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Chapter 1

A short introduction to Lie
groups and Lie algebras

This chapter is devoted to give a brief introduction to the relationship between Lie
groups and Lie algebras. This will be done in a concrete way, avoiding the general
theory of Lie groups.

It is based on the very nice article by R. Howe: “Very basic Lie Theory”, Amer.
Math. Monthly 90 (1983), 600–623.

Lie groups are important since they are the basic objects to describe the symmetry.
This makes them an unavoidable tool in Geometry (think of Klein’s Erlangen Program)
and in Theoretical Physics.

A Lie group is a group endowed with a structure of smooth manifold, in such a way
that both the algebraic group structure and the smooth structure are compatible, in
the sense that both the multiplication ((g, h) 7→ gh) and the inverse map (g 7→ g−1) are
smooth maps.

To each Lie group a simpler object may be attached: its Lie algebra, which almost
determines the group.

Definition. A Lie algebra over a field k is a vector space g, endowed with a bilinear
multiplication

[., .] : g× g −→ g

(x, y) 7→ [x, y],

satisfying the following properties:

[x, x] = 0 (anticommutativity)

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for any x, y, z ∈ g.

Example. Let A be any associative algebra, with multiplication denoted by juxtaposi-
tion. Consider the new multiplication on A given by

[x, y] = xy − yx

for any x, y ∈ A. It is an easy exercise to check that A, with this multiplication, is a Lie
algebra, which will be denoted by A−.

1
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As for any algebraic structure, one can immediately define in a natural way the
concepts of subalgebra, ideal, homomorphism, isomorphism, ..., for Lie algebras.

The most usual Lie groups and Lie algebras are “groups of matrices” and their Lie
algebras. These concrete groups and algebras are the ones that will be considered in
this chapter, thus avoiding the general theory.

§ 1. One-parameter groups and the exponential map

Let V be a real finite dimensional normed vector space with norm ∥.∥. (So that V is
isomorphic to Rn.)

Then EndR(V ) is a normed space with

∥A∥ = sup

{
∥Av∥
∥v∥

: 0 ̸= v ∈ V

}
= sup {∥Av∥ : v ∈ V and ∥v∥ = 1}

The determinant provides a continuous (even polynomial) map det : EndR(V ) → R.
Therefore

GL(V ) = det−1
(
R \ {0}

)
is an open set of EndR(V ), and it is a group. Moreover, the maps

GL(V )×GL(V ) → GL(V ) GL(V ) → GL(V )

(A,B) 7→ AB A 7→ A−1

are continuous. (Actually, the first map is polynomial, and the second one rational, so
they are smooth and even analytical maps. Thus, GL(V ) is a Lie group.)

One-parameter groups

A one-parameter group of transformations of V is a continuous group homomorphism

ϕ : (R,+) −→ GL(V ).

Any such one-parameter group ϕ satisfies the following properties:

1.1 Properties.

(i) ϕ is differentiable.

Proof. Let F (t) =
∫ t
0 ϕ(u)du. Then F

′(t) = ϕ(t) for any t and for any t, s:

F (t+ s) =

∫ t+s

0
ϕ(u)du

=

∫ t

0
ϕ(u)du+

∫ t+s

t
ϕ(u)du

=

∫ t

0
ϕ(u)du+

∫ t+s

t
ϕ(t)ϕ(u− t)du

= F (t) + ϕ(t)

∫ s

0
ϕ(u)du

= F (t) + ϕ(t)F (s).
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But

F ′(0) = lim
s→0

F (s)

s
= ϕ(0) = I

(the identity map on V ), and the determinant is continuous, so

lim
s→0

det

(
F (s)

s

)
= lim

s→0

detF (s)

sn
= 1 ̸= 0,

and hence a small s0 can be chosen with invertible F (s0). Therefore

ϕ(t) =
(
F (t+ s0)− F (t)

)
F (s0)

−1

is differentiable, since so is F .

(ii) There is a unique A ∈ EndR(V ) such that

ϕ(t) = etA

(
=

∞∑
n=0

tnAn

n!

)
.

(Note that the series exp(A) =
∑∞

n=0
An

n! converges absolutely, since ∥An∥ ≤ ∥A∥n,
and uniformly on each bounded neighborhood of 0, in particular on Bs(0) = {A ∈
EndR(V ) : ∥A∥ < s}, for any 0 < s ∈ R, and hence it defines a smooth, in fact
analytic, map from EndR(V ) to itself.) Besides, A = ϕ′(0).

Proof. For any 0 ̸= v ∈ V , let v(t) = ϕ(t)v. In this way, we have defined a map
R → V , t 7→ v(t), which is differentiable and satisfies

v(t+ s) = ϕ(s)v(t)

for any s, t ∈ R. Differentiate with respect to s for s = 0 to get{
v′(t) = ϕ′(0)v(t),

v(0) = v,

which is a linear system of differential equations with constant coefficients. By
elementary linear algebra(!), it follows that

v(t) = etϕ
′(0)v

for any t. Moreover, (
ϕ(t)− etϕ

′(0)
)
v = 0

for any v ∈ V , and hence ϕ(t) = etϕ
′(0) for any t.

(iii) Conversely, for any A ∈ EndR(V ), the map t 7→ etA is a one-parameter group.

Proof. If A and B are two commuting elements in EndR(V ), then

eAeB = lim
n→∞

( n∑
p=0

Ap

p!

)( n∑
q=0

Bq

q!

)
= lim

n→∞

( n∑
r=0

(A+B)r

r!
+Rn(A,B)

)
,
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with

Rn(A,B) =
∑

1≤p,q≤n
p+q>n

Ap

p!

Bq

q!
,

so

∥Rn(A,B)∥ ≤
∑

1≤p,q≤n
p+q>n

∥A∥p

p!

∥B∥q

q!
≤

2n∑
r=n+1

(
∥A∥+ ∥B∥

)r
r!

,

whose limit is 0. Hence, eAeB = eA+B.

Now, given any A ∈ EndR(V ) and any scalars t, s ∈ R, tA commutes with sA, so
ϕ(t+ s) = etA+sA = etAesA = ϕ(t)ϕ(s), thus proving that ϕ is a group homomor-
phism. The continuity is clear.

(iv) There exists a positive real number r and an open set U in GL(V ) contained in
Bs(I), with s = er − 1, such that the “exponential map”:

exp : Br(0) −→ U
A 7→ exp(A) = eA

is a homeomorphism.

Proof. exp is differentiable because of its uniform convergence. Moreover, its dif-
ferential at 0 satisfies:

d exp(0)(A) = lim
t→0

etA − e0

t
= A,

so that
d exp(0) = id (the identity map on EndR(V ))

and the Inverse Function Theorem applies.

Moreover, eA − I =
∑∞

n=1
An

n! , so ∥eA − I∥ ≤
∑∞

n=1
∥A∥n
n! = e∥A∥ − 1. Thus

U ⊆ Bs(I).

Note that for V = R (dimV = 1), GL(V ) = R \ {0} and exp : R → R \ {0} is not
onto, since it does not take negative values.

Also, for V = R2, identify EndR(V ) with Mat2(R). Then, with A =
(
0 −1
1 0

)
, it

follows that A2 =
(−1 0

0 −1

)
, A3 =

(
0 1
−1 0

)
and A4 = I. It follows that etA =

(
cos t − sin t
sin t cos t

)
.

In particular, etA = e(t+2π)A and, therefore, exp is not one-to-one.

Adjoint maps

1. For any g ∈ GL(V ), the linear map Ad g : EndR(V ) → EndR(V ), A 7→ gAg−1, is
an inner automorphism of the associative algebra EndR(V ).
The continuous group homomorphism

Ad : GL(V ) −→ GL(EndR(V ))

g 7→ Ad g,

is called the adjoint map of GL(V ).
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2. For any A ∈ EndR(V ), the linear map adA (or adA) : EndR(V ) → EndR(V ),
B 7→ [A,B] = AB−BA, is an inner derivation of the associative algebra EndR(V ).
The linear map

ad : EndR(V ) −→ EndR(EndR(V ))

A 7→ adA (or adA),

is called the adjoint map of EndR(V ).

We will denote by gl(V ) the Lie algebra EndR(V )−. Then ad is a homomorphism of
Lie algebras ad : gl(V ) → gl(EndR(V )).

1.2 Theorem. The following diagram is commutative:

(1.1)

gl(V )
ad−−−−→ gl(EndR(V ))

exp

y yexp

GL(V )
Ad−−−−→ GL(EndR(V ))

Proof. The map ϕ : t 7→ Ad exp(tA) is a one-parameter group of transformations of
EndR(V ) and, therefore,

Ad exp(tA) = exp(tA)

with A = ϕ′(0) ∈ gl(EndR(V )). Hence,

A = lim
t→0

Ad
(
exp(tA)

)
− I

t

and for any B ∈ EndR(V ),

A(B) = lim
t→0

exp(tA)B exp(−tA)−B

t

=
d

dt

(
exp(tA)B exp(−tA)

)
|t=0

= ABI − IBA = adA(B).

Therefore, A = adA and Ad
(
exp(tA)

)
= exp(t adA) for any t ∈ R.

§ 2. Matrix groups

2.1 Definition. Given a real vector space V , a matrix group on V is a closed subgroup
of GL(V ).

Any matrix group inherits the topology of GL(V ), which is an open subset of the
normed vector space EndR(V ).

2.2 Examples. 1. GL(V ) is a matrix group, called the general linear group. For
V = Rn, we denote it by GLn(R).
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2. SL(V ) = {A ∈ GL(V ) : detA = 1} is called the special linear group.

3. Given a nondegenerate symmetric bilinear map b : V × V → R, the matrix group

O(V, b) = {A ∈ GL(V ) : b(Au,Av) = b(u, v) ∀u, v ∈ V }

is called the orthogonal group relative to b.

4. Similarly, give a nondegenerate alternating form ba : V ×V → R, the matrix group

Sp(V, ba) = {A ∈ GL(V ) : ba(Au,Av) = ba(u, v) ∀u, v ∈ V }

is called the symplectic group relative to ba.

5. For any subspace U of V , P (U) = {A ∈ GL(V ) : A(U) ⊆ U} is a matrix group.
By taking a basis of U and completing it to a basis of V , it consists of the endo-
morphisms whose associated matrix is in upper block triangular form.

6. Any intersection of matrix groups is again a matrix group.

7. Let T1, . . . , Tn be elements in EndR(V ), then G = {A ∈ GL(V ) : [Ti, A] = 0 ∀i =
1, . . . , n} is a matrix group.

In particular, consider Cn as a real vector space, by restriction of scalars. There
is the natural linear isomorphism

Cn −→ R2n

(x1 + iy1, . . . , xn + iyn) 7→ (x1, . . . , xn, y1, . . . , yn).

The multiplication by i in Cn becomes, through this isomorphism, the linear map
J : R2n → R2n, (x1, . . . , xn, y1, . . . , yn) 7→ (−y1, . . . ,−yn, x1, . . . , xn). Then we
may identify the group of invertible complex n × n matrices GLn(C) with the
matrix group {A ∈ GL2n(R) : [J,A] = 0}.

8. If Gi is a matrix group on Vi, i = 1, 2, then G1 ×G2 is naturally isomorphic to a
matrix group on V1 × V2.

9. Let G be a matrix group on V , and let Go be its connected component of I. Then
Go is a matrix group too.

Proof. For any x ∈ Go, xGo is connected (homeomorphic to Go) and xGo∩Go ̸= ∅
(as x belongs to this intersection). Hence xGo∪Go is connected and, by maximality,
we conclude that xGo ⊆ Go. Hence GoGo ⊆ Go. Similarly, (Go)−1 is connected,
(Go)−1∩Go ̸= ∅, so that (Go)−1 ⊆ Go. Therefore, Go is a subgroup ofG. Moreover,
Go is closed, because the closure of a connected set is connected. Hence Go is a
closed subgroup of GL(V ).

10. Given any matrix group on V , its normalizer N(G) = {g ∈ GL(V ) : gGg−1 = G}
is again a matrix group.
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§ 3. The Lie algebra of a matrix group

Let G be a matrix group on the vector space V . Consider the set

g = {A ∈ gl(V ) : exp(tA) ∈ G ∀t ∈ R}.

Our purpose is to prove that g is a Lie algebra, called the Lie algebra of G.

3.1 Technical Lemma. (i) Let A,B,C ∈ gl(V ) such that ∥A∥, ∥B∥, ∥C∥ ≤ 1
2 and

exp(A) exp(B) = exp(C). Then

C = A+B +
1

2
[A,B] + S

with ∥S∥ ≤ 65
(
∥A∥+ ∥B∥

)3
.

(ii) For any A,B ∈ gl(V ),

exp(A+B) = lim
n→∞

(
exp

(
A

n

)
exp

(
B

n

))n

(Trotter’s Formula).

(iii) For any A,B ∈ gl(V ),

exp([A,B]) = lim
n→∞

[
exp

(
A

n

)
: exp

(
B

n

)]n2

,

where, as usual, [g : h] = ghg−1h−1 denotes the commutator of two elements in a
group.

Proof. Note that, by continuity, there are real numbers 0 < r, r1 ≤ 1
2 , such that

exp
(
Br1(0)

)
exp
(
Br1(0)

)
⊆ exp

(
Br(0)

)
. Therefore, item (i) makes sense.

For (i) several steps will be followed. Assume A,B,C satisfy the hypotheses there.

� Write exp(C) = I + C +R1(C), with R1(C) =
∑∞

n=2
Cn

n! . Hence

(3.2) ∥R1(C)∥ ≤ ∥C∥2
∞∑
n=2

∥C∥n−2

n!
≤ ∥C∥2

∞∑
n=2

1

n!
≤ ∥C∥2,

because ∥C∥ < 1 and e− 2 < 1.

� Also exp(A) exp(B) = I +A+B +R1(A,B), with

R1(A,B) =
∞∑
n=2

1

n!

(
n∑

k=0

(
n

k

)
AkBn−k

)
.

Hence,

(3.3) ∥R1(A,B)∥ ≤
∞∑
n=2

(∥A∥+ ∥B∥)n

n!
≤ (∥A∥+ ∥B∥)2,

because ∥A∥+ ∥B∥ ≤ 1.
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� Therefore, C = A+B+R1(A,B)−R1(C) and, since ∥C∥ ≤ 1
2 and ∥A∥+∥B∥ ≤ 1,

equations (3.2) and (3.3) give

∥C∥ ≤ ∥A∥+ ∥B∥+
(
∥A∥+ ∥B∥

)2
+ ∥C∥2 ≤ 2

(
∥A∥+ ∥B∥

)
+

1

2
∥C∥,

and thus

(3.4) ∥C∥ ≤ 4
(
∥A∥+ ∥B∥

)
.

Moreover,

∥C − (A+B)∥ ≤ ∥R1(A,B)∥+ ∥R1(C)∥

≤
(
∥A∥+ ∥B∥

)2
+
(
4
(
∥A∥+ ∥B∥

))2
≤ 17

(
∥A∥+ ∥B∥

)2
.

(3.5)

� Let us take one more term now, thus exp(C) = I+C+
C2

2
+R2(C). The arguments

in (3.2) give, since e− 2− 1
2 <

1
3 ,

(3.6) ∥R2(C)∥ ≤ 1

3
∥C∥3.

On the other hand,

exp(A) exp(B) = I +A+B +
1

2
(A2 + 2AB +B2) +R2(A,B),

= I +A+B +
1

2
[A,B] +

1

2
(A+B)2 +R2(A,B),

(3.7)

with

(3.8) ∥R2(A,B)∥ ≤ 1

3
(∥A∥+ ∥B∥)3.

But exp(C) = exp(A) exp(B), so if S = C −
(
A+B + 1

2 [A,B]
)
, by (3.7) we get

S = R2(A,B) +
1

2

(
(A+B)2 − C2

)
−R2(C)

and, because of (3.4), (3.5), (3.6) and (3.8),

∥S∥ ≤ ∥R2(A,B)∥+ 1

2
∥(A+B)(A+B − C) + (A+B − C)C∥+ ∥R2(C)∥

≤ 1

3

(
∥A∥+ ∥B∥

)3
+

1

2

(
∥A∥+ ∥B∥+ ∥C∥)∥A+B − C∥+ 1

3
∥C∥3

≤ 1

3

(
∥A∥+ ∥B∥

)3
+

5

2

(
∥A∥+ ∥B∥

)
· 17
(
∥A∥+ ∥B∥

)2
+

1

3
43
(
∥A∥+ ∥B∥

)3
=
(65
3

+
85

2

)(
∥A∥+ ∥B∥

)3 ≤ 65
(
∥A∥+ ∥B∥

)3
.
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To prove (ii) it is enough to realize that for large enough n,

exp

(
A

n

)
exp

(
B

n

)
= exp(Cn),

with (because of (3.5)),

∥Cn − A+B

n
∥ ≤ 17

(
∥A∥+ ∥B∥

n

)2

.

In other words,

exp

(
A

n

)
exp

(
B

n

)
= exp

(
A+B

n
+O

( 1

n2

))
.

Therefore,(
exp

(
A

n

)
exp

(
B

n

))n

= exp(Cn)
n = exp(nCn) −−−−−→

n→∞
exp(A+B),

since exp is continuous.

Finally, for (iii) use that for large enough n,

exp

(
A

n

)
exp

(
B

n

)
= exp

(
A+B

n
+

1

2n2
[A,B] + Sn

)
,

with ∥Sn∥ ≤ 65

(
∥A∥+∥B∥

)3
n3 , because of the first part of the Lemma. Similarly,

exp

(
A

n

)−1

exp

(
B

n

)−1

= exp

(
−A
n

)
exp

(
−B
n

)
= exp

(
−A+B

n
+

1

2n2
[A,B] + S′

n

)

with ∥S′
n∥ ≤ 65

(
∥A∥+∥B∥

)3
n3 . Again by the first part of the Lemma we obtain

(3.9)

[
exp

(
A

n

)
: exp

(
B

n

)]
= exp

(
1

n2
[A,B] +O

( 1

n3

))
,

since 1
2

[
A+B
n + 1

2n2 [A,B] + Sn,−A+B
n + 1

2n2 [A,B] + S′
n

]
= O

(
1
n3

)
, and one can proceed

as before.

3.2 Theorem. Let G be a matrix group on the vector space V and let g = {A ∈ gl(V ) :
exp(tA) ∈ G ∀t ∈ R}. Then:

(i) g is a Lie subalgebra of gl(V ). (g is called the Lie algebra of G.)

(ii) The map exp : g → G maps a neighborhood of 0 in g bijectively onto a neighborhood
of 1 in G. (Here g is a real vector space endowed with the topology coming from
the norm of EndR(V ) induced by the norm of V .)
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Proof. By its own definition, g is closed under multiplication by real numbers. Now,
given any A,B ∈ g and t ∈ R, since G is closed, the Technical Lemma shows us that

exp
(
t(A+B)

)
= lim

n→∞

(
exp

(
tA

n

)
exp

(
tB

n

))n

∈ G,

exp
(
t[A,B]

)
= lim

n→∞

[
exp

(
tA

n

)
: exp

(
B

n

)]n2

∈ G.

Hence g is closed too under addition and Lie brackets, and so it is a Lie subalgebra of
gl(V ).

To prove the second part of the Theorem, let us first check that, if (An)n∈N is a
sequence in exp−1(G) with limn→∞∥An∥ = 0, and (sn)n∈N is a sequence of real numbers,
then any cluster point B of the sequence (snAn)n∈N lies in g:

Actually, we may assume that limn→∞ snAn = B. Let t ∈ R. For any n ∈ N, take
mn ∈ Z such that |mn − tsn| ≤ 1. Then,

∥mnAn − tB∥ = ∥(mn − tsn)An + t(snAn −B)∥
≤ |mn − tsn|∥An∥+ |t|∥snAn −B∥.

Since both ∥An∥ and ∥snAn − B∥ converge to 0, it follows that limn→∞mnAn = tB.
Also, An ∈ exp−1(G), so that exp(mnAn) = exp(An)

mn ∈ G. Since exp is continuous
and G is closed, exp(tB) = limn→∞ exp(mnAn) ∈ G for any t ∈ R, and hence B ∈ g, as
required.

Let now m be a subspace of gl(V ) with gl(V ) = g ⊕ m, and let πg and πm be the
associated projections onto g and m. Consider the analytical function:

E : gl(V ) −→ GL(V )

A 7→ exp
(
πg(A)

)
exp
(
πm(A)

)
.

Then,

d

dt

(
exp
(
πg(tA)

)
exp
(
πm(tA)

))
|t=0

=
d

dt

(
exp
(
πg(tA)

))
|t=0 exp(0) + exp(0)

d

dt

(
exp
(
πm(tA)

))
|t=0

= πg(A) + πm(A) = A.

Hence, the differential of E at 0 is the identity and, thus, E maps homeomorphically a
neighborhood of 0 in gl(V ) onto a neighborhood of 1 in GL(V ). Let us take r > 0 and
a neighborhood V of 1 in GL(V ) such that E|Br(0) : Br(0) → V is a homeomorphism. It
is enough to check that exp

(
Br(0) ∩ g

)
= E

(
Br(0) ∩ g

)
contains a neighborhood of 1 in

G.
Otherwise, there would exist a sequence (Bn)n∈N ∈ exp−1(G) with Bn ̸∈ Br(0)∩g and

such that limn→∞Bn = 0. For large enough n, exp(Bn) = E(An), with limn→∞An = 0.

Hence exp
(
πm(An)

)
= exp

(
πg(An)

)−1
exp(Bn) ∈ G.

Since limn→∞An = 0, limn→∞ πm(An) = 0 too and, for large enoughm, πm(Am) ̸= 0,
as Am ̸∈ g (note that if Am ∈ g, then exp(Bm) = E(Am) = exp(Am) and since exp is a
bijection on a neighborhood of 0, we would have Bm = Am ∈ g, a contradiction).

The sequence
(

1
∥πm(An)∥πm(An)

)
n∈N

is bounded, and hence has cluster points, which

are in m (closed in gl(V ), since it is a subspace). We know that these cluster points are
in g, so in g ∩m = 0. But the norm of all these cluster points is 1, a contradiction.
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3.3 Remark. Given any A ∈ gl(V ), the set {exp(tA) : t ∈ R} is the continuous image
of the real line, and hence it is connected. Therefore, if g is the Lie algebra of the matrix
group G, exp(g) is contained in the connected component Go of the identity. Therefore,
the Lie algebra of G equals the Lie algebra of Go.

Also, exp(g) contains an open neighborhood U of 1 in G. Thus, Go contains the open
neighborhood xU of any x ∈ Go. Hence Go is open in G but, as a connected component,
it is closed too: Go is open and closed in G.

Let us look at the Lie algebras of some interesting matrix groups.

3.4 Examples. 1. The Lie algebra of GL(V ) is obviously the whole general linear
Lie algebra gl(V ).

2. For any A ∈ gl(V ) (or any square matrix A), det eA = etrace(A). This is better
checked for matrices. Since any real matrix can be considered as a complex matrix,
it is well known that given any such matrix there is a regular complex matrix
P such that J = PAP−1 is upper triangular. Assume that λ1, . . . , λn are the
eigenvalues of A (or J), counted according to their multiplicities. Then PeAP−1 =
eJ and det eA = det eJ =

∏n
i=1 e

λi = e
∑n

i=1 λi = etrace(J) = etrace(A).

Hence, for any t ̸= 0, det etA = 1 if and only if trace(A) = 0. This shows that
the Lie algebra of the special linear group SL(V ) is the special linear Lie algebra
sl(V ) = {A ∈ gl(V ) : trace(A) = 0}.

3. Let b : V ×V → R be a bilinear form. If A ∈ gl(V ) satisfies b(etAv, etAw) = b(v, w)
for any t ∈ R and v, w ∈ V , take derivatives at t = 0 to get b(Av,w)+b(v,Aw) = 0
for any v, w ∈ V . Conversely, if b(Av,w) = −b(v,Aw) for any v, w ∈ V , then
b((tA)nv, w) = (−1)nb(v, (tA)nw), so b(etAv, etAw) = b(v, e−tAetAw) = b(v, w) for
any t ∈ R and v, w,∈ V .

Therefore, the Lie algebra of the matrix group G = {g ∈ GL(V ) : b(gv, gw) =
b(v, w) ∀v, w ∈ V } is g = {A ∈ gl(V ) : b(Av,w) + b(v,Aw) = 0 ∀v, w ∈ V }.
In particular, if b is symmetric and nondegenerate, the Lie algebra of the orthogonal
group O(V, b) is called the orthogonal Lie algebra and denoted by o(V, b). Also, for
alternating and nondegenerate ba, the Lie algebra of the symplectic group Sp(V, ba)
is called the symplectic Lie algebra, and denoted by sp(V, ba).

4. For any subspace U of V , consider a complementary subspace W , so that V =
U ⊕W . Let πU and πW be the corresponding projections. For any A ∈ gl(V ) and
0 ̸= t ∈ R, etA(U) ⊆ U if and only if πW (etAu) = 0 for any u ∈ U . In this case, by
taking derivatives at t = 0 we obtain that πW (Au) = 0 for any u ∈ U , orA(U) ⊆ U .
The converse is clear. Hence, the Lie algebra of P (U) = {g ∈ GL(V ) : g(U) ⊆ U}
is p(U) = {A ∈ gl(V ) : A(U) ⊆ U}.

5. The Lie algebra of an intersection of matrix groups is the intersection of the cor-
responding Lie algebras.

6. The Lie algebra of G = G1 × G2

(
⊆ GL(V1) × GL(V2)

)
is the direct sum g1 ⊕ g2

of the corresponding Lie algebras. This follows from the previous items because,
inside GL(V1 × V2), GL(V1)×GL(V2) = P (V1) ∩ P (V2).
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7. Given T1, . . . Tn ∈ EndR(V ). With similar arguments, one checks that the Lie
algebra of G = {g ∈ GL(V ) : gTi = Tig, i = 1, . . . , n} is g = {A ∈ gl(V ) : ATi =
TiA, i = 1, . . . , n}. In particular, the Lie algebra of GLn(C) is gln(C) (the Lie
algebra of complex n× n matrices).

In the remainder of this chapter, the most interesting properties of the relationship
between matrix groups and their Lie algebras will be reviewed.

3.5 Proposition. Let G be a matrix group on a real vector space V , and let Go be its
connected component of 1. Let g be the Lie algebra of G. Then Go is the group generated
by exp(g).

Proof. We already know that exp(g) ⊆ Go and that there exists an open neighborhood
U of 1 ∈ G with 1 ∈ U ⊆ exp(g). Let V = U ∩U−1, which is again an open neighborhood
of 1 in G contained in exp(g). It is enough to prove that Go is generated, as a group,
by V.

Let H = ∪n∈NVn, H is closed under multiplication and inverses, so it is a subgroup
of G contained in Go. Actually, it is the subgroup of G generated by V. Since V is open,
so is Vn = ∪v∈VvVn−1 for any n, and hence H is an open subgroup of G. But any open
subgroup is closed too, as G \H = ∪x∈G\HxH is a union of open sets. Therefore, H is
an open and closed subset of G contained in the connected component Go, and hence it
fills all of Go.

3.6 Theorem. Let G and H be matrix groups on the real vector space V with Lie
algebras g and h.

(i) If H is a normal subgroup of G, then h is an ideal of g (that is, [g, h] ⊆ h).

(ii) If both G and H are connected, the converse is valid too.

Proof. Assume that H is a normal subgroup of G and let A ∈ h and B ∈ g. Since H is

a normal subgroup of G, for any t ∈ R and n ∈ N,
[
et

A
n : e

B
n

]
∈ H, and hence, by the

Technical Lemma, et[A,B] = limn→∞

[
et

A
n : e

B
n

]n2

belongs to H (H is a matrix group,

hence closed). Thus, [A,B] ∈ h.
Now, assume that both G and H are connected and that h is an ideal of g. Then,

for any B ∈ g, adB(h) ⊆ h, so Ad eB(h) = eadB (h) ⊆ h. In other words, eBhe−B ⊆ h.
Since G is connected, it is generated by {eB : B ∈ g}. Hence, ghg−1 ⊆ h for any g ∈ G.
Thus, for any A ∈ h and g ∈ G, geAg−1 = egAg−1 ∈ eh ⊆ H. Since H is connected, it is
generated by the eA’s, so we conclude that gHg−1 ⊆ H for any g ∈ G, and hence H is
a normal subgroup of G.

3.7 Theorem. Let G be a matrix group on the real vector space V with Lie algebra g,
and let H be a matrix group on the real vector space W with Lie algebra h.

If φ : G → H is a continuous homomorphism of groups, then there exists a unique
Lie algebra homomorphism dφ : g → h that makes the following diagram commutative:

g
dφ−−−−→ h

exp

y yexp

G
φ−−−−→ H
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Proof. The uniqueness is easy: since exp is bijective on a neighborhood of 0 in h, dφ is
determined as (exp)−1 ◦ φ ◦ exp on a neighborhood of 0 in g. But dφ is linear and any
neighborhood of 0 contains a basis. Hence dφ is determined by φ.

Now, to prove the existence of such a linear map, take any A ∈ g, then t 7→ φ(etA)
is a one-parameter group on W with image in H. Thus, there is a unique B ∈ h such
that φ(etA) = etB for any t ∈ R. Define dφ(A) = B. Therefore, φ(etA) = etd φ(A) for
any t ∈ R and A ∈ g. Now, for any A1, A2 ∈ g,

φ
(
et(A1+A2)

)
= φ

(
lim
n→∞

(
e

tA1
n e

tA2
n

)n)
(Trotter’s formula)

= lim
n→∞

(
φ
(
e

tA1
n

)
φ
(
e

tA2
n

))n
(since φ is continuous)

= lim
n→∞

(
e

t
n
dφ(A1)e

t
n
dφ(A2)

)n
= et

(
dφ(A1)+dφ(A2)

)
and, hence, dφ is linear. In the same spirit, one checks that

φ
(
et[A1,A2]

)
= φ

(
lim
n→∞

[
e

tA1
n : e

A2
n

]n2)
= · · · = et[dφ(A1),d φ(A2)],

thus proving that dφ is a Lie algebra homomorphism.

Several consequences of this Theorem will be drawn in what follows.

3.8 Corollary. Let G,H, g and h be as in the previous Theorem. If G and H are
isomorphic matrix groups, then g and h are isomorphic Lie algebras.

3.9 Remark. The converse of the Corollary above is false, even if G and H are con-
nected. Take, for instance,

G = SO(2) =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
(the special orthogonal group on R2, which is homeomorphic to the unit circle). Its Lie
algebra is

g =

{(
0 −α
α 0

)
: α ∈ R

}
(2× 2 skew-symmetric matrices). Also, take

H =

{(
α 0
0 1

)
: α ∈ R>0

}
which is isomorphic to the multiplicative group of positive real numbers, whose Lie
algebra is

h =

{(
α 0
0 0

)
: α ∈ R

}
.

Both Lie algebras are one-dimensional vector spaces with trivial Lie bracket, and hence
they are isomorphic as Lie algebras. However, G is not isomorphic to H (inside G one
may find many finite order elements, but the identity is the only such element in H).
(One can show that G and H are ‘locally isomorphic’.)
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If G is a matrix group on V , and X ∈ g, g ∈ G and t ∈ R,

exp(tAd g(X)) = g
(
exp(tX)

)
g−1 ∈ G,

so Ad g(g) ⊆ g. Hence, the adjoint map of GL(V ) induces an adjoint map

Ad : G −→ GL(g),

and, by restriction in (1.1), we get the following commutative diagram:

(3.10)

g
ad−−−−→ gl(g)

exp

y yexp

G
Ad−−−−→ GL(g)

3.10 Corollary. Let G be a matrix group on the real vector space V and let Ad : G→
GL(g) be the adjoint map. Then d Ad = ad : g → gl(g).

Remember that, given a group G, its center Z(G) is the normal subgroup consisting
of those elements commuting with every element: Z(G) = {g ∈ G : gh = hg ∀h ∈ G}.

3.11 Corollary. Let G be a connected matrix group with Lie algebra g. Then Z(G) =
kerAd, and this is a closed subgroup of G with Lie algebra the center of g: Z(g) = {X ∈
g : [X,Y ] = 0 ∀Y ∈ g} (= ker ad).

Proof. With g ∈ Z(G) and X ∈ g, exp(tX) = g
(
exp(tX)

)
g−1 = exp

(
tAd g(X)

)
for any

t ∈ R. Taking the derivative at t = 0 one gets Ad g(X) = X for any X ∈ g, so that
g ∈ kerAd. (Note that we have not used here the fact that G is connected.)

Conversely, take an element g ∈ kerAd, so for any X ∈ g we have g exp(X)g−1 =
exp
(
Ad g(X)

)
= exp(X). Since G is connected, it is generated by exp(g) and, thus,

ghg−1 = h for any h ∈ G. That is, g ∈ Z(G).
Since Ad is continuous, it follows that Z(G) = kerAd = Ad−1(I) is closed.
Now, the commutativity of the diagram (3.10) shows that exp(ker ad) ⊆ kerAd =

Z(G), and hence ker ad is contained in the Lie algebra of Z(G). Conversely, if X ∈ g
and exp(tX) ∈ Z(G) for any t ∈ R, then exp(t adX) = Ad exp(tX) = I and hence
(take the derivative at t = 0) adX = 0, so X ∈ ker ad. Therefore, the Lie algebra of
Z(G) = kerAd is ker ad which, by its own definition, is the center of g.

3.12 Corollary. Let G be a connected matrix group with Lie algebra g. Then G is
commutative if and only if g is abelian, that is, [g, g] = 0.

Finally, the main concept of this course will be introduced. Groups are important
because they act as symmetries of other structures. The formalization, in our setting,
of this leads to the following definition:

3.13 Definition. (i) A representation of a matrix group G is a continuous homo-
morphism ρ : G→ GL(W ) for a real vector space W .

(ii) A representation of a Lie algebra g is a Lie algebra homomorphism ρ : g → gl(W ),
for a vector space W .
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3.14 Corollary. Let G be a matrix group with Lie algebra g and let ρ : G → GL(W )
be a representation of G. Then there is a unique representation d ρ : g → gl(W ) such
that the following diagram is commutative:

g
d ρ−−−−→ gl(W )

exp

y yexp

G
ρ−−−−→ GL(W )

The great advantage of dealing with d ρ above is that this is a Lie algebra homomor-
phism, and it does not involve topology. In this sense, the representation d ρ is simpler
than the representation of the matrix group, but it contains a lot of information about
the latter. The message is that in order to study the representations of the matrix
groups, we will study representations of Lie algebras.





Chapter 2

Lie algebras

The purpose of this chapter is to present the basic structure of the finite dimensional
Lie algebras over fields, culminating in the classification of the simple Lie algebras over
algebraically closed fields of characteristic 0.

§ 1. Theorems of Engel and Lie

Let us first recall the definition of representation of a Lie algebra, that has already
appeared in the previous chapter.

1.1 Definition. Let L be a Lie algebra over a field k. A representation of L is a Lie
algebra homomorphism ρ : L→ gl(V ), where V is a nonzero vector space over k.

We will use the notation x.v = ρ(x)(v) for elements x ∈ L and v ∈ V . In this case,
V is said to be a module for L.

As for groups, rings or associative algebras, we can immediately define the concepts
of submodule, quotient module, irreducible module (or irreducible representation), ho-
momorphism of modules, kernel, image, ...

In what follows, and unless otherwise stated, all the vector spaces and algebras con-
sidered will be assumed to be finite dimensional over a ground field k.

1.2 Engel’s Theorem. Let ρ : L → gl(V ) be a representation of a Lie algebra L such
that ρ(x) is nilpotent for any x ∈ L. Then there is an element 0 ̸= v ∈ V such that
x.v = 0 for any x ∈ L.

Proof. The proof will be done by induction on n = dimk L, being obvious for n = 1.
Hence assume that dimk L = n > 1 and that the result is true for Lie algebras

of smaller dimension. If ker ρ ̸= 0, then dimk ρ(L) < dimk L = n, but the inclusion
ρ(L) ↪→ gl(V ) is a representation of the Lie algebra ρ(L) and the induction hypothesis
applies.

Therefore, we may assume that ker ρ = 0 and, thus, that L is a subalgebra of gl(V ).
The hypothesis of the Theorem assert then that xm = 0 for any x ∈ L ⊆ gl(V ) =
Endk(V ), where m = dimk V . Let S be a proper maximal subalgebra of L. For any
x, y ∈ L adx = lx − rx, with lx(y) = xy = ry(x), so

(adx)2m−1(y) = (lx − rx)
2m−1(y) =

2m−1∑
i=0

(−1)i
(
2m− 1

i

)
x2m−1−iyxi.

17
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But for any 0 ≤ i ≤ 2m − 1, either i or 2m − 1 − i is ≥ m. Hence (adx)2m−1 = 0. In
particular, the natural representation of the Lie algebra S on the quotient space L/S:

φ : S −→ gl(L/S)

x 7→ φ(x) : L/S → L/S

y + S 7→ [x, y] + S

(L is a module for S through ad, and L/S is a quotient module) satisfies the hypotheses
of the Theorem, but with dimk S < n. By the induction hypothesis, there exists an
element z ∈ L \ S such that [x, z] ∈ S for any x ∈ S. Therefore, S ⊕ kz is a subalgebra
of L which, by maximality of S, is the whole L. In particular S is an ideal of L.

Again, by induction, we conclude that the subspace W = {v ∈ V : x.v = 0 ∀x ∈ S}
is nonzero. But for any x ∈ S, x.(z.W ) ⊆ [x, z].W + z.(x.W ) = 0 ([x, z] ∈ S). Hence
z.W ⊆W , and since z is a nilpotent endomorphism, there is a nonzero v ∈W such that
z.v = 0. Hence x.v = 0 for any x ∈ S and for z, so x.v = 0 for any x ∈ L.

1.3 Consequences. (i) Let ρ : L → gl(V ) be an irreducible representation of a Lie
algebra L and let I be an ideal of L such that ρ(x) is nilpotent for any x ∈ I.
Then I ⊆ ker ρ.

Proof. Let W = {v ∈ V : x.v = 0 ∀x ∈ I}, which is not zero by Engel’s Theorem.
For any x ∈ I, y ∈ L and w ∈ W , x.(y.w) = [x, y].w + y.(x.w) = 0, as [x, y] ∈ I.
Hence W is a nonzero submodule of the irreducible module V and, therefore,
W = V , as required.

(ii) Let ρ : L→ gl(V ) be a representation of a Lie algebra L. Let I be and ideal of L
and let 0 = V0 ⫋ V1 ⫋ · · · ⫋ Vn = V be a composition series of V . Then ρ(x) is
nilpotent for any x ∈ I if and only if for any i = 1, . . . , n, I.Vi ⊆ Vi−1.

(iii) The descending central series of a Lie algebra L is the chain of ideals L = L1 ⊇
L2 ⫆ · · · ⫆ Ln ⫆ · · · , where Ln+1 = [Ln, L] for any n ∈ N. The Lie algebra is said
to be nilpotent if there is an n ∈ N such that Ln = 0. Moreover, if n = 2, L is said
to be abelian. Then

Theorem. (Engel) A Lie algebra L is nilpotent if and only if adx is nilpotent for
any x ∈ L.

Proof. It is clear that if Ln = 0, then adn−1
x = 0 for any x ∈ L. Conversely,

assume that adx is nilpotent for any x ∈ L, and consider the adjoint representation
ad : L → gl(L). Let 0 = L0 ⫋ · · · ⫋ Ln+1 = L be a composition series of this
representation. By item (ii) it follows that L.Li = [L,Li] ⊆ Li−1 for any i. Hence
Li ⊆ Ln+1−i for any i. In particular Ln+1 = 0 and L is nilpotent.

1.4 Exercise. The ascending central series of a Lie algebra L is defined as follows:
Z0(L) = 0, Z1(L) = Z(L) = {x ∈ L : [x, L] = 0} (the center of L) and Zi+1(L)/Zi(L) =
Z (L/Zi(L)) for any i ≥ 1. Prove that this is indeed an ascending chain of ideals and
that L is nilpotent if and only if there is an n ∈ N such that Zn(L) = L.
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Now we arrive to a concept which is weaker than nilpotency.

1.5 Definition. Let L be a Lie algebra and consider the descending chain of ideals
defined by L(0) = L and L(m+1) = [L(m), L(m)] for any m ≥ 0. Then the chain L =
L(0) ⊇ L(1) ⊇ L(2) ⊇ · · · is called the derived series of L. The Lie algebra L is said to
be solvable if there is an n ∈ N such that L(n) = 0.

1.6 Exercise. Prove the following properties:

1. Any nilpotent Lie algebra is solvable. However, show that L = kx + ky, with
[x, y] = y, is a solvable but not nilpotent Lie algebra.

2. If L is nilpotent or solvable, so are its subalgebras and quotients.

3. If I and J are nilpotent (or solvable) ideals of L, so is I + J .

4. Let I be an ideal of L such that both I and L/I are solvable. Then L is solvable.
Give an example to show that this is no longer valid with nilpotent instead of
solvable.

As a consequence of these properties, the sum of all the nilpotent (respectively
solvable) ideals of L is the largest nilpotent (resp. solvable) ideal of L. This ideal is
denoted by N(L) (resp. R(L)) and called the nilpotent radical (resp. solvable radical)
of L.

1.7 Lie’s Theorem. Let ρ : L→ gl(V ) be a representation of a solvable Lie algebra L
over an algebraically closed field k of characteristic 0. Then there is a nonzero element
0 ̸= v ∈ V such that x.v ∈ kv for any x ∈ L (that is, v is a common eigenvector for all
the endomorphisms ρ(x), x ∈ L).

Proof. Since L is solvable, [L,L] ⫋ L and we may take a codimension 1 subspace of L
with [L,L] ⊆ S. Then clearly S is an ideal of L. Take z ∈ L \ S, so L = S ⊕ kz.

Arguing inductively, we may assume that there is a nonzero common eigenvector v
of ρ(x) for any x ∈ S and, thus, there is a linear form λ : S → k, such that x.v = λ(x)v
for any x ∈ S. Let W = {w ∈ V : x.w = λ(x)w ∀x ∈ S}. W is a nonzero subspace of
V . Let U be the linear span of {v, z.v, z.(z.v), . . .}, with v as above. The subspace U is
invariant under ρ(z), and for any x ∈ S and m ∈ N:

ρ(x)ρ(z)m(v) = ρ(x)ρ(z)ρ(z)m−1(v) = ρ([x, z])ρ(z)m−1(v) + ρ(z)
(
ρ(x)ρ(z)m−1(v)

)
.

Now arguing by induction on m we see that

(i) ρ(x)ρ(z)m(v) ∈ U for any m ∈ N, and hence U is a submodule of V .

(ii) ρ(x)ρ(z)m(v) = λ(x)ρ(z)m(v) +
∑m−1

i=0 αiρ(z)
i(v) for suitable scalars αi ∈ k.

Therefore the action of ρ(x) on U is given by an upper triangular matrix with λ(x) on
the diagonal and, hence, trace ρ(x)|U = λ(x) dimk U for any x ∈ S. In particular,

trace ρ([x, z])|U =

{
λ([x, z]) dimk U

trace
[
ρ(x)|U , ρ(z)|U

]
= 0
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(the trace of any commutator is 0), and since the characteristic of k is 0 we conclude
that λ([S,L]) = 0.

But then, for any 0 ̸= w ∈W and x ∈ S,

x.(z.w) = [x, z].w + z.(x.w) = λ([x, z])w + z.
(
λ(x)w

)
= λ(x)z.w,

and this shows that W is invariant under ρ(z). Since k is algebraically closed, there is a
nonzero eigenvector of ρ(z) in W , and this is a common eigenvector for any x ∈ S and
for z, and hence for any y ∈ L.

1.8 Remark. Note that the proof above is valid even if k is not algebraically closed, as
long as the characteristic polynomial of ρ(x) for any x ∈ L splits over k. In this case ρ
is said to be a split representation.

1.9 Consequences. Assume that the characteristic of the ground field k is 0.

(i) Let ρ : L → gl(V ) be an irreducible split representation of a solvable Lie algebra.
Then dimk V = 1.

(ii) Let ρ : L → gl(V ) be a split representation of a solvable Lie algebra. Then there
is a basis of V such that the coordinate matrix of any ρ(x), x ∈ L, is upper
triangular.

(iii) Let L be a solvable Lie algebra such that its adjoint representation ad : L→ gl(L)
is split. Then there is a chain of ideal 0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = L with dimLi = i
for any i.

(iv) Let ρ : L → gl(V ) be a representation of a Lie algebra L. Then [L,R(L)] acts
nilpotently on V ; that is, ρ(x) is nilpotent for any x ∈ [L,R(L)]. The same is true
of [L,L] ∩ R(L). In particular, with the adjoint representation, we conclude that
[L,R(L)] ⊆ [L,L]∩R(L) ⊆ N(L) and, therefore, L is solvable if and only if [L,L]
is nilpotent.

Proof. Let k̄ be an algebraic closure of k. Then k̄⊗k L is a Lie algebra over k̄ and
k̄ ⊗k R(L) is solvable, and hence contained in R(k̄ ⊗k L). Then, by “extending
scalars” it is enough to prove the result assuming that k is algebraically closed.
Also, by taking a composition series of V , it suffices to prove the result assuming
that V is irreducible. In this situation, as in the proof of Lie’s Theorem, one
shows that there is a linear form λ : R(L) → k such that W = {v ∈ V : x.v =
λ(x)v ∀x ∈ R(L)} is a nonzero submodule of V . By irreducibility, we conclude
that x.v = λ(x)v for any x ∈ R(L) and any v ∈ V . Moreover, for any x ∈
[L,L] ∩ R(L), 0 = trace ρ(x) = λ(x) dimk V , so λ

(
[L,L] ∩ R(L)

)
= 0 holds, and

hence [L,R(L)].V ⊆
(
[L,L] ∩R(L)

)
.V = 0.

The last part follows immediately from the adjoint representation. Note that if
[L,L] is nilpotent, in particular it is solvable, and since L/[L,L] is abelian (and
hence solvable), L is solvable by the exercise above.

We will prove now a criterion for solvability due to Cartan.
Recall that any endomorphism f ∈ Endk(V ) over an algebraically closed field de-

composes in a unique way as f = s + n with s, n ∈ Endk(V ), s being semisimple
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(that is, diagonalizable), n nilpotent and [s, n] = 0 (Jordan decomposition). Moreover,
s(V ) ⊆ f(V ), n(V ) ⊆ f(V ) and any subspace which is invariant under f is invariant
too under s and n.

1.10 Lemma. Let V be a vector space over a field k of characteristic 0, and letM1 ⊆M2

be two subspaces of gl(V ). Let A = {x ∈ gl(V ) : [x,M2] ⊆ M1} and let z ∈ A be an
element such that trace(zy) = 0 for any y ∈ A. Then z is nilpotent.

Proof. We may extend scalars and assume that k is algebraically closed. Let m =
dimk V . Then the characteristic polynomial of z is (X−λ1) · · · (X−λm), for λ1, . . . , λm ∈
k. We must check that λ1 = · · · = λm = 0. Consider the Q subspace of k spanned by
the eigenvalues λ1, . . . , λm: E = Qλ1 + · · · + Qλm. Assume that E ̸= 0 and take
0 ̸= f : E → Q a Q-linear form. Let z = s + n be the Jordan decomposition and let
{v1, . . . , vm} be an associated basis of V , in which the coordinate matrix of z is triangular
and s(vi) = λivi for any i. Consider the corresponding basis {Eij : 1 ≤ i, j ≤ m} of
gl(V ), where Eij(vj) = vi and Eij(vl) = 0 for any l ̸= j. Then [s, Eij ] = (λi − λj)Eij , so
that ads is semisimple. Also adn is clearly nilpotent, and adz = ads+adn is the Jordan
decomposition of adz. This implies that adz |M2 = ads |M2 + adn |M2 is the Jordan
decomposition of adz |M2 and [s,M2] = ads(M2) ⊆ adz(M2) ⊆M1.

Consider the element y ∈ gl(V ) defined by means of y(vi) = f(λi)vi for any i. Then
[y,Eij ] = f(λi − λj)Eij . Let p(T ) be the interpolation polynomial such that p(0) = 0
(trivial constant term) and p(λi − λj) = f(λi − λj) for any 1 ≤ i ̸= j ≤ m. Then
ady = p(ads) and hence [y,M2] ⊆ M1, so y ∈ A. Thus, 0 = trace(zy) =

∑m
i=1 λif(λi).

Apply f to get 0 =
∑m

i=1 f(λi)
2, which forces, since f(λi) ∈ Q for any i, that f(λi) = 0

for any i. Hence f = 0, a contradiction.

1.11 Proposition. Let V be a vector space over a field k of characteristic 0 and let L
be a Lie subalgebra of gl(V ). Then L is solvable if and only if trace(xy) = 0 for any
x ∈ [L,L] and y ∈ L.

Proof. Assume first that L is solvable and take a composition series of V as a module
for L: V = V0 ⊇ V1 ⊇ · · · ⊇ Vm = 0. Engel’s Theorem and Consequences 1.9 show that
[L,L].Vi ⊆ Vi+1 for any i. This proves that trace

(
[L,L]L

)
= 0.

Conversely, assume that trace(xy) = 0 for any x ∈ [L,L] and y ∈ L, and consider
the subspace A = {x ∈ gl(V ) : [x, L] ⊆ [L,L]}. For any u, v ∈ L and y ∈ A,

trace
(
[u, v]y

)
= trace(uvy − vuy)

= trace(vyu− yvu)

= trace
(
[v, y]u) = 0 (since [v, y] ∈ [L,L]).

Hence trace(xy) = 0 for any x ∈ [L,L] and y ∈ A which, by the previous Lemma, shows
that x is nilpotent for any x ∈ [L,L]. By Engel’s Theorem, [L,L] is nilpotent, and hence
L is solvable.

1.12 Theorem. (Cartan’s criterion for solvability)
Let L be a Lie algebra over a field k of characteristic 0. Then L is solvable if and only
if trace(adx ady) = 0 for any x ∈ [L,L] and any y ∈ L.

Proof. The adjoint representation ad : L → gl(L) satisfies that ker ad = Z(L), which is
abelian and hence solvable. Thus L is solvable if and only if so is L/Z(L) ∼= adL and
the previous Proposition shows that, since [adL, adL] = ad[L,L], that adL is solvable
if and only if trace

(
adx ady) = 0 for any x ∈ [L,L] and y ∈ L.
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The bilinear form κ : L× L→ k given by

κ(x, y) = trace(adx ady)

for any x, y ∈ L, that appears in Cartan’s criterion for solvability, plays a key role in
studying Lie algebras over fields of characteristic 0. It is called the Killing form of the
Lie algebra L.

Note that κ is symmetric and invariant (i.e., κ([x, y], z) = κ(x, [y, z]) for any x, y, z ∈
L).

§ 2. Semisimple Lie algebras

A Lie algebra is said to be semisimple if its solvable radical is trivial: R(L) = 0. It is
called simple if it has no proper ideal and it is not abelian.

Any simple Lie algebra is semisimple, and given any Lie algebra L, the quotient
L/R(L) is semisimple.

2.1 Theorem. (Cartan’s criterion for semisimplicity)
Let L be a Lie algebra over a field k of characteristic 0 and let κ(x, y) = trace(adx ady)
be its Killing form. Then L is semisimple if and only if κ is nondegenerate.

Proof. The invariance of the Killing form κ of such a Lie algebra L implies that the
subspace I = {x ∈ L : κ(x, L) = 0} is an ideal of L. By Proposition 1.11, ad I is a
solvable subalgebra of gl(L), and this shows that I is solvable. (ad I ∼= I/Z(L) ∩ I).

Hence, if L is semisimple I ⊆ R(L) = 0, and thus κ is nondegenerate. (Note
that this argument is valid had we started with a Lie subalgebra L of gl(V ) for some
vector space V , and had we replaced κ by the trace form of V : B : L × L → k,
(x, y) 7→ B(x, y) = trace(xy).)

Conversely, assume that κ is nondegenerate, that is, that I = 0. If J were an abelian
ideal of L, then for any x ∈ J and y ∈ L, adx ady(L) ⊆ J and adx ady(J) = 0. Hence(
adx ady)

2 = 0 and κ(x, y) = trace
(
adx ady

)
= 0. Therefore, J ⊆ I = 0. Thus, L

does not contain proper abelian ideals, so it does not contain proper solvable ideals and,
hence, R(L) = 0 and L is semisimple.

2.2 Consequences. Let L be a Lie algebra over a field k of characteristic 0.

(i) L is semisimple if and only if L is a direct sum of simple ideals. In particular, this
implies that L = [L,L].

Proof. If L = L1 ⊕ · · · ⊕ Ln with Li a simple ideal of L for any i, and J is an
abelian ideal of L, then [J, Li] is an abelian ideal of Li, and hence it is 0. Hence
[J, L] = 0. This shows that the projection of J on each Li is contained in the
center Z(Li), which is 0 by simplicity. Hence J = 0.

Conversely, assume that L is semisimple and let I be a minimal ideal of L, take
the orthogonal I⊥ = {x ∈ L : κ(x, I) = 0}, which is an ideal of L by invariance of
κ. Cartan’s criterion of solvability (or better Proposition 1.11) shows that I ∩ I⊥
is solvable and hence, as R(L) = 0, I ∩ I⊥ = 0 and L = I ⊕ I⊥. Now, I is
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simple, since any ideal J of I satisfies [J, I⊥] ⊆ [I, I⊥] ⊆ I ∩ I⊥ = 0, and hence
[J, L] = [J, I] ⊆ J . Also, κ = κI ⊥ κI⊥ is the orthogonal sum of the Killing
forms of I and I⊥. So we can proceed with I⊥ as we did for L to complete a
decomposition of L into the direct sum of simple ideals.

(ii) Let K/k be a field extension, then L is semisimple if and only if so is the scalar
extension K ⊗k L.

Proof. Once a basis of L over k is fixed (which is also a basis of K ⊗k L over K if
we identify L with 1 ⊗ L), the coordinate matrices of the Killing forms of L and
K ⊗k L coincide, whence the result.

(iii) If L is semisimple and I is a proper ideal of L, then both I and L/I are semisimple.

Proof. As in (i), L = I ⊕ I⊥ and the Killing form of L is the orthogonal sum of
the Killing forms of these two ideals: κI and κI⊥ . Hence both Killing forms are
nondegenerate and, hence, both I and I⊥ are semisimple. Finally, L/I ∼= I⊥.

(iv) Assume that L is a Lie subalgebra of gl(V ) and that the trace form B : L×L→ k,
(x, y) 7→ B(x, y) = trace(xy) is nondegenerate. Then L = Z(L)⊕ [L,L] and [L,L]
is semisimple (recall that the center Z(L) is abelian). Moreover, the ideals Z(L)
and [L,L] are orthogonal relative to B, and hence the restriction of B to both
Z(L) and [L,L] are nondegenerate.

Proof. Let V = V0 ⊇ V1 ⊇ · · · ⊇ 0 be a composition series of V as a module for L.
Then we know, because of Consequences 1.9 that both [L,R(L)] and [L,L]∩R(L)
act nilpotently on V . Therefore, B

(
[L,R(L)], L

)
= 0 = B

(
[L,L] ∩ R(L), L

)
and,

as B is nondegenerate, this shows that [L,R(L)] = 0 = [L,L]∩R(L). In particular,
R(L) = Z(L) and, since L/R(L) is semisimple, L/R(L) = [L/R(L), L/R(L)] =(
[L,L] + R(L)

)
/R(L). Hence L = [L,L] + R(L) and [L,L] ∩ R(L) = 0, whence

it follows that L = Z(L)⊕ [L,L]. Besides, by invariance of B, B
(
Z(L), [L,L]

)
=

B
(
[Z(L), L], L

)
= 0 and the last part follows.

(v) An endomorphism d of a Lie algebra L is said to be a derivation if d([x, y]) =
[d(x), y] + [x, d(y)] for any x, y ∈ L. For any x ∈ L, adx is a derivation, called
inner derivation. Then, if L is semisimple, any derivation is inner.

Proof. Let d be any derivation and consider the linear form L→ k, x 7→ trace(d adx).
Since κ is nondegenerate, there is a z ∈ L such that κ(z, x) = trace(d adx) for any
x ∈ L. But then, for any x, y ∈ L,

κ
(
d(x), y

)
= trace

(
add(x) ady)

= trace
(
[d, adx] ady

)
(since d is a derivation)

= trace
(
d[adx, ady]

)
= trace

(
d ad[x,y]

)
= κ(z, [x, y]) = κ([z, x], y).

Hence, by nondegeneracy, d(x) = [z, x] for any x, so d = adz.
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Let V and W be two modules for a Lie algebra L. Then both Homk(V,W ) and
V ⊗k W are L-modules too by means of:

(x.f)(v) = x.(f(v))− f(x.v),

x.(v ⊗ w) = (x.v)⊗ w + v ⊗ (x.w),

for any x ∈ L, f ∈ Homk(V,W ) and v ∈ V , w ∈ W . (In particular, the dual V ∗ is a
module with (x.f)(v) = −f(x.v) for x ∈ L, f ∈ V ∗ and v ∈ V .)

2.3 Proposition. Let L be a Lie algebra over an algebraically closed field k of char-
acteristic 0. Then any irreducible module for L is, up to isomorphism, of the form
V = V0 ⊗k Z, with V0 and Z modules such that dimk Z = 1 and V0 is irreducible and
annihilated by R(L). (Hence, V0 is a module for the semisimple Lie algebra L/R(L).)

Proof. By the proof of Consequence 1.9.(iv), we know that there is a linear form λ :
R(L) → k such that x.v = λ(x)v for any x ∈ R(L) and v ∈ V . Moreover, λ

(
[L,R(L)]

)
=

0 = λ
(
[L,L] ∩ R(L)

)
. Thus we may extend λ to a form L → k, also denoted by λ, in

such a way that λ
(
[L,L]

)
= 0.

Let Z = kz be a one dimensional vector space, which is a module for L by means of
x.z = λ(x)z and let W = V ⊗k Z

∗ (Z∗ is the dual vector space to Z), which is also an
L-module. Then the linear map

W ⊗k Z −→ V

(v ⊗ f)⊗ z 7→ f(z)v

is easily seen to be an isomorphism of modules. Moreover, since V is irreducible, so is
W , and for any x ∈ R(L), v ∈ V and f ∈ Z∗, x.(v ⊗ f) = (x.v) ⊗ f + v ⊗ (x.f) =
λ(x)v ⊗ f − λ(x)v ⊗ f = 0 (since (x.f)(z) = −f(x.z) = −λ(x)f(z)). Hence W is
annihilated by R(L).

This Proposition shows the importance of studying the representations of the semisim-
ple Lie algebras.

Recall the following definition.

2.4 Definition. A module is said to be completely reducible if and only if it is a direct
sum of irreducible modules or, equivalently, if any submodule has a complementary
submodule.

2.5 Weyl’s Theorem. Any representation of a semisimple Lie algebra over a field of
characteristic 0 is completely reducible.

Proof. Let L be a semisimple Lie algebra over the field k of characteristic 0, and let
ρ : L → gl(V ) be a representation and W a submodule of V . Does there exist a
submodule W ′ such that V =W ⊕W ′?

We may extend scalars and assume that k is algebraically closed, because the exis-
tence of W ′ is equivalent to the existence of a solution to a system of linear equations:
does there exist π ∈ EndL(V ) such that π(V ) =W and π|W = IW (the identity map on
W )?

Now, assume first that W is irreducible and V/W trivial (that is, L.V ⊆W ). Then
we may change L by its quotient ρ(L), which is semisimple too (or 0, which is a trivial
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case), and hence assume that 0 ̸= L ≤ gl(V ). Consider the trace form bV : L× L → k,
(x, y) 7→ trace(xy). By Cartan’s criterion for solvability, ker bV is a solvable ideal of L,
hence 0, and thus bV is nondegenerate. Take dual bases {x1, . . . , xn} and {y1, . . . , yn}
of L relative to bV (that is, bV (xi, yj) = δij for any i, j).

Then the element cV =
∑n

i=1 xiyi ∈ Endk(V ) is called the Casimir element and

trace(cV ) =
n∑

i=1

trace(xiyi) =
n∑

i=1

bV (xi, yi) = n = dimk L.

Moreover, for any x ∈ L, there are scalars such that [xi, x] =
∑n

j=1 αijxj and [yi, x] =∑n
i=1 βijyj for any i. Since

bV
(
[xi, x], yj

)
+ bV

(
xi, [yj , x]

)
= 0

for any i, j, it follows that αij + βji = 0 for any i, j, so

[cV , x] =
n∑

i=1

(
[xi, x]yi + xi[yi, x]

)
=

n∑
i,j=1

(αji + βij)xiyj = 0.

We then have that cV (V ) ⊆ W and, by Schur’s Lemma (W is assumed here to be
irreducible), cV |W ∈ EndL(W ) = kIW . Besides, trace(cV ) = dimk L. Therefore,

cV |W =
dimk L

dimkW
IW

and V = ker cV ⊕ im cV = ker cV ⊕ W . Hence W ′ = ker cV is a submodule that
complements W .

Let us show now that the result holds as long as L.V ⊆W .

To do so, we argue by induction on dimkW , the result being trivial if dimkW = 0.
If W is irreducible, the result holds by the previous arguments. Otherwise, take a
maximal submodule Z of W . By the induction hypothesis, there is a submodule Ṽ such
that V/Z =W/Z⊕Ṽ /Z, and hence V =W+Ṽ andW∩Ṽ = Z. Now, L.Ṽ ⊆ Ṽ ∩W = Z
and dimk Z < dimkW , so there exists a submodule W ′ of Ṽ such that Ṽ = Z ⊕W ′.
Hence V =W +W ′ and W ∩W ′ ⊆W ∩ Ṽ ∩W ′ = Z ∩W ′ = 0, as required.

In general, consider the following submodules of the L-module Homk(V,W ):

M = {f ∈ Homk(V,W ) : there exists λf ∈ k such that f |W = λf id},
N = {f ∈ Homk(V,W ) : f |W = 0}.

For any x ∈ L, f ∈M , and w ∈W :

(x.f)(w) = x.
(
f(w)

)
− f(x.w) = x.(λfw)− λf (x.w) = 0,

so L.M ⊆ N . Then there exists a submodule X of Homk(V,W ) such that M = N ⊕X.
Since L.X ⊆ X ∩N = 0, X is contained in HomL(V,W ). Take f ∈ X with λf = 1, so
f(V ) ⊆ W and f |W = id. Then W = ker f ⊕W , and ker f is a submodule of V that
complements W .
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2.6 Consequences on Jordan decompositions. Let k be an algebraically closed
field of characteristic 0.

(i) Let V be a vector space over k and let L be a semisimple Lie subalgebra of gl(V ).
For any x ∈ L, consider its Jordan decomposition x = xs + xn. Then xs, xn ∈ L.

Proof. We know that adxs is semisimple, adxn nilpotent, and that adx = adxs+
adxn is the Jordan decomposition of adx. Let W be any irreducible submodule
of V and consider the Lie subalgebra of gl(V ):

LW = {z ∈ gl(V ) : z(W ) ⊆W and trace(z|W ) = 0}.

Since L = [L,L], trace(x|W ) = 0 for any x ∈ L. Hence L ⊆ LW . Moreover, for
any x ∈ L, x(W ) ⊆W , so xs(W ) ⊆W , xn(W ) ⊆W and xs, xn ∈ LW .

Consider also the Lie subalgebra of gl(V ):

N = {z ∈ gl(V ) : [z, L] ⊆ L} = {z ∈ gl(V ) : ad z(L) ⊆ L}.

Again, for any x ∈ L, adx(L) ⊆ L, so adxs(L) ⊆ L, adxn(L) ⊆ L, and xs, xn ∈ N .

Therefore, it is enough to prove that L =
(
∩WLW

)
∩ N . If we denote by L̃ the

subalgebra
(
∩WLW

)
∩N , then L is an ideal of L̃.

By Weyl’s Theorem, there is a subspace U of L̃ such that L̃ = L ⊕ U and
[L,U ] ⊆ U . But [L,U ] ⊆ [L,N ] ⊆ L, so [L,U ] = 0. Then, for any z ∈ U and
irreducible submodule W of V , z|W ∈ HomL(W,W ) = kIW (by Schur’s Lemma)
and trace(z|W ) = 0, since z ∈ LW . Therefore z|W = 0. But Weyl’s Theorem
asserts that V is a direct sum of irreducible submodules, so z = 0. Hence U = 0
and L = L̃.

(ii) Let L be a semisimple Lie algebra. Then L ∼= adL, which is a semisimple sub-
algebra of gl(L). For any x ∈ L, let adx = s + n be the Jordan decomposition
in Endk(L) = gl(L). By item (i), there are unique elements xs, xn ∈ L such that
s = adxs, n = adxn. Since ad is one-to-one, x = xs + xn. This is called the
absolute Jordan decomposition of x.

Note that [x, xs] = 0 = [x, xn], since [adx, adxs] = 0 = [adx, adxn].

(iii) Let L be a semisimple Lie algebra and let ρ : L → gl(V ) be a representation.
Let x ∈ L and let x = xs + xn be its absolute Jordan decomposition. Then
ρ(x) = ρ(xs) + ρ(xn) is the Jordan decomposition of ρ(x).

Proof. Since ρ(L) ∼= L/ ker ρ is a quotient of L, ρ(xs) = ρ(x)s and ρ(xn) = ρ(x)n
(this is because adρ(L) ρ(xs) is semisimple and adρ(L) ρ(xn) is nilpotent). Here
adρ(L) denotes the adjoint map in the Lie algebra ρ(L), to distinguish it from
the adjoint map of gl(V ). By item (i), if ρ(x) = s + n is the Jordan decomposi-
tion of ρ(x), s, n ∈ ρ(L) and we obtain two Jordan decompositions in gl

(
ρ(L)

)
:

adρ(L) ρ(x) = adρ(L) s + adρ(L) n = adρ(L) ρ(xs) + adρ(L) ρ(xn). By uniqueness,
s = ρ(xs) and n = ρ(xn).
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There are other important consequences that can be drawn from Weyl’s Theorem:

2.7 More consequences.

(i) (Whitehead’s Lemma) Let L be a semisimple Lie algebra over a field k of
characteristic 0, let V be a module for L, and let φ : L→ V be a linear map such
that

φ
(
[x, y]

)
= x.φ(y)− y.φ(x),

for any x, y ∈ L. Then there is an element v ∈ V such that φ(x) = x.v for any
x ∈ L.

Proof. φ belongs to the L-module Homk(L, V ), and for any x, y ∈ L:

(2.1) (x.φ)(y) = x.φ(y)− φ([x, y]) = y.φ(x) = µφ(x)(y),

where µv(x) = x.v for any x ∈ L and v ∈ V . Moreover, for any x, y ∈ L and
v ∈ V ,

(x.µv)(y) = x.
(
µv(y)

)
− µv([x, y]) = x.(y.v)− [x, y].v = y.(x.v) = µx.v(y).

Thus, µV is a submodule of Homk(L, V ), which is contained in W = {f ∈
Homk(L, V ) : x.f = µf(x) ∀x ∈ L}, and this satisfies L.W ⊆ µV . By Weyl’s Theo-

rem there is another submodule W̃ such thatW = µV ⊕W̃ and L.W̃ ⊆ W̃∩µV = 0.

But for any f ∈ W̃ and x, y ∈ L, (2.1) gives

0 = (x.f)(y) = x.f(y)− f([x, y]) = µf(y)(x)− f([x, y])

= (y.f)(x)− f([x, y]) = −f([x, y]).

Therefore, f(L) = f([L,L]) = 0. Hence W̃ = 0 and φ ∈W = µV , as required.

(ii) (Levi-Malcev Theorem) Let L be a Lie algebra over a field k of characteristic
0, then there exists a subalgebra S of L such that L = R(L)⊕ S. If nontrivial, S
is semisimple. Moreover, if T is any semisimple subalgebra of L, then there is an
automorphism f of L, in the group of automorphisms generated by {exp adz : z ∈
N(L)}, such that f(T ) ⊆ S.

Proof. In case S is a nontrivial subalgebra of L with L = R(L) ⊕ S, then S ∼=
L/R(L) is semisimple.

Let us prove the existence result by induction on dimL, being trivial if dimL = 1
(as L = R(L) in this case). If I is an ideal of L with 0 ⫋ I ⫋ R(L), then by
the induction hypothesis, there exists a subalgebra T of L, containing I, with
L/I = R(L)/I⊕T/I. Then T/I is semisimple, so I = R(T ) and, by the induction
hypothesis again, T = I⊕S for a subalgebra S of L. It follows that L = R(L)⊕S,
as required. Therefore, it can be assumed that R(L) is a minimal nonzero ideal of
L, and hence [R(L), R(L)] = 0 and [L,R(L)] is either 0 or R(L).

In case [L,R(L)] = 0, L is a module for the semisimple Lie algebra L/R(L), so
Weyl’s Theorem shows that L = R(L)⊕ S for an ideal S.
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Otherwise, [L,R(L)] = R(L). Consider then the module gl(L) for L (x.f = [adx, f ]
for any x ∈ L and f ∈ gl(L)). Let ρ be the associated representation. Then the
subspaces

M = {f ∈ gl(L) : f(L) ⊆ R(L) and there exists λf ∈ k such that f |R(L) = λf id},
N = {f ∈ gl(L) : f(L) ⊆ R(L) and f

(
R(L)

)
= 0},

are submodules of gl(L), with ρ(L)(M) ⊆ N ⫋ M . Moreover, for any x ∈ R(L),
f ∈M and z ∈ L:

(2.2) [adx, f ](z) = [x, f(z)]− f
(
[x, z]

)
= −λf adx(z),

since [x, f(z)] ∈ [R(L), R(L)] = 0. Hence, ρ
(
R(L)

)
(M) ⊆ {adx : x ∈ R(L)} ⊆ N .

Write R = {adx : x ∈ R(L)}. Therefore, M/R is a module for the semisimple
Lie algebra L/R(L) and, by Weyl’s Theorem, there is another submodule Ñ with
R ⫋ Ñ ⊆M such that M/R = N/R⊕ Ñ/R. Take g ∈ Ñ \N with λg = −1. Since
ρ(L)(M) ⊆ N , ρ(L)(g) ⊆ R, so for any y ∈ L, there is an element α(y) ∈ R(L)
such that

[ady, g] = adα(y),

and α : L → R(L) is linear. Equation (2.2) shows that α|R(L) = id, so that
L = R(L)⊕ kerα and kerα = {x ∈ L : ρ(x)(g) = 0} is a subalgebra of L.

Moreover, if T is a semisimple subalgebra of L, let us prove that there is a suitable
automorphism of L that embeds T into S. Since T is semisimple, T = [T, T ] ⊆
[L,L] = [L,R(L)] ⊕ S ⊆ N(L) ⊕ S. If N(L) = 0, the result is clear. Otherwise,
let I be a minimal ideal of L contained in N(L) (hence I is abelian). Arguing
by induction on dimL, we may assume that there are elements z1, . . . , zr in N(L)
such that

T ′ = exp adz1 · · · exp adzr(T ) ⊆ I ⊕ S.

Now, it is enough to prove that there is an element z ∈ I such that exp adz(T
′) ⊆ S.

Therefore, it is enough to prove the result assuming that L = R⊕S, where R is an
abelian ideal of L. In this case, let φ : T → R and ψ : T → S be the projections
of T on R and S respectively (that is, for any t ∈ T , t = φ(t) + ψ(t)). For any
t1, t2 ∈ T ,

[t1, t2] = [φ(t1) + ψ(t1), φ(t2) + ψ(t2)]

= [φ(t1), t2] + [t1, φ(t2)] + [ψ(t1), ψ(t2)],

since [R,R] = 0. Hence φ([t1, t2]) = [φ(t1), t2] + [t1, φ(t2)]. Withehead’s Lemma
shows the existence of an element z ∈ R such that φ(t) = [t, z] for any t ∈ T . But
then, since (adz)

2 = 0 because R is abelian,

exp adz(t) = t+ [z, t] = t− φ(t) = ψ(t) ∈ S,

for any t ∈ T . Therefore, exp adz(T ) ⊆ S.

(iii) Let L be a Lie algebra over a field k of characteristic 0, then [L,R(L)] = [L,L] ∩
R(L).

Proof. L = R(L) ⊕ S for a semisimple (if nonzero) subalgebra S, so [L,L] =
[L,R(L)]⊕ [S, S] = [L,R(L)]⊕ S, and [L,L] ∩R(L) = [L,R(L)].
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§ 3. Representations of sl2(k)

Among the simple Lie algebras, the Lie algebra sl2(k) of two by two trace zero matrices
plays a distinguished role. In this section we will study its representations over fields of
characteristic 0.

First note that sl2(k) = kh + kx + ky with h =
(
1 0
0 −1

)
, x =

(
0 1
0 0

)
and y =

(
0 0
1 0

)
,

and that
[h, x] = 2x, [h, y] = −2y, [x, y] = h.

If the characteristic of the ground field k is ̸= 2, then sl2(k) is a simple Lie algebra.

Let V (n) be the vector space spanned by the homogeneous degree n polynomials in
two indeterminates X and Y , and consider the representation given by:

ρn : sl2(k) −→ gl
(
V (n)

)
h 7→ X

∂

∂X
− Y

∂

∂Y
,

x 7→ X
∂

∂Y
,

y 7→ Y
∂

∂X
.

3.1 Exercise. Check that this indeed gives a representation of sl2(k).

3.2 Theorem. Let k be a field of characteristic 0. Then the irreducible representations
of sl2(k) are, up to isomorphism, exactly the ρn, n ≥ 0.

Proof. Let us assume first that k is algebraically closed, and let ρ : sl2(k) → gl(V ) be
an irreducible representation.

Since adx is nilpotent, the consequences of Weyl’s Theorem assert that ρ(x) is
nilpotent too (similarly, ρ(y) is nilpotent and ρ(h) semisimple). Hence W = {w ∈ V :
x.w = 0} ≠ 0. For any w ∈W ,

x.(h.w) = [x, h].w + h.(x.w) = −2x.w + h.(x.w) = 0,

so W is h-invariant and, since ρ(h) is semisimple, there is a nonzero v ∈ W such that
h.v = λv for some λ ∈ k.

But ρ(y) is nilpotent, so there is an n ∈ Z≥0 such that v, ρ(y)(v), . . . , ρ(y)n(v) ̸= 0
but ρ(y)n+1(v) = 0. Now, for any i > 0,

ρ(h)ρ(y)i(v) = ρ
(
[h, y]

)
ρ(y)i−1(v) + ρ(y)ρ(h)ρ(y)i−1(v)

= −2ρ(y)i(v) + ρ(y)
(
ρ(h)ρ(y)i−1(v)

)
which shows, recursively, that

h.
(
ρ(y)i(v)

)
= (λ− 2i)ρ(y)i(v),

and

ρ(x)ρ(y)i(v) = ρ
(
[x, y]

)
ρ(y)i−1(v) + ρ(y)ρ(x)ρ(y)i−1(v)

=
(
λ− 2(i− 1)

)
ρ(y)i−1(v) + ρ(y)

(
ρ(x)ρ(y)i−1(v)

)
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which proves that

x.
(
ρ(y)i(v)

)
= i
(
λ− (i− 1)

)
ρ(y)i−1(v).

Therefore, with v0 = v and vi = ρ(y)i(v), for i > 0, we have

h.vi = (λ− 2i)vi,

y.vi = vi+1, (vn+1 = 0),

x.vi = i
(
λ− (i− 1)

)
vi−1, (v−1 = 0).

Hence, ⊕n
i=0kvi is a submodule of V and, since V is irreducible, we conclude that

V = ⊕n
i=0kvi. Besides,

0 = trace ρ(h) = λ+ (λ− 2) + · · ·+ (λ− 2n) = (n+ 1)λ− (n+ 1)n.

So λ = n. The conclusion is that there is a unique irreducible module V of dimension
n+ 1, which contains a basis {v0, . . . , vn} with action given by

h.vi = (n− 2i)vi, y.vi = vi+1, x.vi = i(n+ 1− i)vi−1

(where vn+1 = v−1 = 0.) Then, a fortiori, V is isomorphic to V (n). (One can check that
the assignment v0 7→ Xn, vi 7→ n(n− 1) · · · (n− i+ 1)Xn−iY i gives an isomorphism.)

Finally, assume now that k is not algebraically closed and that k̄ is an algebraic
closure of k. If V is an sl2(k)-module, then k̄ ⊗k V is an sl2(k̄)-module which, by
Weyl’s Theorem, is completely reducible. Then the previous arguments show that the
eigenvalues of ρ(h) are integers (and hence belong to k). Now the same arguments above
apply, since the algebraic closure was only used to insure the existence of eigenvalues of
ρ(h) on the ground field.

3.3 Remark. Actually, the result above can be proven easily without using Weyl’s
Theorem. For k algebraically closed of characteristic 0, let 0 ̸= v ∈ V be an eigenvector
for ρ(h): h.v = λv. Then, with the same arguments as before, h.ρ(x)n(v) = (λ +
2n)ρ(x)nv and, since the dimension is finite and the characteristic 0, there is a natural
number n such that ρ(x)n(v) = 0. This shows that W = {w ∈ V : x.w = 0} ≠ 0. In the
same vein, for any w ∈ W there is a natural number m such that ρ(y)m(w) = 0. This
is all we need for the proof above.

3.4 Corollary. Let k be a field of characteristic 0 and let ρ : sl2(k) → gl(V ) be a
representation. Consider the eigenspaces V0 = {v ∈ V : h.v = 0} and V1 = {v ∈ V :
h.v = v}. Then V is a direct sum of dimk V0 + dimk V1 irreducible modules.

Proof. By Weyl’s Theorem, V = ⊕N
i=1W

i, with W i irreducible for any i. Now, for
any i, there is an ni ∈ Z≥0 such that W i ∼= V (ni), and hence ρ(h) has eigenvalues
ni, ni − 2, . . . ,−ni, all with multiplicity 1, on W i. Hence dimkW

i
0 + dimkW

i
1 = 1 for

any i, where W i
0 =W i ∩ V0, W i

1 =W i ∩ V1. Since V0 = ⊕N
i=1W

i
0 and V1 = ⊕N

i=1W
i
1, the

result follows.

Actually, the eigenvalues of ρ(h) determine completely, up to isomorphism, the rep-
resentation, because the number of copies of V (n) that appear in the module V in the
Corollary above is exactly dimk Vn − dimk Vn+2, where Vn = {v ∈ V : h.v = nv} for any
n; because n appears as eigenvalue in V (n) and in V (n+2m) (m ≥ 1) with multiplicity
1, but n+ 2 is also an eigenvalue of ρ(h) in V (n+ 2m), again with multiplicity 1.
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3.5 Corollary. (Clebsch-Gordan formula)
Let n,m ∈ Z≥0, with n ≥ m, and let k be a field of characteristic 0. Then, as modules
for sl2(k),

V (n)⊗k V (m) ∼= V (n+m)⊕ V (n+m− 2)⊕ · · · ⊕ V (n−m).

Proof. The eigenvalues of the action of h on V (n) ⊗k V (m) are n − 2i + m − 2j =
(n+m)− 2(i+ j), (0 ≤ i ≤ n, 0 ≤ j ≤ m). Therefore, for any 0 ≤ p ≤ n+m,

dimk Vn+m−2p =
∣∣∣{(i, j) ∈ Z≥0 × Z≥0 : 0 ≤ i ≤ n, 0 ≤ j ≤ m, i+ j = p}

∣∣∣
and dimk Vn+m−2p − dimk Vn+m−2(p−1) = 1 for any p = 1, . . . ,m, while dimk Vn+m−2p −
dimk Vn+m−2(p−1) = 0 for p = m+ 1, . . . ,

[
n+m
2

]
.

§ 4. Cartan subalgebras

In the previous section, we have seen the importance of the subalgebra kh of sl2(k). We
look for similar subalgebras in any semisimple Lie algebra.

4.1 Definition. Let L be a Lie algebra over a field k. A subalgebra H of L is said to
be a Cartan subalgebra of L if it is nilpotent and self normalizing (NL(H) = H, where
for any subalgebra S of L, NL(S) = {y ∈ L : [y, S] ⊆ S} is the normalizer of S in L).

4.2 Example. kh is a Cartan subalgebra of sl2(k) if the characteristic of k is ̸= 2.

4.3 Definition. Let L be a semisimple Lie algebra over a field k of characteristic 0.
For any x ∈ L, let x = xs + xn be its absolute Jordan decomposition in k̄ ⊗k L, with
k̄ an algebraic closure of k. The element x will be said to be semisimple (respectively,
nilpotent) if x = xs (resp., if x = xn); that is, if adx ∈ gl(L) is semisimple (resp.,
nilpotent).

A subalgebra T of L is said to be toral if all its elements are semisimple.

4.4 Lemma. (i) Let f, g be two endomorphisms of a nonzero vector space V . Let
µ ∈ k be an eigenvalue of f , and let W = {v ∈ V : (f − µI)n(v) = 0 for some n}
be the corresponding generalized eigenspace. (I denotes the identity map.) If there
exists a natural number m > 0 such that (ad f)m(g) = 0, then W is invariant
under g.

(ii) Let ρ : L → gl(V ) be a representation of a nilpotent Lie algebra L over an al-
gebraically closed field k of characteristic 0. Then there exists a finite subset
Λ of the dual vector space L∗ such that V = ⊕λ∈ΛVλ, where Vλ = {v ∈ V :
(ρ(x)− λ(x)I)n(v) = 0 for some n and for any x ∈ L}.

(iii) Any toral subalgebra of a semisimple Lie algebra over an algebraically closed field
k of characteristic 0 is abelian.
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Proof. For (i) denote by lf and rf the left and right multiplication by f in Endk(V ).
Then, for any n > 0, fng = lnf (g) = (ad f+rf )

n(g) =
∑n

i=0

(
n
i

)
(ad f)i(g)fn−i, and hence,

since ad(f − µI) = ad f , we obtain also (f − µI)ng =
∑n

i=0

(
n
i

)
(ad f)i(g)(f − µI)n−i.

Therefore, if (f − µI)n(v) = 0, then (f − µI)n+m−1(g(v)) = 0, so g(v) ∈W .

For (ii) note that if z ∈ L satisfies that ρ(z) has more than one eigenvalue, then
V =W1⊕· · ·⊕Wr, where theWi’s are the generalized eigenspaces for ρ(z). By item (i),
the Wi’s are submodules of V , so the argument can be repeated to get a decomposition
V = V1 ⊕ · · · ⊕ Vn, where for each i, ρ(x) has a unique eigenvalue on Vi for any x ∈ L.
Lie’s Theorem (1.7) shows then that for any i there is a linear form λi on L such that
Vi ⊆ Vλi

, thus completing the proof.

For (iii) note that if T is a toral subalgebra of L and x ∈ T with [x, T ] ̸= 0 then,
since x is semisimple, there is a y ∈ T and a 0 ̸= α ∈ k with [x, y] = αy. But then
(ad y)2(x) = 0 and, since y is semisimple, ady(x) = 0, a contradiction. Hence T is an
abelian subalgebra of L.

4.5 Theorem. Let L be a semisimple Lie algebra over an algebraically closed field k of
characteristic 0, and let H be a subalgebra of L. Then H is a Cartan subalgebra of L if
and only if it is a maximal toral subalgebra of L.

Proof. Assume first that H is a Cartan subalgebra of L so, by the previous lemma,
L = ⊕λ∈H∗Lλ, where Lλ = {x ∈ L : ∀h ∈ H (adh− λ(h)I)n(x) = 0 for some n} for any
λ. But then H acts by nilpotent endomorphisms on L0, and hence on L0/H. If H ̸= L0,
Engel’s Theorem shows that there is an element x ∈ L0 \H such that [h, x] ∈ H for any
h ∈ H, that is, x ∈ NL(H) \H, a contradiction with H being self-normalizing. Hence
we have L = H ⊕

(
⊕0̸=λ∈H∗Lλ

)
.

One checks immediately that [Lλ, Lµ] ⊆ Lλ+µ and, thus, κ
(
Lλ, Lµ

)
= 0 if λ ̸= −µ,

where κ is the Killing form of L. Since κ is nondegenerate and κ
(
H,Lλ

)
= 0 for any

0 ̸= λ ∈ H∗, the restriction of κ to H is nondegenerate too.

Now, H is nilpotent, and hence solvable. By Proposition 1.11 applied to adH ⊆
gl(L), κ

(
[H,H], H

)
= 0 and, since κ|H is nondegenerate, we conclude that [H,H] = 0,

that is, H is abelian.

For any x ∈ H, [x,H] = 0 implies that [xs, H] = 0 = [xn, H]. Hence xn ∈ H
and adxn is nilpotent. Thus, for any y ∈ H, [xn, y] = 0, so adxn ady is a nilpotent
endomorphism of L. This shows that κ(xn, H) = 0 and hence xn = 0. Therefore H is
toral. On the other hand, if H ⊆ S, for a toral subalgebra S of L, then S is abelian, so
[S,H] = 0 and S ⊆ NL(H) = H. Thus, H is a maximal toral subalgebra of L.

Conversely, let T be a maximal toral subalgebra of L. Then T is abelian. Let
{x1, . . . , xm} be a basis of T . Then adx1, . . . , adxm are commuting diagonalizable en-
domorphisms of L, so they are simultaneously diagonalizable. This shows that L =
⊕λ∈T ∗Lλ(T ), where T

∗ is the dual vector space to T and Lλ(T ) = {y ∈ L : [t, y] =
λ(t)y ∀t ∈ T}. As before, [Lλ(T ), Lµ(T )] ⊆ Lλ+µ(T ) for any λ, µ ∈ T ∗ and L0(T ) =
CL(T ) (= {x ∈ L : [x, T ] = 0}), the centralizer of T .

For any x = xs + xn ∈ CL(T ), both xs, xn ∈ CL(T ). Hence T + kxs is a toral
subalgebra. By maximality, xs ∈ T . Then adx|CL(T ) = adxn|CL(T ) is nilpotent, so by
Engel’s Theorem, H = CL(T ) is a nilpotent subalgebra. Moreover, for any x ∈ NL(H)
and t ∈ T , [x, t] ∈ [x,H] ⊆ H, so [[x, t], t] = 0 and, since t is semisimple, we get [x, t] = 0,
so x ∈ CL(T ) = H. Thus NL(H) = H and H is a Cartan subalgebra of L. By the first
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part of the proof, H is a toral subalgebra which contains T and, by maximality of T ,
T = H is a Cartan subalgebra of L.

4.6 Corollary. Let L be a semisimple Lie algebra over a field k of characteristic 0 and
let H be a subalgebra of L. Then H is a Cartan subalgebra of L if and only if it is a
maximal subalgebra among the subalgebras which are both abelian and toral.

Proof. The properties of being nilpotent and self normalizing are preserved under ex-
tension of scalars. Thus, if k̄ is an algebraic closure of k and H is nilpotent and self
normalizing, so is k̄ ⊗k H. Hence k̄ ⊗k H is a Cartan subalgebra of k̄ ⊗k L. By the
previous proof, it follows that k̄ ⊗k H is abelian, toral and self centralizing, hence so is
H. But, since H = CL(H), H is not contained in any bigger abelian subalgebra.

Conversely, if H is a subalgebra which is maximal among the subalgebras which are
both abelian and toral, the arguments in the previous proof show that CL(H) is a Cartan
subalgebra of L, and hence abelian and toral and containing H. Hence H = CL(H) is
a Cartan subalgebra.

4.7 Exercises.

(i) Let L = sl(n) be the Lie algebra of n × n trace zero matrices, and let H be
the subalgebra consisting of the diagonal matrices of L. Prove that H is a Cartan
subalgebra of L and that L = H⊕

(
⊕1≤i ̸=j≤nLϵi−ϵj (H)

)
, where ϵi ∈ H∗ is the linear

form that takes any diagonal matrix to its ith entry. Also show that Lϵi−ϵj (H) =
kEij , where Eij is the matrix with 1 in the (i, j) position and 0’s elsewhere.

(ii) Check that R3 is a Lie algebra under the usual vector cross product. Prove that
it is toral but not abelian.

4.8 Engel subalgebras. There is another approach to Cartan subalgebras with its
own independent interest.

Let L be a Lie algebra over a field k, and let x ∈ L, the subalgebra

EL(x) = {y ∈ L : ∃n ∈ N such that (adx)n(y) = 0}

is called an Engel subalgebra of L relative to x.

EL(x) is indeed a subalgebra and dimk EL(x) is the multiplicity of 0 as an eigenvalue
of adx.

The main properties of Engel subalgebras are summarized here:

1. Let S be a subalgebra of L, and let x ∈ L such that EL(x) ⊆ S. Then NL(S) = S,
where NL(S) = {y ∈ L : [y, S] ⊆ S} is the normalizer of S in L. (Note that NL(S)
is always a subalgebra of L and S is an ideal of NL(S).)

Proof. We have x ∈ EL(x) ⊆ S so 0 is not an eigenvalue of the action of adx on
NL(S)/S. On the other hand adx

(
NL(S)

)
⊆ [S,NL(S)] ⊆ S. Hence NL(S)/S =

0, or NL(S) = S.
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2. Assume that k is infinite. Let S be a subalgebra of L and let z ∈ S be an element
such that EL(z) is minimal in the set {EL(x) : x ∈ S}. If S ⊆ EL(z), then
EL(z) ⊆ EL(x) for any x ∈ S.

Proof. Put S0 = EL(z). Then S ⊆ S0 ⊆ L. For any x ∈ S and α ∈ k, z+αx ∈ S,
so that ad(z+αx) leaves invariant both S and S0. Hence, the characteristic poly-
nomial of ad(z + αx) is a product fα(X)gα(X), where fα(X) is the characteristic
polynomial of the restriction of ad(z + αx) to S0 and gα(X) is the characteristic
polynomial of the action of ad(z+αx) on the quotient L/S0. Let r = dimk S0 and
n = dimk L. Thus,

fα(X) = Xr + f1(α)X
r−1 + · · ·+ fr(α),

gα(X) = Xn−r + g1(α)X
n−r−1 + · · ·+ gn−r(α),

with fi(α), gi(α) polynomials in α of degree ≤ i, for any i.

By hypothesis, gn−r(0) ̸= 0, and since k is infinite, there are different scalars
α1, . . . , αr+1 ∈ k with gn−r(αj) ̸= 0 for any j = 1, . . . , r + 1. This shows that
EL(z +αjx) ⊆ S0 for any j. But S0 = EL(z) is minimal, so EL(z) = EL(z +αjx)
for any j. Hence fαj (X) = Xr for any j = 1, . . . , r + 1, and this shows that
fi(αj) = 0 for any i = 1, . . . , r and j = 1, . . . , r + 1. Since the degree of each fi is
at most r, this proves that fi = 0 for any i and, thus, ad(z + αx) is shown to act
nilpotently on EL(z) = S0 for any α ∈ k: EL(z) ⊆ EL(z + αx) for any x ∈ S and
α ∈ k. Therefore, EL(z) ⊆ EL(x) for any x ∈ S.

3. Let L be a Lie algebra over an infinite field k and let H be a subalgebra of L.
Then H is a Cartan subalgebra of L if and only if it is a minimal Engel subalgebra
of L.

Proof. If H = EL(z) is a minimal Engel subalgebra of L, then by Property 1
above, H is self normalizing, while Property 2 shows that H ⊆ EL(x) for any
x ∈ H which, by Engel’s Theorem, proves that H is nilpotent.

Conversely, let H be a nilpotent self normalizing subalgebra. By nilpotency, H ⊆
EL(x) for any x ∈ H and, hence, it is enough to prove that there is an element
z ∈ H with H = EL(z). Take z ∈ H with EL(z) minimal in {EL(x) : x ∈ H}. By
Property 2 above, H ⊆ EL(z) ⊆ EL(x) for any x ∈ H. This means that adx acts
nilpotently on EL(z)/H for any x ∈ H so, if H ⫋ EL(z), Engel’s Theorem shows
that there is an element y ∈ EL(z) \ H such that [x, y] ∈ H for any x ∈ H, but
then y ∈ NL(H) \H, a contradiction. Hence H = EL(z), as required.

§ 5. Root space decomposition

Throughout this section, L will denote a semisimple Lie algebra over an algebraically
closed field k of characteristic 0, with Killing form κ. Moreover, H will denote a fixed
Cartan subalgebra of L.
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The arguments in the previous section show that there is a finite set Φ ⊆ H∗ \ {0}
of nonzero linear forms on H, whose elements are called roots, such that

(5.3) L = H ⊕
(
⊕α∈ΦLα

)
,

where Lα = {x ∈ L : [h, x] = α(h)x ∀h ∈ H} ≠ 0 for any α ∈ Φ. Moreover, H = CL(H)
and [Lα, Lβ] ⊆ Lα+β, where H = L0 and Lµ = 0 if 0 ̸= µ ̸∈ Φ.

5.1. Properties of the roots

(i) If α, β ∈ Φ ∪ {0} and α+ β ̸= 0, then κ
(
Lα, Lβ

)
= 0.

Proof. adxα adxβ takes each Lµ to Lµ+(α+β) ̸= Lµ so its trace is 0.

(ii) If α ∈ Φ, then −α ∈ Φ. Moreover, the restriction κ : Lα × L−α → k is nondegen-
erate.

Proof. Otherwise, κ(Lα, L) would be 0, a contradiction with the nondegeneracy
of κ.

(iii) Φ spans H∗.

Proof. Otherwise, there would exist a 0 ̸= h ∈ H with α(h) = 0 for any α ∈ Φ, so
adh = 0 and h = 0, because Z(L) = 0 since L is semisimple.

(iv) For any α ∈ Φ, [Lα, L−α] ̸= 0.

Proof. It is enough to take into account that 0 ̸= κ
(
Lα, L−α

)
= κ

(
[H,Lα], L−α

)
=

κ
(
H, [Lα, L−α]

)
.

(v) For any α ∈ H∗, let tα ∈ H such that κ(tα, . ) = α ∈ H∗. Then for any α ∈ Φ,
xα ∈ Lα and yα ∈ L−α,

[xα, yα] = κ(xα, yα)tα.

Proof. For any h ∈ H,

κ(h, [xα, yα]) = κ([h, xα], yα)

= α(h)κ(xα, yα) = κ(tα, h)κ(xα, yα) = κ
(
h, κ(xα, yα)tα

)
and the result follows by the nondegeneracy of the restriction of κ to H = L0.

(vi) For any α ∈ Φ, α(tα) ̸= 0.

Proof. Take xα ∈ Lα and yα ∈ L−α such that κ(xα, yα) = 1. By the previous item
[xα, yα] = tα. In case α(tα) = 0, then [tα, xα] = 0 = [tα, yα], so S = kxα+ktα+kyα
is a solvable subalgebra of L. By Lie’s Theorem ktα = [S, S] acts nilpotently on
L under the adjoint representation. Hence tα is both semisimple (H is toral) and
nilpotent, hence tα = 0, a contradiction since α ̸= 0.
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(vii) For any α ∈ Φ, dimk Lα = 1 and kα ∩ Φ = {±α}.

Proof. With xα, yα and tα as above, S = kxα + ktα + kyα is isomorphic to sl2(k),
under an isomorphism that takes h to 2

α(tα)
tα, x to xα, and y to 2

α(tα)
yα.

Now, V = H ⊕
(
⊕0̸=µ∈kLµα

)
is a module for S under the adjoint representation,

and hence it is a module for sl2(k) through the isomorphism above. Besides,
V0 = {v ∈ V : [tα, v] = 0} coincides with H. The eigenvalues taken by h = 2

α(tα)
tα

are µα(h) = 2µα(tα)
α(tα)

= 2µ and, thus, µ ∈ 1
2Z, since all these eigenvalues are

integers. On the other hand, kerα is a trivial submodule of V , and S is another
submodule. Hence kerα⊕S is a submodule of V which exhausts the eigenspace of
adh with eigenvalue 0. Hence by Weyl’s Theorem, V is the direct sum of kerα⊕S
and a direct sum of irreducible submodules for S in which 0 is not an eigenvalue
for the action of h. We conclude that the only even eigenvalues of the action of h
are 0, 2 and −2, and this shows that 2α ̸∈ Φ. That is, the double of a root is never
a root. But then 1

2α cannot be a root neither, since otherwise α = 21
2α would not

be a root. As a consequence, 1 is not an eigenvalue of the action of h on V , and
hence V = kerα⊕S. In particular, Lα = kxα, L−α = kyα and kα∩Φ = {±α}.

(viii) For any α ∈ Φ, let hα = 2
α(tα)

tα, which is the unique element h in [Lα, L−α] = ktα
such that α(h) = 2, and let xα ∈ Lα and yα ∈ L−α such that [xα, yα] = hα. Then,
for any β ∈ Φ, β(hα) ∈ Z.

Proof. Consider the subalgebra Sα = kxα + khα + kyα, which is isomorphic to
sl2(k). From the representation theory of sl2(k), we know that the set of eigenval-
ues of the adjoint action of hα on L are integers. In particular, β(hα) ∈ Z.

More precisely, consider the Sα-module V = ⊕m∈ZLβ+mα. The eigenvalues of the
adjoint action of hα on V are {β(hα) + 2m : m ∈ Z such that Lβ+mα ̸= 0}, which
form a chain of integers:

β(hα) + 2q, β(hα) + 2(q − 1), . . . , β(hα)− 2r,

with r, q ∈ Z≥0 and β(hα) + 2q = −
(
β(hα)− 2r

)
. Therefore, β(hα) = r − q ∈ Z.

The chain (β+ qα, . . . , β− rα) is called the α-string through β. It is contained in
Φ ∪ {0}.

5.2 Remark. Since the restriction of κ to H is nondegenerate, it induces a nonde-
generate symmetric bilinear form (. | .) : H∗ ×H∗ → k, given by (α|β) = κ(tα, tβ)
(where, as before, tα is determined by α = κ(tα, . ) for any α ∈ H∗). Then for any
α, β ∈ Φ, β(tα) = κ(tβ, tα) = (β|α). Hence

β(hα) =
2(β|α)
(α|α)

.

(ix) For any α ∈ Φ, consider the linear map σα : H∗ → H∗, β 7→ β − 2 (β|α)
(α|α)α. (This

is the reflection through α, since σα(α) = −α and if β is orthogonal to α, that is,
(β|α) = 0, then σα(β) = β. Hence σ2α = 1.)

Then σα(Φ) ⊆ Φ. In particular, the group W generated by {σα : α ∈ Φ} is a finite
subgroup of GL(H∗), which is called the Weyl group.
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Proof. For any α, β ∈ Φ, σα(β) = β− (r− q)α (r and q as before), which is in the
α-string through β, and hence belongs to Φ. (Actually, σα changes the order in
the α-string, in particular σα(β + qα) = β − rα.)

Now W embeds in the symmetric group of Φ, and hence it is finite.

(x) Let {α1, . . . , αn} be a basis of H∗ contained in Φ. Then Φ ⊆ Qα1 + · · ·+Qαn.

Proof. For any α ∈ Φ, α = µ1α1 + · · · + µnαn with µ1, . . . , µn ∈ k. But for
i = 1, . . . , n,

2(α|αi)

(αi|αi)
=

n∑
j=1

µj
2(αj |αi)

(αi|αi)

and this gives a system of linear equations on the µj ’s with a regular integral
matrix. Solving by Crammer’s rule, one gets that the µj ’s belong to Q.

(xi) For any α, β ∈ Φ, (α|β) ∈ Q. Moreover, the restriction (. | .) : QΦ × QΦ → Q is
positive definite.

Proof. Since L = H⊕
(
⊕α∈ΦLα

)
and dimk Lα = 1 for any α ∈ Φ, given any β ∈ Φ,

(β|β) = κ(tβ, tβ) = trace
(
(ad tβ)

2
)
=
∑
α∈Φ

α(tβ)
2 =

(β|β)2

4

∑
α∈Φ

α(hβ)
2,

and, therefore,

(β|β) = 4∑
α∈Φ α(hβ)

2
∈ Q>0.

Now, for any α, β ∈ Φ, 2(α|β)
(β|β) ∈ Z, so (α|β) = (β|β)

2
2(α|β)
(β|β) ∈ Q. And for any

β ∈ QΦ, β = µ1α1 + · · ·+ µnαn for some µj ’s in Q, so

(β|β) =
∑
α∈Φ

α(tβ)
2 =

∑
α∈Φ

(
µ1α(tα1) + · · ·+ µnα(tαn)

)2 ≥ 0.

Besides (β|β) = 0 if and only if α(tβ) = 0 for any α ∈ Φ, if and only if tβ = 0 since
Φ spans H∗, if and only if β = 0.

Therefore, if the dimension of H is n (this dimension is called the rank of L, although
we do not know yet that it does not depend on the Cartan subalgebra chosen), then
EQ = QΦ is an n-dimensional vector space over Q endowed with a positive definite
symmetric bilinear form ( | ).

Then E = R ⊗Q EQ is an euclidean n-dimensional vector space which contains a
subset Φ which satisfies:

(R1) Φ is a finite subset that spans E, and 0 ̸∈ Φ.

(R2) For any α ∈ Φ, −α ∈ Φ too and Rα ∩ Φ = {±α}.

(R3) For any α ∈ Φ, the reflection on the hyperplane (Rα)⊥ leaves Φ invariant (i.e., for
any α, β ∈ Φ, σα(β) ∈ Φ).
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(R4) For any α, β ∈ Φ, ⟨β|α⟩ = 2
(β|α)
(α|α)

∈ Z.

A subset Φ of an euclidean space, satisfying these properties (R1)–(R4), is called
a root system, and the subgroup W of the orthogonal group O(E) generated by the
reflections σα, α ∈ Φ, is called the Weyl group of the root system. The dimension of
the euclidean space is called the rank of the root system. Note that W is naturally
embedded in the symmetric group of Φ, and hence it is a finite group.

§ 6. Classification of root systems

Our purpose here is to classify the root systems. Hence we will work in the abstract
setting considered at the end of the last section. The arguments in this section follow
the ideas in the article by R.W. Carter: Lie Algebras and Root Systems, in Lectures
on Lie Groups and Lie Algebras (R.W. Carter, G. Segal and I. Macdonal), London
Mathematical Society, Student Texts 22, Cambridge University Press, 1995.

Let Φ be a root system in a euclidean space E. Take ν ∈ E such that (ν|α) ̸= 0 for
any α ∈ Φ. This is always possible since Φ is finite. (Here ( | ) denotes the inner product
on E.) Let Φ+ = {α ∈ Φ : (ν|α) > 0} be the set of positive roots, so Φ = Φ+ ∪ Φ−

(disjoint union), where Φ− = −Φ+ (the set of negative roots).
A positive root α is said to be simple if it is not the sum of two positive roots. Let

∆ = {α ∈ Φ+ : α is simple}, ∆ is called a system of simple roots of (E,Φ).

6.1 Proposition. Let Φ be a root system on a euclidean vector space E and let ∆ =
{α1, . . . , αn} be a system of simple roots in (E,Φ). Then:

(i) For any α ̸= β in ∆, (α|β) ≤ 0.

(ii) ∆ is a basis of E.

(iii) Φ+ ⊆ Z≥0α1 + · · ·+ Z≥0αn.

(iv) For any α ∈ ∆, σα
(
Φ+ \ {α}

)
= Φ+ \ {α}.

(v) If ν ′ ∈ E is a vector such that (ν ′|α) ̸= 0 for any α ∈ Φ and ∆′ is the associated
system of simple roots, then there is an element σ ∈ W such that σ(∆) = ∆′.

Proof. For any α, β ∈ Φ, consider the integer

Nαβ = ⟨α|β⟩⟨β|α⟩ = 4(α|β)2

(α|α)(β|β)
∈ Z≥0.

The Cauchy-Schwarz inequality shows that 0 ≤ Nαβ ≤ 4 and that Nαβ = 4 if and only
if β = ±α, since Rα ∩ Φ = {±α} by (R2).

Assume that α, β ∈ Φ+ with α ̸= ±β and (α|β) ≥ 0. Then 0 ≤ Nαβ = ⟨α|β⟩⟨β|α⟩ ≤
3, so either (α|β) = 0 or ⟨α|β⟩ = 1 or ⟨β|α⟩ = 1. If, for instance, ⟨β|α⟩ = 1, then
σα(β) = β − ⟨β|α⟩α = β − α ∈ Φ. If β − α ∈ Φ+, then β = α + (β − α) is not simple,
while if β − α ∈ Φ−, then α = β + (α− β) is not simple. This proves item (i).

Now, for any α ∈ Φ+, either α ∈ ∆ or α = β + γ, with β, γ ∈ Φ+. But in the latter
case, (ν|α) = (ν|β) + (ν|γ), with 0 < (ν|α), (ν|β), (ν|γ), so that both (ν|β) and (ν|γ)
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are strictly lower than (ν|α). Now, we proceed in the same way with β and γ. They are
either simple or a sum of “smaller” positive roots. Eventually we end up showing that
α is a sum of simple roots, which gives (iii).

In particular, this shows that ∆ spans E. Assume that ∆ were not a basis, then
there would exist disjoint nonempty subsets I, J ⊆ {1, . . . , n} and positive scalars µi
such that

∑
i∈I µiαi =

∑
j∈J µjαj . Let γ =

∑
i∈I µiαi =

∑
j∈J µjαj . Then 0 ≤ (γ|γ) =∑

i∈I
j∈J

µiµj(αi|αj) ≤ 0 (because of (i)). Thus γ = 0, but this would imply that 0 <∑
i∈I µi(ν|αi) = (ν|γ) = 0, a contradiction that proves (ii).

In order to prove (iv), we may assume that α = α1. Let α ̸= β ∈ Φ+, then (iii)
shows that β =

∑n
i=1miαi, with mi ∈ Z≥0 for any i. Since β ̸= α, there is a j ≥ 2 such

that mj > 0. Then σα(β) = β−⟨β|α⟩α = (m1−⟨β|α⟩)α1+m2α2+ · · ·+mnαn ∈ Φ, and
one of the coefficients, mj , is > 0. Hence α ̸= σα(β) ̸∈ Φ−, so that σα(β) ∈ Φ+ \ {α}.

Finally, let us prove (v). We know that Φ = Φ+ ∪ Φ− = Φ′+ ∪ Φ′− (with obvious
notation). Let ρ = 1

2

∑
α∈Φ+ α (which is called the Weyl vector), and let σ ∈ W such

that (σ(ν ′)|ρ) is maximal. Then, for any α ∈ ∆:

(σ(ν ′)|ρ) ≥ (σασ(ν
′)|ρ)

=
(
σ(ν ′)|σα(ρ)

)
(since σ2α = 1 and σα ∈ O(E))

=
(
σ(ν ′)|ρ− α

)
(because of (iv))

=
(
σ(ν ′)|ρ

)
−
(
σ(ν ′)|α

)
=
(
σ(ν ′)|ρ

)
−
(
ν ′|σ−1(α)

)
,

so
(
ν ′|σ−1(α)

)
≥ 0. This shows that σ−1(∆) ⊆ Φ′+, so σ−1(Φ±) = Φ′± and σ−1(∆)

then coincides with the set of simple roots in Φ′+, which is ∆′.

Under the previous conditions, with ∆ = {α1, . . . , αn}, consider

� The square matrix C =
(
⟨αi|αj⟩

)
1≤i,j≤n

, which is called the Cartan matrix of the

root system.

Note that for any α ̸= β in Φ with (α|β) ≤ 0,

⟨α|β⟩ = 2(α|β)
(β|β)

= −

√
(α|α)
(β|β)

√
4(α|β)(β|α)
(α|α)(β|β)

= −
√
(α|α)√
(β|β)

√
Nαβ,

so we get a factorization of the Cartan matrix as C = D1ĈD2, where D1 (re-
spectively D2) is the diagonal matrix with the elements

√
(α1|α1), . . . ,

√
(αn|αn)

(resp. 1√
(α1|α1)

, . . . , 1√
(αn|αn)

) on the diagonal, and

Ĉ =


2 −

√
Nα1α2 · · · −

√
Nα1αn

−
√
Nα2α1 2 · · · −

√
Nα2αn

...
...

. . .
...

−
√
Nαnα1 −

√
Nαnα2 · · · 2


This matrix Ĉ is symmetric and receives the name of Coxeter matrix of the root
system. It is nothing else but the coordinate matrix of the inner product ( | ) in

the basis {α̂1, . . . , α̂n} with α̂i =
√
2αi√

(αi|αi)
. Note that detC = det Ĉ.
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6.2 Exercise. What are the possible Cartan and Coxeter matrices for n = 2?
Here ∆ = {α, β}, and you may assume that (α|α) ≤ (β|β).

� The Dynkin diagram of Φ, which is the graph which consists of a node for each
simple root α. The nodes associated to α ̸= β ∈ ∆ are connected by Nαβ (=
0, 1, 2 or 3) arcs. Moreover, if Nαβ = 2 or 3, then α and β have different length
and an arrow is put pointing from the long to the short root. For instance,

C =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 7−→ ◦ ◦ ◦ ◦>
α1 α2 α3 α4

� The Coxeter graph is the graph obtained by omitting the arrows in the Dynkin
diagram.

In our previous example it is ◦ ◦ ◦ ◦.

Because of item (v) in Proposition 6.1, these objects depend only on Φ and not on
∆, up to the same permutation of rows and columns in C and up to the numbering of
the vertices in the graphs.

The root system Φ is said to be reducible if Φ = Φ1 ∪Φ2, with ∅ ≠ Φi (i = 1, 2) and(
Φ1|Φ2

)
= 0. Otherwise, it is called irreducible.

6.3 Theorem.

(a) A root system Φ is irreducible if and only if its Dynkin diagram (or Coxeter graph)
is connected.

(b) Let L be a semisimple Lie algebra over an algebraically closed field k of character-
istic 0. Let H be a Cartan subalgebra of L and let Φ be the associated root system.
Then Φ is irreducible if and only if L is simple.

Proof. For (a), if Φ is reducible with Φ = Φ1 ∪ Φ2 and ∆ is a system of simple roots,
then it is clear that ∆ =

(
∆∩Φ1

)
∪
(
∆∩Φ2

)
and the nodes associated to the elements

in ∆∩Φ1 are not connected with those associated to ∆∩Φ2. Hence the Dynkin diagram
is not connected.

Conversely, if ∆ = ∆1 ∪ ∆2 (disjoint union) with ∅ ̸= ∆1,∆2 and
(
∆1|∆2

)
= 0,

let E1 = R∆1 and E2 = R∆2, so that E is the orthogonal sum E = E1 ⊥ E2. Then
Φi = Φ ∩ Ei is a root system in Ei with system of simple roots ∆i (i = 1, 2). It has to
be checked that Φ = Φ1 ∪ Φ2. For any α ∈ Φ1, σα|E2 is the identity. Hence, item (v)
in Proposition 6.1 shows that there exists an element σ ∈ W1 such that σ(∆1) = −∆1,
where W1 is the subgroup of the Weyl group W generated by {σα : α ∈ Φ1}. Order
the roots so that ∆1 = {α1, . . . , αr} and ∆2 = {αr+1, . . . , αn}. Then any β ∈ Φ can
be written as β = m1α1 + · · · + mnαn, with mi ∈ Z for any i, and either mi ≥ 0 or
mi ≤ 0 for any i. But σ(β) ∈ Φ and, since σ(∆1) = −∆1, σ(β) = m′

1α1 + · · ·+m′
rαr +

mr+1αr+1+ · · ·+mnαn, where (m
′
1, . . . ,m

′
r) is a permutation of (−m1, . . . ,−mr). Since
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the coefficients of σ(β) are also either all nonnegative or all nonpositive, we conclude
that either m1 = · · · = mr = 0 or mr+1 = · · · = mn = 0, that is, either β ∈ Φ1 or
β ∈ Φ2.

For (b), assume first that Φ is reducible, so Φ = Φ1 ∪ Φ2 with
(
Φ1|Φ2) = 0 and

Φ1 ̸= ∅ ≠ Φ2. Then the subspace
∑

α∈Φ+
1

(
Lα+L−α+ [Lα, L−α]

)
is a proper ideal of L,

since

[Lα, Lβ]

{
= 0 if α+ β ̸∈ Φ ∪ {0}, in particular if α ∈ Φ1 and β ∈ Φ2

⊆ Lα+β otherwise.

Hence L is not simple in this case.

Conversely, if L is not simple, then L = L1 ⊕ L2 with L1 and L2 proper ideals
of L. Hence κ(L1, L2) = 0 by the definition of the Killing form, and H = CL(H) =
CL1(H)⊕CL2(H) = (H ∩L1)⊕ (H ∩L2), because for any h ∈ H and xi ∈ Li (i = 1, 2),
[h, x1 + x2] = [h, x1] + [h, x2], with the first summand in L1 and the second one in L2.
Now, for any α ∈ Φ, α(H ∩ Li) ̸= 0 for some i = 1, 2. Then Lα = [H ∩ Li, Lα] ⊆ Li,
so the element tα such that κ(tα, . ) = α satisfies that tα ∈ [Lα, L−α] ⊆ Li. As a
consequence, Φ = Φ1 ∪ Φ2 (disjoint union), with Φi = {α ∈ Φ : α(H ∩ Li) ̸= 0}, and
(α|β) = κ(tα, tβ) = 0 for any α ∈ Φ1 and β ∈ Φ2. Thus, Φ is reducible.

6.4 Remark. The proof above shows that the decomposition of the semisimple Lie
algebra L into a direct sum of simple ideals gives the decomposition of its root system
Φ into an orthogonal sum of irreducible root systems.

Dynkin diagrams are classified as follows:

6.5 Theorem. The Dynkin diagrams of the irreducible root systems are precisely the
following (where n indicates the number of nodes):

(An) ◦ ◦ ◦ ◦ ◦ ◦ , n ≥ 1.

(Bn) ◦ ◦ ◦ ◦ ◦ ◦> , n ≥ 2.

(Cn) ◦ ◦ ◦ ◦ ◦ ◦< , n ≥ 3.

(Dn) ◦ ◦ ◦ ◦ ◦
◦

◦
...........
...........
...........
..

...................................

, n ≥ 4.

(E6)
◦ ◦ ◦ ◦ ◦

◦
.

(E7)
◦ ◦ ◦ ◦ ◦ ◦

◦
.

(E8)
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
.
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(F4) ◦ ◦ ◦ ◦> .

(G2) ◦ ◦< .

Most of the remainder of this section will be devoted to the proof of this Theorem.
First, it will be shown that the ‘irreducible Coxeter graphs’ are the ones correspond-

ing to (An), (Bn = Cn), (Dn), (E6,7,8), (F4) and (G2). Any Coxeter graph determines
the symmetric matrix

(
aij
)
with aii = 2 and aij = −

√
Nij for i ̸= j, where Nij is the

number of lines joining the vertices i and j. We know that this matrix is the coordinate
matrix of a positive definite quadratic form on a real vector space.

Any graph formed by nodes and lines connecting these nodes will be called a ‘Coxeter
type graph’. For each such graph we will take the symmetric matrix

(
aij
)
defined as

before and the associated quadratic form on Rn, which may fail to be positive definite,
such that q(ei, ej) = aij , where {e1, . . . , en} denotes the canonical basis of Rn.

6.6 Lemma. Let V be a real vector space with a basis {v1, . . . , vn} and a positive definite
quadratic form q : V → R such that q(vi, vj) ≤ 0 for any i ̸= j, and q(v1, v2) < 0. (Here
q(v, w) = 1

2

(
q(v + w)− q(v)− q(w)

)
gives the associated symmetric bilinear form.)

Let q̃ : V → R be a quadratic form such that its associated symmetric bilinear form
satisfies q̃(vi, vj) = q(vi, vj) for any (i, j) ̸= (1, 2), i ≤ j, and 0 ≥ q̃(v1, v2) > q(v1, v2).
Then q̃ is positive definite too and det q̃ > det q (where det denotes the determinant of
the quadratic form in any fixed basis).

Proof. We apply a Gram-Schmidt process to obtain a new suitable basis of Rv2+· · ·+Rvn
as follows:

wn = vn

wn−1 = vn−1 + λn−1,nwn

...
...

w2 = v2 + λ2,3w3 + · · ·+ λ2,nwn

where the λ’s are determined by imposing that q(wi, wj) = 0 for any i > j ≥ 2.
Note that q(wi, wj) = q̃(wi, wj) for any i > j ≥ 2, and that this process gives that
λi,j ≥ 0 for any 2 ≤ i < j ≤ n and q(vi, wj) ≤ 0 for any 1 ≤ i < j ≤ n. Now
take w1 = v1 + λ1,3w3 + · · · + λ1,nwn, and determine the coefficients by imposing that
q(w1, wi) = 0 for any i ≥ 3. Then q(w1, w2) = q(v1, w2) ≤ q(v1, v2) < 0, q̃(w1, w2) =
q̃(v1, w2) ≤ q̃(v1, v2) ≤ 0, and 0 ≥ q̃(w1, w2) > q(w1, w2).

In the basis {w1, . . . , wn}, the coordinate matrices of q and q̃ present the form
α1 β 0 · · · 0
β α2 0 · · · 0
0 0 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · αn

 and


α1 β̃ 0 · · · 0

β̃ α2 0 · · · 0
0 0 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · αn


with 0 ≥ β̃ > β. Since q is positive definite, αi > 0 for any i and α1α2 − β2 > 0. Hence
α1α2 − β̃2 > α1α2 − β2 > 0 and the result follows.
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Note that by suppressing a line connecting nodes i and j in a Coxeter type graph,
with associated quadratic form q, the quadratic form q̃ associated to the new graph
obtained differs only in that 0 > q̃(ei, ej) > q(ei, ej). Hence the previous Lemma imme-
diately implies the following result:

6.7 Corollary. If some lines connecting two nodes on a Coxeter type graph with positive
definite quadratic form are suppressed, then the new graph obtained is a new Coxeter
type graph with positive definite quadratic form.

Let us compute now the matrices associated to some Coxeter type graphs, as well
as their determinants.

An (n ≥ 1) ◦ ◦ ◦ ◦ ◦ ◦. Here the associated matrix is

MAn =


2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


whose determinant can be computed recursively by expanding along the first row:
detMAn = 2detMAn−1 − detMAn−2 , obtaining that detMAn = n + 1 for any
n ≥ 1.

Bn = Cn (n ≥ 2) ◦ ◦ ◦ ◦ ◦ ◦. Here

MBn =


2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −
√
2

0 0 0 · · · −
√
2 2


and, by expanding along the last row, detMBn = 2detMAn−1 − 2 detMAn−2 , so
that detMBn = 2.

Dn (n ≥ 4) ◦ ◦ ◦ ◦ ◦
◦

◦
...........
...........
...........
..

...................................

. The associated matrix is

MDn =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 −1
0 0 0 · · · −1 2 0
0 0 0 · · · −1 0 2


so that detMD4 = 4 = detMD5 and by expanding along the first row, detMDn =
2detMDn−1 − detMDn−2 . Hence detMDn = 4 for any n ≥ 4.

E6

◦ ◦ ◦ ◦ ◦

◦
. Here detME6 = 2detMD5 − detMA4 = 8− 5 = 3 (expansion

along the row corresponding to the leftmost node).
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E7

◦ ◦ ◦ ◦ ◦ ◦

◦
. Here detME7 = 2detME6 − detMD5 = 6− 4 = 2.

E8

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
. Here detME8 = 2detME7 − detME6 = 4− 3 = 1.

F4 ◦ ◦ ◦ ◦. Here detMF4 = detMB3 − detMA2 = 4− 3 = 1.

G2 ◦ ◦. Here detMG2 = det
∣∣∣ 2 −

√
3

−
√
3 2

∣∣∣ = 1.

Ãn

◦ ◦ ◦ ◦ ◦ ◦

◦

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.....

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.....

(n+ 1 nodes, n ≥ 2). Then

MÃn
=


2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


so the sum of the rows is the zero row. Hence detMÃn

= 0.

B̃n

◦

◦
◦ ◦ ◦ ◦ ◦...........

...........
...........

..

...................................

(n + 1 nodes, n ≥ 3) Let us number the nodes so that

the leftmost nodes are nodes 1 and 2, and node 3 is connected to both of them.
Then we may expand detMB̃n

= 2detMBn−detMA1 detMBn−1 = 4−4 = 0. (For

n = 3, detMB̃3
= 2detMB2 − detM2

A1
= 4− 4 = 0.)

C̃n ◦ ◦ ◦ ◦ ◦ ◦ (n + 1 nodes, n ≥ 2). Then detMC̃n
= 2detMBn −

2 detMBn−1 = 0. (For n = 2, detMC̃3
= 2detMB2 − 2 detMA1 = 0.)

D̃n

◦

◦
◦ ◦ ◦ ◦

◦

◦
...........

...........
...........

..

...................................

...........
...........
...........
..

...................................

(n+ 1 nodes, n ≥ 4). Here

detMD̃n
=


2 detMD4 − detM3

A1
= 8− 8 = 0, if n = 4,

2 detMD5 − detMA1 detMA3 = 8− 8 = 0, if n = 5,

2 detMDn − detMA1 detMDn−2 = 8− 8 = 0, otherwise.

Ẽ6

◦ ◦ ◦ ◦ ◦

◦

◦

. Here detMẼ6
= 2detME6 − detMA5 = 6− 6 = 0.

Ẽ7

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
. Here detMẼ7

= 2detME7 − detMD6 = 4− 4 = 0.

Ẽ8

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
. Here detMẼ8

= 2detME8 −detME7 = 2−2 = 0.

F̃4 ◦ ◦ ◦ ◦ ◦. Here detMF̃4
= 2detMF4 − detMB3 = 2− 2 = 0.

G̃2 ◦ ◦ ◦. Here detMG̃2
= 2detMG2 − detMA1 = 2− 2 = 0.
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Now, if G is a connected Coxeter graph and we suppress some of its nodes (and
the lines connecting them), a new Coxeter type graph with positive definite associated
quadratic form is obtained. The same happens, because of the previous Lemma 6.6, if
only some lines are suppressed. The new graphs thus obtained will be called subgraphs.

� If G contains a cycle, then it has a subgraph (isomorphic to) Ãn, and this is a
contradiction since detMÃn

= 0, so its quadratic form is not positive definite.

� If G contains a node which is connected to four different nodes, then it contains a
subgraph of type D̃4, a contradiction.

� If G contains a couple of nodes (called ‘triple nodes’) connected to three other
nodes, then it contains a subgraph of type D̃n, a contradiction again.

� If G contains two couples of nodes connected by at least two lines, then it contains
a subgraph of type C̃n, which is impossible.

� If G contains a triple node and two nodes connected by at least two lines, then it
contains a subgraph of type B̃n.

� If G contains a ‘triple link’, then either it is isomorphic toG2 or contains a subgraph
of type G̃2, this latter possibility gives a contradiction.

� If G contains a ‘double link’ and this double link is not at a extreme of the graph,
then either G is isomorphic to F4 or contains a subgraph of type F̃4, which is
impossible.

� If G contains a ‘double link’ at one extreme, then the Coxeter graph is Bn = Cn.

� Finally, if G contains only simple links, then it is either An or it contains a unique
triple node. Hence it has the form:

◦ ◦ ◦
◦

◦

◦

◦

.........
.........
.........
.........
...

.......................................

..
..
..
..
..
..
..
..
..
.

...................

p

q

r

with 1 ≤ p ≤ q ≤ r. But then either p = 1 or it contains a subgraph of type Ẽ6,
a contradiction. If p = 1, then either q ≤ 2 or it contains a subgraph of type Ẽ7,
another contradiction. Finally, with p = 1 and q = 2, either r ≥ 4 or it contains
a subgraph of type Ẽ8, a contradiction again. Therefore, either p = q = 1 and we
get Dn, or p = 1, q = 2 and r = 2, 3 or 4, thus obtaining E6, E7 and E8.

Therefore, the only possible connected Coxeter graphs are those in Theorem 6.5.
What remains to be proven is to show that for each Dynkin diagram (A)–(G), there
exists indeed an irreducible root system with this Dynkin diagram.

For types (A)–(D) we will prove a stronger statement, since we will show that there
are simple Lie algebras, over an algebraically closed field of characteristic 0, such that
their Dynkin diagrams of their root systems relative to a Cartan subalgebra and a set
of simple roots are precisely the Dynkin diagrams of types (A)–(D).
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(An) Let L = sln+1(k) be the Lie algebra of n + 1 trace zero square matrices. Let H
be the subspace of diagonal matrices in L, which is an abelian subalgebra, and let
ϵi : H → k the linear form such that ϵi

(
diag(α1, . . . , αn+1)

)
= αi, i = 1, . . . , n+1.

Then ϵ1 + · · ·+ ϵn+1 = 0. Moreover,

(6.4) L = H ⊕
(
⊕1≤i ̸=j≤n+1kEij

)
where Eij is the matrix with a 1 in the (i, j) entry, and 0’s elsewhere. Since
[h,Eij ] = (ϵi − ϵj)(h)Eij for any i ̸= j, it follows that H is toral and a Cartan
subalgebra of L. It also follows easily that L is simple (using that any ideal is
invariant under the adjoint action of H) and that the set of roots of L relative to
H is

Φ = {ϵi − ϵj : 1 ≤ i ̸= j ≤ n+ 1}.

The restriction of the Killing form to H is determined by

κ(h, h) =
∑

1≤i ̸=j≤n+1

(αi − αj)
2 = 2

∑
1≤i<j≤n+1

(α2
i + α2

j − 2αiαj)

= 2(n+ 1)
∑

1≤i≤n+1

α2
i = 2(n+ 1) trace(h2)

(6.5)

for any h = diag(α1, . . . , αn+1) ∈ H, since 0 = (α1+ · · ·+αn+1)
2 =

∑
1≤i≤n+1 α

2
i +

2
∑

1≤i<j≤n+1 αiαj . Therefore, for any i ̸= j, tϵi−ϵj =
1

2(n+1)(Eii − Ejj) and

(
ϵi − ϵj |ϵh − ϵk

)
= (ϵi − ϵj)

(
tϵh−ϵk

)
=

1

2(n+ 1)

(
δih − δjh − δik + δjk

)
,

where δij is the Kronecker symbol. Thus we get the euclidean vector space E =
R⊗Q QΦ and can take the vector ν = nϵ1 + (n− 2)ϵ2 + · · ·+ (−n)ϵn+1 = n(ϵ1 −
ϵn+1)+(n−2)(ϵ2−ϵn)+ · · · ∈ E, which satisfies

(
ν|ϵi−ϵj

)
> 0 if and only if i < j.

For this ν we obtain the set of positive roots Φ+ = {ϵi−ϵj : 1 ≤ i < j ≤ n+1} and
the system of simple roots ∆ = {ϵ1− ϵ2, ϵ2− ϵ3, . . . , ϵn− ϵn+1}. The corresponding
Dynkin diagram is (An).

(Bn) Consider the following ‘orthogonal Lie algebra’:

L = so2n+1(k)

=

{
X ∈ gl2n+1(k) : X

t

1 0 0
0 0 In
0 In 0

+

1 0 0
0 0 In
0 In 0

X = 0

}

=

{0 −bt −at
a A B
b C −At

 : a, b ∈ Matn×1(k) ,

A,B,C ∈ Matn(k), B
t = −B, Ct = −C

}
(6.6)

where In denotes the identity n × n matrix. Number the rows and columns of
these matrices as 0, 1, . . . , n, 1̄, . . . , n̄ and consider the subalgebra H consisting
again of the diagonal matrices on L: H = {diag(0, α1, . . . , αn,−α1, . . . ,−αn) :
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αi ∈ k, i = 1, . . . , n}. Again we get the linear forms ϵi : H → k, such that
ϵi
(
diag(0, α1, . . . , αn,−α1, . . . ,−αn)

)
= αi, i = 1, . . . , n. Then,

L = H ⊕
(
⊕n

i=1k(E0i − Eī0)
)
⊕
(
⊕n

i=1k(E0̄i − Ei0)
)
⊕
(
⊕1≤i ̸=j≤nk(Eij − Ej̄ī)

)
⊕
(
⊕1≤i<j≤nk(Eij̄ − Ejī)

)
⊕
(
⊕1≤i<j≤nk(Eīj − Ej̄i)

)
= H ⊕

(
⊕n

i=1L−ϵi

)
⊕
(
⊕n

i=1Lϵi

)
⊕
(
⊕1≤i ̸=j≤nLϵi−ϵj

)
⊕
(
⊕1≤i<j≤nLϵi+ϵj

)
⊕
(
⊕1≤i<j≤nL−(ϵi+ϵj)

)
,

where Lα = {x ∈ L : [h, x] = α(h)x ∀h ∈ H}. It follows easily from here that H
is a Cartan subalgebra of L, that L is simple and that the set of roots is

Φ = {±ϵi,±ϵi ± ϵj : 1 ≤ i < j ≤ n}.

Also, for any h ∈ H as above,

κ(h, h) = 2(α2
1 + · · ·+ α2

n) +
∑

1≤i ̸=j≤n

(αi − αj)
2 + 2

∑
1≤i<j≤n

(αi + αj)
2

= 2(α2
1 + · · ·+ α2

n) + 2
∑

1≤i<j≤n

(
(αi − αj)

2 + (αi + αj)
2
)

=
(
2 + 4(n− 1)

)
(α2

1 + · · ·+ α2
n

)
= 2(2n− 1)(α2

1 + · · ·+ α2
n

)
= (2n− 1) trace(h2).

(6.7)

Therefore, tϵi =
1

2(2n−1)(Eii − Eī̄i) and
(
ϵi|ϵj

)
= ϵi(tϵj ) =

1
2(2n−1)δij . We can take

the element ν = nϵ1 + (n− 1)ϵ2 + · · ·+ ϵn, whose inner product with any root is
never 0 and gives Φ+ = {ϵi, ϵi ± ϵj : 1 ≤ i < j ≤ n} and system of simple roots
∆ = {ϵ1 − ϵ2, ϵ2 − ϵ3, . . . , ϵn−1 − ϵn, ϵn}. The associated Dynkin diagram is (Bn).

6.8 Exercise. Prove that so3(k) is isomorphic to sl2(k). (k being algebraically
closed.)

(Cn) Consider now the ‘symplectic Lie algebra’:

L = sp2n(k)

=

{
X ∈ gl2n(k) : X

t

(
0 In

−In 0

)
+

(
0 In

−In 0

)
X = 0

}

=

{(
A B
C −At

)
: A,B,C ∈ Matn(k), B

t = B, Ct = C

}(6.8)

where n ≥ 2 (for n = 1 we get sp2(k) = sl2(k)). Number the rows and columns
as 1, . . . , n, 1̄, . . . , n̄. As before, the subspace H of diagonal matrices is a Cartan
subalgebra with set of roots

Φ = {±2ϵi,±ϵi ± ϵj : 1 ≤ i < j ≤ n}
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where ϵi(h) = αi for any i, with h = diag(α1, . . . , αn,−α1, . . . ,−αn). Here

κ(h, h) = 2
n∑

i=1

4α2
i +

∑
1≤i ̸=j≤n

(αi − αj)
2 + 2

∑
1≤i<j≤n

(αi + αj)
2

= 8(α2
1 + · · ·+ α2

n) + 2
∑

1≤i<j≤n

(
(αi − αj)

2 + (αi + αj)
2
)

=
(
8 + 4(n− 1)

)
(α2

1 + · · ·+ α2
n

)
= 4(n+ 1)(α2

1 + · · ·+ α2
n

)
= 2(n+ 1) trace(h2),

(6.9)

tϵi =
1
4n(Eii−Eī̄i),

(
ϵi|ϵj

)
= 1

4nδij . Besides, we can take ν = nϵ1+(n−1)ϵ2+· · ·+ϵn,
which gives Φ+ = {2ϵi, ϵi±ϵj : 1 ≤ i < j ≤ n} and ∆ = {ϵ1−ϵ2, . . . , ϵn−1−ϵn, 2ϵn},
whose associated Dynkin diagram is (Cn).

(Dn) Finally, consider the ‘orthogonal Lie algebra’:

L = so2n(k)

=

{
X ∈ gl2n(k) : X

t

(
0 In
In 0

)
+

(
0 In
In 0

)
X = 0

}

=

{(
A B
C −At

)
: A,B,C ∈ Matn(k), B

t = −B, Ct = −C

}(6.10)

with n ≥ 4. Number the rows and columns as 1, . . . , n, 1̄, . . . , n̄. As it is always
the case, the subspace H of diagonal matrices is a Cartan subalgebra with set of
roots

Φ = {±ϵi ± ϵj : 1 ≤ i < j ≤ n}

where ϵi(h) = αi for any i, with h = diag(α1, . . . , αn,−α1, . . . ,−αn). Here

κ(h, h) =
∑

1≤i ̸=j≤n

(αi − αj)
2 + 2

∑
1≤i<j≤n

(αi + αj)
2

= 4(n− 1)(α2
1 + · · ·+ α2

n

)
= 2(n− 1) trace(h2),

(6.11)

tϵi =
1

4(n−1)(Eii−Eī̄i),
(
ϵi|ϵj

)
= 1

4(n−1)δij . Also, we can take ν = nϵ1+(n−1)ϵ2+

· · ·+ ϵn, which gives Φ+ = {ϵi ± ϵj : 1 ≤ i < j ≤ n} and ∆ = {ϵ1 − ϵ2, . . . , ϵn−1 −
ϵn, ϵn−1 + ϵn}, whose associated Dynkin diagram is (Dn).

The remaining Dynkin diagrams correspond to the so called exceptional simple Lie
algebras, whose description is more involved. Hence, we will proceed in a different way:

(E8) Let E = R8 with the canonical inner product ( . | . ) and canonical orthonormal
basis {e1, . . . , e8}. Take e0 = 1

2(e1 + · · ·+ e8) and Q = {m0e0 +
∑8

i=1miei : mi ∈
Z∀i,

∑8
i=1mi ∈ 2Z}, which is an additive subgroup of R8. Consider the set

Φ = {v ∈ Q : (v|v) = 2}.
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For v =
∑8

i=0miei ∈ Q, (v|v) =
∑8

i=1(mi +
1
2m0)

2, so if m0 is even, then mi +
1
2m0 ∈ Z for any i and the only possibilities for v to belong to Φ are v = ±ei ± ej ,
1 ≤ i < j ≤ 8. On the other hand, if m0 is odd, then mi +

1
2m0 ∈ 1

2 + Z for
any i and the only possibilities are v = 1

2(±e1 ± e2 ± · · · ± e8). Moreover, since∑8
i=1mi must be even, the number of + signs in the previous expression must be

even. In particular, Φ satisfies the restrictions (R1) and (R2) of the definition of
root system.

Besides, for any v ∈ Φ, (v|v) = 2 and for any v, w ∈ Φ, ⟨v|w⟩ = 2(v|w)
(w|w)

= (v|w)

is easily shown to be in Z, hence (R4) is satisfied too. The proof that (R3) is
satisfied is a straightforward computation. Thus, Φ is a root system.

Take now ν =
∑8

i=1 2
iei, then (ν|α) ̸= 0 for any α ∈ Φ. The associated set of

positive roots is Φ+ = {1
2(±e1 ± e2 ± · · · ± e7 + e8),±ei + ej : i < j}, and the set

of simple roots is

∆ =
{
α1 =

1
2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2, α3 = e2 − e1,

α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4, α7 = e6 − e5, α8 = e7 − e6
}

with associated Dynkin diagram

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

α1 α3 α4 α5 α6 α7 α8

α2

of type (E8).

(E7) and (E6) These are obtained as the ‘root subsystems’ of (E8) generated by ∆ \
{α8} and ∆ \ {α7, α8} above.

(F4) Here consider the euclidean vector space E = R4, e0 = 1
2(e1 + e2 + e3 + e4),

Q = {m0e0 +
∑4

i=1miei : mi ∈ Z}, and

Φ = {v ∈ Q : (v|v) = 1 or 2} = {±ei,±ei ± ej (i < j), 1
2(±e1 ± e2 ± e3 ± e4)}.

This is a root system and with ν = 8e1 + 4e2 + 2e3 + e4 one obtains Φ+ =
{ei, ei ± ej (i < j), 1

2(e1 ± e2 ± e3 ± e4)} and

∆ = {e2 − e3, e3 − e4, e4,
1
2(e1 − e2 − e3 − e4)},

with associated Dynkin graph (F4).

(G2) In the euclidean vector space E = {(α, β, γ) ∈ R3 : α + β + γ = 0} = R(1, 1, 1)⊥,
with the restriction of the canonical inner product on R3, consider the subset
Q = {m1e1 +m2e2 +m3e3 : mi ∈ Z, m1 +m2 +m3 = 0}, and

Φ = {v ∈ Q : (v|v) = 2 or 6}
= {±(ei − ej) (i < j),±(2e1 − e2 − e3),±(−e1 + 2e2 − e3),±(−e1 − e2 + 2e3)}.

Again, Φ is a root system, and with ν = −2e1 − e2 + 3e3, Φ
+ = {ei − ej (i >

j), −2e1 + e2 + e3, e1 − 2e2 + e3, −e1 − e2 + 2e3} and

∆ = {e2 − e1, e1 − 2e2 + e3},

with associated Dynkin diagram of type (G2).
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This finishes the classification of the connected Dynkin diagrams. To obtain from
this classification a classification of the root systems, it is enough to check that any root
system is determined by its Dynkin diagram.

6.9 Definition. Let Φi be a root system in the euclidean space Ei, i = 1, 2, and let
φ : E1 → E2 be a linear map. Then φ is said to be a root system isomorphism between
Φ1 and Φ2 if φ(Φ1) = Φ2 and for any α, β ∈ Φ1, ⟨φ(α)|φ(β)⟩ = ⟨α|β⟩.

6.10 Exercise. Prove that if φ is a root system isomorphism between the irreducible

root systems Φ1 and Φ2, then φ is a similarity of multiplier

(
φ(α)|φ(α)

)
(α|α)

for a fixed

α ∈ Φ1.

The next result is already known for roots that appear inside the semisimple Lie
algebras over algebraically closed fields of characteristic 0, because of the representation
theory of sl2(k).

6.11 Lemma. Let Φ be a root system, α, β ∈ Φ two roots such that β ̸= ±α, let
r = max{i ∈ Z≥0 : β− iα ∈ Φ} and q = max{i ∈ Z≥0 : β+ iα ∈ Φ}. Then ⟨β|α⟩ = r−q,
r+ q ≤ 3 and all the elements in the chain β− rα, β− (r− 1)α, . . . , β, . . . , β+ qα belong
to Φ (this is called the α-chain of β).

Proof. Take γ = β + qα ∈ Φ, then ⟨γ|α⟩ = ⟨β|α⟩ + 2q. Besides, γ + iα ̸∈ Φ for any
i ∈ Z>0, γ − (r + q)α ∈ Φ, and γ − (r + q + i)α ̸∈ Φ for any i ∈ Z>0.

Then σα(γ) = γ − ⟨γ|α⟩α ∈ Φ, so ⟨γ|α⟩ ≤ r + q; while σα
(
γ − (r + q)α

)
= γ −

⟨γ|α⟩α + (r + q)α ∈ Φ, so r + q − ⟨γ|α⟩ ≤ 0, or ⟨γ|α⟩ ≥ r + q. We conclude that
⟨γ|α⟩ = r + q and this is ≤ 3 by the argument in the proof of Proposition 6.1. Besides,
⟨β|α⟩ = ⟨γ|α⟩ − 2q = r − q.

Thus, ⟨γ|α⟩ = 0, 1, 2 or 3. If ⟨γ|α⟩ = 0, then the α-chain of β consists only of
γ = β ∈ Φ. If ⟨γ|α⟩ = 1, then the α-chain consists of γ ∈ Φ and γ − α = σα(γ) ∈ Φ. If
⟨γ|α⟩ = 2, then ⟨α|γ⟩ = 1 and the α-chain consists of γ ∈ Φ, γ − α = −σγ(α) ∈ Φ and
γ−2α = σα(γ) ∈ Φ. Finally, if ⟨γ|α⟩ = 3, then again ⟨α|γ⟩ = 1 and the α-chain consists
of γ ∈ Φ, γ − α = σγ(α), γ − 2α = σα(γ − α) ∈ Φ, and γ − 3α = σα(γ) ∈ Φ.

6.12 Theorem. Each Dynkin diagram determines a unique (up to isomorphism) root
system.

Proof. First note that it is enough to assume that the Dynkin diagram is connected.
We will do it.

Let ∆ be the set of nodes of the Dynkin diagram and fix arbitrarily the length of a
‘short node’. Then the diagram determines the inner product on E = RΦ = R∆. This
is better seen with an example. Take, for instance the Dynkin diagram (F4), so we have
∆ = {α1, α2, α3, α4}, with

◦ ◦ ◦ ◦>
α1 α2 α3 α4

Fix, for simplicity, (α3|α3) = 2 = (α4|α4). Then

� −1 = ⟨α3|α4⟩ =
2(α3|α4)

(α4|α4)
, so (α3|α4) = −1,
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� −2 = ⟨α2|α3⟩ =
2(α2|α3)

(α3|α3)
, so (α2|α3) = −2.

� −1 = ⟨α3|α2⟩ =
2(α3|α2)

(α2|α2)
, so (α2|α2) = 4 = (α1|α1).

� −1 = ⟨α1|α2⟩, so (α1|α2) = −2.

Since ∆ is a basis of E, the inner product is completely determined up to a nonzero
positive scalar (the arbitrary length we have imposed on the short roots of ∆). For any
other connected Dynkin diagram, the argument is the same.

Now, with ∆ = {α1, . . . , αn}, any α ∈ Φ+ appears as α =
∑n

i=1miαi with mi ∈ Z≥0.
Define the height of α as ht(α) = m1 + · · · + mn. It is enough to prove that for any
N ∈ N, the subset {α ∈ Φ+ : ht(α) = N} is determined by the Dynkin diagram, and
this is done by induction on N :

For N = 1 this is obvious, since ht(α) = 1 if and only if α ∈ ∆.

Assume that the result is valid for 1, . . . , N . Then it is enough to prove that the
roots of height N + 1 are precisely the vectors γ = β + α, with ht(β) = N , α ∈ ∆ and
such that ⟨β|α⟩ < r with r = max{i ∈ Z≥0 : β − iα ∈ Φ+}. Note that the height of the
roots β− iα ∈ Φ+, with i ≥ 0, is at most N , and hence all these roots are determined by
∆. Actually, if β ∈ Φ and α ∈ ∆ satisfy these conditions, then r > ⟨β|α⟩ = r− q by the
Lemma, so q ≥ 1, and β + α is in the α-chain of β, and hence it is a root. Conversely,
let γ =

∑n
i=1miαi be a root of height N + 1. Then 0 < (γ|γ) =

∑n
i=1mi(γ|αi), so

there is an i with (γ|αi) > 0 and mi > 0. From the previous Lemma we know that
β = γ − αi ∈ Φ, and ht(β) = N . Besides, β + αi ∈ Φ, so q ≥ 1 in the previous Lemma,
and hence r − q = ⟨β|αi⟩ < r, as required.

6.13 Remark. Actually, the proof of this Theorem gives an algorithm to obtain a root
system Φ, starting with its Dynkin diagram.

6.14 Exercise. Use this algorithm to obtain the root system associated to the Dynkin
diagram (G2).

6.15 Exercise. Let Φ a root system and let ∆ = {α1, . . . , αn} be a system of simple
roots of Φ. Let α = m1α1+· · ·+mnαn be a positive root of maximal height and consider
∆1 = {αi : mi ̸= 0} and ∆2 = ∆ \∆1. Prove that

(
∆1|∆2

)
= 0.

In particular, if Φ is irreducible this shows that α “involves” all the simple roots (∆ =
∆1).

§ 7. Classification of the semisimple Lie algebras

Throughout this section, the ground field k will be assumed to be algebraically closed
of characteristic 0.

The aim here is to show that each root system Φ determines, up to isomorphism, a
unique semisimple Lie algebra over k.
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Let L = H⊕
(
⊕α∈ΦLα

)
be the root space decomposition of a semisimple Lie algebra

over k, relative to a Cartan subalgebra H. We want to prove that the multiplication in
L is determined by Φ.

For any α ∈ Φ, there are elements xα ∈ Lα, yα ∈ L−α such that [xα, yα] = hα,
with α(hα) = 2. Besides, Lα = kxα, L−α = kyα and Sα = Lα ⊕ L−α ⊕ [Lα, L−α] =
kxα⊕kyα⊕khα is a subalgebra isomorphic to sl2(k). Also, for any β ∈ Φ\{±α}, recall
that the α-chain of β consists of roots β − rα, . . . , β, . . . , β + qα, where ⟨β|α⟩ = r − q.

7.1 Lemma. Under the hypotheses above, let α, β ∈ Φ with α+ β ∈ Φ, then [Lα, Lβ] =
Lα+β. Moreover, for any x ∈ Lβ,{

[yα, [xα, x]] = q(r + 1)x,

[xα, [yα, x]] = r(q + 1)x.

Proof. This is a straightforward consequence of the representation theory of sl2(k), since
⊕q

i=−rLβ+iα is a module for Sα ∼= sl2(k). Hence, there are elements vi ∈ Lβ+(q−i)α, i =
0, . . . , r+q, such that [yα, vi] = vi+1, [xα, vi] = i(r+q+1−i)vi−1, with v−1 = vr+q+1 = 0
(see the proof of Theorem 3.2); whence the result.

Let ∆ = {α1, . . . , αn} be a system of simple roots of Φ. For any i = 1, . . . , n, let
xi = xαi , yi = yαi and hi = hαi . For any α ∈ Φ+, the proof of Theorem 6.12 shows
that α is a sum of simple roots: α = αi1 + · · ·+ αir , with αi1 + · · ·+ αij ∈ Φ+ for any
j = 1, . . . , r = ht(α). For any α ∈ Φ+ we fix one such sequence Iα = (i1, . . . , ir) and take
xα = adxir · · · adxi2

(
xi1
)
and yα = ad yir · · · ad yi2

(
yi1
)
. These elements are nonzero by

the previous Lemma, and hence Lα = kxα and L−α = kyα.

7.2 Lemma. For any α ∈ Φ+, let J = Jα = (j1, . . . , jr) be another sequence such that
α = αj1 + · · · + αjr , and let xJ = adxjr · · · adxj2

(
xj1) and yJ = ad yjr · · · ad yj2

(
yj1).

Then there are rational numbers q, q′ ∈ Q, determined by Φ, such that xJ = qxα,
yJ = q′yα.

Proof. Since xJ ∈ Lα, the previous Lemma shows that xJ = q1[xir , [yir , xJ ]], for some
q1 ∈ Q which depends on Φ. Let s be the largest integer with js = ir, then

[yir , xJ ] = adxjr · · · adxjs+1 ad yir adxjs(xK)

(where K = (j1, . . . , js−1), since [yi, xj ] = 0 for any i ̸= j)

= q2 adxjr · · · adxjs+1(xK) (by the previous Lemma)

= q2q3xI′ (by induction on r = ht(α)),

where q2, q3 ∈ Q depend on Φ and I ′ = (i1, . . . , ir−1). Therefore, xJ = q1q2q3[xir , xI′ ] =
q1q2q3xα, with q1, q2, q3 ∈ Q determined by Φ. The proof for yJ is similar.

Hence, we may consider the following basis for L: B = {h1, . . . , hn, xα, yα : α ∈ Φ+},
with the xα’s and yα’s chosen as above.

7.3 Proposition. The product of any two elements in B is a rational multiple of another
element of B, determined by Φ, with the exception of the products [xα, yα], which are
linear combinations of the hi’s, with rational coefficients determined by Φ.
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Proof. First note that [hi, hj ] = 0, [hi, xα] = α(hi)xα = ⟨α|αi⟩xα and [hi, yα] =
−⟨α|αi⟩yα, are all determined by Φ.

Consider now α, β ∈ Φ+, and the corresponding fixed sequences Iα = (i1, . . . , ir),
Iβ = (j1, . . . , js).

To deal with the product [xα, xβ], let us argue by induction on r. If r = 1, [xα, xβ] =
0 if α + β ̸∈ Φ, while [xα, xβ] = qxα+β for some q ∈ Q determined by Φ by the
previous Lemma. On the other hand, if r > 1 and I ′α = (i1, . . . , ir−1), then [xα, xβ] =
[[xir , xI′α ], xβ] = [xir , [xI′α , xβ]]− [xI′α , [xir , xβ]] and now the induction hypothesis and the
previous Lemma yield the result. The same arguments apply to products [yα, yβ].

Finally, we will argue by induction on r too to deal with the product [xα, yβ]. If
r = 1 and α = αi, then [xα, yβ] = 0 if 0 ̸= β − α ̸∈ Φ, [xα, yβ] = hi if α = β,
while if β − α = γ ∈ Φ, then yβ = q[yi, yγ ] for some q ∈ Q determined by Φ, and
[xα, yβ] = q[xi, [yi, yγ ]] = qq′yγ , determined by Φ. On the other hand, if r > 1 then, as
before, [xα, yβ] = [xir , [xI′α , yβ]]−[xI′α , [xir , yβ]] and the induction hypothesis applies.

What remains to be done is, on one hand, to show that for each of the irreducible root
systems E6, E7, E8, F4, G2 there is a simple Lie algebra L over k and a Cartan subalgebra
H such that the corresponding root system is of this type. Since we have constructed
explicitly these root systems, the dimension of such an L must be |Φ| + rank(Φ), so
dimk L = 78, 133, 248, 52 and 14 respectively. Later on, some explicit constructions of
these algebras will be given.

On the other hand, given a simple Lie algebra L over k and two Cartan subalgebras
H1 and H2, it must be shown that the corresponding root systems Φ1 and Φ2 are
isomorphic. The next Theorem solves this question:

7.4 Theorem. Let L be one of the Lie algebras sln(k) (n ≥ 2), son(k) (n ≥ 3), or
sp2n(k) (n ≥ 1), and let H be any Cartan subalgebra of L. Then there is an element
g of the matrix group GLn(k), On(k) or Sp2n(k) respectively, such that gHg−1 is the
subspace of diagonal matrices in L. In particular, for any two Cartan subalgebras of L,
there is an automorphism φ ∈ Aut(L) such that φ(H1) = H2.

The last assertion is valid too for the simple Lie algebras containing a Cartan sub-
algebra such that the associated root system is exceptional.

Proof. For the first part, let V be the ‘natural’ module for L (V = kn (column vectors)
for sln(k) or son(k), and V = k2n for sp2n(k)). Since H is toral and abelian, the elements
of H form a commuting space of diagonalizable endomorphisms of V . Therefore there is
a simultaneous diagonalization: V = ⊕λ∈H∗Vλ, where Vλ = {v ∈ V : h.v = λ(h)v ∀h ∈
H}.

If L = sln(k), then this means that there is an element g ∈ GLn(k) such that
gHg−1 ⊆ {diagonal matrices}. Now, the map x 7→ gxg−1 is an automorphism of L and
hence gHg−1 is a Cartan subalgebra too, in particular it is a maximal toral subalgebra.
Since the set of diagonal matrices in L is a Cartan subalgebra too, we conclude by
maximality that gHg−1 coincides with the space of diagonal matrices in L.

If L = son(k) or L = sp2n(k), there is a nondegenerate symmetric or skew symmetric
bilinear form b : V × V → k such that (by its own definition) L = {x ∈ gl(V ) :
b(x.v, w) + b(v, x.w) = 0 ∀v, w ∈ V }. But then, for any h ∈ H, λ, ν ∈ H∗ and v ∈ Vλ,
w ∈ Vµ, 0 = b(h.v, w) + b(v, h.w) =

(
λ(h) + µ(h)

)
b(v, w). Hence we conclude that
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b(Vλ, Vµ) = 0 unless λ = −µ. This implies easily the existence of a basis of V consisting
of common eigenvectors for H in which the coordinate matrix of b is either1 0 0

0 0 In
0 In 0

 ,

(
0 In

−In 0

)
or

(
0 In
In 0

)

according to L being so2n+1(k), sp2n(k) or so2n(k). Therefore, there is a g ∈ SO2n+1(k),
Sp2n(k) or SO2n(k) (respectively) such that gHg−1 is contained in the space of diagonal
matrices of L. As before, we conclude that gHg−1 fills this space.

Finally, let L be a simple Lie algebra with a Cartan subalgebra H such that the
associated root system Φ is exceptional. Let H ′ be another Cartan subalgebra and Φ′

the associated root system. If Φ′ were classical, then Proposition 7.3 would show that L
is isomorphic to one of the simple classical Lie algebras, and by the first part of the proof,
there would exist an automorphism of L takingH ′ toH, so that Φ would be classical too,
a contradiction. Hence Φ′ is exceptional, and hence the fact that dimk L = |Φ|+rank(Φ),
and the same for Φ′, shows that Φ and Φ′ are isomorphic. But by Proposition 7.3 again,
we can choose bases {h1, . . . , hn, xα, yα : α ∈ Φ} and {h′1, . . . , h′n, x′α, y′α : α ∈ Φ′} with
the same multiplication table. Therefore, there is an automorphism φ of L such that
φ(hi) = h′i, φ(xα) = x′α and φ(yα) = y′α, for any i = 1, . . . , n and α ∈ Φ. In particular,
φ(H) = H ′.

7.5 Remark. There is a more general classical result which asserts that if H1 and H2

are any two Cartan subalgebras of an arbitrary Lie algebra over k, then there is an
automorphism φ, in the subgroup of the automorphism group generated by {exp adx :
x ∈ L, adx nilpotent} such that φ(H1) = H2. For an elementary (not easy!) proof, you
may consult the article by A.A. George Michael: On the conjugacy theorem of Cartan
subalgebras, Hiroshima Math. J. 32 (2002), 155-163.

The dimension of any Cartan subalgebra is called the rank of the Lie algebra.

Summarizing all the work done so far, and assuming the existence of the exceptional
simple Lie algebras, the following result has been proved:

7.6 Theorem. Any simple Lie algebra over k is isomorphic to a unique algebra in the
following list:

sln+1(k) (n ≥ 1, An), so2n+1(k) (n ≥ 2, Bn), sp2n(k) (n ≥ 3, Cn),

so2n(k) (n ≥ 4, Dn), E6, E7, E8, F4, G2.

7.7 Remark. There are the following isomorphisms among different Lie algebras:
so3(k) ∼= sp2(k) = sl2(k), so4(k) ∼= sl2(k)⊕ sl2(k), sp4(k)

∼= so5(k), so6(k) ∼= sl4(k).

Proof. This can be checked by computing the root systems associated to the natural
Cartan subalgebras. If the root systems are isomorphic, then so are the Lie algebras.

Alternatively, note that the Killing form on the three dimensional simple Lie alge-
bra sl2(k) is symmetric and nondegenerate, hence the orthogonal Lie algebra so3(k) ∼=
so
(
sl2(k), κ

)
, which has dimension 3 and contains the subalgebra ad sl2(k) ∼= sl2(k),

which is three dimensional too. Hence so3(k) ∼= sl2(k).
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Now consider V = Mat2(k), which is endowed with the quadratic form det and
its associated symmetric bilinear form b(x, y) = 1

2

(
det(x + y) − det(x) − det(y)

)
=

−1
2

(
trace(xy) − trace(x) trace(y)

)
. Then we get the one-to-one Lie algebra homomor-

phism sl2(k) ⊕ sl2(k) → so(V, b) ∼= so4(k), (a, b) 7→ φa,b, where φa,b(x) = ax − xb. By
dimension count, this is an isomorphism.

Next, consider the vector space V = k4. The determinant provides a linear iso-
morphism det : Λ4V ∼= k, which induces a symmetric nondegenerate bilinear map
b : Λ2V × Λ2V → k. The Lie algebra sl(V ) acts on Λ2(V ), which gives an embed-
ding sl4(k) ∼= sl(V ) ↪→ so

(
Λ2V, b

) ∼= so6(k). By dimension count, these Lie alge-
bras are isomorphic. Finally, consider a nondegenerate skew-symmetric bilinear form
c on V . Then c may be considered as a linear map c : Λ2V → k and the dimension
of K = ker c is 5. The embedding sl(V ) ↪→ so(Λ2V, b) restricts to an isomorphism
sp4(k)

∼= sp(V, c) ∼= so(K, b) ∼= so5(k).

§ 8. Exceptional Lie algebras

In this section a construction of the exceptional simple Lie algebras will be given, thus
completing the proof of Theorem 7.6. The hypothesis of the ground field k being al-
gebraically closed of characteristic 0 will be kept here. Many details will be left to the
reader.

Let V = k3 = Mat3×1(k) and let × denote the usual cross product on V . For any
x ∈ V , let lx denote the coordinate matrix, in the canonical basis, of the map y 7→ x×y.
Hence for

x =

x1x2
x3

 7→ lx =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .

Consider also the map V 3 → k, (x, y, z) 7→ (x× y) · z (where u · v denotes the canonical
inner product on V ). Then a simple computation gives that for any a ∈ sl3(k), lax =
−(lxa+a

tlx). Also, the identity of the double cross product: (x×y)×z = (x·z)y−(y·z)x,
shows that lx×y = yxt − xyt. Using these properties, the proof of the following result
follows at once.

8.1 Proposition. The subspace

L =


0 −2yt −2xt

x a ly
y lx −at

 : a ∈ sl3(k), x, y ∈ k3


is a fourteen dimensional Lie subalgebra of gl7(k).

For any a ∈ sl3(k), and x, y ∈ k3, let M(a,x,y) denote the matrix

0 −2yt −2xt

x a ly
y lx −at

.

In particular we get:

[M(a,0,0),M(0,x,0)] =M(0,ax,0), [M(a,0,0),M(0,0,y)] =M(0,0,−aty).
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Let H be the space of diagonal matrices in L, dimkH = 2 and let ϵi : H → k,
the linear map such that ϵi

(
diag(0, α1, α2, α3,−α1,−α2,−α3)

)
= αi, i = 1, 2, 3. Thus,

ϵ1 + ϵ2 + ϵ3 = 0. Let {e1, e2, e3} be the canonical basis of V = k3. Then we have a root
space decomposition

L = H ⊕
(
⊕α∈ΦLα

)
,

with Φ = {±(ϵ1− ϵ2),±(ϵ1− ϵ3),±(ϵ2− ϵ3),±ϵ1,±ϵ2,±ϵ3}, where M(Eij ,0,0) ∈ Lϵi−ϵj for
i ̸= j, M(0,ei,0) ∈ Lϵi , and M(0,0,ei) ∈ L−ϵi .

8.2 Theorem. L is simple of type G2.

Proof. Any proper ideal I of L is invariant under the adjoint action ofH, so I = (I∩H)⊕(
⊕α∈Φ(I ∩Lα)

)
. Also, sl3(k) is isomorphic to the subalgebra S = {M(a,0,0) : a ∈ sl3(k)}

of L. If I ∩ S ̸= 0, then, since S is simple, H ⊆ S ⊆ I, and hence L = H + [H,L] ⊆ I,
a contradiction. On the other hand, if I ∩ S = 0, then there is an i = 1, 2, 3 such that
Lα ⊆ I with α = ±ϵi. But 0 ̸= [Lα, L−α] ⊆ I ∩ S, a contradiction again.

Therefore L is simple of rank 2 and dimension 14. Since the classical Lie algebras of
rank 2 are sl3(k) of dimension 8, and so5(k) of dimension 10, the only possibility left is
that L must be of type G2.

8.3 Exercise. Compute the restriction to H of the Killing form of L. Get a system of
simple roots of Φ and check directly that Φ is the root system G2.

Let us proceed now to give a construction, due to Freudenthal, of the simple Lie
algebra of type E8. To do so, let V be a vector space of dimension 9 and V ∗ its dual.
Consider a nonzero alternating multilinear map det : V 9 → k (the election of det to
name this map is natural), which induces an isomorphism Λ9V ∼= k, and hence another
isomorphism Λ9V ∗ ∼=

(
Λ9V )∗ ∼= k. Take a basis {e1, . . . , e9} of V with det(e1, . . . , e9) =

1, and consider its dual basis {ε1, . . . , ε9} (so, under the previous isomorphisms, ε1 ∧
. . . ∧ ε9 ∈ Λ9V ∗ corresponds to 1 ∈ k too).

Consider now the simple Lie algebra of type A8, S = sl(V ) ∼= sl9(k), which acts
naturally on V . Then V ∗ is a module too for S with the action given by x.φ(v) = −φ(x.v)
for any x ∈ S, v ∈ V and φ ∈ V ∗. Consider W = Λ3V , which is a module too under the
action given by x.(v1∧v2∧v3) = (x.v1)∧v2∧v3+v1∧(x.v2)∧v3+v1∧v2∧(x.v3) for any
x ∈ S and v1, v2, v3 ∈ V . The dual space (up to isomorphism) W ∗ = Λ3V ∗ is likewise a
module for S. Here (φ1 ∧ φ2 ∧ φ3)(v1 ∧ v2 ∧ v3) = det

(
φi(vj)

)
for any φ1, φ2, φ3 ∈ V ∗

and v1, v2, v3 ∈ V .
The multilinear map det induces a multilinear alternating map T :W ×W ×W → k,

such that
T
(
v1 ∧ v2 ∧ v3, v4 ∧ v5 ∧ v6, v7 ∧ v8 ∧ v9) = det(v1, . . . , v9),

for any vi’s in V . In the same vein we get the multilinear alternating map T ∗ :W ∗×W ∗×
W ∗ → k. These maps induce, in turn, bilinear mapsW×W →W ∗, (w1, w2) 7→ w1⋄w2 ∈
W ∗, with (w1 ⋄ w2)(w) = T (w1, w2, w), and W

∗ ×W ∗ → W , (ψ1, ψ2) 7→ ψ1 ⋄ ψ2 ∈ W ,
with (ψ1⋄ψ2)(ψ) = T ∗(ψ1, ψ2, ψ), for any w1, w2, w ∈W and ψ1, ψ2, ψ ∈W ∗, and where
natural identifications have been used, like (W ∗)∗ ∼=W .

Take now the bilinear map Λ3V × Λ3V ∗ → sl(V ): (w,ψ) 7→ w ∗ ψ, given by

(v1 ∧ v2 ∧ v3) ∗ (φ1 ∧ φ2 ∧ φ3)

=
1

2

( ∑
σ,τ∈S3

(−1)σ(−1)τφσ(1)(vτ(1))φσ(2)(vτ(2))vτ(3) ⊗ φσ(3)

)
− 1

3
det
(
φi(vj)

)
1V ,
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where (−1)σ denotes the signature of the permutation σ ∈ S3, v ⊗ φ denotes the endo-
morphism u 7→ φ(u)v, and 1V denotes the identity map on V . Then for any w ∈ Λ3V ,
ψ ∈ Λ3V ∗ and x ∈ sl(V ), the following equation holds:

trace
(
(w ∗ ψ)x

)
= ψ(x.w).

(It is enough to check this for basic elements eJ = ej1 ∧ ej2 ∧ ej3 , where J = (j1, j2, j3)
and j1 < j2 < j3, in W and the elements in the dual basis of W ∗: εJ = εj1 ∧ εj2 ∧ εj3 .)
Note that this equation can be used as the definition of w ∗ ψ.

Now consider the vector space L = sl(V )⊕W ⊕W ∗ with the Lie bracket given, for
any x, y ∈ sl(V ), w,w1, w2 ∈W and ψ,ψ1, ψ2 ∈W ∗ by:

[x, y] is the bracket in sl(V ),

[x,w] = x.w ∈W, [x, ψ] = x.ψ ∈W ∗,

[w1, w2] = w1 ⋄ w2 ∈W ∗,

[ψ1, ψ2] = ψ1 ⋄ ψ2 ∈W,

[w,ψ] = −w ∗ ψ ∈ sl(V ).

A lengthy computation with basic elements, shows that L is indeed a Lie algebra.
Its dimension is dimk L = 80 + 2

(
9
3

)
= 80 + 2× 84 = 248.

Let H be the Cartan subalgebra of sl(V ) consisting of the trace zero endomorphisms
with a diagonal coordinate matrix in our basis {e1, . . . , e9}, and let δi : H → k be
the linear form such that (identifying endomorphisms with their coordinate matrices)
δi
(
diag(α1, . . . , α9)

)
= αi. Then δ1 + · · · + δ9 = 0, H is toral in L and there is a root

decomposition

L = H ⊕
(
⊕α∈ΦLα

)
,

where

Φ = {δi − δj : i ̸= j} ∪ {±(δi + δj + δk) : i < j < k}.

Here Lδi−δj = kEij ⊆ sl(V ) (Eij denotes the endomorphism whose coordinate matrix
has (i, j)-entry 1 and 0’s elsewhere), Lδi+δj+δk = k(ei∧ ej ∧ ek) ⊆W and L−(δi+δj+δk) =
k(εi ∧ εj ∧ eεk) ⊆ W ∗. Using that sl(V ) is simple, the same argument in the proof of
Theorem 8.2 proves that L is simple:

8.4 Theorem. L is simple of type E8.

Proof. We have shown that L is simple of rank 8. The classical Lie algebras of rank 8,
up to isomorphism, are sl9(k), so17(k), sp16(k) and so16(k), which have dimensions 80,
156, 156 and 120 respectively. Hence L is not isomorphic to any of them and hence it is
of type E8.

Take now the simple Lie algebra L of type E8 and its generators {hi, xi, yi : i =
1, . . . , 8} as in the paragraph previous to Lemma 7.2, the indexing given by the ordering
of the simple roots given in the next diagram:

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

α1 α3 α4 α5 α6 α7 α8

α2
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Let κ be the Killing form of L. Then consider the subalgebra L̂ generated by {hi, xi, yi :
i = 1, . . . , 7} and its subalgebra Ĥ = ⊕7

i=1khi. Since H is toral in L, so is Ĥ in L̂ and

L̂ = Ĥ ⊕
(
⊕α∈Φ∩(Zα1+···Zα7)Lα

)
.

From here it follows that Ĥ is a Cartan subalgebra of L̂. Since the restriction of κ to
Ĥ is nondegenerate (recall that the restriction of κ to

∑8
i=1Qhi is positive definite!),

the restriction of κ to L̂ is nondegenerate. Thus we get a representation ad : L̂→ gl(L)
with nondegenerate trace form, and hence L̂ = Z(L̂) ⊕ [L̂, L̂], with [L̂, L̂] semisimple
(recall Consequences 2.2). But Ĥ ⊆ [L̂, L̂] and Z(L̂) ⊆ CL̂(Ĥ) = Ĥ, so Z(L̂) = 0 and

L̂ is semisimple, with root system of type E7 (which is irreducible). Theorem 6.3 shows
that L̂ is simple of type E7.

The same arguments show that the Lie subalgebra L̃ of L generated by {hi, xi, yi :
i = 1, . . . , 6} is a simple Lie algebra of type E6.

Finally, the existence of a simple Lie algebra of type F4 will be deduced from that
of E6. Let now L̃ be the simple Lie algebra of type E6 considered above, with canonical
generators {hi, xi, yi : i = 1, . . . , 6}. Since the multiplication in L̃ is determined by the
Dynkin diagram, there is an automorphism φ of L̃ such that

φ(h1) = h6, φ(x1) = x6, φ(y1) = y6,

φ(h6) = h1, φ(x6) = x1, φ(y6) = y1,

φ(h3) = h5, φ(x3) = x5, φ(y3) = y5,

φ(h5) = h3, φ(x5) = x3, φ(y5) = y3,

φ(h2) = h2, φ(x2) = x2, φ(y2) = y2,

φ(h4) = h4, φ(x4) = x4, φ(y4) = y4.

In particular, φ2 is the identity, so L̃ = L̃0̄ ⊕ L̃1̄, with L̃0̄ = {z ∈ L̃ : φ(z) = z}, while
L̃1̄ = {z ∈ L̃ : φ(z) = −z}, and it is clear that L̃0̄ is a subalgebra of L̃, [L̃0̄, L̃1̄] ⊆ L̃1̄,
[L̃1̄, L̃1̄] ⊆ L̃0̄. For any z ∈ L̃0̄ and z

′ ∈ L̃1̄, κ(z, z
′) = κ

(
φ(z), φ(z′)

)
= κ(z,−z′), where κ

denotes the Killing form of L̃. Hence κ(L̃0̄, L̃1̄) = 0 and, thus, the restriction of κ to L̃0̄ is
nondegenerate. This means that the adjoint map gives a representation ad : L̃0̄ → gl(L̃)
with nondegenerate trace form. As before, this gives L̃0̄ = Z(L̃0̄)⊕ [L̃0̄, L̃0̄], and [L̃0̄, L̃0̄]
is semisimple.

Consider the following elements of L̃0̄:

h̃1 = h1 + h6, h̃2 = h3 + h5, h̃3 = h2, h̃4 = h2,

x̃1 = x1 + x6, x̃2 = x3 + x5, x̃3 = x4, x̃4 = x2,

ỹ1 = y1 + y6, ỹ2 = y3 + y5, ỹ3 = y4, ỹ4 = y2.

Note that [x̃i, ỹi] = h̃i for any i = 1, 2, 3, 4. The element h̃ = 10h̃1 + 19h̃2 + 27h̃3 + 14h̃4
satisfies 

α1(h̃) = α6(h̃) = 20− 19 = 1,

α3(h̃) = α5(h̃) = 38− 10− 27 = 1,

α4(h̃) = 54− 38− 14 = 2,

α2(h̃) = 28− 27 = 1.
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Thus α(h̃) > 0 for any α ∈ Φ+, where Φ is the root system of L̃. In particular, α(h̃) ̸= 0
for any α ∈ Φ.

Note that H̃ = ⊕6
i=1khi is a Cartan subalgebra of L̃. Besides, φ(H̃) = H̃ and hence

H̃ = H̃ 0̄⊕H̃ 1̄, with H̃ 0̄ = H̃∩L̃0̄ = ⊕4
i=1kh̃i and H̃ 1̄ = H̃∩L̃1̄ = k(h1−h6)⊕k(h3−h5).

Also, for any α ∈ Φ, xα + φ(xα) ∈ L̃0̄, and this vector is a common eigenvector for H̃ 0̄

with eigenvalue α|H̃ 0̄
, which is not zero since α(h̃) ̸= 0 for any α ∈ Φ. Hence there is a

root space decomposition

L̃0̄ = H̃ 0̄ ⊕
(∑
α∈Φ

k(xα + φ(xα))
)

and it follows that Z(L̃0̄) ⊆ CL̃(H̃ 0̄) ∩ L0̄ = H̃ ∩ L0̄ = H̃ 0̄ ⊆ [L̃0̄, L̃0̄]. We conclude that

Z(L̃0̄) = 0, so L̃0̄ is semisimple, and H̃ 0̄ is a Cartan subalgebra of L̃0̄.

The root system Φ̃ of L̃0̄, relative to H̃ 0̄, satisfies that Φ̃ ⊆ {α̃ = α|H̃ 0̄
: α ∈ Φ}.

Also α̃i = αi|H̃ 0̄
∈ Φ̃, with x̃i ∈ (L̃0̄)α̃i and ỹi ∈ (L̃0̄)−α̃i for any i = 1, 2, 3, 4. Moreover,

[x̃i, ỹi] = h̃i and α̃i(h̃i) = 2 for any i. Besides, Φ̃ = Φ̃+∪Φ̃−, with Φ̃+ = {α̃ ∈ Φ̃ : α̃(h̃) >
0} ⊆ {α̃ : α ∈ Φ+} (and similarly with Φ̃−). We conclude that ∆̃ = {α̃1, α̃2, α̃3, α̃4}
is a system of simple roots of L̃0̄. We can compute the associated Cartan matrix. For
instance,

[h̃1, x̃2] =

{
α̃2(h̃1)x̃2 = ⟨α̃2|α̃1⟩x̃2
[h1 + h6, x3 + x5] = α3(h1 + h6)x3 + α5(h1 + h6)x5 = −(x3 + x5) = −x̃2,

[h̃2, x̃3] =

{
α̃3(h̃2)x̃3 = ⟨α̃3|α̃2⟩x̃3
[h3 + h5, x4] = α4(h3 + h5)x4 = −2x4 = −2x̃3,

which shows that ⟨α̃2|α̃1⟩ = −1 and ⟨α̃3|α̃2⟩ = −2. In this way we can compute the
whole Cartan matrix, which turns out to be the Cartan matrix of type F4:

2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2


thus proving that L̃0̄ is the simple Lie algebra of type F4.





Chapter 3

Representations of semisimple Lie
algebras

Unless otherwise stated, the following assumptions will be kept throughout the chapter:

� k will denote an algebraically closed field of characteristic 0,

� L will denote a semisimple Lie algebra over k,

� H will be a fixed Cartan subalgebra of L, Φ will denote the corresponding set of
roots and L = H ⊕

(
⊕α∈ΦLα

)
the root space decomposition.

� κ will denote the Killing form of L and ( | ) : H∗ ×H∗ → k the induced nondegen-
erate bilinear form.

� For any α ∈ Φ, tα ∈ H is defined by the relation α(h) = κ(tα, h) for any h ∈ H,
and hα = 2tα

α(tα)
.

� ∆ = {α1, . . . , αn} denotes a fixed system of simple roots. Accordingly, Φ decom-
poses as Φ = Φ+ ∪ Φ− (disjoint union), where Φ+ (respectively Φ−) is the set of
positive roots (resp., negative roots). Moreover, Φ− = −Φ+. For α ∈ Φ+, let
xα ∈ Lα and yα ∈ L−α with [xα, yα] = hα.

� W is the Weyl group, generated by {σα : α ∈ Φ}.

� L+ = ⊕α∈Φ+Lα, L
− = ⊕α∈Φ−Lα, so that L = L− ⊕H ⊕ L+.

This chapter is devoted to the study of the finite dimensional representations of such
an algebra L. By Weyl’s theorem (Chapter 2, 2.5), any representation is completely
reducible, so the attention is focused on the irreducible representations.

§ 1. Preliminaries

Let ρ : L→ gl(V ) be a finite dimensional representation of the Lie algebra L. Since the
Cartan subalgebra H is toral, V decomposes as

V = ⊕µ∈H∗Vµ,

where Vµ = {v ∈ V : h.v = µ(h)v ∀h ∈ H}.

61
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1.1 Definition. Under these circumstances, µ ∈ H∗ is said to be a weight of V if
Vµ ̸= 0. The set of weights of V is denoted P (V ).

1.2 Properties of P (V ).

(i) For any α ∈ Φ and µ ∈ P (V ), Lα.Vµ ⊆ Vα+µ.

(ii) For any µ ∈ P (V ) and α ∈ Φ, ⟨µ|α⟩ := 2(µ|α)
(α|α) is an integer.

Proof. Let Sα = Lα ⊕ L−α ⊕ [Lα, L−α], which is isomorphic to sl2(k) and take
elements xα ∈ Lα and yα ∈ L−α such that [xα, yα] = hα. Then W = ⊕m∈ZVµ+mα

is an Sα-submodule of V . Hence the eigenvalues of the action of hα on W form an
unbroken chain of integers:

(1.1) (µ+ qα)(hα), . . . , µ(hα), . . . , (µ− rα)(hα),

with (µ− rα)(hα) = −(µ+ qα)(hα). But µ(hα) = ⟨µ|α⟩ and α(hα) = 2. Hence,

µ(hα) = ⟨µ|α⟩ = r − q ∈ Z.

(iii) P (V ) is W-invariant.

Proof. For any µ ∈ P (V ) and α ∈ Φ, σα(µ) = µ− ⟨µ|α⟩α = µ− (r − q)α ∈ P (V ),
since it belongs to the unbroken chain (1.1).

(iv) Let C =
(
⟨αi|αj⟩

)
be the Cartan matrix. Then

P (V ) ⊆ 1

detC

(
Zα1 + · · ·+ Zαn

)
⊆ E = Rα1 + · · ·+ Rαn.

(Recall that E is an euclidean vector space.)

Proof. Since ∆ is a basis of H∗, for any µ ∈ P (V ), there are scalars r1, . . . , rn ∈ k
such that µ = r1α1+ · · ·+ rnαn. Then ⟨µ|αj⟩ =

∑n
i=1⟨αi|αj⟩ri, j = 1, . . . , n. This

constitutes a system of linear equations with integer coefficients, whose matrix is
C. Solving this system using Cramer’s rule gives ri ∈ 1

detCZ.

At this point it is useful to note that detAn = n+1, detBn = detCn = 2, detDn = 4,
detE6 = 3, detE7 = 2 and detE8 = detF4 = detG2 = 1.

1.3 Definition.

� ΛR = Z∆ = ZΦ is called the root lattice of L.

� ΛW = {λ ∈ H∗ : ⟨λ|αi⟩ ∈ Z ∀i = 1, . . . , n} (which is contained in Z
detC∆) is called

the weight lattice.

� The elements of ΛW are called weights of the pair (L,H).

� An element λ ∈ ΛW is said to be a dominant weight if ⟨λ|α⟩ ≥ 0 for any α ∈ ∆.
The set of dominant weights is denoted by Λ+

W .
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� For any i = 1, . . . , n, let λi ∈ H∗ such that ⟨λi|αj⟩ = δij for any j = 1, . . . , n.
Then λi ∈ Λ+

W , ΛW = Zλ1 + . . . + Zλn, and Λ+
W = Z≥0λ1 + · · · + Z≥0λn. The

weights λ1, . . . , λn are called the fundamental dominant weights.

1.4 Proposition. ΛW = {λ ∈ H∗ : ⟨λ|α⟩ ∈ Z ∀α ∈ Φ}. In particular, the weight lattice
does not depend on the chosen set of simple roots ∆.

Proof. It is trivial that {λ ∈ H∗ : ⟨λ|α⟩ ∈ Z ∀α ∈ Φ} ⊆ ΛW . Conversely, let λ ∈ ΛW

and α ∈ Φ+. Let us check that ⟨λ|α⟩ ∈ Z by induction on ht(α). If this height is
1, then α ∈ ∆ and this is trivial. If ht(α) = n > 1, then α = m1α1 + · · · + mnαn,
with m1, . . . ,mn ∈ Z≥0. Since (α|α) > 0, there is at least one i = 1, . . . , n such that
(α|αi) > 0 and ht

(
σαi(α)

)
= ht

(
α− ⟨α|αi⟩αi

)
< ht(α). Then

⟨λ|α⟩ = ⟨σαi(λ)|σαi(α)⟩ =
〈
λ− ⟨λ|αi⟩αi|σαi(α)

〉
= ⟨λ|σαi(α)⟩ − ⟨λ|αi⟩⟨αi|σαi(α)⟩

and the first summand is in Z by the induction hypothesis, and so is the second since
λ ∈ ΛW and ⟨Φ|Φ⟩ ⊆ Z.

1.5 Definition. Let ρ : L → gl(M) be a not necessarily finite dimensional representa-
tion.

(i) An element 0 ̸= m ∈M is called a highest weight vector if m is an eigenvector for
all the operators ρ(h) (h ∈ H), and ρ(L+)(m) = 0.

(ii) The moduleM is said to be a highest weight module if it contains a highest weight
vector that generates M as a module for L.

1.6 Proposition. Let ρ : L→ gl(V ) be a finite dimensional representation of L. Then

(i) V contains highest weight vectors. If v ∈ V is such a vector and v ∈ Vλ (λ ∈ H∗),
then λ ∈ Λ+

W .

(ii) Let 0 ̸= v ∈ Vλ be a highest weight vector. Then

W = kv +
∞∑
r=1

∑
1≤i1,...,ir≤n

k
(
ρ(yαi1

) · · · ρ(yαir
)(v)

)
is the submodule of V generated by v. Besides, W is an irreducible L-module and
P (W ) ⊆ {λ− αi1 − · · · − αir : r ≥ 0, 1 ≤ i1, . . . , ir ≤ n}

(
= λ−

∑n
i=1 Z≥0αi

)
.

(iii) If V is irreducible, then it contains, up to scalars, a unique highest weight vector.
Its weight is called the highest weight of V .

(iv) (Uniqueness) For any λ ∈ Λ+
W there is, up to isomorphism, at most one finite

dimensional irreducible L-module whose highest weight is λ.

Proof. (i) Let l ∈ QΦ such that (l|α) > 0 for any α ∈ ∆ (for instance, one can take
(l|α) = 1 for any α ∈ ∆), and let λ ∈ P (V ) such that (l|λ) is maximum. Then for any
α ∈ Φ+, λ + α ̸∈ P (V ), so that Lα.Vλ = 0. Hence L+.Vλ = 0 and any 0 ̸= v ∈ Vλ is a
highest weight vector.
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(ii) The subspace W is invariant under the action of L− and the action of H (since
it is spanned by common eigenvectors for H). Therefore, since L+ is generated by
{xα : α ∈ ∆}, it is enough to check that W is invariant under the action of ρ(xα), for
α ∈ ∆. But xα.v = 0 (v is a highest weight vector) and for any α, β ∈ ∆ and w ∈ W ,
xα.(yβ.w) = [xα, yβ].w − yβ.(xα.w), and [xα, yβ] either is 0 or belongs to H. An easy
induction on r argument shows that xα.

(
ρ(yα1) · · · ρ(yαir

)(v)
)
∈W , as required.

Therefore, W is an L-submodule and P (W ) ⊆ {λ − αi1 − · · · − αir : r ≥ 0, 1 ≤
i1, . . . , ir ≤ n}. (Note that up to now, the finite dimensionality of V has played no role.)

Moreover, Vλ∩W = kv and ifW is the direct sum of two submodulesW =W ′⊕W ′′,
then Wλ = kv = W ′

λ ⊕W ′′
λ . Hence either v ∈ W ′

λ or v ∈ W ′′
λ . Since W is generated by

v, we conclude that either W = W ′ or W = W ′′. Now, by finite dimensionality, Weyl’s
Theorem (Chapter 2, 2.5) implies that W is irreducible.

Besides, since for any α ∈ Φ+ we have λ+ α ̸∈ P (W ), ⟨λ|α⟩ = r − q = r ≥ 0. This
shows that λ ∈ Λ+

W , completing thus the proof of (i).

(iii) If V is irreducible, then V = W , Vλ = kvλ and for any µ ∈ P (V ) \ {λ} there is
an r ≥ 0 and 1 ≤ i1, . . . , ir ≤ n such that µ = λ − αi1 − · · · − αir . Hence (l|µ) < (l|λ).
Therefore, the highest weight is the only weight with maximum value of (l|λ).
(iv) If V 1 and V 2 are two irreducible highest weight modules with highest weight λ and
v1 ∈ V 1

λ , v
2 ∈ V 2

λ are two highest weight vectors, then w = (v1, v2) is a highest weight
vector in V 1⊕V 2, and hence W = kw+

∑∞
r=1

∑
1≤i1,...,ir≤n k

(
ρ(yα1) · · · ρ(yαir

)(w)
)
is a

submodule of V 1 ⊕ V 2. Let πi : V 1 ⊕ V 2 → V i denote the natural projection (i = 1, 2).
Then vi ∈ πi(W ), so πi(W ) ̸= 0 and, since both W and V i are irreducible by item (ii),
it follows that πi|W :W → V i is an isomorphism (i = 1, 2). Hence both V 1 and V 2 are
isomorphic to W .

There appears the natural question of existence: given a dominant weight λ ∈ Λ+
W ,

does there exist a finite dimensional irreducible L-module V whose highest weight is λ?
Note that λ = m1λ1 + · · ·+mnλn, with m1, . . . ,mn ∈ Z≥0. If it can be proved that

there exists and irreducible finite dimensional highest weight module V (λi) of highest
weight λi, for any i = 1, . . . , n, then in the module

V (λ1)
⊗m1 ⊗ · · · ⊗ V (λn)

⊗mn

there is a highest weight vector of weight λ (the basic tensor obtained with the highest
weight vectors of each copy of V (λi)), By item (ii) above this highest weight vector
generates an irreducible L-submodule of highest weight λ. Hence it is enough to deal
with the fundamental dominant weights and this can be done “ad hoc”. A more abstract
proof will be given here.

§ 2. Properties of weights and the Weyl group

Let us go back to the abstract situation that appeared in Chapter 2.
Let E be an euclidean vector space, Φ a root system in E and ∆ = {α1, . . . , αn}

a system of simple roots. Consider in this abstract setting the subsets we are already
familiar with:

ΛR = Z∆ = ZΦ,
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ΛW = {λ ∈ E : ⟨λ|α⟩ ∈ Z ∀α ∈ Φ} = Zλ1 + · · ·+ Zλn (the weight lattice),

Λ+
W = {λ ∈ ΛW : ⟨λ|α⟩ ≥ 0 ∀α ∈ ∆} = Z≥0λ1 + · · ·+ Z≥0λn (the set of dominant

weights),

σi = σαi (i = 1, . . . , n), W = ⟨σα : α ∈ Φ⟩ (Weyl group).

2.1 Properties.

(i) The Weyl group is generated by σ1, . . . , σn.

Proof. Let W0 be the subgroup of W generated by σ1, . . . , σn. It is enough to
prove that σα ∈ W0 for any α ∈ Φ+. This will be proven by induction on ht(α),
and it is trivial if ht(α) = 1. Assume that ht(α) = r and that σβ ∈ W0 for any
β ∈ Φ+ with ht(β) < r. The arguments in the proof of Proposition 1.4 show
that there is an i = 1, . . . , n, such that (α|αi) > 0, so β = σαi(α) = α − ⟨α|αi⟩αi

satisfies that ht(β) < ht(α). Hence σβ ∈ W0. But for any isometry τ and any
µ ∈ E:

στ(α) ◦ τ(µ) = τ(µ)− ⟨τ(µ)|τ(α)⟩τ(α) = τ
(
µ− ⟨µ|α⟩α

)
= τ ◦ σα(µ),

so στ(α) = τ ◦ σα ◦ τ−1. In particular, with τ = σi, σα = σiσβσi ∈ W0.

(ii) If t ≥ 2, β1, . . . , βt ∈ ∆ and σβ1 ◦ . . . ◦ σβt−1(βt) ∈ Φ−, then there is an index
1 ≤ s ≤ t− 1 such that

σβ1 ◦ . . . ◦ σβt = σβ1 ◦ . . . ◦ σβs−1 ◦ σβs+1 ◦ . . . ◦ σβt−1 .

(That is, there is a simpler expression as a product of generators.)

Proof. Let s be the largest index (1 ≤ s < t − 1) with σβs ◦ . . . ◦ σβt−1(βt) ∈ Φ−.
Thus σβs

(
σβs+1 ◦. . .◦σβt−1(βt)

)
∈ Φ−. But σβs

(
Φ+\{βs}

)
= Φ+\{βs} (Chapter 2,

Proposition 6.1), so σβs+1 ◦ . . . ◦ σβt−1(βt) = βs and, using the argument in the
proof of (i),(

σβs+1 ◦ . . . ◦ σβt−1

)
◦ σβt ◦

(
σβt−1 ◦ . . . ◦ σβs+1

)
= σσβs+1

◦...◦σβt−1
(βt) = σβs ,

whence

σβs ◦ σβs+1 ◦ . . . ◦ σβt−1 ◦ σβt = σβs+1 ◦ . . . ◦ σβt−1 .

(iii) Given any σ ∈ W, item (i) implies that there are β1, . . . , βt ∈ ∆ such that σ =
σβ1 ◦ . . . ◦ σβt. This expression is called reduced if t is minimum. (For σ = id,
t = 0.) By the previous item, if the expression is reduced σ(βt) ∈ Φ−. In particular,
for any id ̸= σ ∈ W, σ(∆) ̸= ∆. Therefore, because of Chapter 2, Proposition 6.1,
W acts simply transitively on the systems of simple roots.

(iv) Let σ = σi1 ◦ · · · ◦ σit be a reduced expression. Write l(σ) = t. Also let n(σ) =
|{α ∈ Φ+ : σ(α) ∈ Φ−}|. Then l(σ) = n(σ).
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Proof. By induction on l(σ) = t. If t = 0 this is trivial. For t > 0, σ = σi1 ◦· · ·◦σit
satisfies σ(αit) ∈ Φ−. But σit

(
Φ+\{αit}

)
= Φ+\{αit}. Hence n

(
σi1 ◦· · ·◦σit−1

)
=

n(σ)− 1 and the induction hypothesis applies.

(v) There is a unique element σ0 ∈ W such that σ0(∆) = −∆. Moreover, σ20 = id and
l(σ0) = |Φ+|.

Proof. W acts simply transitively on the system of simple roots, so there is a
unique σ0 ∈ W such that σ0(∆) = −∆. Since σ20(∆) = ∆, it follows that σ20 = id.
Also, σ0(Φ

+) = Φ−, so l(σ0) = n(σ0) = |Φ+|.

(vi) Define a partial order on E by µ ≤ λ if λ− µ ∈ Z≥0α1 + · · ·+Z≥0αn. If λ ∈ Λ+
W ,

then |{µ ∈ Λ+
W : µ ≤ λ}| is finite.

Proof. λ ∈ ΛW , so λ = r1α1+ · · ·+ rnαn, with r1, . . . , rn ∈ Q (see Properties 1.2).
It is enough to prove that if λ ∈ Λ+

W , then ri ≥ 0 for any i; because if µ ∈ Λ+
W and

µ ≤ λ, then µ = s1α1 + · · · + snαn with si ∈ Q, si ≥ 0 and ri − si ∈ Z≥0 for any
i, and this gives a finite number of possibilities.

Hence, it is enough to prove the following result: Let {v1, . . . , vn} be a basis of
an euclidean vector space with (vi|vj) ≤ 0 for any i ̸= j, and let v ∈ E such that
(v|vi) ≥ 0 for any i = 1, . . . , n, then v ∈ R≥0v1 + · · ·+ R≥0vn.

To prove this, assume v ̸= 0 and write v = r1v1 + · · · + rnvn. Then 0 < (v|v) =∑n
i=1(v|rivi), so there is an l such that rl > 0. Then v′ = v − rlvl ∈ V ′ =

Rv1 ⊕ · · · l̂ · · · ⊕ Rvn, and (v′|vi) = (v|vi) − rl(vl|vi) ≥ 0 for any i ̸= l. By an
inductive argument we obtain ri ≥ 0 for any i = 1, . . . , n.

(vii) For any µ ∈ ΛW , there is a unique λ ∈ Λ+
W ∩Wµ. That is, for any µ ∈ ΛW , its

orbit under the action of W intersects Λ+
W in exactly one weight.

Proof. Let µ = m1λ1 + · · · +mnλn, with mi = ⟨µ|αi⟩ ∈ Z, i = 1, . . . , n. Let us
prove that there is a λ ∈ Λ+

W ∩Wµ. If mi ≥ 0 for any i, then we can take λ = µ.
Otherwise, if mj < 0 for some j, then µ1 = σj(µ) = µ−mjαj satisfies that µ1 > µ
and µ1 ∈ Wµ. If µ1 ∈ Λ+

W we are done, otherwise we proceed now with µ1 and
obtain a chain µ = µ0 < µ1 < µ2 < · · · , with µi ∈ Wµ. Since W is finite, this
process must stop, so there is an r such that µr ∈ Λ+

W . (This also proves µ ≤ µr.)

To prove the uniqueness, it is enough to prove that if λ, µ ∈ Λ+
W and there exists

a σ ∈ W with σ(λ) = µ, then λ = µ. For this, take such a σ of minimal length
and consider a reduced expression for σ: σ = σβ1 ◦ · · · ◦ σβt . If t = 0, σ = id and
λ = µ. Otherwise, t > 0 and σ(βt) < 0. Hence

0 ≤ (λ|βt) =
(
σ(λ)|σ(βt)

)
=
(
µ|σ(βt)

)
≤ 0,

so (λ|βt) = 0, σβt(λ) = λ, and µ = σ(λ) = σβ1 ◦ · · · ◦σβt−1(λ), a contradiction with
the minimality of the length.

(viii) Let λ ∈ Λ+
W be a dominant weight. Then σ(λ) ≤ λ for any σ ∈ W. Moreover,

its stabilizer Wλ = {σ ∈ W : σ(λ) = λ} is generated by {σi : (λ|αi) = 0}. In
particular, if λ is strictly dominant (that is, ⟨λ|αi⟩ > 0 for any i = 1, . . . , n), then
Wλ = 1.
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Proof. Let σ = σi1 ◦ · · · ◦ σit be a reduced expression of id ̸= σ ∈ W, and let
λs = σis ◦ · · · ◦ σit(λ), 0 ≤ s ≤ t. Then, for any 1 ≤ s ≤ t,

(λs|αis−1) =
(
σis ◦ · · · ◦ σit(λ)|αis−1

)
=
(
λ|σit ◦ · · · ◦ σis(αis−1)

)
and this is ≥ 0, because item (ii) shows that σit ◦ · · · ◦ σis(αis−1) ∈ Φ+. Hence

λs−1 = σis−1(λs) = λs − ⟨λs|αis−1⟩αis−1 ≤ λs.

Therefore, σ(λ) = λ1 ≤ λ2 ≤ · · ·λt = λ and σ(λ) = λ if and only if λs = λ for any
s, if and only if (λ|αi1) = · · · = (λ|αit) = 0.

(ix) A subset Π of ΛW is said to be saturated if for any µ ∈ Π, α ∈ Φ, and i ∈ Z
between 0 and ⟨µ|α⟩, µ− iα ∈ Π. In particular, Π is invariant under the action of
W. If, in addition, there is a dominant weight λ ∈ Π such that any µ ∈ Π satisfies
µ ≤ λ, then Π is said to be saturated with highest weight λ.
Let λ ∈ Λ+

W . Then the subset Π is saturated with highest weight λ if and only if
Π = ∪µ∈Λ+

W
µ≤λ

Wµ. In particular, Π is finite in this case.

Proof. For λ ∈ Λ+
W , let Πλ = ∪µ∈Λ+

W
µ≤λ

Wµ.

If Π is saturated with highest weight λ, and ν ∈ Π, there is a σ ∈ W such that
σ(ν) ∈ Λ+

W . But Π is W-invariant, so µ = σ(ν) ∈ Λ+
W ∩ Π, and hence ν ∈ Wµ,

with µ ∈ Λ+
W and µ ≤ λ. Therefore, Π ⊆ Πλ. To check that Π = Πλ it is enough

to check that any µ ∈ Λ+
W with µ < λ, belongs to Π. But, if µ′ = µ+

∑n
i=1miαi

is any weight in Π with mi ∈ Z≥0 for any i, and µ′ ̸= µ (that is µ′ > µ), then
0 < (µ′ − µ|µ′ − µ), so there is an index j such that mj > 0 and (µ′ − µ|αj) > 0.
Now, since µ ∈ Λ+

W , ⟨µ|αj⟩ ≥ 0, so ⟨µ′|αj⟩ > 0, and since Π is saturated, µ′′ =
µ′−αj ∈ Π. Starting with µ′ = λ and proceeding in this way, after a finite number
of steps we obtain that µ ∈ Π.

Conversely, we have to prove that for any λ ∈ Λ+
W , Πλ is saturated. By its very

definition, Πλ is W-invariant. Let µ ∈ Πλ, α ∈ Φ and i ∈ Z between 0 and
⟨µ|α⟩. It has to be proven that µ − iα ∈ Πλ. Take σ ∈ W such that σ(µ) ∈ Λ+

W .
Since ⟨σ(µ)|σ(α)⟩ = ⟨µ|α⟩, we may assume that µ ∈ Λ+

W . Also, changing if
necessary α by −α, we may assume that α ∈ Φ+. Besides, with m = ⟨µ|α⟩,
σα(µ − iα) = µ − (m − i)α, so it is enough to assume that 0 < i ≤ ⌊m2 ⌋. Then
⟨µ− iα|α⟩ = m− 2i ≥ 0.

If ⟨µ−iα|α⟩ > 0 and σ ∈ W satisfies σ(µ−iα) ∈ Λ+
W , then 0 < ⟨σ(µ−iα)|σ(α)⟩, so

σ(α) ∈ Φ+ and σ(µ− iα) = σ(µ)− iσ(α) < σ(µ) ≤ µ, since µ is dominant. Hence
σ(µ − iα) ∈ Πλ and so does µ − iα. On the other hand, if m is even and i = m

2 ,
then ⟨µ− iα|α⟩ = 0. Take again a σ ∈ W such that σ(µ− iα) ∈ Λ+

W . If σ(α) ∈ Φ+,
the same argument applies and σ(µ − iα) < σ(µ) ≤ µ. But if σ(α) ∈ Φ−, take
τ = σ ◦ σα, then τ(µ − iα) = σ(µ − iα) ∈ Λ+

W and τ(α) = σ(−α) ∈ Φ+, so again
the same argument applies.

(x) Let ρ = 1
2

∑
α∈Φ+ α be the Weyl vector (see Chapter 2, 6.1), and let λ ∈ Λ+

W and
µ ∈ Wλ. Then (µ + ρ|µ + ρ) ≤ (λ + ρ|λ + ρ), and they are equal if and only if
µ = λ. The same happens for any µ ∈ Λ+

W with µ ≤ λ. Hence, in particular,
(µ+ ρ|µ+ ρ) < (λ+ ρ|λ+ ρ) for any µ ∈ Πλ \ {λ}.
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Proof. Since σi(ρ) = ρ− αi for any i = 1, . . . , n, it follows that ⟨ρ|αi⟩ = 1 for any
i, so ρ = λ1+ · · ·+λn ∈ Λ+

W . Let µ ∈ Wλ\{λ} and let σ ∈ W such that µ = σ(λ).
Then,

(λ+ ρ|λ+ ρ)− (µ+ ρ|µ+ ρ) = (λ+ ρ|λ+ ρ)− (σ(λ)+ ρ|σ(λ)+ ρ) = 2(λ−σ(λ)|ρ).

But σ(λ) < λ (item (viii)) and ρ is strictly dominant, so (ρ|λ−σ(λ)) > 0, and the
first assertion follows.

Now, if µ ∈ Λ+
W with µ ≤ λ, then

(λ+ ρ|λ+ ρ)− (µ+ ρ|µ+ ρ) = (λ+ µ|λ− µ) + 2(λ− µ|ρ) ≥ 0

since λ + µ ∈ Λ+
W , λ − µ ≥ 0 and ρ is strictly dominant. Besides, this is 0 if and

only if λ− µ = 0.

Later on, it will be proven that if V is any irreducible finite dimensional module over
L, then its set of weights P (V ) is a saturated set of weights.

§ 3. Universal enveloping algebra

In this section infinite dimensional vector spaces will be allowed.

Given a vector space V , recall that its tensor algebra is the direct sum

T (V ) = k ⊕ V ⊕ (V ⊗k V )⊕ · · · ⊕ V ⊗n ⊕ · · · ,

with the associative multiplication determined by

(v1 ⊗ · · · ⊗ vn)(w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm.

Then T (V ) is a unital associative algebra over k.

Given the Lie algebra L, let I be the ideal generated by the elements

x⊗ y − y ⊗ x− [x, y] ∈ L⊕ (L⊗ L) ⊆ T (L),

where x, y ∈ L. The quotient algebra

U(L) = T (L)/I

is called the universal enveloping algebra of L. For x1, . . . , xn ∈ L, write x1 · · ·xn =
x1 ⊗ · · · ⊗ xl + I and denote by juxtaposition the multiplication in U(L). Let us denote
by ι : L → U(L) the natural map: x 7→ ι(x) = x + I. The universal property of the
tensor algebra immediately gives:

3.1 Universal property. Given a unital associative algebra A over k, let A− be the Lie
algebra defined on A by means of [x, y] = xy − yx, for any x, y ∈ A. Then for any Lie
algebra homomorphism φ : L→ A−, there is a unique homomorphism of unital algebras
ϕ : U(L) → A such that the following diagram is commutative
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L
ι U(L)

A

⟲

-

@
@

@
@R

φ ϕ

?

Remark. The universal enveloping algebra makes sense for any Lie algebra, not just for
the semisimple Lie algebras over algebraically closed fields of characteristic 0 considered
in this chapter.

3.2 Poincaré-Birkhoff-Witt Theorem. Let L be an arbitrary Lie algebra over a field
k and let {xi : i ∈ I} be a basis of L with ordered set I (that is, I is endowed with a
total order). Then the ‘monomials’

xi1 · · ·xin , n ≥ 0, i1, . . . , in ∈ I, i1 ≤ · · · ≤ in,

with the understanding that the empty product equals 1, is a basis of U(L).

Proof. It is clear that these monomials span U(L), so we must show that they are
linearly independent.

Given a monomial xi1 ⊗ · · · ⊗ xin in T (L) define its index as the number of pairs
(j, k), with 1 ≤ j < k ≤ n, such that ij > ik. Therefore, we must prove that the image
in U(L) of the monomials of index 0 are linearly independent.

Since the monomials form a basis of T (L), a linear map T (L) → T (L) is determined
by the images of the monomials. Also, T (L) is the direct sum of the subspaces T (L)n
spanned by the monomials of degree n (n ≥ 0). Define a linear map φ : T (L) → T (L)
as follows:

φ(1) = 1, φ(xi) = xi ∀i ∈ I,

φ(xi1 ⊗ · · · ⊗ xin) = xi1 ⊗ · · · ⊗ xin if n ≥ 2 and the index is 0,

and, with n ≥ 2, s ≥ 1, assuming φ has been defined for monomials of degree < n (hence
in
⊕n−1

r=0 T (L)r), and for monomials of degree n and index < s, define

φ(xi1 ⊗ · · · ⊗ xin) = φ(xi1 ⊗ · · · ⊗ xij+1 ⊗ xij ⊗ · · · ⊗ xin)

+ φ(xi1 ⊗ · · · ⊗ [xij , xij+1 ]⊗ · · · ⊗ xin),
(3.2)

if the index of xi1⊗· · ·⊗xin is s and j is the lowest index such that ij > ij+1. (Note that
the index of xi1 ⊗· · ·⊗xij+1 ⊗xij ⊗· · ·⊗xin is s−1 and xi1 ⊗· · ·⊗ [xij , xij+1 ]⊗· · ·⊗xin ∈
T (L)n−1, so the right hand side of (3.2) is well defined.)

Let us prove that φ satisfies the condition in (3.2) for any n ≥ 2, any monomial
xi1 ⊗ · · · ⊗ xin , and any index 1 ≤ j ≤ n − 1 with ij > ij+1. (If this is true then, by
anticommutativity, (3.2) is satisfied for any monomial of degree n ≥ 2 and any index
1 ≤ j ≤ n− 1.)

This is trivial if the index of xi1 ⊗ · · · ⊗ xin is 1. In particular for n = 2. Assume
this is true for degree < n and for degree n and index < s, with n ≥ 3 and s ≥ 1. If
the index of xi1 ⊗ · · · ⊗ xin is s, let j be the lowest index with ij > ij+1 and let j′ be
another index with ij′ > ij′+1.
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If j + 1 < j′, then n ≥ 4 and the indices j, j + 1, j′, j′ + 1 are different. Then,

φ(xi1 ⊗ · · · ⊗ xin)

= φ(xi1 ⊗ · · · ⊗ xij+1 ⊗ xij ⊗ · · · ⊗ xin) + φ(xi1 ⊗ · · · ⊗ [xij , xij+1 ]⊗ · · · ⊗ xin),

= φ(xi1 ⊗ · · · ⊗ xij+1 ⊗ xij ⊗ · · · ⊗ xij′+1
⊗ xij′ ⊗ · · · ⊗ xin)

+ φ(xi1 ⊗ · · · ⊗ xij+1 ⊗ xij ⊗ · · · ⊗ [xij′ , xij′+1
]⊗ · · · ⊗ xin)

+ φ(xi1 ⊗ · · · ⊗ [xij , xij+1 ]⊗ · · · ⊗ xij′+1
⊗ xij′ ⊗ · · · ⊗ xin)

+ φ(xi1 ⊗ · · · ⊗ [xij , xij+1 ]⊗ · · · ⊗ [xij′ , xij′+1
]⊗ · · · ⊗ xin)

= φ(xi1 ⊗ · · · ⊗ xij′+1
⊗ xij′ ⊗ · · · ⊗ xin) + φ(xi1 ⊗ · · · ⊗ [xij′ , xij′+1

]⊗ · · · ⊗ xin)

The first equality works by definition of φ and the second and third because the result
is assumed to be valid for degree n and index < s and for degree < n.

Finally, if j + 1 = j′ nothing is lost in the argument if we assume j = 1, j′ = 2, and
n = 3. Write xi1 = x, xi2 = y, and xi3 = z. Hence we have:

φ(x⊗ y ⊗ z) = φ(y ⊗ x⊗ z) + φ([x, y]⊗ z)

= φ(y ⊗ z ⊗ x) + φ(y ⊗ [x, z]) + φ([x, y]⊗ z)

= φ(z ⊗ y ⊗ x) + φ([y, z]⊗ x) + φ(y ⊗ [x, z]) + φ([x, y]⊗ z).

by definition of φ and because (3.2) is valid for lower index. But since φ satisfies (3.2)
in degree < n,

φ([y, z]⊗ x) + φ(y ⊗ [x, z]) + φ([x, y]⊗ z)

= φ([[y, z], x]) + φ([y, [x, z]]) + φ([[x, y], z])

+ φ(x⊗ [y, z]) + φ([x, z]⊗ y) + φ(z ⊗ [x, y])

= φ(x⊗ [y, z]) + φ([x, z]⊗ y) + φ(z ⊗ [x, y]),

because [[y, z], x] + [y, [x, z]] + [[x, y], z] = [[y, z], x] + [[z, x], y] + [[x, y], z] = 0. Thus,

φ(x⊗ y ⊗ z)

= φ(z ⊗ y ⊗ x) + φ(z ⊗ [x, y]) + φ([x, z]⊗ y) + φ(x⊗ [y, z])

= φ(z ⊗ x⊗ y) + φ([x, z]⊗ y) + φ(x⊗ [y, z])

= φ(x⊗ z ⊗ y) + φ(x⊗ [y, z]),

because (3.2) is valid for index < s.

Therefore (3.2) is satisfied for any n ≥ 2, any monomial xi1 ⊗ · · · ⊗ xin , and any
1 ≤ j ≤ n− 1. Since the ideal I is spanned by the elements

xi1 ⊗ · · · ⊗ xin − xi1 ⊗ · · · ⊗ xij+1 ⊗ xij ⊗ · · · ⊗ xin − xi1 ⊗ · · · ⊗ [xij , xij+1 ]⊗ · · · ⊗ xin ,

it follows that φ(I) = 0. On the other hand, φ is the identity on the span of the
monomials of index 0, so the linear span of these monomials intersects I trivially, and
hence it maps bijectively on U(L), as required.

3.3 Corollary. The natural map ι : L→ U(L) is one-to-one.
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If S is a subalgebra of a Lie algebra L, then the inclusion map S ↪→ L
ι−→ U(L)

extends to a homomorphism U(S) → U(L), which is one-to-one by Theorem 3.2 (as any
ordered basis of S can be extended to an ordered basis of L). In this way, U(S) will be
identified to a subalgebra of U(L).

Moreover, if L = S ⊕ T for subalgebras S and T , then the union of an ordered basis
of S and an ordered basis of T becomes an ordered basis of L by imposing that the
elements of S are lower than the elements in T . Then Theorem 3.2 implies that the
linear map U(S)⊗k U(T ) → U(L), x⊗ y 7→ xy, is an isomorphism of vector spaces.

§ 4. Irreducible representations

By the universal property of of U(L), any representation ϕ : L → gl(V ) induces a
representation of U(L): ϕ̃ : U(L) → Endk(V ). Therefore a module for L is the same
thing as a left module for the associative algebra U(L).

Now, given a linear form λ ∈ H∗, consider:

� J(λ) =
∑

α∈Φ+ U(L)xα +
∑n

i=1 U(L)(hi − λ(hi)1), which is a left ideal of U(L),
where hi = hαi for any i = 1, . . . , n.

Theorem 3.2 implies that J(λ) ̸= U(L). Actually, L = L−⊕B, where B = H⊕L+

(B is called a Borel subalgebra), so U(L) is linearly isomorphic to U(L−)⊗kU(B).
Then with J̃(λ) =

∑
α∈Φ+ U(B)xα +

∑n
i=1 U(B)(hi−λ(hi)1) (a left ideal of U(B)),

we get J(λ) = U(L−)J̃(λ). Now the Lie algebra homomorphism ρ : B → k such
that ρ(xα) = 0, for any α ∈ Φ+, and ρ(hi) = λ(hi), for any i = 1, . . . , n, extends
to a homomorphism of unital algebras ρ̃ : U(B) → k, and J̃(λ) ⊆ ker ρ̃. Hence
J̃(λ) ̸= U(B) and, therefore, J(λ) ̸= U(L).

� M(λ) = U(L)/J(λ), which is called the associated Verma module. (It is a left
module for U(L), hence a module for L.)

� θ : U(L) →M(λ), u 7→ u+ J(λ), the canonical homomorphism of modules.

� mλ = θ(1) = 1 + J(λ), the canonical generator: M(λ) = U(L)mλ.

Then xα ∈ J(λ) for any α ∈ Φ+, so xαmλ = 0. Therefore, L+.mλ = 0. Also,
hi − λ(hi)1 ∈ J(λ), so himλ = λ(hi)mλ for any i, and hence hmλ = λ(h)mλ for any
h ∈ H.

Therefore, as in the proof of Proposition 1.6

M(λ) = kmλ +
∞∑
r=1

∑
k
(
yαi1

.(yαi2
· · · (yαir

.mλ))
)
.

(Note that yαi1
.(yαi2

· · · (yαir
.mλ)) ∈M(λ)λ−αi1

−···−αir
.)

Let K(λ) be the sum of all the proper submodules of M(λ). Then mλ ̸∈ K(λ), so
K(λ) ̸=M(λ) and V (λ) =M(λ)/K(λ) is an irreducible L-module (although, in general,
of infinite dimension). However,

dimM(λ)λ−αi1
−···−αir

≤ |{(βj1 , . . . , βjr) ∈ ∆r : βj1 + · · ·+ βjr = αi1 + · · ·+ αir}| ≤ r!,

so for any µ ∈ H∗, the dimension of the weight space V (λ)µ is finite.
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4.1 Theorem. For any λ ∈ H∗, dimV (λ) is finite if and only if λ ∈ Λ+
W .

Proof. The vector vλ = mλ +K(λ) is a highest weight vector of V (λ) of weight λ, and
hence by Proposition 1.6, if dimV (λ) is finite, then λ ∈ Λ+

W .

Conversely, assume that λ ∈ Λ+
W . Let xi = xαi , yi = yαi and hi = hαi , i =

1, . . . , n, be the standard generators of L. Denote by ϕ : L → gl
(
V (λ)

)
the associated

representation. For any i = 1, . . . , n, mi = ⟨λ|αi⟩ ∈ Z≥0, because λ is dominant. Several
steps will be followed now:

1. ϕ(yi)
mi+1(vλ) = 0 for any i = 1, . . . , n.

Proof. Let ui = ϕ(yi)
mi+1(vλ) = ymi+1

i vλ (as usual we denote by juxtaposition the
action of an associative algebra, in this case U(L), on a left module, here V (λ)).
For any j ̸= i, [xj , yi] = 0, so xjui = ymi+1

i (xjvλ) = 0. By induction, it is checked
that in U(L), xiy

m+1
i = ym+1

i xi + (m + 1)ymi hi −m(m + 1)ymi for any m ∈ Z≥0.
Hence

xiui = xiy
mi+1
i vλ = ymi+1

i xivλ + (mi + 1)ymi
i hivλ −mi(mi + 1)ymi

i vλ

= 0 + ymi
i

(
(mi + 1)λ(hi)vλ −mi(mi + 1)vλ

)
= 0

Thus L+ui = 0 and hence ui is a highest weight vector of weight µi = λ−(mi+1)αi.
Then Wi = kui +

∑r
i=1

∑
k
(
yαi1

· · · yαir
ui
)
is a proper submodule of V (λ), and

hence it is 0. In particular ui = 0, as required.

2. Let Si = Lαi ⊕ L−αi ⊕ [Lαi , L−αi ] = kxi + kyi + khi, which is a subalgebra of L
isomorphic to sl2(k). Then V (λ) is a sum of finite dimensional Si-submodules.

Proof. The linear span of vλ, yivλ, . . . , y
mi
i vλ is an Si-submodule. Hence the sum

V ′ of the finite dimensional Si-submodules of V (λ) is not 0. But if W is a finite
dimensional Si-submodule, then consider W̄ = LW =

∑
zW , where z runs over

a fixed basis of L. Hence dim W̄ < ∞. But for any w ∈ W , xi(zw) = [xi, z]w +
z(xiw) ∈ LW = W̄ and, also, yi(zw) ∈ LW = W̄ . Therefore, W̄ = LW is a finite
dimensional Si-submodule, and hence contained in V ′. Thus, V ′ is a nonzero
L-submodule of the irreducible module V (λ), so V ′ = V (λ), as required.

3. The set of weights P
(
V (λ)

)
is invariant under W.

Proof. It is enough to see that P
(
V (λ)

)
is invariant under σi, i = 1, . . . , n. Let

µ ∈ P
(
V (λ)

)
and 0 ̸= v ∈ V (λ)µ. Then v ∈ V (λ) = V ′, so by complete reducibil-

ity (Weyl’s Theorem, Chapter 2, 2.5) there are finite dimensional Si-submodules
W1, . . . ,Wm such that v ∈ W1 ⊕ · · · ⊕ Wm. Thus, v = w1 + · · · + wm, with
wj ∈ Wj for any j, and we may assume that w1 ̸= 0. Since hiv = µ(hi)v, it
follows that hiwj = µ(hi)wj for any j. Hence µ(hi) is an eigenvalue of hi in
W1, and the representation theory of sl2(k) shows that −µ(hi) is another eigen-

value. Besides, if µ(hi) ≥ 0, then 0 ̸= y
µ(hi)
i w1 ∈ (W1)−µ(hi), so 0 ̸= y

µ(hi)
i v ∈

V (λ)µ−µ(hi)αi
= V (λ)σi(µ); while if µ(hi) < 0, then 0 ̸= x

−µ(hi)
i w1 ∈ (W1)−µ(hi), so

0 ̸= x
−µ(hi)
i v ∈ V (λ)µ−µ(hi)αi

= V (λ)σi(µ). In any case σi(µ) ∈ P
(
V (λ)

)
.
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4. For any µ ∈ P
(
V (λ)

)
⊆ {λ−αi1−· · ·−αir : r ≥ 0, 1 ≤ i1, . . . , ir ≤ n} ⊆ ΛW , there

is a σ ∈ W such that σ(µ) ∈ Λ+
W . Hence, by the previous item, σ(µ) ∈ P

(
V (λ)

)
,

so σ(µ) ≤ λ. Therefore, P
(
V (λ)

)
⊆ ∪µ∈Λ+

W
µ≤λ

Wµ. Hence P
(
V (λ)

)
is finite, and

since all the weight spaces of V (λ) are finite dimensional, we conclude that V (λ)
is finite dimensional.

4.2 Corollary. The map

Λ+
W → {isomorphism classes of finite dimensional irreducible L-modules}
λ 7→ the class of V (λ),

is a bijection.

4.3 Proposition. For any λ ∈ Λ+
W , P

(
V (λ)

)
= Πλ (the saturated set of weights with

highest weight λ, recall Properties 2.1).

Moreover, for any µ ∈ P
(
V (λ)

)
, dimV (λ)µ = dimV (λ)σ(µ) for any σ ∈ W, and

(µ+ ρ|µ+ ρ) ≤ (λ+ ρ|λ+ ρ), with equality only if µ = λ.

Proof. For any µ ∈ P
(
V (λ)

)
and any α ∈ Φ, ⊕m∈ZV (λ)µ+mα is a module for Sα =

Lα ⊕ L−α ⊕ [Lα, L−α] ∼= sl2(k). Hence its weights form a chain: the α-string of µ:
µ + qα, . . . , µ, . . . , µ − rα with ⟨µ|α⟩ = r − q. Therefore, P

(
V (λ)

)
is a saturated set of

weights with highest weight λ, and thus P
(
V (λ)

)
= Πλ by Properties 2.1.

The last part also follows from Properties 2.1.

Now, if ϕ : L → gl
(
V (λ)

)
is the associated representation, for any α ∈ Φ+,

adϕ(xα) ∈ Endk
(
ϕ(L)

)
and ϕ(xα) ∈ Endk

(
V (λ)

)
are nilpotent endomorphisms. More-

over, adϕ(xα) is a derivation of the Lie algebra ϕ(L). Hence exp
(
adϕ(xα)

)
is an auto-

morphism of ϕ(L), while expϕ(xα) ∈ GL
(
V (λ)

)
. The same applies to ϕ(yα). Consider

the maps:

τα = exp
(
adϕ(xα)

)
exp
(
− adϕ(yα)

)
exp
(
adϕ(xα)

)
∈ Autϕ(L),

ηα = expϕ(xα) exp(−ϕ(yα)) expϕ(xα) ∈ GL
(
V (λ)

)
.

In Endk(V
(
λ)
)
, exp

(
adϕ(xα)

)
= exp

(
Lϕ(xα) − Rϕ(xα)

)
= expLϕ(xα) exp

(
−Rϕ(xα)

)
,

where La andRa denote the left and right multiplication by the element a ∈ Endk
(
V (λ)

)
,

which are commuting endomorphisms. Hence, for any z ∈ L,

exp
(
adϕ(xα)

)
(ϕ(z)) =

(
expϕ(xα)

)
ϕ(z)

(
exp(−ϕ(xα))

)
and τα(ϕ(z)) = ηαϕ(z)η

−1
α .

For any h ∈ H, exp
(
adϕ(xα)

)
(ϕ(h)) = ϕ(h)+ [ϕ(xα), ϕ(h)] = ϕ(h−α(h)xα). Hence

exp
(
− adϕ(yα)

)
exp
(
adϕ(xα)

)
(ϕ(h))

= ϕ(h− α(h)xα) + ϕ
(
[h− α(h)xα, yα]

)
+ 1

2ϕ
(
[[h− α(h)xα, yα], yα]

)
= ϕ

(
h− α(h)xα − α(h)yα − α(h)hα + 1

22α(h)yα

)
= ϕ

(
h− α(h)hα − α(h)xα

)
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and, finally,

τα
(
ϕ(h)

)
= exp

(
adϕ(xα)

)(
h− α(h)hα − α(h)xα

)
= ϕ

(
h− α(h)hα − α(h)xα + [xα, h− α(h)hα − α(h)xα]

)
= ϕ

(
h− α(h)hα − α(h)xα − α(h)xα + 2α(h)xα

)
= ϕ

(
h− α(h)hα

)
,

so for any 0 ̸= v ∈ V (λ)µ and h ∈ H,

σα(µ)(h)v =
(
µ− ⟨µ|α⟩α

)
(h)v = µ

(
h− α(h)hα

)
v = τα

(
ϕ(h)

)
(v) = ηαϕ(h)

(
η−1
α (v)

)
.

That is, ϕ(h)
(
η−1
α (v)

)
= σα(µ)(h)η

−1
α (v) for any h ∈ H, so η−1

α (v) ∈ V (λ)σα(µ) and
η−1
α

(
V (λ)µ

)
⊆ V (λ)σα(µ). But also, η−1

α

(
V (λ)σα(µ)

)
⊆ V (λ)σ2

α(µ)
= V (λ)µ. Therefore,

ηα
(
V (λ)µ

)
= V (λ)σα(µ) and both weight spaces have the same dimension.

§ 5. Freudenthal’s multiplicity formula

Given a dominant weight λ ∈ Λ+
W and a weight µ ∈ ΛW , the dimension of the associated

weight space, mµ = dimV (λ)µ, is called the multiplicity of µ in V (λ). Of course, mµ = 0
unless µ ∈ P

(
V (λ)

)
.

The multiplicity formula due to Freudenthal gives a recursive method to compute
these multiplicities:

5.1 Theorem. (Freudenthal’s multiplicity formula, 1954) For any λ ∈ Λ+
W and

µ ∈ ΛW : (
(λ+ ρ|λ+ ρ)− (µ+ ρ|µ+ ρ)

)
mµ = 2

∑
α∈Φ+

∞∑
j=1

(µ+ jα|α)mµ+jα.

(Note that the sum above is finite since there are only finitely many weights in
P
(
V (λ)

)
. Also, starting with mλ = 1, and using Proposition 4.3, this formula allows

the recursive computation of all the multiplicities.)

Proof. Let ϕ : L→ gl
(
V (λ)

)
be the associated representation and denote also by ϕ the

representation of U(L), ϕ : U(L) → Endk
(
V (λ)

)
. Let {a1, . . . , am} and {b1, . . . , bm} be

dual bases of L relative to the Killing form (that is, κ(ai, bj) = δij for any i, j). Then

for any z ∈ L, [ai, z] =
∑m

j=1 α
j
iaj for any i and [bj , z] =

∑m
i=1 β

i
jbi for any j. Hence,

inside U(L),

m∑
i=1

[aibi, z] =

m∑
i=1

(
[ai, z]bi + ai[bi, z]

)
=

n∑
i,j=1

(
αj
i + βij

)
ajbi,

but
0 = κ([ai, z], bj) + κ(ai, [bj , z]) = αj

i + βij ,

so [
∑m

i=1 aibi, L] = 0. Therefore, the element c =
∑m

i=1 aibi is a central element in U(L),
which is called the universal Casimir element (recall that a Casimir element was used
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in the proof of Weyl’s Theorem, Chapter 2, 2.5). By the well-known Schur’s Lemma,
ϕ(c) is a scalar.

Take a basis {g1, . . . , gn} of H with κ(gi, gj) = δij for any i, j. For any µ ∈ H∗, let
tµ ∈ H, such that κ(tµ, . ) = µ. Then tµ = r1g1 + · · ·+ rngn, with ri = κ(tµ, gi) = µ(gi)
for any i. Hence,

(µ|µ) = µ(tµ) =
n∑

i=1

riµ(gi) =
n∑

i=1

µ(gi)
2.

For any α ∈ Φ+, take xα ∈ Lα and x−α ∈ L−α such that κ(xα, x−α) = 1 (so that
[xα, x−α] = tα). Then the element

c =
n∑

i=1

g2i +
∑
α∈Φ+

(xαx−α + x−αxα) =
n∑

i=1

g2i +
∑
α∈Φ+

tα + 2
∑
α∈Φ+

x−αxα

is a universal Casimir element.
Let 0 ̸= vλ ∈ V (λ)λ be a highest weight vector, then since xαvλ = 0 for any α ∈ Φ+,

ϕ(c)vλ =
( n∑
i=1

λ(gi)
2 +

∑
α∈Φ+

λ(tα)
)
vλ =

(
(λ|λ) + 2(λ|ρ)

)
vλ = (λ|λ+ 2ρ)vλ,

because 2ρ =
∑

α∈Φ+ α. Therefore, since ϕ(c) is a scalar, ϕ(c) = (λ|λ+ 2ρ)id.
For simplicity, write V = V (λ). Then traceVµ ϕ(c) = (λ|λ+ 2ρ)mµ.
Also, for any v ∈ Vµ,

ϕ(c)v =
( n∑
i=1

µ(gi)
2
)
v +

( ∑
α∈Φ+

µ(tα)
)
v + 2

( ∑
α∈Φ+

ϕ(x−α)ϕ(xα)
)
v

= (µ|µ+ 2ρ)v + 2
∑
α∈Φ+

ϕ(x−α)ϕ(xα)v.

Recall that if f : U1 → U2 and g : U2 → U1 are linear maps between finite dimensional
vector spaces, then traceU1 gf = traceU2 fg. In particular,

traceVµ ϕ(x−α)ϕ(xα) = traceVµ+α ϕ(xα)ϕ(x−α)

= traceVµ+α

(
ϕ(tα) + ϕ(x−α)ϕ(xα)

)
= (µ+ α|α)mµ+α + traceVµ+α ϕ(x−α)ϕ(xα)

=

∞∑
j=1

(µ+ jα|α)mµ+jα.

(The argument is repeated until Vµ+jα = 0 for large enough j.) Therefore,

(λ|λ+ 2ρ)mµ = (µ|µ+ 2ρ)mµ + 2
∑
α∈Φ+

∞∑
j=1

(µ+ jα|α)mµ+jα,

and this is equivalent to Freudenthal’s multiplicity formula.

5.2 Remark. Freudenthal’s multiplicity formula remains valid if the inner product is
scaled by a nonzero factor.



76 CHAPTER 3. REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS

5.3 Example. Let L be the simple Lie algebra of type G2 and write ∆ = {α, β}.
The Cartan matrix is

(
2 −1
−3 2

)
, so we may scale the inner product so that (α|α) = 2,

(β|β) = 6 and (α|β) = −3. The set of positive roots is (check it!):

Φ+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}.

Let λ1, λ2 be the fundamental dominant weights, so:

⟨λ1|α⟩ = 1, ⟨λ1|β⟩ = 0, so λ1 = 2α+ β,

⟨λ2|α⟩ = 0, ⟨λ2|β⟩ = 1, so λ2 = 3α+ 2β.

Consider the dominant weight λ = λ1 + λ2 = 5α+ 3β (see figure 5.1).
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Figure 5.1: G2, roots and weights

Then

{µ ∈ Λ+
W : µ ≤ λ} = {λ, 2λ1, λ2, λ1, 0},

and in order to compute the weight multiplicities of V (λ) it is enough to compute
mλ = 1, m2λ1 , mλ2 , mλ1 and m0.

The Weyl group W is generated by σα and σβ, which are the reflections along the
lines trough the origin and perpendicular to α and β respectively. The composition σασβ
is the counterclockwise rotation of angle π

3 . Thus W is easily seen to be the dihedral
group of order 12. Therefore, P

(
V (λ)

)
consists of the orbits of the dominant weights

≤ λ (4.3), which are the weights marked in Figure 5.1.

A simple computation gives that λ = ρ = λ1 + λ2, (λ1|λ1) = 2, (λ2|λ2) = 6,
(λ1|λ2) = 3 and

(λ+ ρ|λ+ ρ) = 4(λ|λ) = 56,

(2λ1 + ρ|2λ1 + ρ) = (3λ1 + λ2|3λ1 + λ2) = 42,

(λ2 + ρ|λ2 + ρ) = (λ1 + 2λ2|λ1 + 2λ2) = 38,

(λ1 + ρ|λ1 + ρ) = (2λ1 + λ2|2λ1 + λ2) = 26,

(ρ|ρ) = 14.
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We start with mλ = 1, then Freudenthal’s multiplicity formula gives:

(56− 42)m2λ1 = 2
∑
γ∈Φ+

(2λ1 + γ|γ)m2λ1+γ

= 2
(
(2λ1 + α|α)m2λ1+α + (2λ1 + β|β)m2λ1+β

+ (2λ1 + α+ β|α+ β)m2λ1+α+β

)
= 2
(
(5α+ 2β|α) + (4α+ 3β|β) + (5α+ 3β|α+ β)

)
= 2
(
(10− 6) + (−12 + 18) + (10− 24 + 18)

)
= 28,

and we conclude that m2λ1 = 28
14 = 2. Thus the multiplicity of the weight spaces, whose

weight is conjugated to 2λ1 is 2. (These are the weights marked with a ▽ in Figure 5.1.)
In the same vein,

(56− 38)mλ2 = 2
∑
γ∈Φ+

∞∑
j=1

(λ2 + jγ|γ)mλ2+jγ

= 2
(
(λ2 + α|α)mλ2+α + (λ2 + 2α|α)mλ2+2α

+ (λ2 + α+ β|α+ β)mλ2+α+β + (λ2 + 2α+ β|2α+ β)mλ2+2α+β

)
= 2
(
(4α+ 2β|α)2 + (5α+ 2β|α) + (4α+ 3β|α+ β) + (5α+ 3β|2α+ β)

)
= 2
(
(8− 6)2 + (10− 6) + (8− 12− 9 + 18) + (20− 15− 18 + 18)

)
= 36,

and we conclude that mλ2 = 2. Now,

(56− 26)mλ1 = 2
∑
γ∈Φ+

∞∑
j=1

(λ1 + jγ|γ)mλ1+jγ

= 2
(
(λ1 + α|α)mλ1+α + (λ1 + 2α|α)mλ1+2α + (λ1 + β|β)mλ1+β

+ (λ1 + α+ β|α+ β)mλ1+α+β + (λ1 + 2(α+ β)|α+ β)mλ1+2(α+β)

+ (λ1 + 2α+ β|2α+ β)mλ1+2α+β + (λ1 + 3α+ β|3α+ β)mλ1+3α+β

+ (λ1 + 3α+ 2β|3α+ 2β)mλ1+3α+2β

)
= 2
(
(3α+ β|α)2 + (4α+ β|α)1 + (2α+ 2β|β)2 + (3α+ 2β|α+ β)2

+ (4α+ 3β|α+ β)1 + (4α+ 2β|2α+ β)2 + (5α+ 2β|3α+ β)1

+ (5α+ 3β|3α+ 2β)1
)
= 120,

so mλ1 = 4. Finally,

(56− 14)m0 = 2
∑
γ∈Φ+

∞∑
j=1

(jγ|γ)mjγ = 2
∑
γ∈Φ+

∞∑
j=1

(γ|γ)jmjγ

= 2
(
2(4 + 2 · 2) + 6 · 2 + 2(4 + 2 · 2) + 2(4 + 2 · 2) + 6 · 2 + 6 · 2

)
= 168,

so m0 = 4.
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Taking into account the sizes of the orbits, we get also that

dimk V (λ) = 12 · 1 + 6 · 2 + 6 · 2 + 6 · 4 + 4 = 64.

In the computations above, we made use of the symmetry given by the Weyl group.
This can be improved.

5.4 Lemma. Let λ ∈ Λ+
W , µ ∈ P

(
V (λ)

)
and α ∈ Φ. Then∑

j∈Z
(µ+ jα|α)mµ+jα = 0.

Proof. ⊕j∈ZV (λ)µ+jα is a module for Sα (notation as in the proof of Proposition 4.3).
But Sα = [Sα, Sα], since it is simple, hence the trace of the action of any of its elements
is 0. In particular,

0 = trace⊕j∈ZV (λ)µ+jα
ϕ(tα) =

∑
j∈Z

(µ+ jα|α)mµ+jα.

Now, Freudenthal’s formula can be changed slightly using the previous Lemma and
the fact that 2ρ =

∑
α∈Φ+ α.

5.5 Corollary. For any λ ∈ Λ+
W and µ ∈ ΛW :

(λ|λ+ 2ρ)mµ =
∑
α∈Φ

∞∑
j=1

(µ+ jα|α)mµ+jα + (µ|µ)mµ.

We may change j = 1 for j = 0 in the sum above, since (µ|α)mµ + (µ| − α)mµ = 0
for any α ∈ Φ.

Now, if λ ∈ Λ+
W , µ ∈ P

(
V (λ)

)
∩ Λ+

W and σ ∈ Wµ (the stabilizer of µ, which
is generated by the σi’s with (µ|αi) = 0 by 2.1), then for any α ∈ Φ and j ∈ Z,
mµ+jα = mµ+jσ(α).

Let I be any subset of {1, . . . , n} and consider

ΦI = Φ ∩
(
⊕i∈IZαi

)
(a root system in ⊕i∈IRαi !)

WI , the subgroup of W generated by σi, i ∈ I,

W−
I , the group generated by WI and −id.

For any α ∈ Φ, let OI,α = W−
I α. Then, if α ∈ ΦI , −α = σα(α) ∈ WIα, so W−

I α = WIα.
However, if α ̸∈ ΦI , then α =

∑n
i=1 riαi and there is an index j ̸∈ I with rj ̸= 0. For any

σ ∈ WI , σ(α) = rjαj +
∑

i ̸=j r
′
iαi (the coefficient of αj does not change). In particular,

if α ∈ Φ±, then WIα ⊆ Φ±. Therefore, W−
I α is the disjoint union of WIα and −WIα.

5.6 Proposition. (Moody-Patera) Let λ ∈ Λ+
W and µ ∈ P

(
V (λ)

)
∩ Λ+

W . Consider
I =

{
i ∈ {1, . . . , n} : (µ|αi) = 0

}
and the orbits O1, . . .Or of the action of W−

I on Φ.
Take representatives γi ∈ Oi ∩ Φ+ for any i = 1, . . . , r. Then,(

(λ+ ρ|λ+ ρ)− (µ+ ρ|µ+ ρ)
)
mµ =

r∑
i=1

|Oi|
∞∑
j=1

(µ+ jγi|γi)mµ+jγi .
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Proof. Arrange the orbits so that ΦI = O1 ∪ · · · ∪ Os and Φ \ ΦI = Os+1 ∪ · · · ∪ Or.
Hence Oi = WIγi for i = 1, . . . , s, while Oi = Wiγi ∪ −WIγi for i = s+ 1, . . . , r. Then,
using the previous Lemma,

∑
α∈Φ

∞∑
j=1

(µ+ jα|α)mµ+jα

=
s∑

i=1

|WIγi|
∞∑
j=1

(µ+ jγi|γi)mµ+jγi

+
r∑

i=s+1

|WIγi|
∞∑
j=1

(
(µ+ jγi|γi)mµ+jγi + (µ− jγi| − γi)mµ−jγi

)
=

s∑
i=1

|WIγi|
∞∑
j=1

(µ+ jγi|γi)mµ+jγi

+

r∑
i=s+1

|WIγi|
(
2

∞∑
j=1

(µ+ jγi|γi)mµ+jγi + (µ|γi)mµ

)
.

But, for any i = s+ 1, . . . , r, 2|WIγi| = |Oi| and

r∑
i=s+1

|WIγi|(µ|γi) =
∑

α∈Φ+\Φ+
I

(µ|α) =
∑
α∈Φ+

(µ|α) = 2(µ|ρ).

Now, substitute this in the formula in Corollary 5.5 to get the result.

5.7 Example. In the previous Example, for µ = 0, WI = W and there are two orbits:
the orbit of λ1 (the short roots) and the orbit of λ2 (the long roots), both of size 6.
Hence,(

(λ+ ρ|λ+ ρ)− (ρ|ρ)
)
m0 = (56− 14)m0

= 6
(
(λ1|λ1)mλ1 + (2λ1|λ1)m2λ1 + (λ2|λ2)mλ2

)
= 6
(
2 · 4 + 4 · 2 + 6 · 2

)
= 168,

so again we get m0 = 4.

§ 6. Characters. Weyl’s formulae

Consider the group algebra RΛW . To avoid confusion between the binary operation
(the addition) in ΛW and the addition in RΛW , multiplicative notation will be used for
ΛW . Thus any λ ∈ ΛW , when considered as an element of RΛW , will be denoted by the
formal symbol eλ, and the binary operation (the addition) in ΛW becomes the product
eλeµ = eλ+µ in RΛW . Hence,

RΛW =
{ ∑
µ∈ΛW

rµe
µ : rµ ∈ R, rµ = 0 for all but finitely many µ’s

}
.
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Since ΛW is freely generated, as an abelian group, by the fundamental dominant
weights: ΛW = Zλ1 ⊕ · · · ⊕Zλn, RΛW is isomorphic to the ring of Laurent polynomials
in n variables by means of:

R[X±1
1 , . . . , X±1

n ] → RΛW

p(X1, . . . , Xn) 7→ p
(
eλ1 , . . . , eλn

)
.

In particular, RΛW is an integral domain.
There appears a natural action of the Weyl group W on RΛW by automorphisms:

W ↪→ Aut
(
RΛW

)
σ 7→

(
eµ 7→ σ · eµ = eσ(µ)

)
.

An element p ∈ RΛW is said to be symmetric if σ · p = p for any σ ∈ W, and it is
said alternating if σ · p = (−1)σp for any σ ∈ W, where (−1)σ = detσ (= ±1).

Consider the alternating map

A : RΛW → RΛW

p 7→
∑
σ∈W

(−1)σσ · p.

Then,

(i) For any p ∈ RΛW , A(p) is alternating.

(ii) If p ∈ RΛW is alternating, A(p) = |W|p.

(iii) The alternating elements are precisely the linear combinations of the elements
A(eµ), for strictly dominant µ (that is, ⟨µ|α⟩ > 0 for any α ∈ Φ+). These form a
basis of the subspace of alternating elements.

Proof. For any µ ∈ ΛW , there is a σ ∈ W such that σ(µ) ∈ Λ+
W (Properties 2.1),

and A(eµ) = (−1)σA(eσ(µ)). But if there is a simple root αi such that ⟨µ|αi⟩ = 0,
then µ = σi(µ), so A(eµ) = (−1)σiA(eσi(µ)) = −A(eµ) = 0. Now, item (ii) finishes
the proof. (The linear independence is clear.)

6.1 Lemma. Let ρ = 1
2

∑
α∈Φ+ α be the Weyl vector, and consider the element

q = e−ρ
∏

α∈Φ+

(
eα − 1

)
= eρ

∏
α∈Φ+

(
1− e−α

)
in RΛW . Then q = A(eρ).

Proof. For any simple root γ ∈ ∆, σγ
(
Φ+ \ {γ}

)
= Φ+ \ {γ} (Proposition 6.1). Hence

σγ(ρ) = ρ− γ and

σγ(q) = eρ−γ(1− eγ)
∏

α∈Φ+\{γ}

(
1− e−α

)
= eρ

(
e−γ − 1

) ∏
α∈Φ+\{γ}

(
1− e−α

)
= −q.
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Thus, q is alternating.
But, by its own definition, q is a real linear combination of elements eµ, with µ =

ρ−
∑

α∈Φ+ ϵαα ≤ ρ (where ϵα is either 0 or 1). Hence

q =
1

|W|
A(q) =

∑
µ∈Λ+

W
µ strictly dominant

cµA(eµ),

for some real scalars cµ such that cµ ̸= 0 only if µ is strictly dominant, µ ≤ ρ and
µ = ρ−

∑
α∈Φ+ ϵαα as above. But then, for any such µ and i = 1, . . . , n,

⟨ρ− µ|αi⟩ = 1− ⟨µ|αi⟩ ≤ 0,

because ⟨µ|αi⟩ ≥ 1, as µ is strictly dominant. Hence (ρ− µ|α) ≤ 0 for any α ∈ Φ+ and

0 ≤ (ρ− µ|ρ− µ) = (ρ− µ|
∑
α∈Φ+

ϵαα) ≤ 0,

so µ = ρ. We conclude that q = cA(eρ) for some scalar c, but the definition of q shows
that

q = eρ + a linear combination of terms eν , with ν < ρ,

so c = 1 and q = A(eρ).

Consider the euclidean vector space E = R⊗QQΦ, and the RΛW -module RΛW ⊗RE.
Extend the inner product ( . | . ) on E to a RΛW -bilinear map(

RΛW ⊗R E
)
×
(
RΛW ⊗R E

)
→ RΛW ,

and consider the R-linear maps defined by:

(GRADIENT) grad : RΛW → RΛW ⊗R E

eµ 7→ eµ ⊗ µ,

(LAPLACIAN) ∆ : RΛW → RΛW

eµ 7→ (µ|µ)eµ,

which satisfy, for any f, g ∈ RΛW :{
grad(fg) = f grad(g) + g(grad(f),

∆(fg) = f∆(g) + g∆(f) + 2
(
grad(f)| grad(g)

)
.

6.2 Definition. Let V be a finite dimensional module for L, the element

χV =
∑

µ∈ΛW

(dimk Vµ)e
µ

of RΛW is called the character of V .

For simplicity, we will write χλ instead of χV (λ), for any λ ∈ Λ+
W .
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6.3 Theorem. (Weyl’s character formula) For any λ ∈ Λ+
W ,

χλA(eρ) = A(eλ+ρ).

In theory, this allows the computation of χλ as a closed quotient in RΛW . In practice,
Freudenthal’s multiplicity formula is more efficient.

Proof. Note (Corollary 5.5) that Freudenthal’s multiplicity formula is equivalent to

(6.3) (λ|λ+ 2ρ)mµ =
∑
α∈Φ

∞∑
j=0

(µ+ jα|α)mµ+jα + (µ|µ)mµ

for any µ ∈ ΛW . Multiply by eµ and sum on µ to get

(λ|λ+ 2ρ)χλ =
∑

µ∈ΛW

∑
α∈Φ

∞∑
j=0

(µ+ jα|α)mµ+jαe
µ +∆(χλ).

Now, ∏
α∈Φ

(eα − 1) =
∏

α∈Φ+

(eα − 1)(e−α − 1) = ϵq2

with ϵ = ±1. Multiply by ϵq2 to obtain

ϵ(λ|λ+ 2ρ)χλq
2 − ϵ∆(χλ)q

2

=
∑
α∈Φ

∑
µ∈ΛW

∞∑
j=0

(µ+ jα|α)mµ+jα(e
µ+α − eµ)

∏
β∈Φ
β ̸=α

(eβ − 1)

=
∑
α∈Φ

eα
∏
β∈Φ
β ̸=α

(eβ − 1)
∑

µ∈ΛW

( ∞∑
j=0

(µ+ jα|α)mµ+jα −
∞∑
j=0

(µ+ α+ jα|α)mµ+α+jα

)
eµ

=
∑
α∈Φ

eα
∏
β∈Φ
β ̸=α

(eβ − 1)
∑

µ∈ΛW

mµ(µ|α)eµ

=
(∑
α∈Φ

(
eα
∏
β∈Φ
β ̸=α

(eβ − 1)⊗ α
) ∣∣ ∑

µ∈ΛW

mµe
µ ⊗ µ

)
=
(
grad(ϵq2)| grad(χλ)

)
= 2ϵq

(
grad(q)| grad(χλ)

)
= ϵq

(
∆(χλq)− χλ∆(q)− q∆(χλ)

)
.

That is,
(λ|λ+ 2ρ)χλq = ∆(χλq)− χλ∆(q).

But q =
∑

σ∈W(−1)σeσ(ρ) by the previous Lemma, so

∆(q) =
∑
σ∈W

(
σ(ρ)|σ(ρ)

)
(−1)σeσ(ρ) = (ρ|ρ)q,

so

(6.4) (λ+ ρ|λ+ ρ)χλq = ∆(χλq).
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Now, χλq is a linear combination of some eµ+σ(ρ)’s, with µ ∈ P
(
V (λ)

)
and σ ∈ W, and

∆
(
eµ+σ(ρ)

)
=
(
µ+ σ(ρ)|µ+ σ(ρ)

)
eµ+σ(ρ)

=
(
σ−1(µ) + ρ|σ−1(µ) + ρ

)
eµ+σ(ρ).

Therefore, eµ+σ(ρ) is an eigenvector of ∆ with eigenvalue
(
σ−1(µ)+ρ|σ−1(µ)+ρ

)
, which

equals (λ+ ρ|λ+ ρ) because of (6.4). This implies (Properties 2.1) that σ−1(µ) = λ, or
µ = σ(λ) and, hence, χλq is a linear combination of {eσ(λ+ρ) : σ ∈ W}.

Since χλ is symmetric, and q is alternating, χλq is alternating. Also, σ(λ + ρ) is
strictly dominant if and only if σ = id. Hence χλq is a scalar multiple of A(eλ+ρ), and
its coefficient of eλ+ρ is 1. Hence, χλq = A(eλ+ρ), as required.

If p ∈ RΛW is symmetric, then pA(eρ) is alternating. Then Weyl’s character formula
shows that {χλ : λ ∈ Λ+

W } is a basis of the subspace of symmetric elements.
Weyl’s character formula was derived by Weyl in 1926 in a very different guise.

6.4 Corollary. (Weyl’s dimension formula) For any λ ∈ Λ+
W ,

dimk V (λ) =
∏

α∈Φ+

(α|λ+ ρ)

(α|ρ)
=
∏

α∈Φ+

⟨λ+ ρ|α⟩
⟨ρ|α⟩

.

Proof. Let R[[t]] be the ring of formal power series on the variable t, and for any ν ∈ ΛW

consider the homomorphism of real algebras given by:

ζν : RΛW −→ R[[t]]

eµ 7→ exp
(
(µ|ν)t

)
=

∞∑
s=0

1

s!

(
(µ|ν)t

)s
.

For any µ, ν ∈ ΛW ,

ζν
(
A(eµ)

)
=
∑
σ∈W

(−1)σ exp
(
(σ(µ)|ν)t

)
=
∑
σ∈W

(−1)σ exp
(
(µ|σ−1(ν))t

)
= ζµ

(
A(eν)

)
.

The homomorphism ζρ will be applied now to Weyl’s character formula. First,

ζρ
(
A(eµ)

)
= ζµ

(
A(eρ)

)
= ζµ(q)

= ζµ
(
e−ρ
) ∏
α∈Φ+

(
ζµ(e

α − 1)
)

= exp
(
(−ρ|µ)t

) ∏
α∈Φ+

(
exp
(
(α|µ)t

)
− 1
)

=
∏

α∈Φ+

(
exp
(
1
2(α|µ)t

)
− exp

(
−1

2(α|µ)t
)
.

Hence,

ζρ
(
χλq) = ζρ(χλ)

∏
α∈Φ+

(
exp
(
1
2(α|ρ)t

)
− exp

(
−1

2(α|ρ)t
)
,
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while

ζρ
(
A(eλ+ρ)

)
=
∏

α∈Φ+

(
exp
(
1
2(α|λ+ ρ)t

)
− exp

(
−1

2(α|λ+ ρ)t
)
.

With N = |Φ+|,∏
α∈Φ+

(
exp
(
1
2(α|µ)t

)
− exp

(
−1

2(α|µ)t
)
=
( ∏
α∈Φ+

(α|µ)
)
tN + higher degree terms,

so if we look at the coefficients of tN in ζρ
(
χλq) = ζρ

(
A(eλ+ρ)

)
we obtain, since the

coefficient of t0 in ζρ(χλ) is dimk V (λ), that

dimk V (λ)
∏

α∈Φ+

(α|ρ) =
∏

α∈Φ+

(α|λ+ ρ).

6.5 Example. If L is the simple Lie algebra of type G2, Φ
+ = {α, β, α+β, 2α+β, 3α+

β, 3α+ 2β} (see Example 5.3) . Take λ = nλ1 +mλ2. Then Weyl’s dimension formula
gives

dimk V (λ) = (n + 1)3(m + 1)
(
n + 1 + 3(m + 1)

)(
2(n + 1) + 3(m + 1)

)(
3(n + 1) + 3(m + 1)

)(
3(n + 1) + 6(m + 1)

)
1 · 3 · 4 · 5 · 6 · 9

=
1

120
(n+ 1)(m+ 1)(n+m+ 2)(n+ 2m+ 3)(n+ 3m+ 4)(2n+ 3m+ 5).

In particular, dimk V (λ1) = 7 and dimk V (λ2) = 14.

6.6 Remark. Weyl’s dimension formula is extremely easy if λ is a multiple of ρ. Ac-
tually, if λ = mρ, then

dimk V (λ) =
∏

α∈Φ+

(
(m+ 1)ρ|α)

)
(ρ|α)

= (m+ 1)|Φ
+|.

For instance, with λ = λ1+λ2 for G2, dimk V (λ) = 26 = 64 (compare with Example
5.3).

Two more formulae to compute multiplicities will be given. First, for any µ ∈ ΛW

consider the integer:

p(µ) =
∣∣∣{(rα)α∈Φ+ ∈ Z|Φ+|

≥0 : µ =
∑
α∈Φ+

rαα
}∣∣∣.

Thus p(0) = 1 = p(α) for any α ∈ ∆. Also, if α, β ∈ ∆, with α ̸= β and (α|β) ̸= 0,
then p(α+ β) = 2, as α+ β can be written in two ways as a Z≥0-linear combination of
positive roots: 1 · α+ 1 · β + 0 · (α+ β) and 0 · α+ 0 · β + 1 · (α+ β). Note, finally, that
p(µ) = 0 if µ ̸∈ Z≥0∆.

6.7 Theorem. (Kostant’s formula, 1959) For any λ ∈ Λ+
W and µ ∈ ΛW ,

dimk V (λ)µ =
∑
σ∈W

(−1)σ p
(
σ(λ+ ρ)− (µ+ ρ)

)
.
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Proof. Take the formal series∑
µ∈ΛW

p(µ)eµ =
∏

α∈Φ+

(
1 + eα + e2α + · · ·

)
=
∏

α∈Φ+

(
1− eα

)−1
,

in the natural completion of RΛW (which is naturally isomorphic to the ring of formal
Laurent series R[[X±1

1 , . . . , X±1
n ]]). Thus,( ∑

µ∈ΛW

p(µ)eµ
)( ∏

α∈Φ+

(
1− eα

))
= 1.

Let θ : RΛW → RΛW be the automorphism given by θ(eµ) = e−µ for any µ ∈ ΛW . If this
is applied to Weyl’s character formula (recall that q = A(eρ) = eρ

∏
α∈Φ+

(
1 − e−α

)
=

e−ρ
∏

α∈Φ+

(
1− eα

)
), we obtain( ∑

µ∈ΛW

mµe
−µ
)
e−ρ

∏
α∈Φ+

(1− eα) =
∑
σ∈W

(−1)σe−σ(λ+ρ).

Multiply this by eρ
(∑

ν∈ΛW
p(ν)eν

)
to get∑

µ∈ΛW

mµe
−µ =

(∑
σ∈W

(−1)σeρ−σ(λ+ρ)
)( ∑

ν∈ΛW

p(ν)eν
)

=
∑
σ∈W

∑
ν∈ΛW

(−1)σ p(ν)eρ+ν−σ(λ+ρ),

which implies that

mµ =
∑
σ∈W

(−1)σ p(νσ), with νσ such that ρ+ νσ − σ(λ+ ρ) = −µ

=
∑
σ∈W

(−1)σ p
(
σ(λ+ ρ)− (µ+ ρ)

)
.

6.8 Corollary. For any 0 ̸= µ ∈ ΛW ,

p(µ) = −
∑

1̸=σ∈W
(−1)σ p

(
µ− (ρ− σ(ρ))

)
.

Proof. Take λ = 0 in Kostant’s formula. Then V (0) = k and

0 = dimk V (0)−µ =
∑
σ∈W

(−1)σ p
(
σ(ρ)− (−µ+ ρ)

)
.

6.9 Theorem. (Racah’s formula, 1962) For any λ ∈ Λ+
W and µ ∈ P

(
V (λ)

)
, with

µ ̸= λ,

mµ = −
∑

1̸=σ∈W
(−1)σmµ+ρ−σ(ρ).

(mν = dimk V (λ)ν for any ν ∈ ΛW ).)

Note that, since ρ is strictly dominant, σ(ρ) < ρ for any 1 ̸= σ ∈ W, hence µ+ ρ−
σ(ρ) > µ and thus Racah’s formula gives a recursive method starting with mλ = 1.
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Proof. If σ ∈ W satisfies σ(λ+ ρ) = µ+ ρ, then (µ+ ρ|µ+ ρ) = (λ+ ρ|λ+ ρ) and µ = λ
(Properties 2.1). Now, by Kostant’s formula and the previous Corollary,

mµ =
∑
σ∈W

(−1)σ p
(
σ(λ+ ρ)− (µ+ ρ)

)
= −

∑
σ∈W

∑
1̸=τ∈W

(−1)σ(−1)τ p
(
σ(λ+ ρ)− (µ+ ρ)− (ρ− τ(ρ))

)
= −

∑
1̸=τ∈W

(−1)τ
∑
σ∈W

(−1)σ p
(
σ(λ+ ρ)−

(
(µ+ ρ− τ(ρ)) + ρ

))
= −

∑
1̸=τ∈W

(−1)τmµ+ρ−τ(ρ).

6.10 Example. Consider again the simple Lie algebra of type G2, and λ = ρ = λ1+λ2.
For the rotations 1 ̸= σ ∈ W one checks that (see Figure 5.1):

ρ− σ(ρ) = α+ 2β, 6α+ 2β, 10α+ 2β, 9α+ 4β, 4α+ β,

while for the symmetries in W,

ρ− σ(ρ) = α, β, 4α+ β, 9α+ 6β, 10α+ 5β, 6α+ 2β.

Starting with mλ = 1 we obtain,

m2λ1 = m2λ1+α +m2λ1+β = mλ +mλ = 2,

since both 2λ1 + α and 2λ1 + β are conjugated, under the action of W, to λ. In the
same spirit, one can compute:

mλ2 = mλ2+α = m2λ1 = 2,

mλ1 = mλ1+α +mλ1+β = mλ2 +m2λ1 = 4,

m0 = mα +mβ −mα+2β −m4α+β = mλ1 +mλ2 −mλ −mλ = 4.

§ 7. Tensor products decompositions

Given two dominant weights λ′, λ′′ ∈ Λ+
W , Weyl’s Theorem on complete reducibility

shows that the tensor product V (λ′)⊗k V (λ′′) is a direct sum of irreducible modules:

V (λ′)⊗k V (λ′′) ∼= ⊕λ∈Λ+
W
nλV (λ).

Moreover, for any µ ∈ ΛW ,(
V (λ′)⊗k V (λ′′)

)
µ
= ⊕ν∈ΛW

V (λ′)ν ⊗k V (λ′′)µ−ν ,

which shows that χV (λ′)⊗kV (λ′′) = χλ′χλ′′ . Hence

χλ′χλ′′ =
∑

λ∈Λ+
W

nλχλ.

The purpose of this section is to provide methods to compute the multiplicities nλ.
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7.1 Theorem. (Steinberg, 1961) For any λ′, λ′′ ∈ Λ+
W ,

nλ =
∑

σ,τ∈W
(−1)στ p

(
σ(λ′ + ρ) + τ(λ′′ + ρ)− (λ+ 2ρ)

)
.

Proof. From χλ′χλ′′ =
∑

λ∈Λ+
W
nλχλ, we get

χλ′

(
χλ′′A(eρ)

)
=
∑

λ∈Λ+
W

nλ
(
χλA(eρ)

)
,

which, by Weyl’s character formula, becomes

(7.5)
( ∑
µ∈ΛW

m′
µe

µ
)(∑

τ∈W
(−1)τeτ(λ

′′+ρ)
)
=
∑

λ∈Λ+
W

nλ

( ∑
τ∈ΛW

(−1)τeτ(λ+ρ)
)
.

The coefficient of eλ+ρ on the right hand side of (7.5) is nλ, since in each orbit W(λ+ρ)
there is a unique dominant weight, namely λ+ ρ.

On the other hand, by Kostant’s formula, the left hand side of (7.5) becomes:( ∑
µ∈ΛW

∑
σ∈W

(−1)σ p
(
σ(λ′ + ρ)− µ− ρ

)
eµ
)(∑

τ∈W
(−1)τeτ(λ

′′+ρ)
)

=
∑

µ∈ΛW

∑
σ,τ∈W

(−1)στ p
(
σ(λ′ + ρ)− µ− ρ

)
eµ+τ(λ′′+ρ).

Note that µ + τ(λ′′ + ρ) = λ + ρ if and only if −µ − ρ = τ(λ′′ + ρ) − (λ + 2ρ), so the
coefficient of eλ+ρ on the left hand side of (7.5) is∑

σ,τ∈W
(−1)στ p

(
σ(λ′ + ρ) + τ(λ′′ + ρ)− (λ+ 2ρ)

)
,

as required.

7.2 Corollary. (Racah, 1962) For any λ, λ′, λ′′ ∈ Λ+
W the multiplicity of V (λ) in

V (λ′)⊗k V (λ′′) is

nλ =
∑
σ∈W

(−1)σm′
λ+ρ−σ(λ′′+ρ).

(For any weight µ, m′
µ denotes the multiplicity of µ in V (λ′).)

Proof.

nλ =
∑

σ,τ∈W
(−1)στ p

(
σ(λ′ + ρ) + τ(λ′′ + ρ)− (λ+ 2ρ)

)
(Steinberg)

=
∑
τ∈W

(−1)τ
(∑
σ∈W

(−1)σ p
(
σ(λ′ + ρ)− (λ+ ρ− τ(λ′′ + ρ) + ρ)

))
=
∑
τ∈W

(−1)τm′
λ+ρ−τ(λ′′+ρ) (Kostant).
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To give a last formula to compute χλ′χλ′′ some more notation is needed. First, by

Weyl’s character formula 6.3, for any λ ∈ Λ+
W , χλ = A(eλ+ρ)

A(eρ) . Let us extend this, by
defining χλ for any λ ∈ ΛW by means of this formula. For any weight µ ∈ ΛW , recall
that Wµ denotes the stabilizer of µ in W: Wµ = {σ ∈ W : σ(µ) = µ}. If this stabilizer
is trivial, then there is a unique σ ∈ W such that σ(µ) ∈ Λ+

W (Properties 2.1). Consider
then

s(µ) =

{
0 if Wµ ̸= 1

(−1)σ if Wµ = 1, and σ(µ) ∈ Λ+
W .

Denote also by {µ} the unique dominant weight which is conjugate to µ. Let σ ∈ W
such that σ(µ) = {µ}. If {µ} is strictly dominant, then A(eµ) = (−1)σA(e{µ}) =
s(µ)A(e{µ}), otherwise there is an i = 1, . . . , n such that σiσ(µ) = σ(µ) (Properties
2.1) so σ−1σiσ ∈ Wµ and s(µ) = 0; also A(e{µ}) = A(σi · e{µ}) = −A(e{µ}) = 0 and
A(eµ) = 0 too. Hence A(eµ) = s(µ)A(e{µ}) for any µ ∈ ΛW . Therefore, for any λ ∈ ΛW ,
A(eλ+ρ) = s(λ+ ρ)A(e{λ+ρ}), and

χλ = s(λ+ ρ)χ{λ+ρ}−ρ .

7.3 Theorem. (Klymik, 1968) For any λ′, λ′′ ∈ Λ+
W ,

χλ′χλ′′ =
∑

µ∈P
(
V (λ′)

)m′
µχµ+λ′′ .

Note that this can be written as

(7.6) χλ′χλ′′ =
∑

µ∈P
(
V (λ′)

)m′
µ s(µ+ λ′′ + ρ)χ{µ+λ′′+ρ}−ρ.

By Properties 2.1, if ν ∈ ΛW and s(ν) ̸= 0, then {ν} is strictly dominant, and hence
{ν} − ρ ∈ Λ+

W , so all the weights {µ+ λ′′ + ρ} − ρ that appear with nonzero coefficient
on the right hand side of the last formula are dominant.

Proof. As in the proof of Steinberg’s Theorem, with P ′ = P
(
V (λ′)

)
,

χλ′
(
χλ′′A(eρ)

)
= χλ′A(eλ

′′+ρ)

=
(∑
µ∈P ′

m′
µe

µ
)(∑

σ∈W
(−1)σeσ(λ

′′+ρ)
)

=
∑
σ∈W

(−1)σ
(∑
µ∈P ′

m′
µe

σ(µ)
)
eσ(λ

′′+ρ) (as m′
µ = m′

σ(µ) ∀σ ∈ W)

=
∑
µ∈P ′

m′
µ

∑
σ∈W

(−1)σeσ(µ+λ′′+ρ)

=
∑
µ∈P ′

m′
µA
(
eµ+λ′′+ρ

)
.

7.4 Corollary. Let λ, λ′, λ′′ ∈ Λ+
W . If V (λ) is (isomorphic to) a submodule of V (λ′)⊗k

V (λ′′), then there exists µ ∈ P
(
V (λ′)

)
such that λ = µ+ λ′′.
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Proof. Because of (7.6), if V (λ) is isomorphic to a submodule of V (λ′)⊗k V (λ′′) there
is a µ ∈ P

(
V (λ′)

)
such that {µ+ λ′′ + ρ} = λ+ ρ. Take µ ∈ P

(
V (λ′)

)
and σ ∈ W such

that σ(µ+λ′′+ρ) = λ+ρ and σ has minimal length. It is enough to prove that l(σ) = 0.
If l(σ) = t ≥ 1, let σ = σβ1 ◦ · · · ◦ σβt be a reduced expression. Then σ(βt) ∈ Φ− by
Properties 2.1 and

0 ≥
(
λ+ ρ|σ(βt)

)
=
(
σ−1(λ+ ρ)|βt

)
=
(
µ+ λ′′ + ρ|βt

)
=
(
µ|βt

)
+
(
λ′′ + ρ|βt

)
≥
(
µ|βt

)
,

since λ + ρ and λ′′ + ρ are dominant. Hence 0 ≥ ⟨µ + λ′′ + ρ|βt⟩ ≥ ⟨µ|βt⟩ and µ̂ =
µ− ⟨µ+ λ′′ + ρ|βt⟩βt ∈ P

(
V (λ′)

)
. Therefore,

λ+ ρ = σ(µ+ λ′′ + ρ) = (σ ◦ σβt)
(
σβt(µ+ λ′′ + ρ)

)
= (σ ◦ σβt)

(
µ+ λ′′ + ρ− ⟨µ+ λ′′ + ρ|βt⟩βt

)
= σ ◦ σβt(µ̂+ λ′′ + ρ),

a contradiction with the minimality of l(σ), as σ ◦ σβt = σβ1 ◦ · · · ◦ σβt−1 .

7.5 Example. As usual, let L be the simple Lie algebra of type G2. Let us decompose
V (λ1)⊗k V (λ2) using Klymik’s formula.

Recall that λ1 = 2α+β, λ2 = 3α+2β, so α = 2λ1−λ2 and β = −3λ1+2λ2. Scaling
so that (α|α) = 2, one gets (λ1|α) = 1, (λ2|β) = 3, and (λ1|β) = 0 = (λ2|α).

Also, P
(
V (λ1)

)
= Wλ1 ∪W0 = {0,±α,±(α + β),±(2α + β)} (the short roots and

0). The multiplicity of any short root equals the multiplicity of λ1, which is 1.
Freudenthal’s formula gives

(
(λ1 + ρ|λ1 + ρ)− (ρ|ρ)

)
m0 = 2

∑
γ∈Φ+

∞∑
j=1

(jγ|γ)mjγ = 2
∑
γ∈Φ+

γ short

(γ|γ) = 12,

since mλ1 = 1, so mγ = 1 for any short γ, as all of them are conjugate. But (λ1+ρ|λ1+
ρ)− (ρ|ρ) = (λ1|λ1 + 2ρ) = (λ1|3λ1 + 2λ2) = (3λ1 + 2λ2|2α+ β) = 12. Thus, m0 = 1.

Hence all the weights of V (λ1) have multiplicity 1, and Klymik’s formula gives then

χλ1χλ2 =
∑

µ∈P (V (λ1))

s(µ+ λ2 + ρ)χ{µ+λ2+ρ}−ρ.

Let us compute the contribution to this sum of each µ ∈ P
(
V (λ1)

)
:

� 0 + λ2 + ρ is strictly dominant, so s(0 + λ2 + ρ) = 1, and we obtain the summand
1 · χλ2 ,

� α+λ2 + ρ = 2λ1 + ρ is strictly dominant, so s(α+λ2 + ρ) = 1 and we get 1 ·χ2λ1 ,

� −α+λ2 + ρ = −λ1 +3λ2 is not dominant, and σα(−λ1 +3λ2) = −λ1 +3λ2 +α =
λ1 +2λ2 = λ2 + ρ is strictly dominant, so s(−α+λ2 + ρ) = −1 and get (−1) ·χλ2 ,

� α+ β + λ2 + ρ = 3λ2 is stabilized by σα, so s(α+ β + λ2 + ρ) = 0,

� −(α+ β) + λ2 + ρ = λ1 + ρ is strictly dominant, so we get 1 · χλ1 ,
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� 2α+ β + λ2 + ρ = λ1 + λ2 + ρ is strictly dominant, so we get 1 · χλ1+λ2 ,

� −(2α+ β) + λ2 + ρ = λ2 is stabilized by σα.

Therefore, Klymik’s formula gives:

(7.7) V (λ1)⊗k V (λ2) ∼= V (λ1 + λ2)⊕ V (2λ1)⊕ V (λ1).

With some insight, we could have proceeded in a different way. First, the multiplicity
of the highest possible weight λ′+λ′′ in V (λ′)⊗k V (λ′′) is always 1, so V (λ′+λ′′) always
appears in V (λ′)⊗k V (λ′′) with multiplicity 1.

In the example above, if µ ∈ P
(
V (λ1)

)
and µ + λ2 ∈ Λ+

W , then µ + λ2 ∈ {λ1 +
λ2, 2λ1, λ1, λ2}. Hence,

V (λ1)⊗k V (λ2) ∼= V (λ1 + λ2)⊕ pV (2λ1)⊕ qV (λ1)⊕ rV (λ2),

and dimk V (λ1) ⊗k V (λ2) = 7 × 14 = 98, dimk V (λ1 + λ2) = dimk V (ρ) = 26 = 64.
Weyl’s dimension formula gives

dimk V (2λ1) =
∏

γ∈Φ+

(2λ1 + ρ|γ)
(ρ|γ)

=
3 · 3 · 6 · 9 · 12 · 15
1 · 3 · 4 · 5 · 6 · 9

= 27.

The only possibility of 98 = 64+ p · 27+ q · 7+ r · 14 is p = q = 1, r = 0, thus recovering
(7.7).

7.6 Exercise. Let λ′, λ′′ ∈ Λ+
W . Prove that P

(
V (λ′)⊗ V (λ′′)

)
equals P

(
V (λ′ + λ′′)

)
.



Appendix A

Simple real Lie algebras

Let L be a simple real Lie algebra. By Schur’s Lemma, the centralizer algebra EndL(L)
is a real division algebra, but for any α, β ∈ EndL(L) and x, y ∈ L,

αβ
(
[x, y]

)
= α

[
x, βy] = [αx, βy] = β

(
[αx, y]

)
= βα

(
[x, y]

)
,

and, since L = [L,L], it follows that EndL(L) is commutative. Hence EndL(L) is
(isomorphic to) either R or C.

In the latter case, L is then just a complex simple Lie algebra, but considered as a
real Lie algebra.

In the first case, EndL(L) = R, so EndLC(LC) = C, where LC = C ⊗R L = L ⊕ iL.
Besides, LC is semisimple because its Killing form is the extension of the Killing form of
L, and hence it is nondegenerate. Moreover, if LC is the direct sum of two proper ideals
LC = L1⊕L2, then C = EndLC(LC) ⊇ EndLC(L1)⊕EndLC(L2), which has dimension at
least 2 over C, a contradiction. Hence LC is simple. In this case, L is said to be central
simple and a real form of LC. (More generally, a simple Lie algebra over a field k is
said to be central simple, if its scalar extension k̄⊗k L is a simple Lie algebra over k̄, an
algebraic closure of k.)

Consider the natural antilinear automorphism σ of LC = C⊗R L = L⊕ iL given by
σ = −⊗ id (α 7→ ᾱ is the standard conjugation in C). That is,

σ : LC → LC

x+ iy 7→ x− iy.

Then L is the fixed subalgebra by σ, which is called the conjugation associated to L.

Therefore, in order to get the real simple Lie algebras, it is enough to obtain the real
forms of the complex simple Lie algebras.

§ 1. Real forms

1.1 Definition. Let L be a real semisimple Lie algebra.

� L is said to be split if it contains a Cartan subalgebra H such that adh is diago-
nalizable (over R) for any h ∈ H.

� L is said to be compact if its Killing form is definite.

91
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� L is said to be a real form of a complex Lie algebra S if LC is isomorphic to S (as
complex Lie algebras).

1.2 Proposition. The Killing form of any compact Lie algebra is negative definite.

Proof. Let κ be the Killing form of the compact Lie algebra L with dimR L = n. For any
0 ̸= x ∈ L, let λ1, . . . , λn ∈ C be the eigenvalues of adx (possibly repeated). If for some
j = 1, . . . , n, λj ∈ R\{0}, then there exists a 0 ̸= y ∈ L such that [x, y] = λjy. Then the
subalgebra T = Rx+ Ry is solvable and y ∈ [T, T ]. By Lie’s Theorem (Chapter 2, 1.9)
ady is nilpotent, so κ(y, y) = 0, a contradiction with κ being definite. Thus, λj ̸∈ R\{0}
for any j = 1, . . . , n. Now, if λj = α+ iβ with β ̸= 0, then λ̄j = α− iβ is an eigenvalue
of adx too, and hence there are elements y, z ∈ L, not both 0, such that [x, y] = αy+βz
and [x, z] = −βy + αz. Then

[x, [y, z]] = [[x, y], z] + [y, [x, z]] = 2α[y, z].

The previous argument shows that either α = 0 or [y, z] = 0. In the latter case T =
Rx+ Ry + Rz is a solvable Lie algebra with 0 ̸= αy + βz ∈ [T, T ]. But this gives again
a contradiction.

Therefore, λ1, . . . , λn ∈ Ri and κ(x, x) =
∑n

j=1 λ
2
j ≤ 0.

1.3 Theorem. Any complex semisimple Lie algebra contains both a split and a compact
real forms.

Proof. Let S be a complex semisimple Lie algebra and let {hj , xj , yj : j = 1, . . . , n} be
a set of canonical generators of S relative to a Cartan subalgebra and an election of a
simple system ∆ of roots, as in Chapter 2, § 7. For any α ∈ Φ+ choose Iα = (j1, . . . , jm)
(ht(α) = m) such that 0 ̸= adxjm

· · · adxj2
(xj1) ∈ Sα and take xα = adxjm

· · · adxj2
(xj1)

and yα = adyjm · · · adyj2 (yj1). Then {h1, . . . , hn, xα, yα : α ∈ Φ+} is a basis of S and its
structure constants are rational numbers that depend on the Dynkin diagram. Therefore,

L =
n∑

j=1

Rhj +
∑
α∈Φ+

(
Rxα + Ryα

)
is a split real form of S = L ⊕ iL. Its associated conjugation σ : S → S is determined
by σ(xj) = xj and σ(yj) = yj for any j = 1, . . . , n.

But there is a unique automorphism ω ∈ AutC S such that ω(xj) = −yj and ω(yj) =
−xj for any j = 1, . . . , n, because −∆ is another simple system of roots. Note that
ω(hj) = −hj for any j and ω2 = id. Then

σωσ(xj) = ω(xj) and σωσ(yj) = ω(yj)

for any j, so σωσ = ω, or σω = ωσ. Consider the antilinear involutive automorphism
τ = σω = ωσ of S. Let us check that τ is the conjugation associated to a compact real
form of S. Denote by κ the Killing form of S.

First, by induction on ht(α), let us prove that κ(xα, ω(xα)) is a negative rational
number:
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� If ht(α) = 1, then α = αj for some j, xα = xj and κ(xj , ω(xj)) = −κ(xj , yj) =
− 2

(αj |αj)
< 0, since hα = 2

(α|α) tα = [xα, yα] = κ(xα, yα)tα (see Chapter 2, § 5.) for

any α ∈ Φ, and the bilinear form ( . | . ) is positive definite on RΦ.

� If ht(α) = m + 1, then xα = q[xj , xβ] for some j = 1, . . . , n and q ∈ Q, with
ht(β) = m, then

κ
(
xα, ω(xα)

)
= q2κ

(
[xj , xβ], [ω(xj), ω(xβ)]

)
= q2κ

(
xβ, [xj , [yj , ω(xβ)]]

)
∈ Q>0κ

(
xβ, ω(xβ)

)
(by Chapter 2, Lemma 7.1)

∈ Q<0 (by the induction hypothesis).

Now take K the fixed subalgebra Sτ of τ . Hence,

K =
n∑

j=1

R(ihj) +
∑
α∈Φ+

(
R
(
xα + ω(xα)

)
+ Ri

(
xα − ω(xα)

))
,

which is a real form of S = K ⊕ iK. Note that

� κ(ihr, ihs) = −κ(hr, hs), and the restriction of κ to
∑n

j=1Rhj is positive definite,

� κ
(
xα + ω(xα), xα + ω(xα)

)
= 2κ

(
xα, ω(xα)

)
< 0, by the previous argument,

� κ
(
i(xα − ω(xα)), i(xα − ω(xα))

)
= 2κ

(
xα, ω(xα)

)
< 0, and

� κ
(
xα + ω(xα), i(xα − ω(xα))

)
= iκ

(
xα + ω(xα), xα − ω(xα)

)
= 0.

Hence the Killing form of K, which is obtained by restriction of κ, is negative definite,
and hence K is compact.

1.4 Remark. The signature of the Killing form of the split form L above is rankL,
while for the compact form K is −dimK.

1.5 Definition. Let S be a complex semisimple Lie algebra and let σ1, σ2 be the con-
jugations associated to two real forms. Then:

� σ1 and σ2 are said to be equivalent if the corresponding real forms Sσ1 and Sσ2

are isomorphic.

� σ1 and σ2 are said to be compatible if they commute: σ1σ2 = σ2σ1.

Given a complex semisimple Lie algebra and a conjugation σ, this is said to be split
or compact if so is its associated real form Sσ.

Note that the split σ and compact τ conjugations considered in the proof of Theorem
1.3 are compatible.

1.6 Proposition. Let S be a complex semisimple Lie algebra and let σ1, σ2 be the
conjugations associated to two real forms. Then:

(i) σ1 and σ2 are equivalent if and only if there is an automorphism φ ∈ AutC S such
that σ2 = φσ1φ

−1.
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(ii) σ1 and σ2 are compatible if and only if θ = σ1σ2 (which is an automorphism
of S) is involutive (θ2 = id). In this case θ leaves invariant both real forms
(θ|Sσi ∈ AutR(S

σi), i = 1, 2).

(iii) If σ1 and σ2 are compatible and compact, then σ1 = σ2.

Proof. For (i), if ψ : Sσ1 → Sσ2 is an isomorphism, then ψ induces an automorphism
φ : S = Sσ1 ⊕ iSσ1 → S = Sσ2 ⊕ iSσ2 (φ(x + iy) = ψ(x) + iψ(y) for any x, y ∈ Sσ1).
Moreover, it is clear that φσ1 = σ2φ as this holds trivially for the elements in Sσ1 .
Conversely, if σ2 = φσ1φ

−1 for some φ ∈ AutC S, then φ
(
Sσ1
)
⊆ Sσ2 and the restriction

φ|Sσ1 gives an isomorphism Sσ1 → Sσ2 .
For (ii), it is clear that if σ1 and σ2 are compatible, then θ = σ1σ2 is C-linear (as

a composition of two antilinear maps) and involutive (θ2 = σ1σ2σ1σ2 = σ21σ
2
2 = id).

Conversely, if θ2 = id, then σ1σ2σ1σ2 = id = σ21σ
2
2, so σ1σ2 = σ2σ1 (as σ1 and σ2 are

invertible).
Finally, assume that σ1 and σ2 are compatible and compact, and let θ = σ1σ2,

which is an involutive automorphism which commutes with both σ1 and σ2. Then
Sσ1 = Sσ1

+ ⊕ Sσ1
− , where Sσ1

± = {x ∈ Sσ1 : θ(x) = ±x}. Let κ be the Killing form of S,
which restricts to the Killing forms of Sσi (i = 1, 2). For any x ∈ Sσ1

− , 0 ≥ κ(x, x) =
−κ(x, θ(x)) = −κ(x, σ2(x)), as θ(x) = σ1σ2(x) = σ2σ1(x) = σ2(x). But the map

hσ2 : S × S −→ C
(u, v) 7→ −κ(u, σ2(v))

is hermitian, since κ
(
σ2(u), σ2(v)

)
= κ(u, v) for any u, v, because σ2 is an antilinear

automorphism, and it is also positive definite since the restriction of hσ2 to Sσ2 × Sσ2

equals −κ|Sσ2×Sσ2 , which is positive definite, since Sσ2 is compact. Therefore, for any
x ∈ Sσ1

− , 0 ≥ κ(x, x) = hσ2(x, x) ≥ 0, so κ(x, x) = 0, and x = 0, since Sσ1 is compact.
Hence Sσ1

− = 0 and id = θ|Sσ1 , so θ = id as S = Sσ1 ⊕ iSσ1 and σ1 = σ2.

1.7 Theorem. Let S be a complex semisimple Lie algebra, and let σ and τ be two
conjugations, with τ being compact. Then there is an automorphism φ ∈ AutC S such
that σ and φτφ−1 (which is compact too) are compatible. Moreover, φ can be taken of
the form exp(i adu) with u ∈ K = Sτ .

Proof. Consider the positive definite hermitian form

hτ : S × S −→ C
(x, y) 7→ −κ

(
x, τ(y)

)
and the automorphism θ = στ ∈ AutC S. For any x, y ∈ S,

hτ
(
θ(x), y

)
= −κ

(
στ(x), τ(y)

)
= −κ

(
x, θ−1τ(y)

)
= −κ

(
x, τστ(y)

)
= hτ

(
x, θ(y)

)
.

Thus, θ is selfadjoint relative to hτ and, hence, there is an orthonormal basis {x1, . . . , xN}
of S over C, relative to hτ , formed by eigenvectors for θ. The corresponding eigenvalues
are all real and nonzero. Identify endomorphisms with matrices through this basis to
get the diagonal matrices:

θ = diag(λ1, . . . , λN ), θ2 = diag(|λ1|2, . . . , |λN |2) = exp
(
diag

(
2 log|λ1|, . . . , 2 log|λN |

))
.
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For any r, s = 1, . . . , N , [xr, xs] =
∑N

j=1 c
j
rsxj for suitable structure constants. With

µj = |λj |2 = λ2j for any j = 1, . . . , N , and since θ2 is an automorphism, we get µrµsc
j
rs =

µjc
j
rs for any r, s, j = 1, . . . , N , and hence (either cjrs = 0 or µrµs = µj) for any t ∈ R,

µtrµ
t
sc

j
rs = µtjc

j
rs, which shows that, for any t ∈ R,

φt = diag(µt1, . . . , µ
t
N ) = exp

(
diag

(
2t log|λ1|, . . . , 2t log|λN |

))
is an automorphism of S.

On the other hand, τθ = τστ = θ−1τ , so τφ1 = τθ2 = θ−2τ = φ−1τ . This shows that
τ diag(µ1, . . . , µN ) = diag(µ−1

1 , . . . , µ−1
N )τ and, as before, this shows that τφt = φ−tτ

for any t ∈ R. Let τ ′ = φtτφ−t. We will look for a value of t that makes στ ′ = τ ′σ.
But,

στ ′ = σφtτφ−t = στφ−2t = θφ−2t,

τ ′σ = φtτφ−tσ = φ2tτσ = φ2tθ
−1 = θ−1φ2t.

(θ−1 and φ2t commute as they both are diagonal.)
Hence στ ′ = τ ′σ if and only if θ2 = φ4t, if and only if t = 1

4 . Thus we take

φ = φ 1
4
= diag

(
µ

1
4
1 , . . . , µ

1
4
N

)
= exp

(
diag

(
1
2 log|λ1|, . . . ,

1
2 log|λN |

))
= exp d,

with d = diag
(
1
2 log|λ1|, . . . ,

1
2 log|λN |

)
. But φt ∈ AutC S for any t ∈ R, so exp td ∈

AutC S for any t ∈ R and, by differentiating at t = 0, this shows that d is a derivation
of S so, by Chapter 2, Consequences 2.2, there is a z ∈ S such that d = adz. Note that
d = adz is selfadjoint ((adz)

∗ = adz) relative to the hermitian form hτ . But S = K⊕ iK
and for any u ∈ K and x, y ∈ S

hτ
(
[u, x], y

)
= −κ

(
[u, x], τ(y)

)
= κ

(
x, [u, τ(y)]

)
= κ

(
x, τ([u, y])

)
(since τ(u) = u)

= −hτ
(
x, [u, y]

)
,

so adu is skew relative to hτ . Therefore, adz is selfadjoint if and only if z ∈ iK.

1.8 Remark. Under the conditions of the proof above, for any ψ ∈ AutR S such that
ψσ = σψ and ψτ = τψ, one has ψθ = θψ and hence (working with the real basis
{x1, ix1, . . . , xN , ixN}) one checks that ψφt = φtψ for any t ∈ R so, in particular, ψφ =
φψ. That is, the automorphism φ commutes with any real automorphism commuting
with σ and τ .

1.9 Corollary. Let S be a complex semisimple Lie algebra and let σ, τ be two compact
conjugations. Then σ and τ are equivalent. That is, up to isomorphism, S has a unique
compact form.

Proof. By Theorem 1.7, there is an automorphism φ such that σ and φτφ−1 are com-
patible (and compact!). By Proposition 1.6, σ = φτφ−1.
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1.10 Theorem. Let S be a complex semisimple Lie algebra, θ and involutive automor-
phism of S and τ a compact conjugation. Then there is an automorphism φ ∈ AutC S
such that θ commutes with φτφ−1. Moreover, φ can be taken of the form exp(i adu) with
u ∈ K = Sτ . In particular, there is a compact form, namely φ(K), which is invariant
under θ.

Proof. First note that (θτ)2 is an automorphism of S and for any x, y ∈ S,

hτ
(
(θτ)2(x), y

)
= −κ

(
(θτ)2(x), τ(y)

)
= −κ

(
x, (θτ)−2τ(y)

)
= −κ

(
x, τ(θτ)2(y)

)
((θτ)−1 = τθ)

= hτ (x, (θτ)
2(y)

)
,

so (θτ)2 is selfadjoint. Besides,

hτ
(
(θτ)2(x), x

)
= −κ

(
(θτ)2(x), τ(x)

)
= −κ

(
θ(τθτ)(x), τ(x)

)
= −κ

(
τθτ(x), θτ(x)

)
(θ ∈ AutC S and θ2 = id)

= hτ
(
θτ(x), θτ(x)

)
≥ 0,

so (θτ)2 is selfadjoint and positive definite. Hence there is an orthonormal basis of S
in which the matrix of (θτ)2 is diag(µ1, . . . , µN ) with µj > 0 for any j = 1, . . . , N .
Identifying again endomorphisms with their coordinate matrices in this basis, consider
the automorphism φt = diag(µt1, . . . , µ

t
N ) for any t ∈ R.

Since τ(θτ)2 = (θτ)−2τ , it follows that τφt = φ−tτ and, as in the proof of Theorem
1.3, take τ ′ = φtτφ−t. Then,

θτ ′ = θφtτφ−t = θτφ−2t,

τ ′θ = φtτφ−tθ = φ2t(θτ)
−1 = (θτ)−1φ2t,

where it has been used that, since (θτ)2 commutes with θτ , so does φt for any t. Hence
θτ ′ = τ ′θ if and only if t = 1

4 .

The rest follows as in the proof of Theorem 1.7.

Now, a map can be defined for any complex semisimple Lie algebra S:

Ψ :

{
Isomorphism classes of

real forms of S

}
−→

{
Conjugation classes in AutC S

of involutive automorphisms

}

[σ] 7→ [στ ]

where [ . ] denotes the corresponding conjugation class and τ is a compact conjugation
that commutes with σ (see 1.7). Note that we are identifying any real form with the
conjugation class in AutC S of the corresponding conjugation (Proposition 1.6).

1.11 Theorem. The map Ψ above is well defined and bijective.
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Proof. If σ is a conjugation and τ1 and τ2 are compact conjugations commuting with
σ, then there is a φ ∈ AutC S such that τ2 = φτ1φ

−1 (Corollary 1.9) and φ commutes
with any real automorphism commuting with τ1 and τ2 (Remark 1.8). Hence στ2 =
σφτ1φ

−1 = φ(στ1)φ
−1. Hence [στ2] = [στ1] and, therefore, the image of [σ] does not

depend on the compact conjugation chosen.
Now, if σ1, σ2 are equivalent conjugations and φ ∈ AutC S satisfies σ2 = φσ1φ

−1,
if τ1 is a compact conjugation commuting with σ1, then τ2 = φτ1φ

−1 is a compact
conjugation commuting with σ2, and σ2τ2 = φσ1φ

−1φτ1φ
−1 = φσ1τ1φ

−1. Hence, Ψ is
well defined.

Let θ ∈ AutC S be an involutive automorphism, and let τ be a compact conjugation
commuting with θ (Theorem 1.10). Then σ = θτ is a conjugation commuting with τ
and Ψ

(
[σ]
)
= [στ ] = [θτ2] = [θ].

Finally, to check that Ψ is one-to-one, let σ1, σ2 be two conjugations and let τ1, τ2
be two compact conjugations with τiσi = σiτi, i = 1, 2. Write θi = σiτi. Assume that
there is a φ ∈ AutC S such that θ2 = φθ1φ

−1. Is [σ1] = [σ2]?
By Corollary 1.9, there exists ψ ∈ AutC S such that τ2 = ψτ1ψ

−1. Thus, [σ1] =
[ψσ1ψ

−1] and Ψ
(
[σ1]
)
= [ψσ1ψ

−1ψτ1ψ
−1] = [ψσ1ψ

−1τ2]. Hence we may assume that
τ1 = τ2 = τ , so θi = σiτ , i = 1, 2.

Now, by Theorem 1.7 and Remark 1.8, there is an automorphism γ ∈ AutC S such
that γτγ−1 and φ−1τφ are compatible and γ commutes with θ1, since θ1 commutes
with τ , and also θ1 = φ−1θ2φ commutes with φ−1τφ. But two compatible compact
conjugations coincide (Proposition 1.6), so γτγ−1 = φ−1τφ. Then,

σ2 = θ2τ = φθ1φ
−1τ

= φθ1(φ
−1τφ)φ−1 = φθ1γτγ

−1φ−1

= φγθ1τ(φγ)
−1

= (φγ)σ1(φγ)
−1.

Hence [σ1] = [σ2].

1.12 Remark.

(i) The proof of Theorem 1.3 shows that Ψ([‘split form’]) = [ω] (ω(xj) = −yj , ω(yj) =
−xj for any j). Trivially, Ψ([‘compact form’]) = [id].

(ii) Let θ ∈ AutC S be an involutive automorphism, and let τ be a compact conjugation
commuting with θ. Take σ = θτ . Then Sτ = K = K 0̄ ⊕K 1̄, where K 0̄ = {x ∈
K : θ(x) = x} and K 1̄ = {x ∈ K : θ(x) = −x}. Then the real form corresponding
to σ is Sσ = L = K 0̄ ⊕ iK 1̄, and its Killing form is

κL = κ|L = κ|K 0̄
⊥ κ|iK 1̄

∼= κ|K 0̄
⊥
(
−κ|K 1̄

)
.

Since κ|K 0̄
and κ|K 1̄

are negative definite, the signature of κL is dimRK 1̄ −
dimRK 0̄ = dimC S1̄ − dimC S0̄, where S0̄ = {x ∈ S : θ(x) = x} and S1̄ =
{x ∈ S : θ(x) = −x}.
The decomposition L = K 0̄ ⊕ iK 1̄ is called a Cartan decomposition of L.
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(iii) To determine the real simple Lie algebras it is enough then to classify the involutive
automorphisms of the simple complex Lie algebras, up to conjugation. This will
be done over arbitrary algebraically closed fields of characteristic 0 by a process
based on the paper by A.W. Knapp: “A quick proof of the classification of simple
real Lie algebras”, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3257–3259.

§ 2. Involutive automorphisms

Let k be an algebraically closed field of characteristic 0, and let L be a semisimple Lie
algebra over k, H a fixed Cartan subalgebra of L, Φ the corresponding root system and
∆ = {α1, . . . , αn} a system of simple roots. Let x1, . . . , xn, y1, . . . , yn be the canonical
generators that are being used throughout.

(i) For any subset J ⊆ {1, . . . , n}, there is a unique involutive automorphism θJ of L
such that {

θJ(xi) = xi, θJ(yi) = yi, if i ̸∈ J ,

θJ(xi) = −xi, θJ(yi) = −yi, if i ∈ J .

We will say that θJ corresponds to the Dynkin diagram of (Φ,∆), where the nodes
corresponding to the roots αi, i ∈ J , are shaded.

(ii) Also, if ω is an ‘involutive automorphism’ of the Dynkin diagram of (Φ,∆), that
is, a bijection among the nodes of the diagram that respects the Cartan integers,
and if J is a subset of {1, . . . , n} consisting of fixed nodes by ω, then there is a
unique involutive automorphism θω,J of L given by,{

θω,J(xi) = xω(i), θω,J(yi) = yω(i), if i ̸∈ J ,

θω,J(xi) = −xi, θω,J(yi) = −yi, if i ∈ J .

We will say that θω,J corresponds to the Dynkin diagram of (Φ,∆) with the nodes
in J shaded and where ω is indicated by arrows, like the following examples:

◦ ◦
◦

◦
• •...................

...........
.....

...................................

↕ ◦ ◦•∨ ∨

These diagrams, where some nodes are shaded and a possible involutive diagram au-
tomorphism is specified by arrows, are called Vogan diagrams (see A.W. Knapp: Lie
groups beyond an Introduction, Birkhäuser, Boston 1996).

2.1 Theorem. Let k be an algebraically closed field of characteristic 0. Then, up to con-
jugation, the involutive automorphisms of the simple Lie algebras are the automorphisms
that correspond to the Vogan diagrams that appear in Tables A.1, A.2.

In these tables, one has to note that for the orthogonal Lie algebras of small di-
mension over an algebraically closed field of characteristic 0, one has the isomorphisms
so3 ∼= A1, so4 ∼= A1 × A1 and so6 ∼= A3. Also, Z denotes a one-dimensional Lie al-
gebra, and sor,s(R) denotes the orthogonal Lie algebra of a nondegenerate quadratic
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form of dimension r + s and signature r − s. Besides, so∗2n(R) denotes the Lie al-
gebra of the skew matrices relative to a nondegenerate antihermitian form on a vec-
tor space over the quaternions: so∗2n(R) = {x ∈ Matn(H) : xth + hx̄ = 0}, where
h = diag(i, . . . , i). In the same vein, spn(H) = {x ∈ Matn(H) : xt + x̄ = 0}, while
spr,s(H) = {x ∈ Matr+s(H) : xth+ hx̄ = 0}, where h = diag(1, . . . , 1,−1, . . . ,−1) (r 1’s
and s −1’s). Finally, an expression like E8,−24 denotes a real form of E8 such that the
signature of its Killing form is −24.

Proof. Let L be a simple Lie algebra over k and let φ ∈ AutL be an involutive automor-
phism. Then L = S ⊕ T , with S = {x ∈ L : φ(x) = x} and T = {x ∈ L : φ(x) = −x}.
The subspaces S and T are orthogonal relative to the Killing form (since the Killing
form κ is invariant under φ).

(i) There exists a Cartan subalgebra H of L which contains a Cartan subalgebra of S
and is invariant under φ:

In fact, the adjoint representation ad : S → gl(L) has a nondegenerate trace form, so
S = Z(S)⊕ [S, S] and [S, S] is semisimple (Chapter 2, 2.2). Besides, for any x ∈ Z(S),
x = xs + xn with xs, xn ∈ NL(T ) ∩ CL(S) = S ∩ CL(S) = Z(S) (as the normalizer
NL(T ) is invariant under φ and NL(T ) ∩ T is an ideal of L and hence trivial). Besides,
κ(xn, S) = 0, so xn = 0. Hence Z(S) is a toral subalgebra, and there is a Cartan
subalgebra HS of S with HS = Z(S) ⊕

(
HS ∩ [S, S]

)
. Then HS is toral on L. Let

H = CL(HS) = HS ⊕ HT , where HT = CL(HS) ∩ T . Then [H,H] = [HT , HT ] ⊆ S.
Hence [[H,H], H] = 0, soH is a nilpotent subalgebra. Thus, [H,H] acts both nilpotently
and semisimply on L. Therefore, [H,H] = 0 and H is a Cartan subalgebra of L, since
for any x ∈ HT , xn ∈ H, κ(xn, H) = 0 and, as H is the zero weight space relative to
HS , the restriction of κ to H is nondegenerate, hence xn = 0 and H is toral.

(ii) Fix one such Cartan subalgebra H and let Φ be the associated set of roots. Then
φ induces a linear map φ∗ : H∗ → H∗, α 7→ ᾱ = α ◦ φ|H . Since φ is an automorphism,
φ(Lα) = Lᾱ for any α ∈ Φ, so Φ̄ = Φ. Besides, for any α ∈ Φ and any h ∈ H,
ᾱ(h) = α(φ(h)) = κ(tα, φ(h)) = κ(φ(tα), h), so φ(tα) = tᾱ for any α ∈ Φ. This shows
that

∑
α∈ΦQtα is invariant under φ.

(iii) Consider the subsets ΦS = {α ∈ Φ : Lα ⊆ S} and ΦT = {α ∈ Φ : Lα ⊆ T}. Then
ΦS ∪ ΦT = {α ∈ Φ : ᾱ = α}:

Actually, [HT , S] ⊆ T and [HT , T ] ⊆ S, so for any α ∈ ΦS ∪ ΦT , α(HT ) = 0 and
α = ᾱ. Conversely, if α(HT ) = 0, then Lα = (Lα ∩S)⊕ (Lα ∩T ) and, since dimLα = 1,
either Lα ⊆ S or Lα ⊆ T .

(iv) The rational vector space Ě =
∑

α∈ΦQtα is invariant under φ and κ|Ě is positive
definite (taking values on Q). Hence Ě = ĚS ⊥ ĚT , where ĚS = Ě∩S and ĚT = Ě∩T .
Also, Φ ⊆ E =

∑
α∈ΦQα = ES ⊕ ET , where ES = {α ∈ E : α(HT ) = 0} and

ET = {α ∈ E : α(HS) = 0}, with ES and ET orthogonal relative to the positive definite
symmetric bilinear form ( . | . ) induced by κ. Moreover, Φ ∩ ET = ∅:

In fact, if α ∈ Φ and α(HS) = 0, then for any x = xS + xT ∈ Lα (xS ∈ S, xT ∈ T ),
and any h ∈ HS , [h, xS + xT ] = α(h)(xS + xT ) = 0. Hence xS ∈ CS(HS) = HS and
[H,xS ] = 0. Now, for any h ∈ HT , α(h)(xS + xT ) = [h, xS + xT ] = [h, xT ] ∈ S. Hence
xT = 0 = xS , a contradiction.

(v) There is a system of simple roots ∆ such that ∆̄ = ∆:
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Type Vogan diagram Fixed subalgebra Real form (k = C)

An ◦ ◦ ◦ ◦ ◦ ◦ An (φ = id) sun+1(R)

◦ ◦ ◦ ◦ ◦ ◦•
p Ap−1 ×An−p × Z sup,n+1−p(R)

(1 ≤ p ≤
[
n
2

]
) (A0 = 0)

◦ ◦ ◦ ◦ ◦ ◦∨ ∨ ∨ ∨ ∨ ∨ so2r+1 sln+1(R)

(n = 2r > 1)

◦ ◦ ◦ ◦ ◦ ◦•∨ ∨ ∨ ∨ ∨ ∨ so2r sln+1(R)

(n = 2r − 1 > 1)

◦ ◦ ◦ ◦ ◦ ◦ ◦∨ ∨ ∨ ∨ ∨ ∨ sp2r slr(H)

(n = 2r − 1 > 1)

Bn ◦ ◦ ◦ ◦ ◦ ◦> Bn (φ = id) so2n+1(R)

◦ ◦ ◦ ◦ ◦ ◦•
p

> so2n+1−p × sop so2n+1−p,p(R)
(1 ≤ p ≤ n)

(
so1 = 0, so2 = Z

)
Cn ◦ ◦ ◦ ◦ ◦ ◦< Cn (φ = id) spn(H)

◦ ◦ ◦ ◦ ◦ ◦•
p

< sp2p × sp2(n−p) spn−p,p(H)

(1 ≤ p ≤ ⌊n
2 ⌋)

◦ ◦ ◦ ◦ ◦ •< An−1 × Z sp2n(R)

Dn ◦ ◦ ◦ ◦ ◦
◦

◦
...........
...........
...........
..

...................................

Dn (φ = id) so2n(R)

◦ ◦ ◦ ◦ ◦
◦

◦
• ...........

...........
...........
..

...................................

p
so2(n−p) × so2p so2(n−p),2p(R)

(1 ≤ p ≤ ⌊n
2 ⌋)

◦ ◦ ◦ ◦ ◦
◦

•
...........
...........
...........
..

...................................

An−1 × Z so∗2n(R)

(n > 4)

◦ ◦ ◦ ◦ ◦
◦

◦
...........
...........
...........
..

...................................

↕ Bn−1 so2n−1,1(R)

◦ ◦ ◦ ◦ ◦
◦

◦
• ...........

...........
...........
..

...................................

p
↕ so2n−2p−1 × so2p+1 so2n−2p−1,2p+1(R)

(1 ≤ p ≤ ⌊n−1
2 ⌋)

Table A.1: Involutive automorphisms: classical cases
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Type Vogan diagram Fixed subalgebra Real form (k = C)

E6

◦ ◦ ◦ ◦ ◦

◦
E6 E6,−78

◦ ◦ ◦ ◦

◦

•
D5 × Z E6,−14

◦ ◦ ◦ ◦ ◦

•
A5 ×A1 E6,2

◦ ◦ ◦ ◦ ◦

◦

∨ ∨ ∨ ∨
F4 E6,−26

◦ ◦ ◦ ◦ ◦

•

∨ ∨ ∨ ∨
C4 E6,6

E7

◦ ◦ ◦ ◦ ◦ ◦

◦
E7 E7,−133

◦ ◦ ◦ ◦ ◦

◦

•
E6 × Z E7,−25

◦ ◦ ◦ ◦ ◦

◦

•
D6 ×A1 E7,−5

◦ ◦ ◦ ◦ ◦ ◦

•
A7 E7,7

E8

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
E8 E8,−248

◦ ◦ ◦ ◦ ◦ ◦

◦

•
E7 ×A1 E8,−24

◦ ◦ ◦ ◦ ◦ ◦

◦

•
D8 E8,8

F4 ◦ ◦ ◦ ◦> F4 F4,−52

◦ ◦ ◦ •> B4 F4,−20

◦ ◦ ◦• > C3 ×A1 F4,4

G2 ◦ ◦< G2 G2,−14

◦ •< A1 ×A1 G2,2

Table A.2: Involutive automorphisms: exceptional cases
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For any α ∈ Φ, α = αS + αT , with αS ∈ ES , αT ∈ ET and αS ̸= 0 because of (iv).
Choose β ∈ ES such that (β|α) = (β|αS) ̸= 0 for any α ∈ Φ. Then (α|β) = (ᾱ|β̄) =
(ᾱ|β) for any α ∈ Φ, so that in the total order on Φ given by β, Φ+ = Φ+ and α ∈ Φ+

is simple if and only if so is ᾱ.

(vi) Let ∆ be a system of simple roots invariant under φ, hence

∆ = {α1, . . . , αs, αs+1, . . . , αs+2r},

with αi = ᾱi, for i = 1, . . . , s, and ᾱs+2i−1 = αs+2i for i = 1, . . . , r. Let α = m1α1+ · · ·+
ms+2rαs+2r be a root with ᾱ = α and assume that s ≥ 1. Then α ∈ ΦS (respectively
α ∈ ΦT ) if and only if

∑
αi∈ΦT

mi is even (respectively odd):
To prove this, it can be assumed that α ∈ Φ+. We will proceed by induction on ht(α).

If ht(α) = 1, then α = ᾱ, so there is an index i = 1, . . . , s such that α = αi and the result
is trivial. Hence assume that ht(α) = n > 1 and that α = ᾱ. If there is an i = 1, . . . , s
such that (α|αi) > 0, then α = β + αi, for some β ∈ Φ+ with β = β̄. Besides Lα =
[Lβ, Lαi ] and the induction hypothesis applies. Otherwise, there is an index j > s such
that (α|αj) > 0, so (α|ᾱj) = (ᾱ|ᾱj) = (α|αj) > 0 and (α−αj |ᾱj) = (α|ᾱj)−(αj |ᾱj) > 0,
since (αj |ᾱj) ≤ 0. Note that, since s ≥ 1, αj and ᾱj are not connected in the Dynkin
diagram, since φ∗ induces an automorphism of the diagram (the only possibility for αj

and ᾱj to be connected would be in a diagram A2r, but with s = 0), hence αj + ᾱj ̸∈ Φ,
so if Lαj = k(xS +xT ), then Lᾱj = k(xS −xT ) and 0 = [xS +xT , xS −xT ] = −2[xS , xT ].
Therefore, α = β + αj + ᾱj , with β, β + αj ∈ Φ, Lα = [Lᾱj , [Lαj , Lβ]] and β = β̄.

Hence Lα = adxS−xT adxS+xT (Lβ) =
(
ad2xS

− ad2xT

)
(Lβ). Thus, Lα is contained in S

(respectively T ) if and only if so is Lβ.

Once we have such a system of simple roots, it is clear that canonical generators of
L can be chosen so that φ becomes the automorphism associated to a Vogan diagram
(if φ∗(αi) = αj with i ̸= j, then it is enough to take xj = φ(xi) and yj = φ(yi)). Let
us check that it is possible to choose such a system ∆ so that the corresponding Vogan
diagram is one of the diagrams that appear in Tables A.1, A.2, where there is at most
a node shaded and this node has some restrictions.

(vii) Let Λ = {µ ∈ ES : (α|µ) ∈ Z ∀α ∈ Φ and (α|µ) ∈ 2Z + 1 ∀α ∈ ΦT }. Then, if
s ≥ 1, Λ ̸= ∅:

Note that with ∆ as above, ES =
∑s

i=1Qαi +
∑r

j=1Q
(
αs+2j−1 + αs+2j

)
, while

ET =
∑r

j=1Q
(
αs+2j−1−αs+2j

)
. Let {µi}s+2r

i=1 be the dual basis of ∆. Then µ1, . . . , µs are

orthogonal to αs+2j−1 and αs+2j for any j = 1, . . . , r, so µ1, . . . , µs ∈ E⊥
T = ES . Also, the

invariance of ( . | . ) under the automorphism induced by φ shows that µs+2j = µ̄s+2j−1

for any j = 1, . . . , r. Let µ =
∑

{i:αi∈ΦT } µi, which satisfies that (αi|µ) = 1 for any i
with αi ∈ ΦT and (αj |µ) = 0 otherwise. Hence by (vi) (α|µ) ∈ 2Z+ 1 for any α ∈ ΦT .

(viii) Note that Λ ⊆ {µ ∈ E : (µ|α) ∈ Z ∀α ∈ ∆} = Zµ1 + · · · + Zµs+2r, which is a
discrete subset of E. Let 0 ̸= µ ∈ Λ of minimal norm. Then there exists a system of
simple roots ∆′ such that ∆′ = ∆̄′ and with (µ|α) ≥ 0 for any α ∈ ∆′:

Let β ∈ ES as in (v), take a positive and large enough r ∈ Q such that, for any
α ∈ Φ, (α|β + rµ) is > 0 if and only if, either (α|µ) > 0 or (α|µ) = 0 and (α|β) > 0.
Then consider the total order in Φ given by β′ = β + rµ (β′ = β̄′). The associated
system of simple roots ∆′ satisfies the required conditions.

(ix) Take µ and the system of simple roots ∆′ in (viii). Then

∆′ = {α′
1, . . . , α

′
s′ , α

′
s′+1, . . . , α

′
s′+2r′},
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with ᾱ′
i = α′

i, i = 1, . . . , s′ and ᾱ′
s′+2j−1 = α′

s′+2j , j = 1, . . . , r′. Let {µ′i}
s′+2r′

i=1 be the

dual basis to ∆′. Since (µ|α) ≥ 0 for any α ∈ Φ+ (µ is said dominant then), and µ̄ = µ,

µ =

s′∑
i=1

miµ
′
i +

r′∑
j=1

ms′+j

(
µ′s′+2j−1 + µ′s′+2j

)
,

with m1, . . . ,ms′+r′ ∈ Z≥0.
Note that if 0 ̸= h1, h2 ∈

∑
α∈Φ+ Qtα with α(hi) ≥ 0 for any α ∈ Φ+ and i = 1, 2,

then κ(h1, h2) = trace
(
adh1 adh2

)
= 2

∑
α∈Φ+ α(h1)α(h2) > 0 (use Exercise 6.15 in

Chapter 2). As a consequence, the inner product of any two nonzero dominant elements
of E is > 0.

Hence if somemi > 0, i = 1, . . . , s′, then µ−µ′i is dominant, so (µ−µ′i|µ′i) ≥ 0 and this
is 0 if and only if µ = µ′i. Now, µ−2µ′i ∈ Λ and (µ−2µ′i|µ−2µ′i) = (µ|µ)−4(µ−µ′i|µ′i) ≤
(µ|µ). By the minimality of µ, we conclude that (µ− µ′i|µ′i) = 0 and µ = µ′i. Therefore
∆′ ∩ ΦT ⊆ {α′

i}.
On the other hand, if mi = 0, for any i = 1, . . . , s′, then (µ|α′

i) = 0 (even!), so
∆′ ∩ ΦT = ∅.

Therefore there is at most one shaded node in the associated Vogan diagram. More
precisely, either ∆′ ∩ ΦT = ∅, or ∆′ ∩ ΦT = {α′

i} and µ = µ′i for some i = 1, . . . , s′. In
this latter case, for any i ̸= j = 1, . . . , s′, (µ − µ′j |µ′j) ≤ 0 (otherwise µ − 2µ′j ∈ Λ with(
µ− 2µ′j |µ− 2µ′j

)
< (µ|µ)). Also, if for some j = 1, . . . , r′,(
µ− 1

2
(µ′s′+2j−1 + µ′s′+2j)

∣∣ µ′s′+2j−1 + µ′s′+2j

)
> 0,

we would have(
µ− (µ′s′+2j−1 + µ′s′+2j)

∣∣ µ− (µ′s′+2j−1 + µ′s′+2j)
)
< (µ|µ),

a contradiction with the minimality of µ, since µ− (µ′s′+2j−1 + µ′s′+2j) ∈ Λ, because for

any α ∈ ΦT ,
(
µ′s′+2j−1|α

)
=
(
µ̄′s′+2j−1|ᾱ

)
=
(
µ′s′+2j |α

)
.

Therefore, if ∆′ ∩ ΦT = {α′
i} for some i = 1, . . . , r, then

µ = µ′i,

(µ− µ′j |µ′j) ≤ 0 for any i ̸= j = 1, . . . , s,(
µ− 1

2
(µ′s′+2j−1 + µ′s′+2j)|µ′s′+2j−1 + µ′s′+2j

)
≤ 0, for any j = 1, . . . , r.

(2.1)

(The last condition in (2.1) does not appear in Knapp’s article.)

(x) Looking at Tables A.1, A.2, what remains to be proved is to check that for Vogan
diagrams associated to the Lie algebras of type Cn, Dn, E6, E7, E8, F4 or G2, in case
there is a shaded node, this node satisfies the requirements in the Tables A.1, A.2. This
can be deduced easily case by case from (2.1):

� For Cn, order the roots as follows,

◦ ◦ ◦ ◦ ◦ ◦α1 α2 α3 αn−1 αn
<

Here αi = ϵi − ϵi+1, i = 1, . . . , n − 1 and αn = 2ϵn where, up to a nonzero
scalar, (ϵi|ϵj) = δij for any i, j. Hence µ′i = ϵ1 + · · · + ϵi for i = 1, . . . , n − 1 and
µ′n = 1

2(ϵ1 + · · ·+ ϵn).
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For any i = 1, . . . , n− 1,

(
µ′i − µ′n|µ′n

)
=

1

2

(
i− (n− i)

)
=

1

2
(2i− n),

so (2.1) is satisfied if and only if i ≤
⌊
n
2

⌋
.

� For Dn,

◦ ◦ ◦ ◦ ◦
◦

◦
α1 α2 α3 αn−2

αn−1

αn

...........
...........
...........
..

...................................

Here either φ∗ is the identity, or ᾱn−1 = αn (ᾱi = αi for i ≤ n − 1). Also, αi =
ϵi− ϵi+1 for i = 1, . . . , n−1 and αn = ϵn−1+ ϵn where, up to a scalar, (ϵi|ϵj) = δij .
Hence µ′i = ϵ1 + · · · + ϵi, for i = 1, . . . , n − 2, µ′n−1 = 1

2(ϵ1 + · · · + ϵn−1 − ϵn) and
µ′n = 1

2(ϵ1 + · · ·+ ϵn−1 + ϵn).

For any i = 1, . . . , n− 2,

(
µ′i − µ′n|µ′n

)
=

1

4
(2i− n),

(
µ′i −

1

2
(µ′n−1 + µ′n)

∣∣ µ′n−1 + µ′n

)
=

1

4

(
2i− (n− 1)

)
,

so if φ∗ = id, then (2.1) is satisfied if i ≤
⌊
n
2

⌋
, while if φ∗ ̸= id, (2.1) is satisfied if

i ≤
⌊
n−1
2

⌋
.

� For E8, take the simple roots as follows:

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

α1 α3 α4 α5 α6 α7 α8

α2

Here ∆8 = {α1, . . . , α8} with

α1 =
1

2
(ϵ1 − ϵ2 − · · · − ϵ7 + ϵ8),

α2 = ϵ1 + ϵ2,

αi = ϵi−1 − ϵi−2, i = 3, . . . , 8,

for an orthonormal basis (up to a scaling of the inner product) {ϵi : i = 1, . . . , 8}.
Hence

µ′1 = 2ϵ8,

µ′2 =
1

2
(ϵ1 + · · ·+ ϵ7 + 5ϵ8),

µ′3 =
1

2
(−ϵ1 + ϵ2 + · · ·+ ϵ7 + 7ϵ8),

µ′i = ϵi−1 + · · ·+ ϵ7 + (9− i)ϵ8, i = 4, . . . , 8.

For any i = 2, . . . , 6, (
µ′i − µ′1|µ′1

)
> 0,

(
µ′i − µ′8|µ′8

)
> 0,

so if (2.1) is satisfied, then i = 1 or i = 8.
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� For E7, ∆7 = ∆8 \ {α8}. It follows that

µ′1 = ϵ8 − ϵ7,

µ′2 =
1

2

(
ϵ1 + · · ·+ ϵ6 + 2(ϵ8 − ϵ7)

)
,

µ′3 =
1

2

(
−ϵ1 + · · ·+ ϵ6 + 3(ϵ8 − ϵ7)

)
,

µ′4 = ϵ3 + · · ·+ ϵ6 + 2(ϵ8 − ϵ7),

µ′5 = ϵ4 + ϵ5 + ϵ6 +
3

2
(ϵ8 − ϵ7),

µ′6 = ϵ5 + ϵ6 + (ϵ8 − ϵ7),

µ′7 = ϵ6 +
1

2
(ϵ8 − ϵ7).

Hence
(
µ′i − µ′7|µ′7

)
> 0 for i = 3, 4, 5, 6, so (2.1) imply that i = 1, 2 or 7.

� For E6, take ∆6 = ∆7 \ {α7}. Here either φ∗ = id or it interchanges α1 and α6,
and α3 and α5. Besides,

µ′1 =
2

3
(ϵ8 − ϵ7 − ϵ6),

µ′2 =
1

2

(
ϵ1 + · · ·+ ϵ5 + (ϵ8 − ϵ7 − ϵ6)

)
,

µ′3 =
1

2

(
−ϵ1 + · · ·+ ϵ5

)
+

5

6

(
ϵ8 − ϵ7 − ϵ6

)
,

µ′4 = ϵ3 + ϵ4 + ϵ5 + (ϵ8 − ϵ7 − ϵ6),

µ′5 = ϵ4 + ϵ5 +
2

3
(ϵ8 − ϵ7 − ϵ6),

µ′6 = ϵ5 +
1

3
(ϵ8 − ϵ7 − ϵ6).

Moreover, (
µ′3 − µ′1|µ′1

)
> 0,

(
µ′5 − µ′6|µ′6

)
> 0,

(
µ′4 − µ′2|µ′2

)
> 0,

so if φ∗ = id, then (2.1) implies that i = 1, 2 or 6, so the symmetry of the diagram
shows that after reordering, it is enough to consider the cases of i = 1 or i = 2.
On the other hand, if φ∗ ̸= id, then i = 2 is the only possibility.

� For F4, consider the ordering of the roots given by

◦ ◦ ◦ ◦α1 α2 α3 α4
>

Here

α1 = ϵ2 − ϵ3,

α2 = ϵ3 − ϵ4,

α3 = ϵ4,

α4 =
1

2
(ϵ1 − ϵ2 − ϵ3 − ϵ4),
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for a suitable orthonormal basis. Hence,

µ′1 = ϵ1 + ϵ2,

µ′2 = 2ϵ1 + ϵ2 + ϵ3,

µ′3 = 3ϵ1 + ϵ2 + ϵ3 + ϵ4,

µ′4 = 2ϵ1,

so (
µ′2 − µ′1|µ′1

)
> 0,

(
µ′3 − µ′4|µ′4

)
> 0,

and (2.1) imply that i = 1 or i = 4.

� For G2, order the roots as follows:

◦ ◦α1 α2
<

Then α1 = ϵ2 − ϵ1, α2 = 1
2(ϵ1 − 2ϵ2 + ϵ3), where {ϵ1, ϵ2, ϵ3} is an orthonormal

basis of a three-dimensional inner vector space and ∆′ = {α1, α2} generates a
two-dimensional vector subspace. Then µ′1 = ϵ3 − ϵ1 and µ′2 = 1

3(−ϵ1 − ϵ2 + 2ϵ3),
so
(
µ′1 − µ′2|µ′2

)
> 0, and hence (2.1) forces i = 2.

(xi) The assertions on the third column in Tables A.1, A.2 follows by straightforward
computations, similar to the ones used for the description of the exceptional simple Lie
algebra of type F4 in Chapter 2, Section § 8. (Some more information will be given in
the next section.) The involutive automorphisms that appear in these tables for each
type are all nonconjugate, since their fixed subalgebras are not isomorphic.

§ 3. Simple real Lie algebras

What is left is to check that the information on the fourth column in Tables A.1, A.2 is
correct.

First, because of item (ii) in Remark 1.12, the signature of the Killing form of the
real form of a simple complex Lie algebra S associated to an involutive automorphism
θ ∈ AutC S is dimC S1̄ − dimC S0̄, and this shows that the third column in Table A.2
determines completely the fourth. Thus, it is enough to deal with the classical cases.
Here, only the type An will be dealt with, leaving the other types as an exercise.

Let S = sln+1(C) be the simple complex Lie algebra of type An. The special unitary
Lie algebra

sun+1(R) = {x ∈ sln+1(C) : x̄t = −x}

is a compact real subalgebra of S (here the ‘bar’ denotes complex conjugation), as for
any x ∈ sun+1(R),

κ(x, x) = 2(n+ 1) trace(x2) = −2(n+ 1) trace(xx̄t) < 0

(see Equation (6.5) in Chapter 2). Let τ be the associated compact conjugation:
τ(x) = −x̄t. For any Vogan diagram, we must find an involutive automorphism φ ∈
AutC sln+1(C) associated to it and that commutes with τ . Then σ = φτ is the conjuga-
tion associated to the corresponding real form.
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(a) For φ = id, σ = τ and the real form is Sσ = sun+1(R).

(b) Let ap = diag(1, . . . , 1,−1, . . . ,−1) be the diagonal matrix with p 1’s and (n +
1− p) −1’s. Then a2p = In+1 (the identity matrix). The involutive automorphism
φp : x 7→ apxap = apxa

−1
p of sln+1(C) commutes with τ , its fixed subalgebra is

formed by the block diagonal matrices with two blocks of size p and n+ 1− p, so
Sφp ∼= slp(C) ⊕ sln+1−p(C) ⊕ Z, where Z is a one-dimensional center. Moreover,
the usual Cartan subalgebra H of the diagonal matrices in S (see Equation (6.4)
in Chapter 2) contains a Cartan subalgebra of the fixed part and is invariant
under φp. Here xi = Ei,i+1 (the matrix with a 1 on the (i, i+ 1) position and 0’s
elsewhere). Then φp(xp) = −xp, while φp(xj) = xj for j ̸= p, so the associated
Vogan diagram is

◦ ◦ ◦ ◦ ◦ ◦•p

Now, with σp = φpτ , the associated real form is

{x ∈ sln+1(C) : xtap + apx̄ = 0} = sup,n+1−p(R).

(c) With n = 2r, consider the symmetric matrix of order n+ 1 = 2r + 1

b =

1 0 0
0 0 Ir
0 Ir 0

 ,

which satisfies b2 = In, and the involutive automorphism φb : x 7→ −bxtb, which
commutes with τ . The fixed subalgebra by φb is precisely so2r+1(C). Again φb

preserves the by now usual Cartan subalgebra H. With the description of the
root system in Chapter 2, (6.4), it follows that φ∗

b(ϵ1) = ϵ1 ◦ φb = −ϵ1, while
φ∗(ϵi) = −ϵr+i, for i = 2, . . . , r + 1. Take the system of simple roots

∆′ = {ϵ2− ϵ3, ϵ3− ϵ4, . . . , ϵr− ϵr+1, ϵr+1− ϵ1, ϵ1− ϵ2r+1, ϵ2r+1− ϵ2r, . . . , ϵr+3− ϵr+2}

which is invariant under φ∗ and shows that the associated Vogan diagram is

◦ ◦ ◦ ◦ ◦ ◦∨ ∨ ∨ ∨ ∨ ∨

Finally, consider the regular matrix

a =

1 0 0
0 Ir Ir
0 iIr −iIr

 ,

which satisfies that b = a−1ā = ā−1a, and the associated conjugation σb = φbτ .
Its real form is

Sσb = {x ∈ sln+1(C) : bx̄b = x}
= {x ∈ sln+1(C) : axa−1 = axa−1}
= a−1sln+1(R)a ∼= sln+1(R).
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(d) In the same vein, with n = 2r − 1, consider the symmetric matrix d =
(

0 Ir
Ir 0

)
and the involutive automorphism φd : x 7→ −dxtd = −dxtd−1. Here the fixed
subalgebra is so2r(C), and φ∗

d(ϵi) = −ϵr+i for i = 1, . . . , r. A suitable system of
simple roots is

∆′ = {ϵr − ϵr−1, ϵr−1 − ϵr−2, . . . , ϵ2 − ϵ1, ϵ1 − ϵr+1, ϵr+1 − ϵr+2, . . . , ϵ2r−1 − ϵ2r}.

The only root in ∆′ fixed by φd is ϵ1 − ϵr+1 and φd(E1,r+1) = −E1,r+1, which
shows that the associated Vogan diagram is

◦ ◦ ◦ ◦ ◦ ◦•∨ ∨ ∨ ∨ ∨ ∨

As before, with σd = φdτ , one gets the real form Sσd ∼= sln+1(R).

(e) Finally, with n = 2r − 1, consider the skew-symmetric matrix c =
(

0 Ir
−Ir 0

)
and

the involutive automorphism φc : x 7→ cxtc = −cxtc−1. Here the fixed subalgebra
is sp2r(C), and φ∗

c(ϵi) = −ϵr+i for i = 1, . . . , r. The same ∆′ of the previous
item works here but φc(E1,r+1) = E1,r+1, which shows that the associated Vogan
diagram is

◦ ◦ ◦ ◦ ◦ ◦ ◦∨ ∨ ∨ ∨ ∨ ∨

With σc = φcτ , one gets the real form

Sσc = {x ∈ sln+1(C) : −cx̄c = x}
=
{( p q

−q̄ p̄

)
: p, q ∈ glr(C) and Re

(
trace(p)

)
= 0
}

∼= {p+ jq ∈ glr(H) : Re
(
trace(p)

)
= 0} = slr(H),

where j ∈ H satisfies j2 = −1 and ij = −ji and Re denotes the real part.
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