Publications:
Characterizing random one-dimensional media with an embedded reflector via scattered waves
Y. M. Huang, X. J. Ma, A. Z. Genack, V. A. Gopar, Phys. Rev. B. 104, 104204 (2021). arxiv.org:2109.11922
Statistics of coherent waves inside media with Levy disorder
L. A Razo-Lopez, A. Z. Genack, V. A. Gopar, Phys. Rev. Res. 3, 023035 (2021). arxiv.org:2102.05423
Delay times of waves performing Levy walks in 1D random media
L. A Razo-Lopez, A. A. Fernandez-Marin, J. Sanchez-Dehesa, Victor A. Gopar, Scientific Reports 10, 20816 (2020). arXiv:2003.008918
Transition between anomalous and Anderson localization in systems with non-diagonal disorder driven by time-periodic fields
Rafael A. Molina, Victor A. Gopar, EPJ B. 93, 76 (2020). arXiv:2003.06372
Invariance principle for wave propagation inside inhomogeneously disordered materials
Yiming Huang, Chushun Tian, Victor A. Gopar, Ping Fang, Azriel Z. Genack, Phys. Rev. Lett. 124, 0574401 (2020). arXiv:1912.11242
Conductance fluctuations in disordered 2D topological insulator wires: From quantum spin-Hall to ordinary quantum phases
Hsiu-Chuan Hsu, Ioannis Kleftogiannis, Guang-Yu Guo and Victor A. Gopar, J. Phys. Soc. Jpn. 87, 034701 (2018). arXiv:1612.00146
Coherent wave transmission in quasi-one-dimensional systems with Lévy disorder
Ilias Amanatidis, Ioannis Kleftogiannis, Fernando Falceto and Victor A. Gopar, Physical Review E, 96, 062141 (2017). arXiv:1711.04966
Lloyd-model generalization: Conductance fluctuations in one-dimensional disordered systems
J. A. Mendez-Bermudez, J. A. Martinez-Mendoza, V. A. Gopar, and I. Varga, Physical Review E, 93, 012135 (2016). arXiv:1604.00692
Shot noise fluctuations in disordered graphene nanoribbons near the Dirac point
Victor A. Gopar, Physica E, 77, 23 (2016). arXiv:1507.00222
Beyond Anderson Localization in 1D: Anomalous Localization of Microwaves in Random Waveguides
A. A. Fernandez-Marin, J. A. Mendez-Bermudez, J. Carbonell, F. Cervera, J. Sanchez-Dehesa, and Victor A. Gopar, Phys. Rev. Lett., 113, 233901 (2014). arXiv:1411.1271
Orbital entanglement and electron localization in quantum wires
Alberto Aleta, Hector Villarrubia-Rojo, Diego Frustaglia, and Victor A. Gopar, Phys. Rev. B, 89, 075429 (2014). arXiv:1312.4570
Quantum transport through disordered 1D wiress: Conductance via localized and delocalized electrons
Victor A. Gopar, AIP Conf. Proc. 1579, 21 (2014). Special Topics on Transport Theory:Electrons, Waves, and Diffusion in confined Systems
Conductance through disordered graphene nanoribbons: Standard and anomalous electron localization
Ioannis Kleftogiannis, Ilias Amanatidis, Victor A. Gopar, Phys. Rev. B 88, 205414 (2013). arXiv:1310.7470
Conductance of 1D quantum wires with anomalous electron-wavefunction localization
Ilias Amanatidis, Ioannis Kleftogiannis, Fernando Falceto, Victor A. Gopar, Phys. Rev. B 85, 235450 (2012). arXiv:1206.1442
Photonic heterostructures with Levy-type disorder: Statistics of coherent transmission
A. A. Fernandez, J. A. Mendez-Bermudez, and Victor A. Gopar, Phys. Rev. A 85, 035803 (2012). arXiv:1203.1337
Conductance through quantum wires with Levy-type disorder: universal statistics in anomalous quantum transport
Fernando Falceto and Victor A. Gopar, EPL 92, 57014 (2010). arXiv:1011.3791
Controlling conductance statistics of quantum wires by driving ac fields
Victor A. Gopar and Rafael A. Molina, Phys. Rev. B 81, 195415 (2010). arXiv:1004.4436
Scattering and transport statistics at the metal-insulator transition: A numerical study of the power-law banded random-matrix model
J. A. Mendez-Bermudez, Victor A. Gopar, and Imre Varga, Phys. Rev. B 82, 125106 (2010), arXiv:1001.2568
Conductance distribution at criticality: one-dimensional Anderson model with random long-range hopping.
J. A. Mendez, Victor A. Gopar, and Imre Varga, Ann. Phys. 18, 891 (2009).[PDF]
Quantum Scattering and Transport in Classically Chaotic Cavities: An overview of Past and New Results.
Pier A. Mello, Victor A. Gopar, and J. A. Mendez-Bermudez,
Chaotic Systems: Theory and Applications: Selected Papers from the 2nd Chaotic Modeling and Simulation International Conference (CHAOS2009), C. H. Skiadas and I. Dimotikalis, Eds, World Scientific, 2010. arXiv:0906.5074
Effects of Andreev reflection on the conductance of quantum chaotic dots.
Victor A. Gopar, J. A. Mendez-Bermudez, and Arafa H. Aly, Phys. Rev. B 79 245412 (2009). arXiv:0902.3687
Statistical analysis of the transmission based on the DMPK equation: an application to Pb nanocontacts.
Victor A. Gopar, Eur. Phys. J. B, 62 299 (2008). arXiv:0804.3200
Statistics of orbital entanglement production in quantum-chaotic dots.
Victor A. Gopar, Diego Frustaglia, Phys. Rev. B 77 153403 (2008). arXiv:0712.0623
Chaotic scattering with direct processes: A generalization of Poisson's kernel for non-unitary matrices.
Victor A. Gopar, M. Martínez-Mares, R. A. Méndez, Journal of Physics A: Mathematical and Theoretical 41 015103 (2008). arXiv:0709.4321
Effect of temperature and bias voltage on the conductance distribution of 1D-disordered wires with dirty contacts.
F. Foieri, M. J. Sanchez, L. Arrachea, Victor A. Gopar, Physica B 38 376 (2007).
Conductance distributions of one-dimensional disordered wires at finite temperature and bias voltage.
F. Foieri, M. J. Sanchez, L. Arrachea, Victor A. Gopar, Phys. Rev. B 74 165313 (2006). cond-mat/0606715
Transport in chaotic quantum dots: effects of spatial symmetries which interchange the leads.
Victor A. Gopar, Stefan Rotter, Henning Schomerus, Phys. Rev. B 73, 165308 (2006) cond-mat/0512415
Statistical Study of the Conductance and Shot Noise in Open Quantum-Chaotic Cavities. Contribution from Whispering Gallery Modes.
Evgeny N. Bulgakov, Victor A. Gopar, Pier A. Mello, Ingrid Rotter, Phys. Rev. B 73, 155302 (2006) cond-mat/0511424
Magnetotransport in Nanowires in Spintronic Materials and Technology, R.L. Stamps, P. Falloon, V. Gopar, R. Jalabert, D. Weinmann, Editors Y. Xu and S. Thompson, Taylor & Francis (2006).
Effect of temperature and bias voltage on the conductance distribution of disordered 1d quantum wires.
Victor A. Gopar, Peter Wölfle, Europhys. Lett. 71, 966 (2005) [PDF]
Electronic transport through domain walls in ferromagnetic nanowires: Co-existence of adiabatic and non-adiabatic spin dynamics.
Victor A. Gopar, Dietmar Weinmann, Rodolfo A. Jalabert, Robert L. Stamps, Phys. Rev. B 69, 014426 (2004), [PDF]
Conductance distribution in quasi-one-dimensional disordered quantum wires.
K. A. Muttalib, Peter Wölfle, Victor A. Gopar, Annals of Physics, 308, 156 (2003) [PDF]
Non-analyticity in the distribution of conductances in quasi one dimensional wires. K. A. Muttalib, Peter Wölfle, Antonio Garcia-Martin, Victor A. Gopar, Europhys. Lett., 61 (1), 95 (2003).[PDF]
Conductance distribution in disordered quantum wires: Crossover between the metallic and insulating regimes.
Victor A. Gopar, K. A. Muttalib, Peter Wölfle, Phys. Rev. B, 66, 174204 (2002). [PDF]
Generalization of the DMPK equation beyond quasi one dimension.
K. A. Muttalib, Victor A. GoparPhys. Rev. B 66, 115318 (2002) [PDF]
The problem of quantum chaotic scattering without direct processes reduced to the one without.
Victor A. Gopar and Pier A. Mello, Europhys. Lett. 42 131 (1998) [PDF]
The invariant measure for scattering matrices with block symmetries.
Victor A. Gopar, Moises Martinez, Pier A. Mello, and Harold Baranger,J. Phys. A: Math. Gen. 29 881 (1996) [PDF]
Mesoscopic Capacitors: A Statistical Analysis.
Victor A. Gopar, Pier A. Mello and Markus Büttiker, Phys. Rev. Lett. 77 3005 (1996) [PDF]
Random-matrix theory and the cumulants of the conductance for a quasi-one-dimensional mesoscopic systems.
Victor A. Gopar, Moises Martinez, and Pier A. Mello, Phys. Rev. B 51 16917 (1995) [PDF]
Random-matrix study of multriprobe mesoscopic devices. II. A four-probe one-dimensional system.
Victor A. Gopar, Moises Martinez, and Pier A, Phys. Rev. B 50 2502 (1994) [PDF]