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Symmetry characterization of eigenstates in opal-based photonic crystals
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The complete symmetry characterization of eigenstates in bare opal systems is obtained by means of group
theory. This symmetry assignment has allowed us to identify several bands that cannot couple with an incident
external plane wave. Our prediction is supported by layer-Korringa-Kohn-Rostoker calculations, which are
also performed: the coupling coefficients between bulk modes and externally excited field tend to zero when
symmetry properties mismatch.
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[. INTRODUCTION metry properties of electric field according to group theory.
In Sec. IV we present the mode assignment for a bare opal

Periodic dielectric structureshe so-called photonic crys- system. The existence of uncoupled modes is discussed in
tals) are probably one of the most exciting topics in contem-Sec. V. Finally, in Sec. VI we summarize our work.
porary physics, not only for their scientific relevance but also
because of the remarkable applications that have been sug4l. MAXWELL EQUATIONS AND PHOTONIC BAND
gested, especially for systems with gaps in the visible and STRUCTURE
16B0S-% many effris have been devoted (o the fabrication, /S f2r @ the point at stake is the propagation of light n a
of mat,erials with an absolute frequency gap in such regionsdlelectr_lc material, we shall concern_ourselves with the mac-
However, material engineering of three-dimensia@a) pe- rospop|c Maxwgll equations. If we impose our proplem _to
JOVWEVED 9 9 P fulfill some requirement? we can decouple the equations in
riodic systems at the relevant length scétendreds of na-

. - ; order to finally arrive to an expression entirely in terms of
nometers to 1 micrgrpresents nontrivial technological prob- S
: . . the magnetic fieldH(r),
lems in a straightforward manufacture. Several different self-

assembly approaches have been propbsed one of the 1 w2
most promising strategies is that based on artificial opal VX —V><H(r))=(—) H(r). 1)
systemg:® e(r) ¢

Itis clear that one of the most important aspects of sampleith the definition of a suitable differential operator
characterization relies on a proper understanding of optical

measurements. The structures within the reflectance or trans- N

mittance spectra are currently related with gaps and OH(r)=VXx (EVX H(r)

pseudogaps in the infinite band structure, but the symmetry

properties of their eigenfunctions can also produce unexEq. (1) can be explicitly written as an ordinary eigenvalue

pected patterns: symmetry-inactive modés., bands that problem:

cannot be coupled with incident light due to symmetry rea-

song have been reported in some 2D photonic crySté&ls

and some authors have predicted the same phenomenon to

take place in 3D materials as wéil** Thus, the classifica- A

tion of eigenmodes according to their symmetry propertiesThe somehow arbitrary definition @ ensures the operator

can provide us valuable information when comparing ourto be Hermitian, which implies that its eigenfunctions have

calculation with experimental results. several properties that are extremely useful in numerical
The aim of this work is to present a complete symmetrycalculations:*

characterization of eigenstates for the above-mentioned opal In the alternate approach, we can eliminidig) to obtain

structure. In order to reach this goal, the paper is organizedn equivalent formulation for the stationally electric field.

as follows: In Sec. Il we introduce the solution of Maxwell This way of considering the problem results in a generalized

equations as an eigenvalue problem that can be restricted &genvalue equation with the dielectric function playing the

a band-structure calculation. Section Il describes the symrole of a new Hermitian operator in the right side:

, 2

2
H(r)=(%) H(r). &)
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2 2
ElE(r)EVX[VXE(r)]=(%) s(r)E(r)E(%) ELE(r). AEE=e’<k+q')'r§ Af@har, (13)
Given that the extra phase can always be included in the

It is clear that both choices provide the correct physics, Sgnfinite summatory, we conclude that the symmetry transfor-
the preference for Eq3) instead of Eq(4) (or vice versain - mation of E)(r) generates another Bloch function with the
the numerical evaluations will only depend on our personaksme wave vector:
convenience.

We finally want to remark that Bloch’s theorem can be AEE:eik.rvk(r)_ (14)
applied to photonic crystals due to the periodicity of the
dielectric functione (r). Thus, we can restrict the eigenvalue et us now consider the action of a symmetry operét(mn
problem to the calculation of the band structure of our syshoth sides of Eq(6):
tem and therefore rewrite Eq&) and (4) as

2 ~ 2 n wn(K) z 2, n
A w(K)\2 (AE)E(r)= (AE2)E(r). (15
OH(r)= H(r), ©)
For any symmetry operator that leawgg) invariant within
- 2K\ 2 s the unit cell, it can be easily proved that it commutes with
ELER(r) = ——] E2E(r), ©® 3 =
k c k E1 and=,. Therefore

where w is the frequency of the eigenstatds,the Bloch A A wp(K) 2; -
wave vector within the first Brillouin zone, anda discrete Ea[AB(N]=|—c—] EolAE(N], (16)
index for increasing eigenfrequencies.

which implies bothEJ(r) and AE](r) are eigenfunctions
Ill. EIGENMODE CHARACTERIZATION with the same eigenfrequency.
On the assumption thab,={A;} is the point group of

, o o some wave vectok, it follows from Eqgs.(14) and(16) that
Bloch’s theorem states that the electric field within a pho'EE(r) must verify

tonic crystal can be written as

Ex(r)=e"uy(r), () AELG(N =2 ag g By (n), (17
in whichk is the Bloch wave vector inside the first Brillouin . . ’
zone andu,(r) a periodic vector function of the lattice struc- Whereg is the eigenmode degeneracy. We shall henceforth

ture. It follows from the above-mentioned periodicity that ~concern ourselves with the meaning of that set of scalar co-
efficients{ay ).

A. Eigenfunctions and symmetry operators

Ep=e'k > feldr, (8)
q B. Theory of representations
whereq is a reciprocal-lattice vector of the structure. Within the framework of the usual group thednjit can
Let A be a symmetry operator of the lattice. The way inbe straightforwardly proved that the scalar coefficient matri-
which a general symmetry transformatiBnoperates over a Cesa' in Eq. (17) form a representation df.e., are homo-
vector fieldf(r) is morphic with the G, group. On the other hand, in the case
where the degeneracy is said to be northal, when it is not
Af(r) =Af(A™r). 9) possible to remove such a degeneracy by changing a param-
eter which does not alter the stated symmetry of the prob-
Hence lem), it may be seen that the sy (r)} spans an irreduc-
R N — ible invariant space under th&, group of symmetry
AER=A€ A T2 f et h T, (10 operators. Thus, thEa'} set of matrices constitutes an irre-
d ducible representatioR of the G, point group, and th&R
Taking the orthogonality of symmetry matrices into accountlabel can be therefore assigned to tik eigenmode at thie

point.
AED=AACTS f dha, (11) If A; belongs to a clas€§, then

q
For a wave vectok, the k-vector point grougs, is defined E al =R (18

. N K 9.9 c
as the set of symmetry operations which satisfy ]

Ak=k+q’ (12)  With x& the character of class in some irreducible repre-
A sentatiorR. Given that eaclR has its own characters, we can

with g’ in the reciprocal lattice. Thug\ being part ofG,, use them to distinguish the irreducible representations in or-
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TABLE I. The symmetry point groups at the corner of the irre-
ducible part of the Brillouin zone in the fcc lattice according to
Schoenflies notation. Notice that the components of representative
vectors are in units of 2/a.

Label Representativie vector Symmetry point group
r 0,0,0 (o)
X (1,0,0 Dan
L /2, 1/2, 1/2 Dag
U 1, 1/4, 1/ Ca,
W (1,1/2,0 Doy
K (3/4, 314, 0 Cy,

der to classify the different eigenmod®sFurther details
about character evaluation can be found in Appendix A.

IV. SYMMETRY CHARACTERIZATION IN BARE

OPAL SYSTEMS FIG. 1. The first Brillouin zone of the fcc lattice. The lines

Synthetic bare opals are constituted by S&pheres that between white circles define the boundaries of the irreducible part
organize themselves to form a face-centered-c(foiy lat-  ©f the zone.
tice. As far as this process has been extensively described in
previous work$, we just mention that the opaline sample In order to work out the classification of eigenstates de-
growth method is based on natural sedimentation of silicscribed in the previous section, we shall first concern our-
nanospheres along th&11) direction of the fcc lattice. Al-  selves with the intrinsic properties of the face-centered-cubic
though the refractive index contrast between S#dd air  lattice, as far as the symmetry point group, which determines
does not allow bare opals to exhibit complete gaps, they cathe set of allowed irreducible representations for any wave
be used as templates to obtain the so-called invertedectork, is irrespective of the particular realization of our
structures, 2 which are one of the most promising strate- system. Table | lists the symmetry point groups at the corners
gies between the different self-assembly approaches to pheof the irreducible part of the first Brillouin zonsee Fig. 1
tonic crystal fabrication. Thus, no one can deny that bareccording to Schoenflies notation. Given that Rheepresen-
opals still constitute a topic of present interest. tation can be assigned to tinth mode at one of those par-

1.6

FIG. 2. Photonic band struc-
ture along theXxU andUL direc-
tions for a bare opal system. La-
bels refer to irreducible
representations o€,, and C,,,
respectively. An inset figure is in-
cluded for the sake of clarity. A
sum symbol is employed where
two or more nondegenerated
bands are too close to be distin-
guished by the naked eye.

alA

A+ A+ B, +B
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FIG. 3. Photonic band struc-
ture along theLT' and X direc-
tions for a bare opal system. La-
bels refer to irreducible
representations o€;, and Cy,,,
respectively. Some inset figures
are included for the sake of clar-
ity. A sum symbol is employed
where two or more nondegener-
ated bands are too close to be dis-
tinguished by the naked eye.

L r X

ticular points, we can then easily derive all its compatibility the lattice parameter and the sphere radius was chosen to
relations(see Appendix Bwith the corresponding modes at verify a close-packing condition. This band calculation was
adjacent wave vectors by following the loss of symmetry ascarried out by means of an iterative implementatfasf the
we go from one point group to another which is a subgroumplane-wave expansion of E@3). Of course, the photonic
of the first. band structure of a bare opal system has been previously
In Figs. 2—4 we present the photonic band structure of @alculated?® so the main outcome of our present work is
face-centered-cubic lattice of spheres. Results are plotted iobviously the mode assignment for the electric field. The
terms of reduced frequen@/\ wherea and\ denote the labels within the figures have been determined by the nu-
lattice parameter and the vacuum wavelength, respectivelynerical evaluation of only several eigenmodes, as far as the
The dielectric constants of the sphere and the backgrounabove-mentioned compatibility relations allowed us to easily
were assumed to be 2.1@dilica) and 1.0(air). The ratio of  connect the irreducible representations for adjacent wave

FIG. 4. Photonic band struc-
ture along thexW andWK direc-
tions for a bare opal system. La-
bels refer to irreducible
representations o€,, and C,,,,
respectively. Some inset figures
are included for the sake of clar-
ity. A sum symbol is employed
where two or more nondegener-
ated bands are too close to be dis-
tinguished by the naked eye.

A+ A+B +B,

A+ A+ B+ B,

X w K
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TABLE Il. The irreducible representations corresponding to ei- TABLE lll. The representations of incident plane wau&\)
genvalues first to twentieth at the corners of the irreducible part ofnd the subsequent uncoupled bands along some relevant high-
the first Brillouin zone in a bare opal system. symmetry directions in the Brillouin zone of the fcc lattice. Point
symmetry groups are describéd bracket$ according to Schoen-
I'[O,]  X[D4n] L[Dsg] U[Cy] WDyl K[Cy,] flies notation.

Tuy E, Eq B> A B> Incidence direction PW representation Uncoupled bands
Tig Eq E, B, E B,
E, Agg Ay A, B, A, I'L[Cs,] E A1 A;
Tou Eq E, A, A, A, I'X[C4] E A1,Az,B1,B;
Eq Big Eq B, E B, I'K[C2,] B,1®B, AvA;
Tlu B1u Alg BZ BZ BZ
TZQ Eu Eg AZ AZ A2 . . .
tion of the C5, point group. In order to determine that rep-
Ty Agy Azg B, B, B, o3 X
B, E A, E Ay resentation, we have to apply the symmetry operations of
Alu A: B, B, B, C,, over the vector basis:
u u
Blg AZQ Bl Al Bl
Ey Eq B, By B2 CaVvy=— Ev + \/—gv
Eq E, A, A, A, 21 "1 2 2
Byg A, E A,
By By CaVo=— 7V1_ EVza (20)
Ay Ay
B B2 R
A A o,V1= — Vg,
B: B1
(}UV2:V2. (21)

vectors. For the sake of completeness, we also list in Table II _
the symmetry characterization of eigenmode§ a¥, L, U, From Eqgs.(20) and(21) we can obtain the traceharac-
W, andK points for increasing values of the eigenfrequency.ten of the transformation matrices:

V. UNCOUPLED BANDS X(Ca)=~1;  x(o,)=0. (22)
A. Symmetry assignment and uncoupled modes If we compare these results with the properties of Ghe

. . . : point group, we find that these are the characters offthe
As mentioned in Sec. |, light attenuation produced by un- . " i
coupled bandgi.e., bands with eigenmodes that cannot berepresentatlon. But the boundary condition of tangential
p S ; 9 components of the electromagnetic field being continous at
excited by the incident light because of symmetry reasons,, . ; .
the interface imposes the representatipe., the symmetry

has been reported in some 2D photonic crystals. Moreover. : e .
. - ropertieg both inside and outside the system to be the same.
some authors have predicted a similar phenomenon to al . : .
) 013 . onsequently, onlyE-labeled states will contribute to light
take place in 3D materialS;~but as far as we know, there is S S
no experimental evidence of this mechanism operating in a}\ransport along thél 1] direction of the structure. This kind
P P 9 f restriction in available bands is present in several direc-

opaline structure. The exposition of how these uncoupled. . L .
: o . ions of the lattice, but we are mainly interested in those
modes can be identified as a simple consequence of the sym-

metry assignment will be the aim of the present section. which include thd’ point, i.e., those in which some observ-
able consequences are expected.

In order to reach this goal, let us focus our interest on . . .
what happens when light incidence is normal to {hEl} set In Table Il we summarize the qurmafuon about un-
coupled modes along the relevant directions of a face-

of planes in the opal. This is the direction along which thecentered-cubic structure orovided by svmmetry consider-
structure naturally grows and from which experimental dataations Let there be a fre Senc ran gwgere only uncounled
are usually obtained. If we consider thexis in the normal i q yrang y P

direction to the sample surface, the incident plane waves carrrlmOIeS exist. Despite its nonzero density of states, we would

. , - expect a total reflectiofzero transmissionin such a range
be expressed in terms of the following vector basis: . ) .
as a consequence of photonic states not being coupled with

_ _ the incidence plane wave.
{v;=(1,0,0€*%  v,=(0,1,0€'*7}, (19 Unfortunately, this is not the case for bare opal systems:
as shown in Figs. 2—4, uncoupled modes always coexist with
wherek is the wave number of the plane waves in free spaceavailable ones, and consequently transmittance measure-
On the other hand, it is clear that vectors in Ef9) also  ments cannot confirm the predictions of group theory. There-
form a basis set of some reducible or irreducible representdere, an alternative test will be required.
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B. Estimation of the coupling by means of the layer-Korringa- 1.30
Kohn-Rostoker (KKR ) method [
It is well known that the photonic band structure of a
regular array of nonoverlapping spheres in a host medium
can be very accurately calculated within the framework of L 1.25
the layer-KKR method:?*~?® Moreover, we can also obtain bR
the transmission and reflection coefficients through a finite I E
slab of such material combining the scattering matrices of its i
different layers. On the assumption that slab thickness is very __1'20
large, the electromagnetic field in the middle of that slab can
be regarded as a superposition of the true bulk eigenstates.
Thus, a kind of overlapping integral of this field and the -
: T . 1.15
actual eigenstates of the infinite system would provide an I
estimation of the coupling between the structure and the in-
cident light.
Let the z axis be in the normal direction to the slab sur- PP I P DR TS
face. Hence, the electric field between two consecutive "7 .08 -06 -04 -02 00 02 0.4 06 08
sphere layers can be expressed in terms of its Fourier com- k
ponents as zZ
. o FIG. 5. Detail of the photonic band structure normal to{thEL}
Evoig(r) = 2 u; e'Kq T+ u;e‘Kq o’ (23 set of planes of a bare opal system. Notice that the maximum value
q of |k, is V3/2 in units of 27/a. The thin horizontal lines define
2 the frequencies at which the branching ratios are obtained. We
*_ o 2 have to mention that our calculation points out a very small splittin
Kq=k+g=+z ?_(k”-i_q) ' (24) of about 0.014% forE bands WhiCFI‘)l cannot be ;yppreciatgd ing

. . . the figure.
Here,q denotes the 2D reciprocal-lattice vector associated to g

the surface periodicity, and=(ky,k,) the wave vector g generally different from the complex conjugate of the right

v_vithin the surface Brillo_uin zone. Given thdtis phe separa-  gne phut we assume that both are normalized to meet the
tion between consecutive layers, these Fourier componen&thogonamy condition

also verify
ur ut (UE)TUQ,:&’m' (27)
a1 _ Jikd| M 25) . . -
Q u- =€ u- |’ ( We can then define the coupling coefficientas
q q
where Q is an appropriately constructed transfer matrix Cn=(uM) "upui. (28

which relates the electric field in the void between tive (
—1)th andNth layers to that between tiéth and (N+ 1)th
ones. Sincd) is not Hermitian, its left eigenstate

with uy, @ column vector which contains the Fourier coef-
ficients of the electric field excited by the incident light in the
bulk part of the systerfi’ Notice that Eq.(28) involves a

ut selection rule on the spatial symmetry of the electric field.
UL=( q) (26) Since the transfer matriQ commutes with the symmetry
q operations of the point group relevant to the incidence sur-

TABLE IV. The compatibility relations of irreducible representations atlhpoint in the fcc lattice.

I'[On] I'X[Cy, ] TU[Cyp] I'L[Cs,] I'K[Cy,] 'W[Cyp]
Ay Aq A’ A, A, A’
Azg B, A" A, B, A’
Eq A®B; A'®A” E A ®B, 2A'
Tig E®A, A'@2A" E®A, A,®B,®B, A'®2A"
Tog E®B, 2A'® A E®A; A1®A,®B; A'®2A"
Ay A, A" A, A, A"
Ay B, A’ Ay B, A"
E, A,®B, A'eA” E A,®B; 2A"
Ty EoA, 2A'® A E®A,; A;©B,®B, 2A'® A
T, E®B, A'@2A" E®A, A ®A,8B, 2A'® A
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face, the eigenstates ¢ are classified according to the ir- TABLE V. The compatibility relations of irreducible representa-
reducible representations of that point group. Heoganust  tions at theX point in the fcc lattice.
become zero ifu,,, is attributed to a different irreducible

representation from that af . X[Danl I'X[Cy,] XU[Cy,] XW[Cy,]

In order to confront our estimation with the predictions of A A A A
group theory, let us consider again the previous example of Alg Al Bl Bl

. . . . . . . 2 2 2 2

normal incidence along th@11) direction. In this case inci- 9 B B A
dent light has & =0 component within the surface Bril- Blg Bl A2 Bl
louin zone associated with tH&11} set of planes. Following E29 E2 A @lB A EBZB
the above-mentioned procedure, we employed a 32- g 2v=1 2v=1
monolayer bare opal slab to obtain the electric-field distribu- Avu Az Az A
tion in the space between the 16th and 17th layers, where the ~2u Ay By By
bulk configuration is assumed to be achieved. At the same Buy B, By Az
time, the photonic dispersion relation of the infinite periodic Bay By Az B1
system was also recalculated for increasing values,of Ey E A©B; A8 B,
Figure 5 shows both the dispersion relation and symmetry
assignment within th€1.10,1.3 interval. Now, we will pay TABLE VI. The compatibility relations of irreducible represen-

particular atention to the pair of frequency values markedations at thel point in the fec lattice.
with horizontal lines: for one of thema(A=1.15) no un- — — — —
coupled bands are predicted by group theory, while for the [[Paal  TL[Cs]  LWIC,]  LU[Cyp]  LK[Cyy]

other @/A=1.25) some of those bands are expected. In the A, A, A A A
first case, we obtaineft,|? equal to 0.689 and 0.348 fd& Azg A, B A A
bands with positive group velocity arld,|?>=0.007,0.006 Eg £ AGB A A Al @A
for the ones with negative slope. When calculated for the Ag A A A A7
h- 2 _ 1u 2
igher frequency, the values ¢, for E(+) and E(—) A A B A A/
2u 1

bands are{0.265, 0.377, 0.109, 0.03%nd {0.085, 0.016, £
0.098, 0.05% respectively. With regards to the uncoupled i,
bands(i.e., those withA; symmetry, their coefficients are

less than 10'°. Therefore we can conclude that light trans-  TABLE Vil. The compatibility relations of irreducible represen-
mission is actually forbidden for such modes, as far as theyations at the point in the fcc lattice.

do not contribute to the excited field inside the slab. This

E A®B A e A" A’ aA”

constitutes a confirmation of group-theory predictions. U[Cy] TU[Cy]  XU[Cpl  LU[Cy]  UW[Cy]
VI. SUMMARY Ax A Ax A A
A2 AI/ A2 A!/ A/!
We have analyzed the symmetry properties of eigenstates B, A/ B, A’ A
along the high-symmetry directions of close-packed bare p, A" B, A" A

opals according to the group theory. We found that some
bands cannot be coupled with an external plane wave along

several directions because of symmetry reasons, which was TABLE VIIl. The compatibility relations of irreducible repre-
confirmed by layer-KKR calculations; nevertheless, the pressentations at th& point in the fcc lattice.

ence of uncoupled modes is not expected to provide any — — — — —
observable features in the transmittance for this particula®[D2a] TW[Ci,] XWCp,] LW[C,] UW[Cyp] WK[Cyp]
system.

A, A A, A A/ A

A2 A// A2 B A/I AI/
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As stated in Sec. lll, the label assignment for a given B, B, A A’

modeE(r) is based on the evaluation of its character undet
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the symmetry operators withi@, . The first thing that needs and also for three-dimensionaj€3) ones, given that some
to be remarked is that solutions obtained by means of thauxiliary quantities be defined:

plane-wave expansion methdeh fact by means of any nu-

merical calculatiopdo not satisfy Eq(17) except in an ap-

proximate way. However, a suitable algorithm can always be _ Wi (VaXVg) 4V (WoXVg) +Vy- (VX W)
found in order to estimate the character of computed eigen- X3p Vq- (VX V3) '
functions. (A4)

In our present work, we have defined a strategy based on
direct evaluation of Eq.17), which will now be rewritten for
the sake of clarity: (vi)j=Ex-Ej, (A5)

PQEAEQZE g9 By - (A1) (Wi);=Py-Ej. (A6)

In the case of one-dimensional irreducible representations

(g=1), the characteg(A) is given by APPENDIX B: COMPATIBILITY RELATIONS OF

P.E IRREDUCIBLE REPRESENTATIONS IN THE FCC

a= > (A2) LATTICE
E
o _ €l . . . In Tables IV-IX, the compatibility relations between the
Similar expressions can be obtained for two-dimensionajrreducible representations for the points at the corners of the
(9=2) representations irreducible part of the fcc first Brillouin zone and those for
- the wave vectors on intermediate segments are presented. It
— +k L. . . _— . . 2 . . . .
Xop= > (— DR B (Ex- E) — (P E)[EA]’] can be observed that only one mirror reflection is defined on
Tk |E4|2|EL|?— (E1-Ep)(Ey-Ey) ' many of these segments because of their low-symmetry in-
(A3)  variance.

XD~
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