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The maximal finite abelian subgroups, up to conjugation, of the simple algebraic
group of type E8 over an algebraically closed field of characteristic 0 are computed.
This is equivalent to the determination of the fine gradings on the simple Lie algebra
of type E8 with trivial neutral homogeneous component. The Brauer invariant of the
irreducible modules for graded semisimple Lie algebras plays a key role.
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1. Introduction

A systematic study of the gradings by abelian groups on the simple Lie algebras
was initiated by Patera and Zassenhaus in [19]. For the classical simple Lie algebras
over an algebraically closed field of characteristic 0, the fine gradings were classified
in [7]; for the exceptional simple algebras they were classified in [3] and [1] for
G2, in [4] for F4 (see also [9] and [2]), and in [5] for E6. The recent monograph [10]
collects, among other things, all these results and extensions to prime characteristic.

The problem of the classification, up to equivalence, of fine gradings on a simple
Lie algebra g over an algebraically closed field of characteristic 0 is equivalent to
the problem of the classification, up to conjugation, of the maximal quasi-tori (or
maximal abelian diagonalizable subgroups) of the group of automorphisms Aut(g).
In particular, the maximal finite abelian subgroups of Aut(g) are maximal quasi-
tori.

In the case in which g = e8, the simple Lie algebra of type E8, whose group
of automorphisms is the exceptional simple algebraic group of type E8, some fine
gradings have been described in [10, § 6.6]. Our goal is to prove that the list of the
corresponding maximal quasi-tori of E8 contains the whole list of maximal finite
abelian subgroups of Aut(e8). To be precise, the main result of this paper may be
summarized in the following theorem.
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Theorem 1.1. Let F be an algebraically closed field of characteristic 0. Then, up
to conjugation, the list of maximal finite abelian subgroups of the exceptional simple
Lie group of type E8 consists of

(i) four elementary abelian groups, isomorphic to Z
9
2, Z

8
2, Z

5
3 and Z

3
5;

(ii) three more subgroups, isomorphic to Z
3
6, Z

3
4 × Z

2
2 and Z4 × Z

6
2.

The maximal elementary abelian p-subgroups of the algebraic groups have been
obtained in [13], so our aim is to show the existence and uniqueness of the subgroups
in item (ii) of the theorem.

Very concrete descriptions of the fine gradings induced by the maximal finite
abelian subgroups of Aut(e8), in terms of some non-associative algebras and con-
structions of e8 related to them, can be found in [10, § 6.6]. The maximal quasi-torus
corresponding to the fine grading by Z

3
6 appears also in [14], and a specific model,

not relying on non-associative algebras, for the Z
3
5-grading appears in [6].

A related problem is considered in [21], which studies the abelian subgroups F of
the compact (real) simple Lie groups of type E satisfying the condition dim gF

0 =
dim F , where g0 is the Lie algebra of the Lie group and gF

0 is the subalgebra of
fixed elements by the action of F . This class of abelian subgroups presents nice
functorial properties exploited in [20], and it comprises the class of the maximal
finite abelian subgroups (dimF = 0). The close relationship between compact Lie
groups and complex reductive linear algebraic groups allows one, in principle, to
extract from [21] the list of the maximal finite abelian subgroups of any simple
linear algebraic group of type E over C, but there are many details to take care of.

Our approach works over arbitrary algebraically closed fields of characteristic
0 and uses recent results on gradings on simple Lie algebras. We believe both
approaches have independent interest.

The next section will be devoted to a survey of some results on matrix algebras.
This section is necessary because there will appear gradings on subalgebras of type
A and D of e8 that will have to be extended to the whole of e8, the main obstruction
being the so-called Brauer invariant of an irreducible module for a graded semisim-
ple Lie algebra. Section 3 will present some preliminary results on maximal finite
quasi-tori on simply connected algebraic groups, showing that any maximal finite
quasi-torus Q of E8 = Aut(e8) is either p-elementary abelian for p = 2, 3 or 5, or its
exponent is 6 or 4 and it contains a specific automorphism of e8 of order 6 or 4 (two
possibilities here). The following sections will deal with the different possibilities,
assuming that Q is not p-elementary abelian.

From now on, the ground field F will be assumed to be algebraically closed of
characteristic zero. Unadorned tensor products will indicate products over F.

2. Background on gradings

If A is an abelian group, an A-grading on a non-associative (i.e. not necessarily asso-
ciative) algebra A over F is a vector space decomposition Γ : A =

⊕
a∈A Aa such

that AaAb ⊂ Aab for all a, b ∈ A. The subspaces Aa are said to be the homogeneous
components of Γ and the non-zero elements x ∈ Aa are called homogeneous of degree
a; we will write deg x = a. The support of Γ is the set SuppΓ := {a ∈ A : Aa �= 0}.
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Given gradings Γ : A =
⊕

a∈A Aa and Γ ′ : A =
⊕

b∈B A′
b, we say that Γ is a

refinement of Γ ′ if for any a ∈ A there exists b ∈ B such that Aa ⊂ A′
b. A grading

Γ is said to be fine if it does not admit a proper refinement.
Given a quasi-torus Q of Aut(A), we can identify Q with the group of characters Â

for A the group of homomorphisms (as algebraic groups) Q → F
×. Then Q induces

an A-grading of A, where Aa = {x ∈ A : χ(x) = a(χ)x ∀χ ∈ Q} for any a ∈ A. It
turns out [19] that, in this way, the fine gradings on A, up to equivalence, correspond
to the conjugacy classes in Aut(A) of the maximal quasi-tori (or maximal abelian
diagonalizable subgroups) of Aut(A).

Let g be a finite-dimensional simple Lie algebra over F and let Q be a maximal
quasi-torus of Aut(g). If Q is finite, the neutral homogeneous component of the
associated fine grading Γ (i.e. the subalgebra of the elements fixed by the automor-
phisms in Q) is trivial (see, for instance, [8, proposition 4.1] or [4, corollary 5]).

For g the simple special Lie algebra sl(V ), if the quasi-torus Q (satisfying this
last condition on the neutral component) is contained in the connected component
Aut(sl(V ))◦ � PSL(V ), then the grading on sl(V ) is the restriction of a grading
on the associative algebra R = EndF(V ) with dimRe = 1. These kinds of gradings
on R are called division gradings (and R is called a graded division algebra), since
every non-zero homogeneous element is invertible. These gradings are described
in [10, ch. 2], and as a consequence we have the following result.

Theorem 2.1. Let Q be a quasi-torus of PSL(V ) � Aut(sl(V ))◦ such that the
neutral component of the induced grading Γ on sl(V ) is trivial. Then there are
a decomposition V = V1 ⊗ · · · ⊗ Vr (dimVi = li � 2 for any i) and elements
xi, yi ∈ SL(Vi) with xiyi = ξiyixi, where ξi is a fixed primitive lith root of 1,
xli

i = yli
i = (−1)li+11Vi

, such that

Q = 〈[x1], [y1], . . . , [xr], [yr]〉 ∼= Z
2
l1 × · · · × Z

2
lr ,

where any endomorphism zi ∈ GL(Vi) is identified with the endomorphism 1V1 ⊗
· · · ⊗ zi ⊗ · · · ⊗ 1Vl

(Kronecker product) in GL(V ), and where [z] denotes the class
of z ∈ SL(V ) in PSL(V ). If r = 1, or if the lis are powers of prime numbers, the
elements xi and yi are unique up to simultaneous conjugation.

Every non-zero homogeneous component of Γ has dimension 1, so that Γ is fine.

Any graded matrix algebra R = Mn(F) is isomorphic to EndD(W ), where D is a
graded division algebra and W is a finite-dimensional graded right free module over
D. The graded division algebra D is determined by the isomorphism class of the
graded algebra R and it is denoted by [R] (so [R] = [D]). Moreover, given two A-
graded matrix algebras R1 = EndD1(W1) and R2 = EndD2(W2), the tensor product
R1 ⊗ R2 is again an A-graded matrix algebra and [R1 ⊗ R2] depends only on [D1]
and [D2]. Thus, we obtain an abelian group: the A-graded Brauer group [11, § 2]
(or [12, appendix A]). The behaviour of this group mimics the behaviour of the
classical Brauer group (but this latter one is trivial over algebraically closed fields!).
In particular, we have [D]−1 = [Dop], as D ⊗ Dop ∼= EndF(D) as graded algebras,
and the grading on EndF(D) is induced by the grading on D.

Now let V be a finite-dimensional irreducible module for a finite-dimensional
semisimple A-graded Lie algebra g such that the image of the group of characters Â
in Aut(g) lies in the connected component Aut(g)◦. Then [11, § 3] the matrix algebra
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EndF(V ) is A-graded in a unique way satisfying that the associated epimorphism
of associative algebras ρ : U(g) → EndF(V ) (U(g) denotes the universal enveloping
algebra) is a homomorphism of A-graded algebras. Hence, EndF(V ) ∼= EndD(W )
for some D and W as above, and we write Br(V ) = [D]. This is called the Brauer
invariant of the irreducible g-module V .

If V admits an A-grading compatible with the action of g, then the Brauer
invariant of V is trivial (and vice versa). Such A-grading on V is unique up to a
shift. In particular, its homogeneous components are uniquely determined. Hence,
we have the following lemma.

Lemma 2.2. Let g =
⊕

r̄∈Zn
gr̄ be a Zn-graded finite-dimensional semisimple Lie

algebra such that g0̄ is semisimple and each gr̄, r̄ �= 0̄, is an irreducible module for
g0̄. Then any refinement Γ is determined, up to equivalence, by its restriction Γ0̄
to g0̄.

Proof. Since each gr̄, r̄ �= 0̄, is irreducible, the restriction Γr̄ of Γ to gr̄ is the unique
A-grading, up to a shift, on gr̄ compatible with the A-grading Γ0̄ on g0̄. Hence, the
homogeneous components of Γ are all uniquely determined by Γ0̄.

3. Finite-order automorphisms

Let g be a finite-dimensional simple Lie algebra and let G = Aut(g) be its group of
automorphisms. Given a subgroup H of G, CG(H) will denote its centralizer in G.

Lemma 3.1. If Q is a maximal quasi-torus in G, then Q is self-centralizing, that
is, CG(Q) = Q.

Proof. By maximality, Q is a closed subgroup of the algebraic group G. For any
x ∈ CG(Q), let x = xsxn be its Jordan decomposition [15, § 15]. Then the clo-
sure of the subgroup generated by Q and xs is diagonalizable, so by maximality
of Q, xs ∈ Q, and thus the quotient CG(Q)/Q is unipotent, and hence nilpo-
tent [15, § 17.5]. We conclude that CG(Q) is nilpotent, because Q is central in
CG(Q). Then [18, III.3.4, proposition 3.6] implies that since Q is reductive, so is
CG(Q) and, therefore, CG(Q) is reductive and nilpotent, and hence its connected
component satisfies CG(Q)◦ = Z(Cg(Q)◦), and it consists of semisimple elements.
By maximality, CG(Q)◦ = Q◦, so [CG(Q) : Q] � [CG(Q) : CG(Q)◦] < ∞. Therefore,
CG(Q)/Q is unipotent and finite, so it is trivial (we are assuming char F = 0).

In the case in which g = e8, the group G is connected and simply connected, so
the next result applies.

Lemma 3.2. Assume that G is semisimple, connected and simply connected, and let
Q be a maximal quasi-torus of G with Q finite. Then for any θ ∈ Q, the subalgebra
of fixed elements gθ := {x ∈ g : θ(x) = x} is a semisimple subalgebra.

Proof. Since θ is semisimple (finite order) and G is connected and simply connected,
CG(θ) is reductive [16, theorem 2.2], and since G is simply connected, CG(θ) is
connected [16, theorem 2.11]. Then [16, lemma 19.5] Z(CG(θ))◦ is a torus.

But Z(CG(θ))◦ is contained in any maximal quasi-torus of CG(θ), so it is con-
tained in Q. Since Q is finite, we get Z(CG(θ))◦ = 1, so dim Z(CG(θ)) = 0, and
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hence the Lie algebra L(Z(CG(θ))) is trivial. It follows that the reductive Lie alge-
bra gθ = L(CG(θ)) has trivial centre, so it is semisimple.

The finite-order automorphisms of g are classified, up to conjugation, in [17, § 8.6]
in terms of affine Dynkin diagrams and sequences of relatively prime non-negative
integers (s0, . . . , sl) (here l+1 is the number of nodes in the affine Dynkin diagram).
For g = e8, if θ is a non-trivial finite order automorphisms and gθ is semisimple, [17,
proposition 8.6] shows that the sequence is of the form (0, . . . , 1, . . . , 0) with only
one si = 1 and i > 0. That is, only one node is involved in the affine Dynkin
diagram E

(1)
8 :

� � � � � � � �

�

1 2 3 4 5 6 4 2

3

This unique node will be highlighted in black. In particular any such automorphism
has order at most 6, and up to conjugation there are only two order 4 automorphisms
and one order 6 automorphism with semisimple gθ.

Proposition 3.3. Let Q be a maximal finite abelian subgroup of Aut(e8). Then
either Q is p-elementary abelian with p = 2, 3 or 5, or the exponent of Q is either
4 or 6. Moreover, for any θ ∈ Q, the fixed subalgebra eθ

8 is semisimple.

Proof. By lemma 3.2, eθ
8 is semisimple for any θ ∈ Q, so the order of θ is at most

6. The result follows at once.

The maximal elementary abelian subgroups of algebraic groups have been classi-
fied in [13]. For Aut(e8) there are only four such subgroups that coincide with their
centralizers (and hence they are maximal abelian subgroups). They are isomorphic
to Z

9
2, Z

8
2, Z

5
3 and Z

3
5.

Hence we must consider the situation in which the maximal finite abelian sub-
group Q of Aut(e8) contains an automorphism of order 6 or 4. (It cannot contain
both as there are no elements of order 12 in Q.)

4. Order 6 automorphism

Let θ be the order 6 automorphism of g = e8 related to the following diagram:

� � � � � � � �

�

1 2 3 4 5 6 4 2

3

The automorphism θ induces the Z6-grading g =
⊕

r̄∈Z6
gr̄, with gr̄ = {x ∈

g : θ(x) = ξrx}, where ξ is a primitive 6th root of 1. Then, up to isomorphism,
we have

g0̄ = sl(U) ⊕ sl(V ) ⊕ sl(W ), g3̄ = U ⊗ 1 ⊗ ∧3W,

g1̄ = U ⊗ V ⊗ W, g4̄ = 1 ⊗ V ⊗ ∧4W,

g2̄ = 1 ⊗ V ∗ ⊗ ∧2W, g5̄ = U ⊗ V ∗ ⊗ ∧5W,
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where U , V and W are vector spaces of dimension 2, 3 and 6, respectively. The
expression above for gr̄, r̄ �= 0̄, gives the structure of gr̄ as a module for g0̄. For g0̄,
g1̄ and g5̄ this follows from [17, proposition 8.6], as well as the fact that, for r̄ �= 0̄,
gr̄ is an irreducible module for g0̄. The other components are computed easily.

In this case, the connected component Aut(g0̄)◦ is isomorphic to PSL(U) ×
PSL(V ) × PSL(W ). Moreover, for any (a, b, c) ∈ SL(U) × SL(V ) × SL(W ), there is
an automorphism φa,b,c of g with

φa,b,c|g0̄
= (Ada, Adb, Adc), φa,b,c|g1̄

= a ⊗ b ⊗ c.

Note that g1̄ generates g as an algebra, so the automorphism φa,b,c is determined
by its action on g1̄. We have the following homomorphisms (of algebraic groups):

Φ : SL(U) × SL(V ) × SL(W ) → CG(θ),
(a, b, c) �→ φa,b,c,

Ψ : CG(θ) → Aut(g0̄),
ϕ �→ ϕ|g0̄

.

Lemma 4.1.

(i) im Ψ = Aut(g0̄)◦ � PSL(U) × PSL(V ) × PSL(W ) and ker Ψ = 〈θ〉 (the sub-
group generated by θ = φ1U ,1V ,ξ1W

).

(ii) Φ is surjective and ker Φ = 〈(−1U , ξ21V , ξ1W )〉, which is a cyclic group of
order 6.

Proof. If ϕ is in kerΨ , then ϕ|g0̄
= id, so by Schur’s lemma, ϕ|g1̄

= λ id for a non-
zero scalar λ. But g1̄ generates g and this forces λ6 = 1, and hence ϕ is a power
of θ.

Since CG(θ) is connected (proof of lemma 3.2), imΨ is contained in Aut(g0̄)◦,
so for any ϕ ∈ CG(θ) there are elements a ∈ SL(U), b ∈ SL(V ) and c ∈ SL(W )
such that ϕ|g0̄

= (Ada, Adb, Adc). But φa,b,c ∈ CG(θ), and Ψ(ϕ) = Ψ(φa,b,c). Hence
ϕφ−1

a,b,c ∈ ker Ψ = 〈θ〉 ⊆ im Φ. Thus, ϕ ∈ im Φ and Φ is onto.
But Ψ(im Φ) fills Aut(g0̄)◦ � PSL(U) × PSL(V ) × PSL(W ), so we obtain that

im Ψ = Aut(g0̄)◦.
Finally, for any a ∈ SL(U), b ∈ SL(V ) and c ∈ SL(W ), the automorphism

φa,b,c is the identity if and only if a ⊗ b ⊗ c = id in EndF(U ⊗ V ⊗ W ), and this
happens if and only if there are scalars λ, µ, ν ∈ F

× with λµν = 1 such that
a = λ1U , b = µ1V and c = ν1W (which implies that λ2 = µ3 = ν6 = 1 because the
determinant of these endomorphisms is 1). This shows that kerΦ is generated by
(−1U , ξ21V , ξ1W ) = (ξ31U , ξ21V , ξ1W ).

Theorem 4.2. Let Q be a maximal finite abelian subgroup of Aut(e8) containing
an order 6 automorphism. Then there are a1, a2 ∈ SL(U) with a2

1 = a2
2 = −1U ,

a1a2 = −a2a1, b1, b2 ∈ SL(V ) with b3
1 = b3

2 = 1V , b1b2 = ξ2b2b1, and c1, c2 ∈ SL(W )
with c6

1 = c6
2 = −1W , c1c2 = ξc2c1 (ξ is a primitive 6th root of 1) such that Q is

conjugated to
〈φa1,b1,c1 , φa2,b2,c2 , φ1U ,1V ,ξ1W

〉 ∼= Z
3
6.

Therefore, up to conjugation, Aut(e8) contains a unique maximal finite abelian
subgroup with elements of order 6.
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Proof. Let θ ∈ Q be an automorphism of order 6 as above. The quasi-torus Q ⊂
CG(θ) induces a fine grading Γ on g (a refinement of the Z6-grading) with trivial
neutral homogeneous component, which restricts to a grading Γ0̄ on g0̄, and hence
on sl(U), sl(V ) and sl(W ) with trivial neutral homogeneous components. Denote
by πU , πV and πW the projections of Aut(g0̄)◦ onto PSL(U), PSL(V ) and PSL(W ),
respectively. In particular, πU ◦Ψ(Q) is a diagonalizable subgroup in PSL(U) whose
induced grading on sl(U) satisfies that its neutral component is trivial. By theo-
rem 2.1, the only possibility is that πU ◦ Ψ(Q) is isomorphic to Z

2
2. Analogously,

πV ◦ Ψ(Q) ∼= Z
2
3 and πW ◦ Ψ(Q) ∼= Z

2
6.

This shows, in particular, that there are elements c1, c2 ∈ SL(W ) with c6
1 = c6

2 =
−1 and c1c2 = ξc2c1 such that πW ◦ Ψ(Q) = 〈[c1], [c2]〉. Hence there are elements
a1, a2 ∈ SL(U) and b1, b2 ∈ SL(V ) such that φa1,b1,c1 and φa2,b2,c2 are in Q. Now
we get the following.

• Since πU ◦ Ψ(Q) ∼= Z
2
2, we have Ad2

ai
= id, i = 1, 2, so a2

i = εi1U , with
εi = ±1, i = 1, 2 (as det(ai) = 1).

• Also, πV ◦ Ψ(Q) ∼= Z
2
3, so Ad3

bi
= 1 and b3

i = µi1V with µ3
i = 1, i = 1, 2.

• φ6
ai,bi,ci

= id, so id = a6
i ⊗ b6

i ⊗ c6
i = −a6

i ⊗ b6
i ⊗ 1W = (−ε3

i µ
2
i ) id. Hence

εiµ
2
i = −1, and this ensures that εi = −1 and µi = 1, i = 1, 2.

• Since Q is abelian, φa1,b1,c1φa2,b2,c2 = φa2,b2,c2φa1,b1,c1 , and hence a1a2 ⊗
b1b2 ⊗ c1c2 = a2a1 ⊗ b2b1 ⊗ c2c1, that is, ξa1a2 ⊗ b1b2 = a2a1 ⊗ b2b1. It
then follows that there are scalars µ, ν ∈ F

× such that a1a2 = µa2a1 and
b1b2 = νb2b1. Besides, µ2 = 1 (because det(a1a2) = 1), ν3 = 1, and ξµν = 1.
We conclude that a1a2 = −a2a1 and b1b2 = ξ2b2b1, and hence we obtain
πU ◦ Ψ(Q) = 〈[a1], [a2]〉 and πV ◦ Ψ(Q) = 〈[b1], [b2]〉.

If ϕ ∈ Q, let us check that ϕ ∈ 〈φa1,b1,c1 , φa2,b2,c2 , θ〉. As πW ◦ Ψ(ϕ) ∈ 〈[c1], [c2]〉,
there are integers 0 � n1, n2 � 5 such that

ϕφn1
a1,b1,c1

φn2
a2,b2,c2

∈ ker(πW ◦ Ψ).

Hence we may assume that ϕ is in ker(πW ◦ Ψ). Since Φ is onto, there are ele-
ments a ∈ SL(U) and b ∈ SL(V ) with ϕ = φa,b,1W

. (Note that θ = φ1U ,1V ,ξ1W
=

φξ31U ,ξ41V ,1W
.) Since πU ◦Ψ(ϕ) lies in 〈[a1], [a2]〉, there is a scalar λ ∈ F

× and inte-
gers 0 � r1, r2 � 1 with a = λar1

1 ar2
2 . Similarly, there is a scalar µ ∈ F

× and integers
0 � s1, s2 � 2 with b = µbs1

1 bs2
2 . Also λ2 = 1 = µ3 because the determinants are

always 1. Since ϕ commutes with φa1,b1,c1 , we have

(a ⊗ b ⊗ 1W )(a1 ⊗ b1 ⊗ c1) = (a1 ⊗ b1 ⊗ c1)(a ⊗ b ⊗ 1W ),

and, since aa1 = (−1)r2a1a and bb1 = ξ4s2b1b, we obtain (−1)r2ξ2s2 = 1, which
gives r2 = s2 = 0. In the same vein, we get r1 = s1 = 0. Therefore, ϕ ∈ ker Ψ = 〈θ〉,
and we obtain Q = 〈φa1,b1,c1 , φa2,b2,c2 , θ〉. Moreover, the three generators have order
6, θ ∈ ker(πW ◦Ψ) and im(πW ◦Ψ |Q) = 〈[c1], [c2]〉 ∼= Z

2
6, so Q is isomorphic to Z

3
6.
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5. Order 4 automorphism. Type I

Now let θ be the order 4 automorphism of g = e8 related to the following diagram:

� � � � � � � �

�

1 2 3 4 5 6 4 2

3

The order 4 automorphisms conjugated to it will be said to be of type I. The
automorphism θ induces a grading by Z4: g =

⊕
r̄∈Z4

gr̄, with gr̄ = {x ∈ g : θ(x) =
irx}, where i is a primitive 4th root of 1. Then, up to isomorphism, we have

g0̄ = sl(U) ⊕ sl(V ),

g1̄ = U ⊗ ∧2V,

g2̄ = 1 ⊗ ∧4V,

g3̄ = U ⊗ ∧6V,

where U and V are vector spaces of dimension 2 and 8, respectively.
As in the previous section, we have group homomorphisms

Φ : SL(U) × SL(V ) → CG(θ),
(a, b) �→ φa,b,

Ψ : CG(θ) → Aut(g0̄),
ϕ �→ ϕ|g0̄

,

where φa,b|g1̄
= a ⊗ ∧2b and φa,b|g0̄

= (Ada, Adb). The next result is proved along
the same lines as lemma 4.1.

Lemma 5.1.

(i) im Ψ = Aut(g0̄)◦ � PSL(U) × PSL(V ) and ker Ψ = 〈θ〉.

(ii) Φ is surjective and ker Φ = 〈(−1U , i1V )〉 ∼= Z4.

Theorem 5.2. Let Q be a maximal finite abelian subgroup of Aut(e8) containing an
order 4 automorphism of type I. Then there are a1, a2 ∈ SL(U) and b1, b2, c1, c2 ∈
SL(V ) with a2

i = −1U and b4
i = −1V = c2

i for any i = 1, 2; also, a1a2 = −a2a1,
b1b2 = ib2b1, c1c2 = −c2c1 and bicj = cjbi, such that Q is conjugated to

〈φa1,b1 , φa2,b2 , φ1U ,c1 , φ1U ,c2 , φi1U ,1V
〉. (5.1)

In particular, up to conjugation, Aut(e8) contains a unique maximal finite abelian
subgroup with automorphisms of order 4 and type I, which is isomorphic to Z

3
4 ×Z

2
2.

Proof. Let θ ∈ Q be an automorphism of order 4 and type I. We can assume that
θ = φi1U ,1V

= φ1U ,ω1V
, for ω a primitive eighth root of 1 with i = ω2.

Denote by πU and πV the projections of Aut(g0̄)◦ onto PSL(U) and PSL(V ),
respectively. By theorem 2.1, πU ◦ Ψ(Q) is necessarily isomorphic to Z

2
2, while πV ◦

Ψ(Q), which is a 2-group of exponent less than or equal to 4, is isomorphic either to
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Z
2
4 × Z

2
2, or to Z

6
2. In particular, there are elements a1, a2 ∈ SL(U) such that a2

1 =
−1U = a2

2, a1a2 = −a2a1 and πU ◦Ψ(Q) = 〈[a1], [a2]〉, and hence there are elements
b1, b2 ∈ SL(V ) such that φa1,b1 , φa2,b2 are in Q. Since both automorphisms commute,
φa1a2,b1b2 = φ−a1a2,b2b1 , so that ∧2(b1b2) = −∧2 (b2b1) and this ensures that b1b2 =
ω±2b2b1. Also, φ4

ai,bi
= id, so Ad4

bi
= id, i = 1, 2. Since Adb1(b2) = ω±2b2, we

obtain that the order of Adbi
is exactly 4, i = 1, 2, and hence both 〈φa1,b1 , φa2,b2〉

and πV ◦ Ψ(〈φa1,b1 , φa2,b2〉) are isomorphic to Z
2
4. Therefore, Q̃ = πV ◦ Ψ(Q) is

necessarily isomorphic to Z
2
4 × Z

2
2. Interchanging the indices if necessary, we may

always assume that b1b2 = ω2b2b1.
Let us now prove that ker(πV ◦Ψ |Q) = 〈θ〉. If ϕ is an element of Q∩ ker(πV ◦Ψ),

then there are elements a ∈ SL(U) and µ ∈ F
× with µ8 = 1 (i.e. µ1V ∈ SL(V )),

such that ϕ = φa,µ1V
. But ϕφai,bi = φai,biϕ for i = 1, 2, because Q is abelian,

so aai = aia for i = 1, 2 and, since a1 and a2 generate EndF(U), it follows that
a ∈ F

×1U . Hence a = ±1U and ϕ ∈ ker Ψ = 〈θ〉.
Therefore, Q is a 2-group of exponent 4, with πV ◦ Ψ(Q) ∼= Z

2
4 × Z

2
2 and ker(πV ◦

Ψ |Q) ∼= Z4, implying that Q is isomorphic to Z
3
4 × Z

2
2.

Moreover, the quasi-torus Q̃ ∼= Z
2
4 × Z

2
2 induces a division grading on EndF(V ).

The elements b1 and b2 are homogeneous, alg〈b1, b2〉 is isomorphic to M4(F), and
EndF(V ) = alg〈b1, b2〉 ⊗ C, where C is the centralizer in EndF(V ) of alg〈b1, b2〉.
Thus C is a graded subalgebra of EndF(V ) isomorphic to M2(F). Hence we obtain
V = V1 ⊗ V2, dimV1 = 4, dimV2 = 2, and alg〈b1, b2〉 = EndF(V1), C = EndF(V2).

Since C is a graded subalgebra,

Q̃ = 〈[b1], [b2], [c1], [c2]〉

for elements ci ∈ SL(V2) ⊆ C, c2
i = −1V2 , i = 1, 2, and c1c2 = −c2c1. Then there

are elements âi ∈ SL(U) such that φâi,ci
∈ Q, i = 1, 2.

The commutativity of Q gives φâi,ci
φaj ,bj

= φaj ,bj
φâi,ci

for any i, j = 1, 2, and
since a1 and a2 generate EndF(U) and cibj = bjci, it follows that âi ∈ F

×1U , so
âi = ±1U (det(âi) = 1). Composing φ1U ,ci with φ−1U ,1V

= φ1U ,ω21V
= θ2 if needed,

we may assume φ1U ,ci ∈ Q, i = 1, 2, and hence the result follows.

6. Order 4 automorphism. Type II

Finally, let θ be the order 4 automorphism of g = e8 related to the following
diagram:

� � � � � � � �

�

1 2 3 4 5 6 4 2

3

which will be said to be of type II. Thus θ induces a Z4-grading g =
⊕

r̄∈Z4
gr̄,

where gr̄ = {x ∈ g : θ(x) = irx}, that satisfies

g0̄ = sl(U) ⊕ so(V, q),

g1̄ = U ⊗ V +,

g2̄ = ∧2U ⊗ V,

g3̄ = ∧3U ⊗ V −,
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for a four-dimensional vector space U and a ten-dimensional vector space V endowed
with a non-degenerate quadratic form q. Here V + and V − denote the two half-spin
representations of the orthogonal Lie algebra so(V, q).

Denote by C(V, q) the Clifford algebra of (V, q), and by x ·y the multiplication of
any two elements x, y ∈ C(V, q). Recall that C(V, q) is a unital associative algebra
generated by V and that v·2 = q(v)1. The Clifford algebra C(V, q) is Z2-graded
with deg v = 1̄ for any v ∈ V . The spin group is defined as

Spin(V, q) := {x ∈ C(V, q)×
0̄ : x · V · x−1 ⊆ V, x · ς(x) = 1},

where ς is the involution (i.e. the antiautomorphism of order 2) of C(V, q) such that
ς(v) = v for any v ∈ V .

Let {e1, . . . , e10} be an orthogonal basis of V with q(ei) = 1 for any i. Then the
centre of C(V, q)0̄ is F1 ⊕ Fz, with z = e1 · e2 · · · · · e10 ∈ Spin(V, q). Moreover,
z·2 = −1, so the order of z is 4. There is a surjective homomorphism onto the
special orthogonal group

Spin(V, q) → SO(V, q),
s �→ ιs,

where ιs(v) = s · v · s−1 = s · v · ς(s), for any v ∈ V , whose kernel is {±1}.
Besides, ιz = −1V , so the quotient Spin(V, q)/〈z〉 is isomorphic to the projective
special orthogonal group PSO(V, q), which in turn is naturally isomorphic to the
connected component Aut(so(V, q))◦.

The Lie algebra so(V, q) is isomorphic to the Lie subalgebra

[V, V ]· := span{[u, v]· = u · v − v · u : u, v ∈ V }

of C(V, q)−
0̄ . This Lie subalgebra generates C(V, q)0̄ (as an associative algebra). The

half-spin modules V ± are the two irreducible modules for the semisimple associative
algebra C(V, q)0̄ (which are then irreducible modules for so(V, q) � [V, V ]·). The
central element z acts on V + (respectively, V −) by multiplication by the scalar i
(respectively, −i).

As for the previous cases, we have a homomorphism

Φ : SL(U) × Spin(V, q) → CG(θ),
(a, s) �→ φa,s,

such that φa,s|g1̄
is given by

φa,s(u ⊗ x) = a(u) ⊗ s.x,

for any a ∈ SL(U), s ∈ Spin(V, q), u ∈ U and x ∈ V +, where s.x denotes the
action of the element s ∈ C(V, q)0̄ on x ∈ V +. Note that g1̄ generates g, so φa,s is
determined by its action on g1̄, and θ = φ1,z. The restriction of φa,s to g0̄ is then
given by

φa,s(b, σ) = (Ada(b), Ads(σ)),

where Ada(b) = aba−1 for a ∈ SL(U) and b ∈ sl(U), and Ads(σ) = s · σ · s−1 for
s ∈ Spin(V, q) and σ ∈ so(V, q) � [V, V ]· (adjoint action inside C(V, q)0̄). Observe
that Ads(σ) = ιs ◦ σ ◦ ιs−1 for any s ∈ Spin(V, q) and σ ∈ so(V, q) � [V, V ]·.
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There is also a group homomorphism:

Ψ : CG(θ) → Aut(g0̄),
ϕ �→ ϕ|g0̄

.

Lemma 6.1.

(i) im Ψ = Aut(g0̄)◦ � PSL(U) × PSO(V, q) and ker Ψ = 〈θ〉.

(ii) Φ is surjective and ker Φ = 〈(−i1U , z)〉, which is a cyclic group of order 4.

Proof. If ϕ is in kerΨ , then ϕ|g0̄
= id and, by Schur’s lemma, ϕ acts as a scalar on

g1̄. This scalar must be a fourth root of 1 and hence ϕ is a power of θ.
For any ϕ ∈ CG(θ), the restriction ϕ|g0̄

lies in Aut(g0̄)◦ � PSL(U) × PSO(V, q)
because CG(θ) is connected (see the proof of lemma 3.2), so there are elements
a ∈ SL(U) and s ∈ Spin(V, q) such that ϕ|g0̄

= φa,s|g0̄
. Hence ϕφ−1

a,s ∈ 〈θ〉. But
θ = φi1U ,1 ∈ im Φ. It follows that Φ is onto. Also, im Ψ = Ψ(im Φ) fills PSL(U) ×
PSO(V, q) � Aut(g0̄)◦.

Finally, if φa,s = id for a ∈ SL(U) and s ∈ Spin(V, q), then Ada = id and Ads =
id, so a ∈ F

×1U and s ∈ Z(C(V, q)0̄) ∩ Spin(V, q) = 〈z〉. But φλ1U ,zr = id if and
only if λir = 1, or λ = (−i)r. Then (a, s) = (−i1U , z)r, so ker Φ = 〈(−i1U , z)〉.

Lemma 6.2. If θ belongs to a maximal finite abelian subgroup Q of Aut(e8), then

(a) Q does not contain any element of the form φ1U ,ei·ej
with 1 � i �= j � 10;

(b) if φx,s ∈ Q, with x conjugate to

diag{ω, ω3, ω5, ω7} ∈ SL(U)

and s ∈ Spin(V, q), has order 4 and is of type II, then s2 has order 4 and is
conjugate in Spin(V, q) to e1 · e2 · e3 · e4 · e5 · e6.

Proof. Any order 4 automorphism of e8 is of type I if its fixed subalgebra has
dimension 66, and of type II if its fixed subalgebra has dimension 60. In the first
case its square is an automorphism of order 2 fixing a subalgebra of type E7 + A1
and dimension 136, and, in the second one, its square is an automorphism of order 2
fixing a subalgebra of type D8 and dimension 120.

The automorphism φ1U ,ei·ej has order 4 and fixes element-wise a subalgebra
isomorphic to sl(U) ⊕ so2 ⊕ so8 inside g0̄, and a subspace of the form ∧2U ⊗
W , dimW = 8 in g2̄. Hence dim g

φ1U ,ei·ej � (15 + 1 + 28) +
(4
2

)
× 8 = 92. We thus

obtain (a).
Note that for any order 2 element in SO(V, q) there exists an orthogonal basis as

above such that this order 2 element is the image of ei1 · · · · · ei2r ∈ Spin(V, q), for
1 � i1 < · · · < i2r � 10, and for two commuting order 2 elements in SO(V, q) there
is a common such orthogonal basis.

Since Q has exponent 4, we have (φx,s)4 = idg so that (−1, s4) ∈ ker Φ =
〈(−i1U , z)〉 and s4 = −1. Its square is φx2,s2 = φ−ix2,zs2 . The order 2 element
zs2 is then conjugate to either e7 · e8 · e9 · e10 or to e3 · · · · · e10. Now it is easy
to compute the dimension of the subspace fixed in each gı̄. The fixed subalgebra
of φ−ix2,e7·e8·e9·e10 has dimension (7 + 21) + 32 + 28 + 32 = 120, while the fixed
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subalgebra of φ−ix2,e3·····e10 has dimension (7+29)+32+36+32 = 136. Hence zs2

is conjugate to e7 · e8 · e9 · e10 and s2 to e1 · · · · · e6.

Denote by πU and πV the projections of Aut(g0̄)◦ onto PSL(U) � Aut(sl(U))◦

and PSO(V, q) � Aut(so(V, q))◦, respectively.

Proposition 6.3. If Q is a maximal finite abelian subgroup of Aut(e8) with auto-
morphisms of order 4 but all of them of type II, then πU ◦Ψ(Q) is isomorphic to Z

4
2

and the grading induced in so(V, q) is elementary, i.e. induced by a grading on V .

Proof. Since πU ◦Ψ(Q) induces a grading on sl(U) such that its neutral component
is trivial, we have that theorem 2.1 implies that πU ◦ Ψ(Q) is isomorphic to either
Z

2
4 or Z

4
2. Assume that we are in the first case. Then there are x1, x2 ∈ SL(U) with

x4
1 = x4

2 = −1 and x1x2 = ix2x1 such that πU ◦ Ψ(Q) = 〈[x1], [x2]〉. Thus there
are s1, s2 ∈ Spin(V, q) with φxi,si ∈ Q. Again by theorem 2.1, x1 and x2 are, up to
simultaneous conjugation,

x1 = diag{ω, ω3, ω5, ω7}, x2 =

⎛
⎜⎜⎝

0 0 0 ω

ω 0 0 0
0 ω 0 0
0 0 ω 0

⎞
⎟⎟⎠ .

By lemma 6.2 we may assume that s2
1 = e1 · e2 · e3 · e4 · e5 · e6 and, since s2

1 and s2
2

anticommute, that either s2
2 = e4 · e5 · e6 · e7 · e8 · e9 or s2

2 = e2 · e3 · e4 · e5 · e6 · e7.
Lemma 6.1(ii) gives s1 · s2 = −z · s2 · s1, and hence (s1 · s2)2 = z · s2

1 · s2
2 must

have order 4 by lemma 6.2(b). But for s2
2 = e4 · e5 · e6 · e7 · e8 · e9 we get that

(s1 · s2)2 = z · s2
1 · s2

2 = −z · e1 · e2 · e3 · e7 · e8 · e9 = e4 · e5 · e6 · e10, which has order 2,
while for s2

2 = e2 · e3 · e4 · e5 · e6 · e7, (s1 · s2)2 = z · e1 · e7 also has order 2. In both
cases we get a contradiction.

The only possibility, then, is πU ◦ Ψ(Q) ∼= Z
4
2.

Besides, πU ◦ Ψ(Q) ⊆ PSL(U) ∼= Aut(EndF(U)) induces a division Z
4
2-grading on

EndF(U) = D. Therefore, the Brauer invariant of the sl(U)-module U is Br(U) =
[D]. This allows us to obtain information about the Brauer invariants of the involved
so(V, q)-modules.

The maximal quasi-torus Q induces a fine grading Γ by the group of characters
A of Q, which is a refinement of the Z4-grading. Thus Γ induces a grading Γ0̄ on
g0̄ = sl(U)⊕ so(V, q) by A with support the group of characters of Q/(Q∩ker Ψ) =
Q/〈θ〉. It also induces a grading Γr̄ on each gr̄ (an irreducible g0̄-module), r = 1, 2, 3,
compatible with Γ0̄. As in lemma 2.2, up to a shift, Γr̄ is the only A-grading on
gr̄ compatible with the grading Γ0̄. Besides, the representation of g0̄ on g2̄ gives a
graded homomorphism of associative algebras

ρ : U(g0̄) � U(sl(U)) ⊗ U(so(V, q)) → EndF(g2̄) � EndF(∧2U) ⊗ EndF(V ).

Then the Brauer invariant of g2̄, which is trivial since the grading on EndF(g2̄)
is elementary, satisfies 1 = Br(g2̄) = Br(∧2U)Br(V ) = [D]2Br(V ) = Br(V ), since
[D]2 = 1. Hence Br(V ) = 1 and the grading on so(V, q) is induced by a grading
on V .
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Remark 6.4. Recall some facts on elementary gradings on simple Lie algebras of
type D5 from [7] or [10, theorem 3.42]. Let Q̃ be a quasi-torus of Aut(so(V, q)) such
that the A-grading Γ ′ induced on so(V, q) is compatible with a grading on V , where
A is the group of characters of Q̃. A homogeneous F-basis {e1, . . . , e10} in V can
be selected such that b (the polar form of q) is represented by the block-diagonal
matrix

diag(1, . . . , 1, ( 0 1
1 0 ), . . . , ( 0 1

1 0 )),

and the degrees deg ei = gi satisfy

g2
1 = · · · = g2

q = gq+1gq+2 = · · · = gq+2s−1gq+2s = g−1
0 ,

with q + 2s = 10 and g0 ∈ A is the degree of b (i.e. for any g, h ∈ A, b(Vg, Vh) ⊆
Fghg0). So if σu,v ∈ so(V, q) denotes the map that sends w to b(u, w)v − b(v, w)u,
then

σeq+2j−1,eq+2j ∈ (so(V, q))gq+2j−1gq+2j = (so(V, q))e

for all q < j � 10. If the grading Γ ′ also satisfies that the neutral homogeneous
component is trivial, then q = 10 and it is possible to shift the grading on V to get
g0 = e. To summarize, there is an orthogonal homogeneous basis {e1, . . . , e10} of V
with q(ei) = 1 and deg(ei) = gi for any i, with g2

i = e for any i. Also, the condition
so(V, q)e = 0 forces all the gis to be different.

If, in addition, Q̃ is contained in PSO(V, q) � Aut(so(V, q))◦, then we have
g1g2 · · · g10 = e (see [11, lemma 33]). The elements of Q̃ lift then to SO(V, q) and
they act diagonally in this basis with eigenvalues 1 or −1. Therefore, we have

Q̃ ⊆ 〈Adei·ej : i �= j〉,

because ιei·ej
is the diagonal endomorphism with ei and ej eigenvectors with eigen-

value −1, and eh is fixed by ιei·ej for h �= i, j. This means that Q̃ can be embedded
in Z

8
2, since the map

Z
9
2 → 〈Adei·ej

: i �= j〉,
εi �→ Adei·ei+1 ,

where εi = (0̄, . . . , 1̄, . . . , 0̄) (1̄ in the ith position), is a surjective homomorphism
with kernel 〈ε1 + ε3 + ε5 + ε7 + ε9〉, because e1 · e2 · · · · · e10 = z and Adz = id. Note
also that e1 · e2 · · · · · e8 = −z · e9 · e10, so Ade1·e2·····e8 = Ade9·e10 . In the same vein,
e1 · e2 · · · · · e6 = z · e7 · e8 · e9 · e10. Thus the group 〈Adei·ej : i �= j〉 consists of the
elements id, Adei·ej for i �= j, and Adei·ej ·ek·el

for different i, j, k, l.

Theorem 6.5. Up to conjugation, there is a unique maximal finite abelian subgroup
Q of Aut(e8) containing an automorphism of order 4 and type II but no automor-
phism of order 4 and type I. This maximal quasi-torus is isomorphic to Z4 × Z

6
2,

and a realization is provided by

〈φx1,e8·e9φy1,e9·e10 , φx2,e3·e4 , φy2,e1·e3·e6·e7 , φ1U ,e1·e2·e3·e4 , φ1U ,e3·e4·e5·e6 , φ1U ,z〉,

for some orthonormal basis {e1, . . . , e10} relative to q.
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Proof. As πU ◦ Ψ(Q) is isomorphic to Z
4
2 by proposition 6.3, we have πU ◦ Ψ(Q) =

〈[x1], [y1], [x2], [y2]〉 with x2
i = y2

i = −1U , xiyi = −yixi, xiyj = yjxi, for i, j ∈ {1, 2},
i �= j, and x1x2 = x2x1, y1y2 = y2y1. Then there are elements p1, q1, p2, q2 ∈
Spin(V, q) with φx1,p1 , φy1,q1 , φx2,p2 , φy2,q2 ∈ Q. First, we are going to check that

ker πV ◦ Ψ |Q = 〈θ〉. (6.1)

Take a ∈ SL(U) and s ∈ Spin(V, q) with φa,s ∈ Q ∩ ker(πV ◦ Ψ). Then Ads = id,
so s ∈ 〈z〉. But φ−i1U ,z = id, so if s = zr, φa,s = φira,1 and we may assume that
s = 1. Now, φa,1 is in Q, so that φa,1φxi,pi = φxi,piφa,1 and φa,1φyi,qi = φqi,yiφa,1.
Hence a commutes with {x1, x2, y1, y2}, which generates EndF(U) as an associative
algebra, so that a ∈ Z(EndF(U)) ∩ SL(U) = 〈i1U 〉. Therefore, φa,1 ∈ 〈θ = φi1U ,1〉.

Equation (6.1) gives Q/〈θ〉 ∼= πV ◦ Ψ(Q), so that the grading on so(V, q) and the
Z4-grading determine the fine grading on e8 induced by Q. As Q̃ = πV ◦ Ψ(Q) ⊂
PSO(V, q) � Aut(so(V, q))◦ and the grading Γ ′ induced on so(V, q) has neutral
component, we can apply to Q̃ all the facts in remark 6.4. In particular, Q̃ is
isomorphic to Z

m
2 with m � 8, and hence Q is isomorphic to Z4 × Z

m
2 (4 � m � 8).

We will see that m = 6.
The commutativity of Q gives φx1y1,p1·q1 = φy1x1,q1·p1 = φ−x1y1,q1·p1 and we get

p1 ·q1 = −q1 ·p1. In this way, we check that the elements p1, q1, p2, q2 in Spin(V, q) ⊆
C(V, q)0̄ satisfy the same commutation relations as x1, y1, x2, y2. In particular, the
elements pi, qi are not in Z(Spin(V, q)) = 〈z〉. Besides, Adp1 ∈ 〈Adei·ej

: i �= j〉, and
θφx1,p1 = φ1U ,zφx1,p1 = φx1,z·p1 , θ2φx1,p1 = φx1,−p1 . Hence we may replace p1 by
z · p1 or by −p1, and the same for p2, q1, q2. Therefore, we may assume that each
pi or qi is of the form ei · ej for i �= j, or ei · ej · ek · el, for different i, j, k, l.

Then Q is generated by φx1,p1 , φy1,q1 , φx2,p2 , φy2,q2 and by the elements in Q of
the form φ1U ,s with s ∈ Spin(V, q). Moreover, these elements s belong to {±ei1 ·ei2 ·
· · · · eir : 1 � i1 < · · · < ir � 10, r even, r �= 2, r �= 8} by lemma 6.2(a). Besides
this, the commutativity of Q ensures that any element s ∈ Spin(V, q) such that
φ1U ,s ∈ Q commutes with p1, q1, p2, q2, and any two elements s, s′ ∈ Spin(V, q)
with φ1U ,s, φ1U ,s′ ∈ Q commute. We are going to reduce the task of determining Q
to an easy combinatorial problem.

Given two sequences I = (i1, . . . , ir) and J = (j1, . . . , js), with 1 � i1 < · · · <
ir � 10, 1 � j1 < · · · < js � 10, consider the elements eI := ei1 · ei2 · · · · · eir ,
eJ := ej1 · ej2 · · · · · ejs

in C(V, q) as above. Then eI · eJ = (−1)|I∩J|eJ · eI .
Identify I with the element xI ∈ Z

10
2 with 1̄s in the components i1, . . . , ir and 0̄s

elsewhere, and similarly for J . Then eI · eJ = (−1)xI•xJ eJ · eI , where, for elements
x, y ∈ Z

10
2 , x • y =

∑10
i=1 xiyi denotes the natural symmetric (and at the same time

alternating) non-degenerate bilinear form on Z
10
2 . In other words, the elements eI

and eJ commute in C(V, q) if and only if xI and xJ are orthogonal in Z
10
2 .

Note that z = e1 · e2 · · · · · e10 = e(1,2,3,...,10). Let K = Z2(1̄, 1̄, . . . , 1̄). Then K⊥

is the subspace of the elements xI with |I| even (i.e. eI ∈ Spin(V, q)). The bilinear
form • induces a non-degenerate alternating bilinear form on K⊥/K.

Then the problem of finding a maximal finite abelian subgroup Q under the
conditions above is equivalent to the problem of finding maximal subspaces S of
K⊥/K that are the orthogonal sum of two orthogonal hyperbolic planes U1 and
U2 (corresponding to {p1, q1} and {p2, q2}), and a totally isotropic subspace U3
orthogonal to U1 and U2. That is, S = U1 ⊥ U2 ⊥ U3, Ui • Ui �= 0, i = 1, 2,
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U3 •U3 = 0, Ui •Uj = 0 for i �= j, and dimZ2 U1 = dimZ2 U2 = 2, and with the extra
condition that there is no x̄ ∈ U3 (x̄ denotes the class modulo K of an element
x ∈ Z

10
2 ) with |Supp(x)| = 2 or 8, where Supp(x) is the set of indices with xi �= 0̄.

Since dimZ2 K⊥/K = 8, the maximal dimension for U3 is 2 and in this case
S = U⊥

3 . As above, let {ε1, . . . , ε10} be the canonical basis of Z
10
2 . Up to reordering

of indices, the only ‘maximal’ possibility is given by

U3 = Z2(ε1 + ε2 + ε3 + ε4) ⊕ Z2(ε3 + ε4 + ε5 + ε6).

(Note Z2(ε1 + ε2 + ε3 + ε4) ⊕ Z2(ε5 + ε6 + ε7 + ε8) is not valid, as ε1 + · · · + ε8 =
ε9 + ε10, which is the class, modulo K, of an element with support of size 2.)

Then, up to a reordering of indices, there is a unique maximal possibility:

S = U⊥
3 = span{ε1 + ε2, ε3 + ε4, ε5 + ε6, ε1 + ε3 + ε6 + ε7, ε8 + ε9, ε9 + ε10}.
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