8 + a; + a;, with 3,8 + a; € ®, Ly = [La,, [La,, Lg]] and g = B.
Hence Lo = adyg—pp adggtap (Lg) = (adis —adiT)(Lg). Thus, L, is contained in §
(respectively T') if and only if so is Lg.

Once we have such a system of simple roots, it is clear that canonical generators of
L can be chosen so that ¢ becomes the automorphism associated to a Vogan diagram
(if *(cvi) = o with i # j, then it is enough to take x; = ¢(z;) and y; = ¢(y;)). Let
us check that it is possible to choose such a system A so that the corresponding Vogan
diagram is one of the diagrams that appear in Tables [A.1] [A:2] where there is at most
a node shaded and this node has some restrictions.

(vii) Let A ={p € Eg: (a|p) € ZVa € ® and (o|p) € 2Z + 1 Va € &r}. Then, if
s>1, A#0:

Note that with A as above, Eg = .7 | Qo; + Z§Z1Q(as+2j—l + a5+2j), while
Er = Z;Zl Q(as+gj_1—as+2j). Let {Mz}fL% be the dual basis of A. Then p1, ..., us are
orthogonal to as12;—1 and asq 95 forany j =1,...,7,80 fi1,..., s € E% = Fg. Also, the
invariance of (.|.) under the automorphism induced by ¢ shows that pis19; = fist2j—1
for any j = 1,...,r. Let u =3 ., copy Hi, which satisfies that (a;|u) =1 for any i
with o € ®7 and (o|p) = 0 otherwise. Hence by (vi) (o|p) € 2Z + 1 for any « € O
(viii) Note that A C {u € E : (pla) € ZVa € A} = Zpy + -+ - + Zitst2r, which is a
discrete subset of E. Let 0 # p € A of minimal norm. Then there exists a system of
simple roots A’ such that A’ = A’ and with (u|a) > 0 for any a € A"

Let § € Eg as in (v), take a positive and large enough r € Q such that, for any
a € @, (o +rp) is > 0 if and only if, either (alu) > 0 or (aju) = 0 and («|B8) > 0.
Then consider the total order in ® given by 8’ = 8+ ru (8 = ). The associated
system of simple roots A’ satisfies the required conditions.

(ix) Take p and the system of simple roots A’ in (viii). Then

r / / / /
A= {al, . ,Oés/,OéS/+1, .. .,Oés/+27n/},
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: Y A / _/ o . / s’ +2r
with & = aj, i = 1,...,s and &5, | = & 95, = 1,...,7". Let {p;}: 777" be the

dual basis to A’. Since (u|a) > 0 for any o € ®* (p is said dominant then), and ji = p,

S/ ,,,/

W= Z mipt; + Z Mg’ +j (/‘;’+2j71 + “;’+2j)’
i=1 J=1

with mq,... , Mgt € ZZO‘

Note that if 0 # hi,hy € > cq+ Qta with a(h;) > 0 for any o € & and @ = 1,2,
then r(hi,he) = trace(ady, adp,) = 2> cq+ @(h1)a(hz) > 0 (use Exercise in
Chapter 2). As a consequence, the inner product of any two nonzero dominant elements
of £ is > 0.

Hence if some m; > 0,7 =1,..., s, then u—p} is dominant, so (u—p}|u;) > 0 and this
is 0 if and only if p = . Now, p—2p; € A and (p— 24| —2p17) = (plp) —4(p—pi|p;) <
(p|p). By the minimality of u, we conclude that (u — p}|u;) = 0 and p = uf. Therefore
A Ndr C {Oz;}

On the other hand, if m; = 0, for any ¢ = 1,....,s, then (u|a)) = 0 (even!), so
A'N®p = 0.

Therefore there is at most one shaded node in the associated Vogan diagram. More
precisely, either A'N @7 =0, or A’'N &7 = {a}} and p = ) for some i =1,...,s". In
this latter case, for any i £ j =1,...,8 (u — ,ug\p;) < 0 (otherwise pu — 2,u;- € A with

/

(1 — 2u | — 2/.L;-) < (plp)). Also, if for some j =1,... 7/,

1
(M - 5(#;'+2j—1 + Hy9j) | Hygaj_1 + M;’+2j) >0,
we would have
(u — (M yajo1 + tyyog) | 10— (ysoj1 + M;/+2j)) < (plp),

a contradiction with the minimality of y, since p — (ug o5 | + f1yy9;) € A, because for

any a € &, (“;’+2j71’a) = (/j,s/+2j71|d) = (“;’+2j‘a)'
Therefore, if A’N ®p = {a}} for some i =1,...,r, then

= pi;
(2.1) (b —pjlp) <O forany i #j=1,....s,
1 .
(M N Q(“;’Hjﬂ + le’+2j)|#ls/+2j,1 + H;l+2j) <0, forany j=1,...,r.

(The last condition in (2.1)) does not appear in Knapp’s article.)

(x) Looking at Tables what remains to be proved is to check that for Vogan
diagrams associated to the Lie algebras of type C,,, D,, Fg, E7, Eg, Fy or Go, in case
there is a shaded node, this node satisfies the requirements in the Tables This
can be deduced easily case by case from :

e For C),, order the roots as follows,

Q) Qg Qg Qp_1 Oy,
Here a; = ¢, — €41, @ = 1,...,n — 1 and o, = 2¢, where, up to a nonzero
scalar, (e;]e;) = d;; for any i,j. Hence p) = €1 +---+¢ fori=1,...,n—1 and

f, = (14 +€n).
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Foranyi=1,...,n—1,

_

(1~ sility) = 50— (n =) = 520~ m),

so ([2.1)) is satisfied if and only if ¢ < L%J

e For D,
a1 oy Qg oy On—1

an
Here either ¢* is the identity, or ap—1 = oy, (@; = o for i < n —1). Also, a; =
e —€iy1 fori=1,...,n—1and oy, = €,—1 + €, where, up to a scalar, (&e;) = d;;.
Hencelufi =€ +--Fe,fori=1,....,n—2,pu, | = %(61—}-"-4-6”_1 — €,) and
fy, = g1+ +en—1+€n).

Foranyi=1,...,n—2,

1, . 1 1,
(1 = pnlp) = 5(2i = n), (ué = Wy ) | e + u%) = ;2= (n—1),
so if p* = id, then (2.1) is satisfied if i < | %], while if ¢* # id, ([2.1)) is satisfied if
)

e For Fjg, take the simple roots as follows:

Q1] (3 Q4 Qa5 Qg QA7 Qg

(&)
Here Ag = {ay,...,ag} with
1
ay =§(61—62—--~—67+68)7
a9 = €1 + €2,
ap = €1 — €2, 1=3,...,8,
for an orthonormal basis (up to a scaling of the inner product) {¢; : i =1,...,8}.
Hence
/
H1 = 2687
, 1
Mo = §(€1+“'+€7+568)7
1
pz = 5(—€1+62+~-+67+768),

pi=eim1+-er+ (9 —ies, i =4,...,8.
For any i = 2,...,6,
(ki = 1hlph) >0, (ui — glug) > 0,

so if (2.1) is satisfied, then i = 1 or i = 8.
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e For E;, Ay = Ag \ {ag}. It follows that

Nll = €8 — €7,
1
//22§(€1+~-+66+2(68—€7)),
1
é:5(—61+"'+€6+3(68—67)),
/

=

py = €3+ -+ €6 + 2(eg — €7),
, 3
u5:64+65+66+§(68—67),
M%:65+€6+(68—67),

1
,u’7 = €6 + 5(68 —€7).

Hence () — pf|ub) > 0 for i = 3,4,5,6, so (2.1) imply that i = 1,2 or 7.

e For Eg, take Ag = A7\ {a7}. Here either ¢* = id or it interchanges o and g,
and ag and as. Besides,

2
iy = 3(es — e =€),

1
NIQZ§(€1+"'+€5+(68_57_56))7
T 5
,u3:5(—614-"'—{—65)+6(€8—67—66),
,uf4=€3+64+65+(68—67—66),

Moreover,

(5 — pylph) >0, (s — pgleg) >0, (1) — polpy) >0,

so if ¢* = id, then ({2.1)) implies that i = 1,2 or 6, so the symmetry of the diagram
shows that after reordering, it is enough to consider the cases of ¢ = 1 or ¢ = 2.
On the other hand, if ¢* # id, then ¢ = 2 is the only possibility.

e For F), consider the ordering of the roots given by

Q] Q2 Q3 0Oy

Here

aq

= €2 — €3,

Qg = €3 — €4,

a3 = €4,

ay =

1
2

—(€1 — €3 — €3 — €4),
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for a suitable orthonormal basis. Hence,

p = €1+ ez,
//2 = 2€1 + €2 + €3,
ug = 3€1 + €2 + €3 + €4,
py = 2e1,
SO
(1o — plih) >0, (ps — pylpy) >0,
and imply that ¢ =1 or ¢ = 4.
e For G5, order the roots as follows:

ap Qo
=0

Then a7 = €9 — €1, ag = %(61 — 2¢9 + €3), where {€1,€9,€3} is an orthonormal
basis of a three-dimensional inner vector space and A’ = {aj,as} generates a
two-dimensional vector subspace. Then p} = e3 — €1 and pf, = %(—61 — €9 + 2€3),

so (p) — phlph) > 0, and hence (2.1)) forces i = 2.

(xi) The assertions on the third column in Tables follows by straightforward
computations, similar to the ones used for the description of the exceptional simple Lie
algebra of type Fy in Chapter 2, Section (Some more information will be given in
the next section.) The involutive automorphisms that appear in these tables for each
type are all nonconjugate, since their fixed subalgebras are not isomorphic. O

§ 3. Simple real Lie algebras

What is left is to check that the information on the fourth column in Tables is
correct.

First, because of item (ii) in Remark the signature of the Killing form of the
real form of a simple complex Lie algebra S associated to an involutive automorphism
0 € Autc S is dimc S7 — dimc Sj, and this shows that the third column in Table
determines completely the fourth. Thus, it is enough to deal with the classical cases.
Here, only the type A, will be dealt with, leaving the other types as an exercise.

Let S = sl,41(C) be the simple complex Lie algebra of type A,. The special unitary
Lie algebra
s 1(R) = {2 € 81,11 (C) : & = —x}

is a compact real subalgebra of S (here the ‘bar’ denotes complex conjugation), as for
any z € s, 1(R),

k(z, ) = 2(n + 1) trace(z?) = —2(n + 1) trace(zz') < 0

(see Equation (6.5)) in Chapter 2). Let 7 be the associated compact conjugation:
7(x) = —z'. For any Vogan diagram, we must find an involutive automorphism ¢ €
Autc sl,,4+1(C) associated to it and that commutes with 7. Then ¢ = 7 is the conjuga-

tion associated to the corresponding real form.
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(a)
(b)

For ¢ = id, 0 = 7 and the real form is S7 = su,+1(R).

Let a, = diag(1,...,1,—1,...,—1) be the diagonal matrix with p 1’s and (n +
1 —p) —1’s. Then a? = I,41 (the identity matrix). The involutive automorphism
©p 1 T = apza, = apra,’ of sl 1(C) commutes with 7, its fixed subalgebra is
formed by the block diagonal matrices with two blocks of size p and n+ 1 — p, so
Ser 22 51,(C) @ slp41-p(C) @ Z, where Z is a one-dimensional center. Moreover,
the usual Cartan subalgebra H of the diagonal matrices in S (see Equation (6.4))
in Chapter 2) contains a Cartan subalgebra of the fixed part and is invariant
under ¢,. Here z; = E; ;11 (the matrix with a 1 on the (i,7 + 1) position and 0’s
elsewhere). Then ¢,(x,) = —xp, while p,(z;) = z; for j # p, so the associated
Vogan diagram is
p

Now, with o, = ¢,7, the associated real form is

{z € 51,41(C) : 2'ay + a,® = 0} = 51y 11 p(R).

With n = 2r, consider the symmetric matrix of order n +1 = 2r + 1

0
L],
0

b=

S O =
SNo o

which satisfies b> = I,,, and the involutive automorphism ¢y, : & — —bx’b, which
commutes with 7. The fixed subalgebra by ¢ is precisely s02,11(C). Again ¢
preserves the by now usual Cartan subalgebra H. With the description of the
root system in Chapter 2, , it follows that ¢;(e1) = €1 0 pp = —e1, while
©*(€;) = —€r44, for i =2, ..., 4+ 1. Take the system of simple roots

/
A '={ex—€3,€63—€4y. .. € — €1, €rp1 — €1, €1 — €241, €241 — €2y, Ept3—Epya)

which is invariant under ¢* and shows that the associated Vogan diagram is

Finally, consider the regular matrix

1 0 0
a=|0 I, I |,
0 il, —il,

which satisfies that b = a~'a = @ 'a, and the associated conjugation o, = @pT.
Its real form is

S = {ZL’ S 5[n+1(c
= {.1‘ S 5[n+1((C

=a sl 1 (R)a 2 sl 41 (R).
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(d)
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In the same vein, with n = 2r — 1, consider the symmetric matrix d = ( g 16)
and the involutive automorphism ¢q : & +— —dz'd = —dz'd='. Here the fixed
subalgebra is s02,(C), and ¢}(e;) = —€p44 for i = 1,...,r. A suitable system of

simple roots is
/
A = {Er —€p—1,€p—1 —€Ep—2,...,€62 —€1,€] —€Er41,€r41 — €Ep425.. .62 1 — €2T}.

The only root in A’ fixed by ¢q is €1 — €41 and p4(E1,4+1) = —FEj,41, which
shows that the associated Vogan diagram is

0—0
As before, with o4 = @47, one gets the real form S9¢ = sl,, 1 (R).

Finally, with n = 2r — 1, consider the skew-symmetric matrix ¢ = (f)lr IOT ) and
the involutive automorphism ¢, :  — cxfc = —calc™!. Here the fixed subalgebra
is §p,,.(C), and ¢’(e;) = —€p4; for @ = 1,...,r. The same A’ of the previous
item works here but ¢.(E1,+1) = E1 41, which shows that the associated Vogan
diagram is

With o, = @.7, one gets the real form

S ={z € sl,41(C) : —cc =z}
={(%3%) :p.q€gl(C) and Re(trace(p)) =0}
=~ {p+ jq € gl.(H) : Re(trace(p)) = 0} = sl,.(H),

where j € H satisfies j2 = —1 and ij = —ji and Re denotes the real part.
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