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Symmetry characterization of eigenstates in opal-based photonic crystals
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The complete symmetry characterization of eigenstates in bare opal systems is obtained by means of group
theory. This symmetry assignment has allowed us to identify several bands that cannot couple with an incident
external plane wave. Our prediction is supported by layer-Korringa-Kohn-Rostoker calculations, which are
also performed: the coupling coefficients between bulk modes and externally excited field tend to zero when
symmetry properties mismatch.
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I. INTRODUCTION

Periodic dielectric structures~the so-called photonic crys
tals! are probably one of the most exciting topics in conte
porary physics, not only for their scientific relevance but a
because of the remarkable applications that have been
gested, especially for systems with gaps in the visible
infrared range. So, since the first proposal in the l
1980s,1,2 many efforts have been devoted to the fabricat
of materials with an absolute frequency gap in such regio
However, material engineering of three-dimensional~3D! pe-
riodic systems at the relevant length scale~hundreds of na-
nometers to 1 micron! presents nontrivial technological prob
lems in a straightforward manufacture. Several different s
assembly approaches have been proposed3 and one of the
most promising strategies is that based on artificial o
systems.4,5

It is clear that one of the most important aspects of sam
characterization relies on a proper understanding of opt
measurements. The structures within the reflectance or tr
mittance spectra are currently related with gaps a
pseudogaps in the infinite band structure, but the symm
properties of their eigenfunctions can also produce un
pected patterns: symmetry-inactive modes~i.e., bands that
cannot be coupled with incident light due to symmetry re
sons! have been reported in some 2D photonic crystals6–8

and some authors have predicted the same phenomen
take place in 3D materials as well.9–13 Thus, the classifica-
tion of eigenmodes according to their symmetry proper
can provide us valuable information when comparing o
calculation with experimental results.

The aim of this work is to present a complete symme
characterization of eigenstates for the above-mentioned
structure. In order to reach this goal, the paper is organ
as follows: In Sec. II we introduce the solution of Maxwe
equations as an eigenvalue problem that can be restricte
a band-structure calculation. Section III describes the s
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metry properties of electric field according to group theo
In Sec. IV we present the mode assignment for a bare o
system. The existence of uncoupled modes is discusse
Sec. V. Finally, in Sec. VI we summarize our work.

II. MAXWELL EQUATIONS AND PHOTONIC BAND
STRUCTURE

As far as the point at stake is the propagation of light in
dielectric material, we shall concern ourselves with the m
roscopic Maxwell equations. If we impose our problem
fulfill some requirements,14 we can decouple the equations
order to finally arrive to an expression entirely in terms
the magnetic fieldH(r ),

¹3S 1

«~r !
¹3H~r ! D5S v

c D 2

H~r !. ~1!

With the definition of a suitable differential operator

Q̂H~r ![¹3S 1

«~r !
¹3H~r ! D , ~2!

Eq. ~1! can be explicitly written as an ordinary eigenvalu
problem:

Q̂H~r !5S v

c D 2

H~r !. ~3!

The somehow arbitrary definition ofQ̂ ensures the operato
to be Hermitian, which implies that its eigenfunctions ha
several properties that are extremely useful in numer
calculations.14

In the alternate approach, we can eliminateH(r ) to obtain
an equivalent formulation for the stationally electric fiel
This way of considering the problem results in a generaliz
eigenvalue equation with the dielectric function playing t
role of a new Hermitian operator in the right side:
©2002 The American Physical Society10-1
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Ĵ1E~r ![¹3@¹3E~r !#5S v

c D 2

«~r !E~r ![S v

c D 2

Ĵ2E~r !.

~4!

It is clear that both choices provide the correct physics,
the preference for Eq.~3! instead of Eq.~4! ~or vice versa! in
the numerical evaluations will only depend on our perso
convenience.

We finally want to remark that Bloch’s theorem can
applied to photonic crystals due to the periodicity of t
dielectric function«(r ). Thus, we can restrict the eigenvalu
problem to the calculation of the band structure of our s
tem and therefore rewrite Eqs.~3! and ~4! as

Q̂Hk
n~r !5S vn~k!

c D 2

Hk
n~r !, ~5!

Ĵ1Ek
n~r !5S vn~k!

c D 2

Ĵ2Ek
n~r !, ~6!

where v is the frequency of the eigenstates,k the Bloch
wave vector within the first Brillouin zone, andn a discrete
index for increasing eigenfrequencies.

III. EIGENMODE CHARACTERIZATION

A. Eigenfunctions and symmetry operators

Bloch’s theorem states that the electric field within a ph
tonic crystal can be written as

Ek
n~r !5eik•ruk~r !, ~7!

in which k is the Bloch wave vector inside the first Brilloui
zone anduk(r ) a periodic vector function of the lattice struc
ture. It follows from the above-mentioned periodicity that

Ek
n5eik•r(

q
fqe

iq•r, ~8!

whereq is a reciprocal-lattice vector of the structure.
Let Â be a symmetry operator of the lattice. The way

which a general symmetry transformationÂ operates over a
vector fieldf(r ) is

Âf~r !5A f~A21r !. ~9!

Hence

ÂEk
n5Aeik•A21r(

q
fqe

iq•A21r. ~10!

Taking the orthogonality of symmetry matrices into accou

ÂEk
n5AeiAk•r(

q
fqe

iAq•r. ~11!

For a wave vectork, thek-vector point groupGk is defined
as the set of symmetry operations which satisfy

Ak5k1q8 ~12!

with q8 in the reciprocal lattice. Thus,Â being part ofGk ,
19511
o
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ÂEk
n5ei (k1q8)•r(

q
Afqe

iAq•r. ~13!

Given that the extra phase can always be included in
infinite summatory, we conclude that the symmetry transf
mation of Ek

n(r ) generates another Bloch function with th
same wave vector:

ÂEk
n5eik•rvk~r !. ~14!

Let us now consider the action of a symmetry operatorÂ on
both sides of Eq.~6!:

~ÂĴ1!Ek
n~r !5S vn~k!

c D 2

~ÂĴ2!Ek
n~r !. ~15!

For any symmetry operator that leaves«(r ) invariant within
the unit cell, it can be easily proved that it commutes w

Ĵ1 andĴ2. Therefore

Ĵ1@ÂEk
n~r !#5S vn~k!

c D 2

Ĵ2@ÂEk
n~r !#, ~16!

which implies bothEk
n(r ) and ÂEk

n(r ) are eigenfunctions
with the same eigenfrequency.

On the assumption thatGk5$Âi% is the point group of
some wave vectork, it follows from Eqs.~14! and~16! that
Ek

n(r ) must verify

ÂiEk,g
n ~r !5(

g8
ag,g8

i Ek,g8
n

~r !, ~17!

whereg is the eigenmode degeneracy. We shall hencefo
concern ourselves with the meaning of that set of scalar
efficients$ag,g8

i %.

B. Theory of representations

Within the framework of the usual group theory,15 it can
be straightforwardly proved that the scalar coefficient ma
cesã i in Eq. ~17! form a representation of~i.e., are homo-
morphic with! the Gk group. On the other hand, in the ca
where the degeneracy is said to be normal~i.e., when it is not
possible to remove such a degeneracy by changing a pa
eter which does not alter the stated symmetry of the pr
lem!, it may be seen that the set$Ek,g

n (r )% spans an irreduc-
ible invariant space under theGk group of symmetry
operators. Thus, the$ã i% set of matrices constitutes an irre
ducible representationR of the Gk point group, and theR
label can be therefore assigned to thenth eigenmode at thek
point.

If Âi belongs to a classC, then

(
g

ag,g
i 5xC

R , ~18!

with xC
R the character of classC in some irreducible repre

sentationR. Given that eachR has its own characters, we ca
use them to distinguish the irreducible representations in
0-2
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der to classify the different eigenmodes.16 Further details
about character evaluation can be found in Appendix A.

IV. SYMMETRY CHARACTERIZATION IN BARE
OPAL SYSTEMS

Synthetic bare opals are constituted by SiO2 spheres that
organize themselves to form a face-centered-cubic~fcc! lat-
tice. As far as this process has been extensively describe
previous works,4 we just mention that the opaline samp
growth method is based on natural sedimentation of si
nanospheres along the~111! direction of the fcc lattice. Al-
though the refractive index contrast between SiO2 and air
does not allow bare opals to exhibit complete gaps, they
be used as templates to obtain the so-called inve
structures,17–21 which are one of the most promising strat
gies between the different self-assembly approaches to
tonic crystal fabrication. Thus, no one can deny that b
opals still constitute a topic of present interest.

TABLE I. The symmetry point groups at the corner of the irr
ducible part of the Brillouin zone in the fcc lattice according
Schoenflies notation. Notice that the components of represent
vectors are in units of 2p/a.

Label Representativek vector Symmetry point group

G ~0, 0, 0! Oh

X ~1, 0, 0! D4h

L ~1/2, 1/2, 1/2! D3d

U ~1, 1/4, 1/4! C2v

W ~1, 1/2, 0! D2d

K ~3/4, 3/4, 0! C2v
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in

a

n
d

o-
e

In order to work out the classification of eigenstates d
scribed in the previous section, we shall first concern o
selves with the intrinsic properties of the face-centered-cu
lattice, as far as the symmetry point group, which determi
the set of allowed irreducible representations for any wa
vector k, is irrespective of the particular realization of ou
system. Table I lists the symmetry point groups at the corn
of the irreducible part of the first Brillouin zone~see Fig. 1!
according to Schoenflies notation. Given that theR represen-
tation can be assigned to thenth mode at one of those par

FIG. 1. The first Brillouin zone of the fcc lattice. The line
between white circles define the boundaries of the irreducible
of the zone.

ve
-

-

d
-

FIG. 2. Photonic band struc
ture along theXU and UL direc-
tions for a bare opal system. La
bels refer to irreducible
representations ofC2v and C1h ,
respectively. An inset figure is in-
cluded for the sake of clarity. A
sum symbol is employed where
two or more nondegenerate
bands are too close to be distin
guished by the naked eye.
0-3
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FIG. 3. Photonic band struc
ture along theLG and GX direc-
tions for a bare opal system. La
bels refer to irreducible
representations ofC3v and C4v ,
respectively. Some inset figure
are included for the sake of clar
ity. A sum symbol is employed
where two or more nondegene
ated bands are too close to be di
tinguished by the naked eye.
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ticular points, we can then easily derive all its compatibil
relations~see Appendix B! with the corresponding modes a
adjacent wave vectors by following the loss of symmetry
we go from one point group to another which is a subgro
of the first.

In Figs. 2–4 we present the photonic band structure o
face-centered-cubic lattice of spheres. Results are plotte
terms of reduced frequencya/l wherea and l denote the
lattice parameter and the vacuum wavelength, respectiv
The dielectric constants of the sphere and the backgro
were assumed to be 2.104~silica! and 1.0~air!. The ratio of
19511
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the lattice parameter and the sphere radius was chose
verify a close-packing condition. This band calculation w
carried out by means of an iterative implementation22 of the
plane-wave expansion of Eq.~3!. Of course, the photonic
band structure of a bare opal system has been previo
calculated,23 so the main outcome of our present work
obviously the mode assignment for the electric field. T
labels within the figures have been determined by the
merical evaluation of only several eigenmodes, as far as
above-mentioned compatibility relations allowed us to eas
connect the irreducible representations for adjacent w
-

-

s
-

r-
s-
FIG. 4. Photonic band struc
ture along theXW andWK direc-
tions for a bare opal system. La
bels refer to irreducible
representations ofC2v and C1h ,
respectively. Some inset figure
are included for the sake of clar
ity. A sum symbol is employed
where two or more nondegene
ated bands are too close to be di
tinguished by the naked eye.
0-4
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vectors. For the sake of completeness, we also list in Tab
the symmetry characterization of eigenmodes atG, X, L, U,
W, andK points for increasing values of the eigenfrequen

V. UNCOUPLED BANDS

A. Symmetry assignment and uncoupled modes

As mentioned in Sec. I, light attenuation produced by u
coupled bands~i.e., bands with eigenmodes that cannot
excited by the incident light because of symmetry reaso!
has been reported in some 2D photonic crystals. Moreo
some authors have predicted a similar phenomenon to
take place in 3D materials,9–13but as far as we know, there i
no experimental evidence of this mechanism operating in
opaline structure. The exposition of how these uncoup
modes can be identified as a simple consequence of the
metry assignment will be the aim of the present section.

In order to reach this goal, let us focus our interest
what happens when light incidence is normal to the$111% set
of planes in the opal. This is the direction along which t
structure naturally grows and from which experimental d
are usually obtained. If we consider thez axis in the normal
direction to the sample surface, the incident plane waves
be expressed in terms of the following vector basis:

$v15~1,0,0!eikz; v25~0,1,0!eikz%, ~19!

wherek is the wave number of the plane waves in free spa
On the other hand, it is clear that vectors in Eq.~19! also
form a basis set of some reducible or irreducible represe

TABLE II. The irreducible representations corresponding to
genvalues first to twentieth at the corners of the irreducible par
the first Brillouin zone in a bare opal system.

G@Oh# X@D4h# L@D3d# U@C2v# W@D2d# K@C2v#

T1u Eu Eg B2 A1 B2

T1g Eg Eu B1 E B1

Eu A2g A1u A1 B1 A1

T2u Eg Eu A2 A2 A2

Eg B1g Eg B1 E B1

T1u B1u A1g B2 B2 B2

T2g Eu Eg A2 A2 A2

T2u A2u A2g B2 B2 B2

B2u Eu A1 E A1

A1u A2u B1 B1 B1

B1g A2g B1 A1 B1

Eu Eg B2 B1 B2

Eg Eu A2 A1 A2

B2g A2 E A2

B2 B2

B1 B1

A1 A1

B2 B2

A1 A1

B1 B1
19511
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tion of theC3v point group. In order to determine that rep
resentation, we have to apply the symmetry operations
C3v over the vector basis:

Ĉ3zv152
1

2
v11

A3

2
v2,

Ĉ3zv252
A3

2
v12

1

2
v2, ~20!

ŝvv152v1,

ŝvv25v2. ~21!

From Eqs.~20! and~21! we can obtain the trace~charac-
ter! of the transformation matrices:

x~C3z!521; x~sv!50. ~22!

If we compare these results with the properties of theC3v
point group, we find that these are the characters of thE
representation. But the boundary condition of tangen
components of the electromagnetic field being continous
the interface imposes the representation~i.e., the symmetry
properties! both inside and outside the system to be the sa
Consequently, onlyE-labeled states will contribute to ligh
transport along the~111! direction of the structure. This kind
of restriction in available bands is present in several dir
tions of the lattice, but we are mainly interested in tho
which include theG point, i.e., those in which some obser
able consequences are expected.

In Table III we summarize the information about u
coupled modes along the relevant directions of a fa
centered-cubic structure provided by symmetry consid
ations. Let there be a frequency range where only uncoup
modes exist. Despite its nonzero density of states, we wo
expect a total reflection~zero transmission! in such a range
as a consequence of photonic states not being coupled
the incidence plane wave.

Unfortunately, this is not the case for bare opal system
as shown in Figs. 2–4, uncoupled modes always coexist w
available ones, and consequently transmittance meas
ments cannot confirm the predictions of group theory. The
fore, an alternative test will be required.

-
f

TABLE III. The representations of incident plane waves~PW!
and the subsequent uncoupled bands along some relevant
symmetry directions in the Brillouin zone of the fcc lattice. Poi
symmetry groups are described~in brackets! according to Schoen-
flies notation.

Incidence direction PW representation Uncoupled band

GL@C3v# E A1 ,A2

GX@C4v# E A1 ,A2 ,B1 ,B2

GK@C2v# B1% B2 A1 ,A2
0-5
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B. Estimation of the coupling by means of the layer-Korringa-
Kohn-Rostoker „KKR … method

It is well known that the photonic band structure of
regular array of nonoverlapping spheres in a host med
can be very accurately calculated within the framework
the layer-KKR method.9,24–28Moreover, we can also obtai
the transmission and reflection coefficients through a fin
slab of such material combining the scattering matrices o
different layers. On the assumption that slab thickness is v
large, the electromagnetic field in the middle of that slab c
be regarded as a superposition of the true bulk eigenst
Thus, a kind of overlapping integral of this field and th
actual eigenstates of the infinite system would provide
estimation of the coupling between the structure and the
cident light.

Let thez axis be in the normal direction to the slab su
face. Hence, the electric field between two consecu
sphere layers can be expressed in terms of its Fourier c
ponents as

Evoid~r !5(
q

uq
1eiKq

1
•r1uq

2eiKq
2
•r, ~23!

Kq
65ki1q6 ẑAv2

c2 2~ki1q!2. ~24!

Here,q denotes the 2D reciprocal-lattice vector associate
the surface periodicity, andki[(kx ,ky) the wave vector
within the surface Brillouin zone. Given thatd is the separa-
tion between consecutive layers, these Fourier compon
also verify

QS uq
1

uq
2D 5eikzdS uq

1

uq
2D , ~25!

where Q is an appropriately constructed transfer mat
which relates the electric field in the void between theN
21)th andNth layers to that between theNth and (N11)th
ones. SinceQ is not Hermitian, its left eigenstate

uL5S uq
1

uq
2D ~26!
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is generally different from the complex conjugate of the rig
one, but we assume that both are normalized to meet
orthogonality condition

~uL
n!†uR

n85dnn8 . ~27!

We can then define the coupling coefficientcn as

cn5~uL
n!†ubulk , ~28!

with ubulk a column vector which contains the Fourier coe
ficients of the electric field excited by the incident light in th
bulk part of the system.29 Notice that Eq.~28! involves a
selection rule on the spatial symmetry of the electric fie
Since the transfer matrixQ commutes with the symmetry
operations of the point group relevant to the incidence s

FIG. 5. Detail of the photonic band structure normal to the$111%
set of planes of a bare opal system. Notice that the maximum v
of ukzu is A3/2 in units of 2p/a. The thin horizontal lines define
the frequencies at which the branching ratios are obtained.
have to mention that our calculation points out a very small splitt
of about 0.014% forE bands which cannot be appreciated
the figure.
TABLE IV. The compatibility relations of irreducible representations at theG point in the fcc lattice.

G@Oh# GX@C4v# GU@C1h# GL@C3v# GK@C2v# GW@C1h#

A1g A1 A8 A1 A1 A8
A2g B1 A9 A2 B2 A8
Eg A1% B1 A8% A9 E A1% B2 2A8
T1g E% A2 A8% 2A9 E% A2 A2% B1% B2 A8% 2A9
T2g E% B2 2A8% A9 E% A1 A1% A2% B1 A8% 2A9
A1u A2 A9 A2 A2 A9
A2u B2 A8 A1 B1 A9
Eu A2% B2 A8% A9 E A2% B1 2A9
T1u E% A1 2A8% A9 E% A1 A1% B1% B2 2A8% A9
T2u E% B1 A8% 2A9 E% A2 A1% A2% B2 2A8% A9
0-6
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face, the eigenstates ofQ are classified according to the i
reducible representations of that point group. Hence,cn must
become zero ifubulk is attributed to a different irreducible
representation from that ofuL

n .
In order to confront our estimation with the predictions

group theory, let us consider again the previous exampl
normal incidence along the~111! direction. In this case inci-
dent light has aki50 component within the surface Bril
louin zone associated with the$111% set of planes. Following
the above-mentioned procedure, we employed a
monolayer bare opal slab to obtain the electric-field distri
tion in the space between the 16th and 17th layers, where
bulk configuration is assumed to be achieved. At the sa
time, the photonic dispersion relation of the infinite period
system was also recalculated for increasing values ofkz .
Figure 5 shows both the dispersion relation and symm
assignment within the@1.10,1.3# interval. Now, we will pay
particular atention to the pair of frequency values mark
with horizontal lines: for one of them (a/l51.15) no un-
coupled bands are predicted by group theory, while for
other (a/l51.25) some of those bands are expected. In
first case, we obtaineducnu2 equal to 0.689 and 0.348 forE
bands with positive group velocity anducnu250.007,0.006
for the ones with negative slope. When calculated for
higher frequency, the values ofucnu2 for E(1) and E(2)
bands are$0.265, 0.377, 0.109, 0.035% and $0.085, 0.016,
0.098, 0.054%, respectively. With regards to the uncoupl
bands~i.e., those withA1 symmetry!, their coefficients are
less than 10216. Therefore we can conclude that light tran
mission is actually forbidden for such modes, as far as t
do not contribute to the excited field inside the slab. T
constitutes a confirmation of group-theory predictions.

VI. SUMMARY

We have analyzed the symmetry properties of eigenst
along the high-symmetry directions of close-packed b
opals according to the group theory. We found that so
bands cannot be coupled with an external plane wave a
several directions because of symmetry reasons, which
confirmed by layer-KKR calculations; nevertheless, the pr
ence of uncoupled modes is not expected to provide
observable features in the transmittance for this partic
system.
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APPENDIX A: NUMERICAL ASSIGNMENT OF
IRREDUCIBLE REPRESENTATIONS

As stated in Sec. III, the label assignment for a giv
modeEk

n(r ) is based on the evaluation of its character un
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TABLE V. The compatibility relations of irreducible represent
tions at theX point in the fcc lattice.

X@D4h# GX@C4v# XU@C2v# XW@C2v#

A1g A1 A1 A1

A2g A2 B2 B2

B1g B1 B2 A1

B2g B2 A1 B2

Eg E A2% B1 A2% B1

A1u A2 A2 A2

A2u A1 B1 B1

B1u B2 B1 A2

B2u B1 A2 B1

Eu E A1% B2 A1% B2

TABLE VI. The compatibility relations of irreducible represen
tations at theL point in the fcc lattice.

L@D3d# GL@C3v# LW@C2# LU@C1h# LK@C1h#

A1g A1 A A8 A8
A2g A2 B A9 A9
Eg E A% B A8% A9 A8% A9
A1u A2 A A9 A9
A2u A1 B A8 A8
Eu E A% B A8% A9 A8% A9

TABLE VII. The compatibility relations of irreducible represen
tations at theU point in the fcc lattice.

U@C2v# GU@C1h# XU@C2v# LU@C1h# UW@C1h#

A1 A8 A1 A8 A8
A2 A9 A2 A9 A9
B1 A8 B1 A8 A9
B2 A9 B2 A9 A8

TABLE VIII. The compatibility relations of irreducible repre
sentations at theW point in the fcc lattice.

W@D2d# GW@C1h# XW@C2v# LW@C2# UW@C1h# WK@C1h#

A1 A8 A1 A A8 A8
A2 A9 A2 B A9 A9
B1 A9 A2 A A9 A9
B2 A8 A1 B A8 A8
E A8% A9 B1% B2 A% B A8% A9 A8% A9

TABLE IX. The compatibility relations of irreducible represen
tations at theK point in the fcc lattice.

K@C2v# GK@C2v# LK@C1h# WK@C1h#

A1 A1 A8 A8
A2 A2 A9 A9
B1 B1 A8 A9
B2 B2 A9 A8
0-7
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the symmetry operators withinGk . The first thing that needs
to be remarked is that solutions obtained by means of
plane-wave expansion method~in fact by means of any nu
merical calculation! do not satisfy Eq.~17! except in an ap-
proximate way. However, a suitable algorithm can always
found in order to estimate the character of computed eig
functions.

In our present work, we have defined a strategy based
direct evaluation of Eq.~17!, which will now be rewritten for
the sake of clarity:

Pg[ÂEg5(
g8

ag,g8Eg8 . ~A1!

In the case of one-dimensional irreducible representati
(g51), the characterx(Â) is given by

x1D5a5
P•E

uEu2
. ~A2!

Similar expressions can be obtained for two-dimensio
(g<2) representations

x2D5(
j ,k

~21! j 1k@~Pj•Ek!~Ek•Ej !2~Pj•Ej !uEku2#

uE1u2uE2u22~E1•E2!~E2•E1!
,

~A3!
l a

;
.Y

,

,

r,

n

l

19511
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e
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and also for three-dimensional (g<3) ones, given that som
auxiliary quantities be defined:

x3D5
w1•~v23v3!1v1•~w23v3!1v1•~v23w3!

v1•~v23v3!
,

~A4!

~vk! j5Ek•Ej , ~A5!

~wk! j5Pk•Ej . ~A6!

APPENDIX B: COMPATIBILITY RELATIONS OF
IRREDUCIBLE REPRESENTATIONS IN THE FCC

LATTICE

In Tables IV–IX, the compatibility relations between th
irreducible representations for the points at the corners of
irreducible part of the fcc first Brillouin zone and those f
the wave vectors on intermediate segments are presente
can be observed that only one mirror reflection is defined
many of these segments because of their low-symmetry
variance.
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