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Abstract. We show how to reconstruct a graded ample Hausdorff groupoid with topo-
logically principal neutrally-graded component from the ring structure of its graded Stein-
berg algebra over any commutative integral domain with 1, together with the embedding
of the canonical abelian subring of functions supported on the unit space. We deduce that
diagonal-preserving ring isomorphism of Leavitt path algebras implies C∗-isomorphism
of C∗-algebras for graphs E and F in which every cycle has an exit.

1. Introduction

Since the introduction by Abrams–Aranda-Pino [1] and, independently, by Ara–Moreno–
Pardo [5] of Leavitt path algebras as algebraic analogues of graph C∗-algebras, there has
been a great deal of interest in the many parallels between the two theories. Both graph
C∗-algebras and Leavitt path algebras are defined as universal objects for sets of genera-
tors and relations that encode the structure of the underlying graph; and many structural
results for graph algebras have direct analogues for Leavitt path algebras, and vice versa.
But it is not immediately clear why: the proofs tend to require very different techniques,
and there is no obvious mechanism, using the generators-and-relations formalism, for de-
ducing a given result about graph C∗-algebras from the corresponding result about Leavitt
path algebras or vice-versa. In particular (see question 6 on Tomforde’s Graph Algebra
Problem Page [29]) a key unresolved conjecture, due to Abrams and Tomforde, is that if E
and F are graphs whose complex Leavitt path algebras are isomorphic as rings, then they
have isomorphic C∗-algebras. In this paper, we make some progress on this question by
studying diagonal-preserving isomorphisms of Steinberg algebras. Specifically, we confirm
a slight weakening of Abrams and Tomforde’s conjecture: if E and F are graphs in which
every cycle has an entrance and there is a ring-isomorphism LC(E) ∼= LC(F ) that respects
the canonical diagonal, then there is a diagonal-preserving isomorphism C∗(E) ∼= C∗(F ).

The algebras that we now call Steinberg algebras were first introduced by Steinberg in
[26] as a groupoid-based approach to the study of inverse-semigroup algebras. Working
independently, Clark–Farthing–Sims–Tomforde [8], developed the same class of algebras
to provide a groupoid-based approach to the study of Leavitt path algebras. Groupoids
generalise groups by allowing for a partially-defined multiplication. The groupoid C∗-
algebra of a groupoid G is a norm completion of the algebra of continuous, compactly
supported functions from G to C under a natural convolution product. When the groupoid
G is ample, meaning that it is totally disconnected as a topological space, the Steinberg
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algebra AR(G) of G over a ring R is the algebra of locally constant functions from G to
R under the multiplication product; in particular, AC(G) is, more or less by definition, a
dense subalgebra of C∗(G). Each directed graph determines a groupoid, whose groupoid
C∗-algebra, in the sense of Renault [24], coincides with the graph C∗-algebra; in fact this
is how graph C∗-algebras were originally constructed [17]. The reasoning of Remark 4.4
of [8] shows that the Steinberg algebra of this same groupoid, over any ring R, coincides
with the Leavitt path algebra of E over the same ring (see [9, Example 3.2]).

Because the unit space G(0) of an ample groupoid is a clopen set, the algebra C0(G(0))
of continuous complex-valued functions vanishing at infinity on G(0) is a commutative
C∗-subalgebra of C∗(G), and the algebra D of locally constant functions from G(0) to R
is a commutative subalgebra of AR(G). In [25], building on previous work of Kumjian
[14], Renault studied the pair (C∗(G), C0(G(0))) under the hypothesis that G is topolog-
ically principal (for graph groupoids, this corresponds to every cycle in the underlying
graph having an exit [16, Lemma 3.4]). One consequence of his powerful theory of Car-
tan subalgebras of C∗-algebras is that the groupoid G can be recovered from the pair
(C∗(G), C0(G(0))). It follows, in particular, that if G and H are ample groupoids, then
there is an isomorphism C∗(G) ∼= C∗(H) that carries C0(G(0)) to C0(H(0)) if and only if
G ∼= H. These results have been used recently to prove remarkable results about contin-
uous orbit equivalence rigidity for symbolic dynamical systems [7, 20, 21].

In this paper, we establish an analogue of Renault’s reconstruction theorem for Stein-
berg algebras over any commutative integral domain with 1. We also extend Renault’s
ideas to deal with graded algebras, and groupoids G admitting a discrete-group-valued
cocycle c for which only the kernel c−1(e) is assumed to be topologically principal. Specif-
ically, we prove that if G is ample and Hausdorff, c : G → Γ is a 1-cocycle taking val-
ues in a discrete group, and R is a commutative integral domain with 1, then D is a
maximal commutative subring of the ring AR(G), and we can recover G from the pair
(AR(G), D) regarded as a Γ-graded ring with distinguished commutative subring. As a
direct consequence, we deduce the following. Suppose that E and F are directed graphs
in which every cycle has an exit, and suppose that there is a commutative integral do-
main R with 1 for which there is a ring isomorphism π : LR(E) ∼= LR(F ) that such
π(sµsµ∗)sηsη∗ = sηsη∗π(sµsµ∗) for every path µ in E and every path η in F . Then there is
a diagonal-preserving isomorphism C∗(E) ∼= C∗(F ). We also make a little progress on a
vexing question appearing as part of question 1 on Tomforde’s problem page [29]: are the
Leavitt path algebras L2,K and L2−,K isomorphic for a field K? This question has been
settled in the situation where the field K is replaced by the ring Z and the isomorphism is
required to be a ∗-isomorphism in [13]. However, the original question remains open. Our
results are strong enough to show that there is no diagonal-preserving ring-isomorphism
between these two algebras.

A similar result about Leavitt path algebras, of which we became aware late in the
preparation of this work, was obtained recently by Brown–Clark–an Huef [6]. Neither our
result nor theirs is a direct generalisation of the other, though: their theorem requires a
∗-ring isomorphism and that E be row-finite with no sources, whereas ours requires only a
ring isomorphism and does not insist that E should be row-finite or have no sources; but
our result requires that every cycle in E have an exit whereas theirs does not. But our
result has many further applications; for example, to Kumjian–Pask algebras of higher-
rank graphs, to algebras associated to Cantor minimal systems, to the algebras Lab(E,C)
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associated to separated graphs by Ara and Exel in [4], and to all groupoids arising from
partial actions of countable discrete groups on totally disconnected metrisable spaces
(many examples of this situation are described in [11]). Indeed, by Steinberg’s result [26,
Theorem 6.3], relating inverse-semigroup algebras to Steinberg algebras, our result applies
to the algebras of all inverse semigroups whose associated universal groupoids are both
Hausdorff and topologically principal; and [26, Theorem 5.17] implies that the universal
groupoid is Hausdorff if and only if the inverse semigroup is a weak semilattice. We do
not explore all of these potential applications in this paper.

The paper is organised as follows. We recall some basic facts about groupoids, inverse
semigroups, and Steinberg algebras in Section 2. We then prove our main result in
Section 3; our approach decomposes into five steps, and we devote a subsection to each
one. The first step is to define and analyse the normalisers of the subring D in AR(G).
The second step is to show that these normalisers form a natural inverse semigroup S.
The third step is to show that we can recover the inverse semigroup of compact open
bisections of the groupoid G as a natural quotient of S. The fourth step is to show
that the ring structure of AR(G) determines an action of this quotient on the Stone
spectrum of D which is isomorphic to the canonical action of the inverse semigroup of
compact open bisections on the unit space of G. The final step is to prove that D is a
maximal abelian subring so that any isomorphism AR(G) ∼= AR(H) that carries DG into
the commutator of the corresponding subring DH must in fact restrict to an isomorphism
DG ∼= DH. Combining all of these elements yields our main result. We go on to explore
some consequences of our main result in Section 4. We first describe explicitly what our
results say for topologically principal groupoids G. We then detail our conclusions about
diagonal-preserving ring isomorphisms of Leavitt path algebras, and apply them to obtain
some new results on the well-known open problem of whether the algebras L2,R and L2−,R
are isomorphic for a commutative ring R with 1. Finally, we detail what our results say
about graded isomorphisms of Kumjian–Pask algebras.

2. Preliminaries

2.1. Groupoids and Inverse Semigroups. We give a very brief introduction to Haus-
dorff ample groupoids. For more detail, see [10, 22].

A groupoid G is a small category with inverses. We denote the set of identity morphisms
of G by G(0), and call it the unit space of G. So G(0) = {γγ−1 : γ ∈ G}. For γ ∈ G, we
write r(γ) := γγ−1 and s(γ) := γ−1γ. So r, s : G → G(0) satisfy r(γ)γ = γ = γs(γ) for all
γ ∈ G. A pair (α, β) ∈ G ×G is then composable if and only if s(α) = r(β). We write G(2)

for the set of all composable pairs.
For U, V ⊆ G, we write

(2.1) UV = {αβ | α ∈ U, β ∈ V and r(β) = s(α)}.

Given units u, v ∈ G(0), we write, as usual (e.g. [24]), Gu for s−1(u) and Gv for r−1(v). We
then write Gvu for Gv∩Gu. The isotropy group at the unit u ∈ G0 is then the group Guu . We
say u has trivial isotropy if Guu = {u}. The isotropy subgroupoid of G is Iso(G) :=

⋃
u∈G0 Guu .

We say that G is a topological groupoid if it is endowed with a topology under which
the unit space is Hausdorff in the relative topology, the range, source and inverse maps are
continuous, and the composition map is continuous with respect to the subspace topology
on G(2) ⊆ G ×G. This implies, in particular, that both G(0) and Iso(G) are closed in G. A
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bisection of G is a subset U ⊆ G such that r|U and s|U are homeomorphisms. We say that

G is ample if r and s are local homeomorphisms and G(0) has a basis of compact open sets.
If G is ample, then G(0) is clopen in G and G admits a basis of compact open bisections.
The composition map in an ample Hausdorff groupoid is an open map. In this note, we
will uniquely deal with Hausdorff groupoids, so that compact open sets are clopen.

We will work frequently with topologically principal groupoids in which the set of units
with trivial isotropy is dense in G(0).

Recall (see e.g. [10, 18, 22, 26] for more details) that an inverse semigroup is a semigroup
S such that for each s ∈ S there exists a unique element s∗ ∈ S satisfying ss∗s = s and
s∗ss∗ = s∗. We denote by E(S) the set of idempotents of S, which is automatically a
commutative semigroup. There is a natural order on E(S) given by e ≤ f if and only if
ef = e, and this order extends to a partial order on S given by s ≤ t if s = et for some
idempotent e (in which case we may always take e = ss∗). Given an ample Hausdorff
groupoid G, the collection SG of compact open bisections of G forms an inverse semigroup
under the multiplication given by (2.1), with U∗ = U−1 = {γ−1 : γ ∈ U}. We then have
E(SG) := {U ∈ SG : U ⊆ G(0)}, and the product in E(SG) agrees with the intersection
operation on subsets of G(0).

2.2. Graded Steinberg algebras. Let G be a Hausdorff ample groupoid and let R be a
commutative ring with 1. We write AR(G) for the space of all locally constant functions
f : G → R with compact support. This becomes an R-algebra under the convolution
product

f ∗ g(γ) =
∑

r(α)=r(γ)

f(α)g(α−1γ) =
∑
αβ=γ

f(α)g(β),

and pointwise addition and R-action. For any involution on R (possibly the trivial one)
the algebra AR(G) becomes a ∗-algebra with f ∗(γ) = f(γ−1)∗.

If U denotes the collection of all compact open bisections of G, then AR(G) = spanR{1U |
U ∈ U}. Specifically, given f ∈ AR(G), the sets f−1(r), indexed by r ∈ R, are compact
open sets, so each admit a finite cover by elements of U . Since whether U, V ∈ U implies
that U \ V ∈ U , we can find, for each r such that f−1(r) 6= ∅, a finite set Fr ⊆ U
of mutually disjoint compact open bisections with f−1(r) =

⊔
U∈Fr U . We then have

f =
∑

f−1(r)6=∅
∑

U∈Fr r · 1U . That is, every element of AR(G) can be written as an R-
linear combination of finitely many mutually disjoint compact open bisections. We will
use this fact frequently, and, in this context, it will be useful to recall from [26, Proposition
4.5] that for U, V ∈ U ,

1U ∗ 1V = 1UV and 1∗U = 1U−1 .

Let Γ be a discrete group, and c a continuous homomorphism from G to Γ (that is,
c : G → Γ is a continuous groupoid cocycle). By [9, Lemma 3.1] there is a Γ-grading of
AR(G) such that

AR(G)g = {f ∈ AR(G) : supp(f) ⊆ c−1(g)} for all g ∈ Γ.

We say that a bisection U is homogeneous if c(U) is a singleton. Each homogeneous piece
AR(G)g of the Steinberg algebra is then precisely the R-linear span of indicator functions
of homogeneous bisections contained in c−1(g). As above, each element of AR(G)g can
be written as an R-linear combination of indicator functions of finitely many mutually
disjoint such homogeneous bisections.
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Since we can regard G(0) as a subgroupoid of G it makes sense to talk about the Steinberg
algebra AR(G(0)), which is just the commutative algebra of locally constant compactly
supported functions from G(0) to R under pointwise operations. Since G(0) is clopen, there
is an embedding ι : AR(G(0))→ AR(G) such that ι(f)|G(0) = f and ι(f)|G\G(0) = 0. We use

this embedding to regard AR(G(0)) as a commutative subalgebra of AR(G). This AR(G(0))
contains local units for AR(G). Indeed, given f ∈ AR(G), the set K := s(supp(f)) ∪
r(supp(f)) ⊆ G(0) is compact and open, and 1K ∗ f = f = f ∗ 1K .

To keep our notation uncluttered, we shall write DG, or just D when the groupoid is
clear, for AR(G(0)) ⊆ AR(G) throughout this note.

3. Reconstructing the groupoid

In this section we consider commutative integral domain R with 1, and graded groupoids
G endowed with a continuous cocycle c whose kernel is topologically principal. We show
how to reconstruct (G, c) from the pair (AR(G), D), regarded as a graded ring with dis-
tinguished abelian subring. Our goal is the following result, which we prove at the end of
the section. Throughout Γ is a group and e is its neutral element.

Theorem 3.1. Let G and H be ample Hausdorff groupoids, R be a commutative integral
domain with 1, c : G → Γ and d : H → Γ be gradings by a discrete group, and suppose
that c−1(e) and d−1(e) are topologically principal. Let DG ⊆ AR(G) and DH ⊆ AR(H) be
the abelian subalgebras consisting of functions supported on G(0) and H(0). Then, there is
a graded isomorphism ρ : AR(G)→ AR(H) satisfying ρ(DG) ⊆ DH if and only if there is
an isomorphism ρ̄ : G → H such that d ◦ ρ̄ = c.

Remark 3.2. In theorem 3.1, we are regarding AR(G) as a ring. In particular, even
if R = C, so that AR(G) and AR(H) have natural ∗-algebra structures, the existence
of a diagonal-preserving ring isomorphism AR(G) → AR(H) implies isomorphism of the
groupoids G and H. En passant we observe that it implies that AR(G) and AR(H) are in
fact isomorphic as ∗-algebras.

3.1. The normaliser of DG. The first step in proving Theorem 3.1 is to define and
study what we call the normalisers of DG. As said, we write D instead of DG if there is no
confusion for the subalgebra AR(G(0)) of AR(G) . This is based on Kumjian’s work [14] on
C∗-diagonals, and Renault’s later work on Cartan subalgebras of C∗-algebras [25]. It is
also related to Brown, Clark and an Huef’s treatments of Leavitt path algebras [6] which,
in turn, is based on Brownlowe, Carlsen and Whittaker’s work on graph C∗-algebras [7];
but we must make adjustments for the lack of a ∗-algebra structure here and to exploit
the presence of a grading.

Let G be an ample Hausdorff groupoid, and let c : G → Γ be a grading of G by a discrete
group. Note that we have D ⊆ AR(G)e, the trivially-graded homogeneous subalgebra of
AR(G) since c(u) = c(u2) = c(u)2 for each u ∈ G(0).

We shall define what we call the graded normalisers of D, and construct from them
an inverse semigroup. Later we will establish that an appropriate quotient of this inverse
semigroup acts on the Stone spectrum of D by partial homeomorphisms, and prove that
G is isomorphic to the groupoid of germs for this action.

Definition 3.3. Let G be an ample Hausdorff groupoid, and let c : G → Γ be a grading
of G by a discrete group. A normaliser of D is a pair (m,n) ∈ AR(G)×AR(G) satisfying
the following two conditions:
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(N1) mDn ∪ nDm ⊆ D; and
(N2) mnm = m and nmn = n.

A normaliser (m,n) of D is homogeneous if m and n are both homogeneous elements of
AR(G). We then have m ∈ AR(G)g for some g ∈ Γ, and we say that (m,n) is homogeneous
of degree g ∈ Γ. From (N2) it follows that n ∈ AR(G)g−1 .

If (m,n) is a normaliser, then (N2) implies that mn and nm are idempotents. We
write N(D) for the set of normalisers of D, and for g ∈ Γ we write Ng(D) for the set
of normalisers that are homogeneous of degree g. We write N?(D) :=

⋃
g∈ΓNg(D) for

the collection of all homogeneous normalisers. It is clear that if (m,n) ∈ Ng(D) then
(n,m) ∈ Ng−1(D).

Our first, and key, proposition characterises the homogeneous normalisers of D when
c−1(e) is topologically principal. Throughout this paper, we write R× for the group of
units of a ring R.

Proposition 3.4. Let G be an ample Hausdorff groupoid, and let c : G → Γ be a grading
of G by a discrete group. Let R be a commutative ring with 1.

(1) Let U ⊆ c−1(g) be a compact open bisection, and consider a decomposition U =
tV ∈FV of U into finitely many mutually disjoint compact open subsets indexed by
F. Take units {aV , V ∈ F} ⊆ R×, and let

(m,n) :=
(∑
V ∈F

aV 1V ,
∑
V ∈F

a−1
V 1V −1

)
.

Then (m,n) ∈ N(D).
(2) Suppose that R is an integral domain and c−1(e) is topologically principal. If

(m,n) ∈ Ng(D), then there exist a compact open bisection U ⊆ c−1(g), a de-
composition U =

⊔
V ∈F V of U into finitely many mutually disjoint compact open

subsets indexed by F, and units aV ∈ R×, V ∈ F such that

m =
∑
V ∈F

aV 1V and n =
∑
V ∈F

a−1
V 1V −1 ; and then mn = 1r(U), and nm = 1s(U).

Proof. (1) To show that (m,n) satisfies (N1), first recall that we have D = spanR{1K :
K ⊆ G(0) is compact open}; hence, it suffices to show that each m1Kn and each n1Km
is contained in D. We check that m1Kn ∈ D; symmetry gives n1Km ∈ D too. Fixing a
compact open K ⊆ G(0), one has that

m1Kn =
∑

V,W∈F

aV a
−1
W 1V 1K1W−1 =

∑
V,W∈F

aV a
−1
W 1V K1(WK)−1 .

Then, since s(V )∩s(W ) = ∅ for distinct V,W ∈ F , it follows that 1V K1(WK)−1 = 0 unless
V = W . So we obtain

m1Kn =
∑
V ∈F

aV a
−1
V 1V K(V K)−1 =

∑
V ∈F

1r(V K) = 1r(UK)

since the sets V are mutually disjoint and cover U . Similarly, n1Km = 1s(KU). This
establishes (N1). Moreover, applying the two identities just derived with K = s(U)∪r(U),
this gives mn = 1r(U) and nm = 1s(U), which implies that each 1V nm = mn1V = 1V . So
we get that

mnm =
∑
V ∈F

aV 1V 1s(U) =
∑
V ∈F

aV 1V s(U) =
∑
V ∈F

aV 1V = m,
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and similarly nmn = n, giving (N2).
(2) Let Um := supp(m) ⊆ c−1(g), and let Un := supp(n) ⊆ c−1(g−1). The sets Um and

Un are compact open sets because m,n ∈ AR(G). We will show that Um is a bisection
and that Un = U−1

m . First observe that nm is an idempotent in D = AR(G(0)). Since
R is an integral domain, it has no nontrivial idempotents, and since multiplication in D
is pointwise, we conclude that nm = 1K for some compact open set K. We claim that
K = s(Um). For this, first suppose that u ∈ K. Then

0 6= nm(u) =
∑
αβ=u

n(α)m(β) =
∑
s(α)=u

n(α−1)m(α).

So m(α) 6= 0 for some α ∈ Gu, giving u ∈ s(supp(m)) = s(Um). Hence K ⊆ s(Um). For
the reverse inclusion, suppose that u ∈ s(Um); that is, there exists α ∈ Um satisfying
u = s(α). Then

0 6= m(α) = mnm(α) =
∑
βγ=α

m(β)nm(γ) =
∑
βγ=α

m(β)1K(γ).

Since K ⊆ G(0), the rightmost sum in the preceding equation collapses to m(α)1K(u).
Moreover, as it is nonzero, we conclude that u ∈ K, and then, nm = 1s(Um). The
same argument applied to the homogeneous normaliser (n,m) shows that mn = 1s(Un).
Similarly, mn = 1r(Um) and nm = 1r(Un). Therefore, s(Um) = r(Un) and s(Un) = r(Um).

Now, fixing u ∈ s(Um), we show that the set UmuUn consists of a single unit. Since

0 6= 1s(Um)(u) = nm(u) =
∑
αβ=u

n(α)m(β) =
∑
s(α)=u

n(α−1)m(α),

there exists α0 ∈ Umu such that α−1
0 ∈ Un; we must show that UmuUn = {r(α0)}.

Since inversion in G is a homeomorphism, and since m,n are locally constant, we can
choose an open bisection V 0

α0
such that α0 ∈ V 0

α0
⊆ Um, such that (V 0

α0
)−1 ⊆ Un, and

such that m is constant on V 0
α0

and n is constant on (V 0
α0

)−1. Let W 0
α−1
0

:= (V 0
α0

)−1.

The sets Umu \ {α0} and uUn \ {α−1
0 } are finite and discrete because r and s are local

homeomorphisms and Um and Un are compact. For each α ∈ Umu \ {α0}, choose an
open bisection V 0

α with α ∈ V 0
α ⊆ Um such that m is constant on V 0

α ; and for each
β ∈ uUn \ {α−1

0 } choose an open bisection β ∈ W 0
β ⊆ Un with n constant on W 0

β . The

set Y :=
(⋂

α∈Um s(V
0
α )
)
∩
(⋂

β∈uUn r(W
0
β )
)

is an open set. For each α ∈ Umu, put

Vα := V 0
αY , and for each β ∈ uUn, let Wβ := YW 0

β . Then:

• Wα−1
0

= V −1
α0

;

• each Vα is an open bisection containing α, and each Wβ is an open bisection
containing β;
• m is constant on each Vα and n is constant on each Wβ; and
• s(Vα) = Y = r(Wβ) for all α, β.

Since Um ⊆ c−1(g) and Un ⊆ c−1(g−1), we have VαWβ ⊆ c−1(e) for all α, β. Since
Y is open, and since c−1(e) is topologically principal, we can find y ∈ Y such that
Gyy ∩ c−1(e) = {y}. It follows that if µ, ν ∈ Umy are distinct then r(µ) 6= r(ν) (because

otherwise µ−1ν would belong to Gyy ∩ c−1(e) \ {y}), and similarly, if µ, ν ∈ yUn are
distinct then s(µ) 6= s(ν). So we can choose a compact open neighbourhood V ′η of each
η ∈ Umy and a compact open neighbourhood W ′

ζ of each ζ ∈ yUn such that the r(V ′η) are
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mutually disjoint and the s(W ′
ζ) are mutually disjoint; and we can assume that V ′η ⊆ Vα

if η ∈ Vα, and similarly for the W ′
ζ . Let X :=

(⋂
η∈Umy s(V

′
η)
)
∩
(⋂

ζ∈yUn r(W
′
ζ)
)
. Since

1r(V ′η)1r(V ′
η′ )

= 0 for distinct η, η′ ∈ Umy, and 1s(W ′
ζ′ )

1s(W ′ζ) = 0 for distinct ζ, ζ ′ ∈ yUn, we

have

(3.1) (1r(V ′η)m1Xn1s(W ′ζ))(ηζ) = m(η)n(ζ)

for each η ∈ Umy and ζ ∈ yUn. Now we suppose, that UmuUn is not a singleton, and
derive a contraction. Either there exists α1 ∈ Umu \ {α0} or there is β1 ∈ uUn \ {α−1

0 }.
We consider the former case; the latter is similar. Let η0 and η1 be the unique elements of
Vα0y and Vα1y. Since Wα−1

0
= V −1

α0
, the unique element of yWα−1

0
is ζ0 := η−1

0 . Since (m,n)

is a normaliser, we have m1Xn ∈ D and therefore 1r(V ′η1 )m1Xn1s(W ′ζ0 ) ∈ D. But (3.1) and

that m is constant on Vα1 and n is constant on Wα−1
0

gives(
1r(V ′η1 )m1Xn1s(W ′ζ0 )

)
(η1ζ0) = m(η1)n(ζ0) = m(α1)n(α−1

0 ).

We have m(α1) 6= 0 and n(α−1
0 ) 6= 0 because α1 ∈ Um = supp(m) and α−1

0 ∈ Un =
supp(n); since R is an integral domain, we deduce that

(
1r(V ′η1 )m1Xn1s(W ′ζ0 )

)
(η1ζ0) 6= 0.

Since ζ0 = η−1
0 6= η−1

1 , we have η1ζ0 6∈ G(0), which contradicts 1r(V ′η1 )m1Xn1s(W ′ζ0 ) ∈ D.

We have now established that Um is a bisection, and symmetry shows that Un is a
bisection. We also showed at the beginning of the preceding paragraph that if u ∈ s(Um)
then there exists α ∈ Umu such that α−1 ∈ Un. Since we now also know that Umu is a
singleton, we deduce that U−1

m ⊆ Un; and symmetry implies that in fact Un = U−1
m . Since

m and n are locally constant, we can express Um =
⊔
V ∈F V where the V are mutually

disjoint compact open sets such that m is constant (and nonzero) on V and n is constant
on V −1 for each V ∈ F ; say m ≡ rV on V and n ≡ r′V on V −1. So m =

∑
V ∈F rV 1V and

n =
∑

V ∈F r
′
V 1V −1 . We just have to show that each rV r

′
V = 1. Since U is a bisection,

the sets r(V ) are mutually disjoint, and so for w ∈ r(U) there is a unique V such that
w ∈ r(V ). We then have

mn(w) =
∑

r(α)=w

m(α)n(α−1) = rV r
′
V −1 .

We have w ∈ r(Um) and we proved that mn = 1r(Um). Hence rV r
′
V −1 = 1 as required. �

Remark 3.5. (1) If U ⊆ c−1(g) is a compact open bisection, then (1U , 1U−1) ∈ Ng(D).
Hence AR(G) = spanR{m : (m,n) ∈ N?(D)}.

(2) Since D has local units for AR(G), every (m,n) ∈ N(D) satisfies mn, nm ∈ D.

3.2. The inverse semigroup S. We now use N?(D), the collection of all homogeneous
normalisers, to recover a natural Γ-graded inverse semigroup related to G, which will be
denoted by S. In particular, we will show that a quotient S/∼ of this inverse semigroup

acts on the Stone spectrum D̂, so that we can construct from it a Γ-graded groupoid of

germs (S/∼)×ϕ D̂.
We write Clc(G, R× ∪ {0}) for the set {f ∈ AR(G) : f(G) ⊆ R× ∪ {0}} of functions in

AR(G) whose nonzero values are units. We define ∗ : Clc(G, R× ∪{0})→ Clc(G, R× ∪{0})
by

(3.2) f ∗(γ) =

{
f(γ−1)−1 if f(γ−1) 6= 0

0 otherwise.
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It will be convenient to write r∗ := r−1 for r ∈ R× and 0∗ := 0. Under this notation, we
have f ∗(γ) = f(γ−1)∗ for all f ∈ Clc(G, R× ∪ {0}) and γ ∈ G.

We define

Clc(G, R× ∪ {0})? := {f ∈ Clc(G, R× ∪ {0}) : f is homogeneous},

and for g ∈ Γ, we write Clc(G, R×∪{0})g := Clc(G, R×∪{0})∩AR(G)g. We further define

(3.3) S := {f ∈ Clc(G, R× ∪ {0})? : supp(f) is a bisection}.

We can reinterpret Proposition 3.4 as follows.

Corollary 3.6. Let G be an ample Hausdorff groupoid, and let c : G → Γ be a grading of G
by a discrete group. Suppose that c−1(e) is topologically principal. Let R be a commutative
integral domain with 1. The map f 7→ f ∗ on S is antimultiplicative, and for f ∈ S, we
have f ∗f = 1s(supp(f)) and ff ∗ = 1r(supp(f)). The map

f 7→ (f, f ∗)

is a bijection from S to N?(D).

Proof. Clearly f ∗ ∈ S and f ∗∗ = f for f ∈ S. Now, for f, g ∈ S, and γ ∈ G, we have
γ ∈ supp(fg) if and only if γ ∈ supp(f) supp(g) and in this case, there are unique elements
α ∈ supp(f) and β ∈ supp(g) such that γ = αβ. We thus have for γ ∈ supp(g∗) supp(f ∗)
that

(fg)∗(γ) = (fg)(γ−1)−1 = (f(β−1)g(α−1))−1

= g(α−1)−1f(β−1)−1 = g∗(α)f ∗(β) = (g∗f ∗)(γ),

where α ∈ supp(g∗) and β ∈ supp(f ∗) are the unique elements such that γ = αβ. If
γ /∈ supp(g∗) supp(f ∗), then (fg)∗(γ) = 0 = (g∗)(f ∗)(γ). So ∗ is antimultiplicative on S.
(We do not need commutativity of R for this computation.)

If f ∈ S and γ ∈ G, then the displayed equation above shows that (ff ∗)(γ) = 0 except
when γ ∈ supp(f) supp(f)−1 = r(supp(f)), because supp(f) is a bisection. Moreover,
if γ = αα−1 = r(α) for α ∈ supp(f), then (ff ∗)(γ) = f(α)f(α)−1 = 1. Hence, we
conclude that ff ∗ = 1r(supp(f)). An identical calculation shows that f ∗f = 1s(supp(f)).
It follows immediately that ff ∗f = f and f ∗ff ∗ = f ∗, so that (f, f ∗) satisfies (N2).
For K ⊆ G(0) compact open, we have f1K = f |supp(f)K ∈ S, and likewise 1Kf ∈ S;
thus, f1Kf

∗ = (f1K)(1Kf
∗) and f ∗1Kf = (1Kf)∗(1Kf) belong to D by the reasoning

just applied to ff ∗ and f ∗f . Since D is the R-linear span of the 1K , it follows that
fDf ∗ ∪ f ∗Df ⊆ D. So we have established that (f, f ∗) satisfies (N1) obtaining that the
map f 7→ (f, f ∗) carries S to N(D).

The map f 7→ (f, f ∗) is clearly injective, and Proposition 3.4 shows that every homo-
geneous normaliser has the form (f, f ∗); therefore, f 7→ (f, f ∗) is also surjective. �

Define c̃ : S → Γ by c̃(f) = g if and only if f ∈ AR(G)g. We now show that S is an
inverse semigroup and that c̃ is a Γ-grading of S.

Lemma 3.7. Let G be an ample Hausdorff groupoid, and let c : G → Γ be a grading of G
by a discrete group. Suppose that c−1(e) is topologically principal. Let R be a commutative
integral domain with 1. Then S is an inverse semigroup under multiplication in AR(G)
and the operation ∗ described at (3.2), and c̃ is a Γ-grading of S.
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Proof. Fix f1, f2 ∈ S, say f ∈ Clc(G, R× ∪ {0})g and f2 ∈ Clc(G, R× ∪ {0})h. Since R is
an integral domain, supp(f1f2) = supp(f1) supp(f2) ⊆ c−1(g)c−1(h). Moreover, because
supp(f1) and supp(f2) are compact open bisections, so is supp(f1) supp(f2). Each γ ∈
supp(f1f2) can be factorised uniquely as γ = γ1γ2 with γ1 ∈ supp(f1) and γ2 ∈ supp(f2),
and, since R× is closed under multiplication, the value

(f1f2)(γ) = f1(γ1)f2(γ2) ∈ R× ·R×

belongs to R× ⊆ R× ∪ {0}. So S is closed under multiplication, implying that c̃ carries
multiplication in S to multiplication in Γ. The set S is clearly closed under ∗, and ∗ is
antimultiplicative on S by Corollary 3.6; hence, Corollary 3.6 also implies that ff ∗f = f
and f ∗ff ∗ = f ∗.

As the idempotents of S are of the form 1K , where K is an open compact subset of
G(0), they commute implying that S is an inverse semigroup by [18, Theorem 1.3]. �

3.3. From S to the inverse semigroup of compact open bisections. The collection
SG of homogeneous compact open bisections (including the empty bisection) of G forms
an inverse semigroup under composition and with involution U 7→ U−1. Our next task
is to pass from the inverse semigroup S described in the preceding section to a smaller
inverse semigroup S/∼, which we prove is isomorphic to SG.

We write E(D) for the boolean ring of idempotent elements of D.

Lemma 3.8. Let G be an ample Hausdorff groupoid, and let c : G → Γ be a grading of G
by a discrete group. Suppose that c−1(e) is topologically principal. Let R be a commutative
integral domain with 1. Let S be the inverse semigroup of Lemma 3.7, and c̃ : S → Γ the
accompanying Γ grading. There is an equivalence relation ∼ on S such that f ∼ h if and
only if all of the following three conditions are satisfied:

(1) c̃(f) = c̃(h),
(2) f ∗pf = h∗ph for every p ∈ E(D), and
(3) fpf ∗ = hph∗ for every p ∈ E(D).

The set S/∼ is an inverse semigroup under the operations [f ][g] = [fg] and [f ]∗ = [f ∗].
The map q : S → SG given by q(f) = supp(f) descends to an isomorphism q̃ : S/∼ → SG
of inverse semigroups.

Proof. It suffices to show that q : S → SG is a surjective semigroup homomorphism, and
that q(f) = q(h) if and only if f ∼ h.

Since R is an integral domain, we have supp(fh) = supp(f) supp(h) for all f, h ∈ S, and
we have supp(f ∗) = supp(f)−1 by definition of ∗ on S. So the map q is a semigroup homo-
morphism. Note that it is surjective because each homogeneous compact open bisection
V satisfies V = q(1V ).

To see that q(f) = q(h) ⇐⇒ f ∼ h, first suppose that q(f) = q(h). Then supp(f) =
supp(h). Since c̃(f) = g if and only if supp(f) ⊆ c−1(g), it follows that c̃(f) = c̃(h).
If p ∈ D is an idempotent, then p = 1K for some compact open K ⊆ G(0). We then
have pf = f |K supp(f) and ph = h|K supp(h) = h|K supp(f). Thus, Corollary 3.6 applied to
pf, ph ∈ S shows that

f ∗pf = (pf)∗(pf) = 1s(K supp(f)) = 1s(Kq(f))

= 1s(Kq(h)) = 1s(K supp(h)) = (ph)∗(ph) = h∗ph,

and similarly fpf ∗ = hph∗.
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Now suppose f ∼ h. We must show that supp(f) = supp(h). Since c̃(f) = c̃(h),
we have supp(f) supp(h)−1 ⊆ c−1(e) which is topologically principal. Putting p =
1r(supp(f))∪r(supp(h)) in (2), we see that f ∗f = h∗h, and so s(supp(f)) = s(supp(h)). We
will show that supp(f) ∩ supp(h) is dense in supp(f). Let U be a non-empty open
subset of G contained in supp(f). Since c−1(e) is topologically principal and r(U) is
open, there is α ∈ U such that the isotropy at r(α) is trivial. Let β ∈ supp(h) be the
unique element with s(α) = s(β). We suppose that β 6= α to derive a contradiction.
Since the isotropy at r(α) is trivial, and β 6= α, we have r(β) 6= r(α); thus, there ex-
ist disjoint compact open sets V,W ⊆ G(0) such that r(α) ∈ V and r(β) ∈ W . Let
X = s(V supp(f)) ∩ s(W supp(h)). Then (f1Xf

∗)(r(α)) = 1 and (h1Xh
∗)(r(α)) = 0,

contradicting (3). This shows that supp(f) ∩ supp(h) is dense in supp(f). Since G is
Hausdorff, the compact sets supp(f) and supp(h) are closed, and so supp(f)∩ supp(h) is
closed. Hence supp(f) ∩ supp(h) = supp(f). Similarly supp(f) ∩ supp(h) = supp(h) and
thus supp(f) = supp(h). �

Since R has no nontrivial idempotent elements, the Boolean ring E(D) is precisely
the set {1K : K ⊆ G(0) is compact open}, and so corresponds to the Boolean algebra of

compact open subsets of G(0). We write D̂ for the Stone spectrum of E(D): that is, the
space of Boolean-ring homomorphisms π : E(D) → {0, 1}. By Stone duality, there is

a homeomorphism ε : G(0) → D̂ such that εu(p) := p(u) for p ∈ E(D); the inverse of
this map takes a Boolean-ring homomorphism π : E(D) → {0, 1} to the unique point in(⋂

π(1K)=1K
)
\
(⋃

π(1K)=0 K
)
.

Recall that there is an action θ of SG on G(0) such that dom(θV ) = s(V ), cod(θV ) = r(V )
and θV (s(α)) = r(α) for all α ∈ V .

Lemma 3.9. Let G be an ample Hausdorff groupoid, c : G → Γ be a grading of G by
a discrete group with c−1(e) topologically principal, R be a commutative integral domain
with 1, S be the inverse semigroup described at (3.3), and S/∼ be the quotient described

in Lemma 3.8. With ε : G(0) → D̂ and θ : SG y G(0) as above, and q̃ : S/∼ → SG as in
Lemma 3.8, we have

(3.4) εθq(f)(u)(p) = εu(f
∗pf) for all f ∈ S, u ∈ s(supp(f)) and p ∈ E(D).

Proof. Fix f ∈ S, u ∈ s(supp(f)) and p ∈ E(D). Then p = 1K for some compact open
K ⊆ G(0). Let α ∈ supp(f) be the unique element with s(α) = u. Then

εθq(f)(u)(p) = p(θq(f)(u)) = 1K(r(α)).

Also,

εu(f
∗pf) = (f ∗1Kf)(u) =

∑
βγ=u

(1Kf)∗(β)f(γ) = (1Kf)∗(α−1)f(α)

= (1Kf)(α)∗f(α) = 1K(r(α))f(α)∗f(α) = 1K(r(α)). �

3.4. Groupoids of germs. If ϕ is an action of a countable inverse semigroup S on a
locally compact Hausdorff space X, then the groupoid of germs S ×ϕ X is defined as
follows (see for example [10, 22]). Define a relation ∼ on {(s, x) ∈ S ×X : x ∈ dom(ϕs)}
by (s, x) ∼ (s′, y) if x = y and there is an idempotent p ∈ E(S) such that x ∈ dom(p) and
sp = s′p. This is an equivalence relation, and the collection S×ϕX of equivalence classes
for this relation is a locally compact étale groupoid with unit space X and structure
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maps r([s, x]) = ϕs(x), s([s, x]) = x, [s, ϕt(x)][t, x] = [st, x], and [s, x]−1 = [s∗, ϕs(x)].
Moreover, if c̃ : S → Γ is a grading, then, as idempotent elements p ∈ S satisfy c̃(p) = e,
there is a grading of S ×ϕ X given by [s, x] 7→ c̃(s).

Proposition 5.4 of [10] implies that for ample Hausdorff groupoids G, the groupoid of
germs for the action θ of SG on G(0) is canonically isomorphic to G. Combining the bunch
of results displayed along the preceding subsections with it, we recover G from S and D.

Lemma 3.10. Let G be an ample Hausdorff groupoid, c : G → Γ be a grading of G by
a discrete group with c−1(e) topologically principal, R be a commutative integral domain
with 1, S be the inverse semigroup described at (3.3), and S/∼ be the quotient described

in Lemma 3.8. Then, there is an action ϕ of S/∼ on D̂ such that dom([f ]) = {π :
π(1s(supp(f))) = 1}, cod([f ]) = {π : π(1r(supp(f))) = 1}, and

(3.5) ϕ[f ](π)(p) = π(f ∗pf) for all f ∈ S, π ∈ dom([f ]) and p ∈ E(D).

Moreover, if q̃ : S/∼ → SG is the isomorphism of Lemma 3.8, then the homeomorphism

ε : G(0) → D̂ intertwines θq̃([f ]) and ϕ[f ] for every f ∈ S.

Proof. Lemma 3.9 shows that the formula given for ϕ satisfies

ϕ[f ](εu) = εθq̃([f ])

for all f and u, so the result follows by pulling the action θ back to an action of S/∼ via
the isomorphism q̃. �

We now obtain our key result.

Corollary 3.11. Let G be an ample Hausdorff groupoid, c : G → Γ be a grading of G by
a discrete group with c−1(e) topologically principal, R be a commutative integral domain
with 1, S be the inverse semigroup described at (3.3), and S/∼ be the quotient described

in Lemma 3.8. Let ϕ : S/∼ y D̂ be the action of Lemma 3.10. Then, there is an

isomorphism π : (S/∼)×ϕ D̂ → G such that

π
([

[f ], εs(α)

]
) = α

for all f ∈ S and α ∈ supp(f). Moreover, π intertwines the grading on (S/∼) ×ϕ D̂
induced by c̃ and the grading c of G.

Proof. Proposition 5.4 of [10] implies that there is an isomorphism

π0 : SG ×θ G(0) → G
such that π0([V, s(α)]) = α for all V ∈ SG and α ∈ V . This π0 clearly carries the grading
on SG induced by c to G. The final statement of Lemma 3.10 shows that q̃ and ε induce

an isomorphism of the action of S/∼ on D̂ with that of SG on G(0). Thus, there is an

isomorphism π′ : (S/∼)×ϕ D̂ → SG×θ G(0) such that π′
([

[f ], εu
])

= [q̃(f), u] for all f and
u, and π′ takes the grading c̃ to the grading of SG induced by c. Therefore, π = π0 ◦ π′ is
the desired isomorphism. �

Remark 3.12. As an alternative to Corollary 3.11, one might aim to employ Lawson’s
noncommutative generalisation of Stone duality [19] to recover G from S/∼. The idea is
that the inverse semigroup S/∼ can be made into a boolean inverse monoid by adjoining
a unit. Lawson’s results [19, Proposition 2.13, Proposition 2.18(8) and Proposition 2.23]
imply that we can recover an ample groupoid G from this boolean inverse monoid as a
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space of filters with respect to a suitable order structure, and that we can then pass back
to S/∼ as the boolean inverse monoid of compact open bisections of G. By removing from
G(0) the filter at infinity corresponding to the adjoined unit of S/∼ one would expect to
recover G, and one could pass back to G by adding a point at infinity to G(0).

3.5. Maximal abelian subalgebras and the proof of Theorem 3.1. The final step
towards proving our main theorem is to show that DG, the set AR(G0) ⊆ AR(G), is a
maximal abelian subalgebra of AR(G)e.

Lemma 3.13. Let G be a topologically principal ample Hausdorff groupoid and R be a
commutative integral domain with 1. Then, DG is a maximal abelian subring of AR(G).

Proof. Certainly DG is an abelian subring of AR(G), so we just have to show that it is a
maximal abelian subring. For this porpouse, suppose that f ∈ AR(G) \DG; we must find
a ∈ DG such that fa 6= af . Fix α ∈ supp(f) \ G(0). Because supp(f) ⊆ G is open and G
is topologically principal, we may assume that the isotropy at s(α) is trivial; therefore,
s(α) 6= r(α). So we can choose disjoint compact open neighbourhoods V,W ⊆ G(0) of r(α)
and s(α), respectively. We now have (1V f1W )(α) = f(α) 6= 0 whereas (1V 1Wf)(α) = 0.
In particular, f1W 6= 1Wf . �

We can now prove our main theorem.

Proof of Theorem 3.1. Clearly if ρ̄ : G → H is a graded isomorphism of groupoids, then
there is a graded isomorphism ρ : AR(G) → AR(H) given by ρ(f) = f ◦ ρ̄−1. Moreover,
this isomorphism carries DG to DH because ρ̄ carries G(0) to H(0).

For the reverse implication, suppose that ρ : AR(G) → AR(H) is a graded ring iso-
morphism with ρ(DG) ⊆ DH. Lemma 3.13 applied to c−1(e) implies that DG is maximal
abelian subring of AR(G)e, which induces that ρ(DG) is a maximal abelian subring of
AR(H)e because ρ is a graded ring isomorphism. Since ρ(DG) is contained in the abelian
subring DH of AR(H)e, we deduce that ρ(DG) = DH. Thus, ρ restricts to an isomorphism

of boolean rings E(DG) ∼= E(DH) inducing a homeomorphism ρ∗ : D̂H ∼= D̂G given by
ρ∗(π) = π ◦ ρ.

If (n,m) is a graded normaliser of DG in AR(G), then (ρ(n), ρ(m)) is a graded normaliser
of DH in AR(H). Indeed, the claim follows because the conditions defining a normaliser
involve only the ring structure. Corollary 3.6 shows that the inverse semigroup S ⊆
Clc(G, R× ∪ {0})? of functions supported on compact open bisections satisfies S = {n :
(n,m) ∈ N?(DG)} and the corresponding inverse semigroup T ⊆ Clc(H, R×∪{0})? is equal
to {a : (a, b) ∈ N?(DH)}. Thus, ρ restricts to a graded isomorphism S ∼= T of inverse
semigroups. Since ρ carries E(DG) to E(DH), the equivalence relations ∼S on S and ∼T
on T defined in Lemma 3.8 satisfy f ∼S h if and only if ρ(f) ∼T ρ(h), and so ρ descends to
a graded isomorphism ρ̃ : S/∼S → T/∼T . The definition of ρ∗ in the preceding paragraph
and the formula (3.5) in Lemma 3.10 show that ρ∗(ϕρ̃([f ])(π)) = ϕ[f ](ρ

∗(π)) for all f ∈ S
and π ∈ D̂H. So there exists a graded isomorphism

ρ̂ : (S/∼S)×ϕ D̂G ∼= (T/∼T )×ϕ D̂H

that carries
[
[f ], ρ∗(π)

]
to
[
[ρ(f)], π

]
for f ∈ S and π ∈ D̂H. Now the graded isomorphisms

πG : (S/∼S) ×ϕ D̂G → G and πH : (T/∼T ) ×ϕ D̂H → H yield a graded isomorphism
ρ̄ := πH ◦ ρ̂ ◦ π−1

G : G → H. �
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Remark 3.14. It is worth discussing the extent to which the hypotheses on our main
theorem are necessary.

• If c−1(G)e is not topologically principal, then DG is not necessarily maximal abelian
in AR(G)e; and, in addition, key steps in our analysis of the normalisers of DG and
of the quotient S/∼ break down. It is not clear, however, that this hypothesis
is necessary to our main results: Brown–Clark–an Huef [6] show that it holds for
arbitrary graph groupoids with the trivial grading; and in the special case that G
has one unit (is a discrete group) and c is the trivial grading. More concretely,
our result reduces to the classical fact that the group-ring construction and the
group-of-units construction are adjoint functors.
• It is unclear whether it is necessary to assume that R is an integral domain or

that it is unital. These hypotheses are used heavily in our analysis, but we do not
have a counterexample to our main result in their absence.
• It is, however, necessary to make some assumptions on R: Let R := Clc(K),

the ring of locally-constant complex-valued functions on the Cantor set. Since
K ∼= KtK, we have R ∼= R⊕R. Hence, for any ample Hausdorff groupoid G, there
exists a diagonal-preserving isomorphism AR(G) ∼= AR(G)⊕ AR(G) = AR(G t G),
whereas G and G t G are not usually isomorphic.

4. Applications

4.1. Topologically principal groupoids. Here we record what our results say for un-
graded ample groupoids G. Given any groupoid G we can endow it with the trivial grading
Γ : G → {e}, and then apply our main theorem. In this instance, we have N?(D) = N(D)
and Clc(G, R× ∪ {0})? = Clc(G, R× ∪ {0}), so that the inverse semigroup S is just the
collection of all (R× ∪ {0})-valued elements of AR(G) supported on bisections.

Theorem 4.1. Let G be an ample Hausdorff groupoid and suppose that G is topologically
principal. Let R be a commutative integral domain with 1, and let

S := {n ∈ AR(G) : there exists m ∈ AR(G) such that

nDm ∪mDn ⊆ D, nmn = n, and mnm = m}.
Then, the following hold:

(1) S = {n ∈ AR(G) : supp(n) is a bisection and n(G) ⊆ R× ∪ {0}}.
(2) For each n ∈ S, there is a unique n∗ ∈ AR(G) such that nDn∗ ∪ n∗Dn ⊆ D,

nn∗n = n and n∗nn∗ = n∗. Moreover, the element n∗ belongs to S, and S is an
inverse semigroup.

(3) There is an equivalence relation on S given by n1 ∼ n2 if and only if n∗1pn1 = n∗2pn2

and n1pn
∗
1 = n2pn

∗
2 for every idempotent p ∈ D. Furthermore, S/∼ is an inverse

semigroup under the operations inherited from S.

(4) There is an action ϕ of S/∼ on the Stone spectrum D̂ of the collection of idempo-

tent elements of D such that ϕ[n](π)(p) = π(n∗pn) for all n ∈ S, π ∈ D̂ and every
idempotent p ∈ D.

(5) There is an isomorphism G ∼= (S/∼) ×ϕ D̂ that carries α ∈ G to
[
[1V ], εs(α)

]
for

any compact open bisection V containing α.

Proof. Let Γ : G → {e} be the trivial grading. Corollary 3.6 applied to this grading Γ
gives (1) and (2). Part (3) follows from Lemma 3.8 with this Γ, and (4) follows from
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Lemma 3.10. Finally, the inverse of the isomorphism π obtained from Corollary 3.11
satisfies the formula described in (5). �

Remark 4.2. The action of S on D̂ given by (n · π)(e) = π(n∗en), which descends to
the action of S/ ∼ in Theorem 4.1(4) is usually called the spectral action, and it enjoys a
universal property (see [26] for more details). In particular, as described in [26, Example
5.9], this action is the dual of the (right) Munn representation.

Moreover, the isomorphism described in Theorem 4.1(4) induces the isomorphism of

Steinberg algebras AR(N(D)/ ∼ ×ϕD̂) ∼= AR(G) described in [26, Theorem 6.3]; thus,
Theorem 4.1 is, in a sense, the dual of Steinberg’s result.

Corollary 4.3. Let G and H be ample Hausdorff topologically principal groupoids and R
be a commutative integral domain with 1. The following are equivalent:

(1) The groupoids G and H are isomorphic as topological groupoids.
(2) There is ring-isomorphism ρ : AR(G)→ AR(H) such that ρ(DG) ⊆ DH.

Proof. Apply Theorem 3.1 to the trivial grading Γ : G → {e}. �

4.2. Ring-isomorphisms of Leavitt path algebras. In this short section, we make
an observation about the implications of our results for Leavitt path algebras. For back-
ground on Leavitt path algebras and on Abrams and Tomforde’s isomorphism conjecture,
see [1, 2, 5, 27, 28].

Abrams and Tomforde conjectured that if E and F are graphs for which there is a ring
isomorphism LR(E) ∼= LR(F ) for some ring R, then C∗(E) ∼= C∗(F ) as C∗-algebras. This
conjecture remains open, but we make some headway (see also [6] and Remark 4.5 below).

Corollary 4.4. Suppose that E and F are graphs in which every cycle has an exit. Then
the following are equivalent:

(1) There exists a commutative integral domain R with 1 for which there is an iso-
morphism π : LR(E)→ LR(F ) satisfying π(sµsµ∗) ∈ spanR{sηsη∗ : η ∈ F ∗} for all
µ ∈ E∗.

(2) There exists a commutative integral domain R with 1 for which there is an iso-
morphism π : LR(E) → LR(F ) satisfying π(sµsµ∗)sηsη∗ = sηsη∗π(sµsµ∗) for all
µ ∈ E∗ and η ∈ F ∗.

(3) For every ∗-ring S there exists a ∗-isomorphism of LS(E) onto LS(F ) that carries
spanS{sµsµ∗ : µ ∈ E∗} to spanS{sηsη∗ : η ∈ F ∗}.

(4) There is an isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(span{sµs∗µ : µ ∈ E∗}) =
span{sηs∗η : η ∈ F ∗}.

(5) There is an isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(sµs
∗
µ)sηs

∗
η = sηs

∗
ηψ(sµs

∗
µ)

for all µ ∈ E∗ and η ∈ F ∗.

Recall from [9, Example 3.2] that if E is a directed graph, then there is an isomorphism

αE : LR(E) ∼= AR(GE)

that carries spanS{sµsµ∗ : µ ∈ E∗} to DGE . We will use this isomorphism at a number of
points in the proof of Corollary 4.4.

Proof of Corollary 4.4. It is well known (see [17]) that the groupoid GE of a directed graph
E is topologically principal provided that every cycle in E has an exit. So GE and GF are
topologically principal.
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We first prove (1) ⇐⇒ (2). The implication (1) implies (2) is trivial. For the re-
verse, observe that if π is as in (2), then each π(sµsµ∗) commutes with every element of
spanR{sηsη∗ : η ∈ F ∗}. Since the latter is a maximal abelian subring by Lemma 3.13, it
follows that each π(sµsµ∗) ∈ spanR{sηsη∗ : η ∈ F ∗}.

Next we prove that (1) implies (3) and (5). Suppose that (1) holds. Corollary 4.3 implies
that the graph groupoids GE and GF are isomorphic; say ρ : GF → GE is an isomorphism.

Then ρ restricts to a homeomorphism G(0)
F → G(0)

E . For each ∗-ring S, ρ induces a ∗-
isomorphism ρ∗ : AS(GE) → AS(GF ) satisfying ρ∗(f) = f ◦ ρ. In particular, ρ carries
DGE ⊆ AS(GE) to DGF ⊆ AS(GF ). So α−1

F ◦ ρ∗ ◦ αE is a ∗-isomorphism LS(E) → LS(F )
as required in (3). Similarly the isomorphism ρ induces a C*-algebra isomorphism ρ∗ :

C∗(GE) → C∗(GF ) satisfying ρ∗(f) = f ◦ ρ for f ∈ Cc(GE). In particular ρ∗(C0(G(0)
E )) =

C0(G(0)
F ). It is standard that there is an isomorphism φE : C∗(E) → C∗(GE) that carries

span{sµs∗µ : µ ∈ E∗} to C0(G(0)
E ), and similarly a diagonal-preserving isomorphism φF :

C∗(F )→ C∗(GF ). So ψ := φ−1
F ◦ ρ∗ ◦ φE is the isomorphism in (5).

Now we prove (3) implies (1). Suppose that (3) holds. Taking S = F2 (the field of two
elements), for example, trivially gives (1).

For (5) implies (1), suppose that (5) holds. With φE and φF as above, the map φF ◦
ψ ◦ φ−1

E is an isomorphism C∗(GE)→ C∗(GF ) that carries the Cartan subalgebra C0(G(0)
E )

to the Cartan subalgebra C0(G(0)
F ). So [25, Proposition 4.13] implies that there is an

isomorphism ρ : GF ∼= GE as in the first paragraph. This induces an isomorphism ρ∗ :
AR(GE) → AR(GF ) that takes DGE to DGF . So α−1

F ◦ ρ∗ ◦ αE is the desired isomorphism
of Leavitt path algebras.

It remains to prove (4) ⇐⇒ (5). The implication (4) implies (5) is trivial; and
(5) implies (4) by the same argument as we used for (2) implies (1) because Renault’s
theorems prove that span{sηs∗η : η ∈ F ∗} is a maximal abelian subalgebra of C∗(F ). �

Remark 4.5. We learned of the paper [6] in the later stages of the preparation of this
manuscript. Our Corollary 4.4 is related to the main theorem [6, Theorem 5.3], though
neither strictly generalises the other. There are two differences between the two results:

• Theorem 5.3 of [6] applies to row-finite graphs E and F with no sources, whereas
our result applies to arbitrary graphs E and F in which every cycle has an exit.
• The hypotheses of [6, Theorem 5.3] demand that the isomorphism π : LR(E) →
LR(F ) should be a ∗-isomorphism and that it should restrict to an isomorphism
π : DE → DF that implements a homeomorphism κ : E∞ → F∞; whereas
Corollary 4.4 requires only a ring isomorphism LR(E) → LR(F ) that carries DE

into the commutant of DF .

We use our results to obtain an improvement of [13, Theorem 3.6]. For its statement,
we need some standard graph-theoretical definitions, as follows.

Definition 4.6. A graph E is said to be:

(1) strongly connected if there is a path between any two vertices.
(2) essential if it has no sinks or sources, and
(3) trivial if it is a single cycle with no other edges or vertices.

Corollary 4.7. Let E,F be finite, essential, non-trivial, strongly connected graphs, and
let R be any commutative integral domain with 1. If there is an isomorphism φ : LR(E)→
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LR(F ) such that φ(D(LR(E))) ⊆ D(LR(F )), then

sgn(det(I − AE)) = sgn(det(I − AF )).

Proof. It is straightforward to check that the conditions on E and F imply that both
graphs have the property that every cycle has an exit. By Corollary 4.4, we obtain a C∗-
algebra isomorphism φ : C∗(E)→ C∗(F ) such that φ(D(C∗(E))) = D(C∗(F )). It follows
from [13, Theorem 3.3] (cf. [21, Theorem 3.6]) that sgn(det(I − AE)) = sgn(det(I −
AF )). �

This result can be applied to give a partial answer to one of the most intriguing open
questions in the theory of Leavitt path algebras; namely, whether, for a commutative
coefficient ring R with 1, the algebras L2,R and L2−,R are isomorphic. Johansen and
Sørensen have recently shown that there is no ∗-isomorphism between L2,Z and L2−,Z
([13]). Recall from e.g. [13] that L2,R denotes the classical Leavitt algebra of type (1, 2)
with coefficients in R. It is the Leavitt path R-algebra of the graph E2 with one vertex
and two arrows. The algebra L2−,R is the Leavitt path R-algebra associated to a graph
E2− depicted in the introduction to [13]. Over any regular supercoherent coefficient ring
R, both algebras L2,R and L2−,R have trivial algebraic K-theory ([3]). However, they are
distinguished by the numbers appearing in Corollary 4.7.

Corollary 4.8. Let R be a commutative integral domain with 1. Then there is no isomor-
phism φ : L2,R → L2−,R such that φ(D(L2,R)) ⊆ D(L2−,R) or φ−1(D(L2−,R)) ⊆ D(L2,R).

Proof. Assume there is an isomorphism φ : L2,R → L2−,R such that φ(D(L2,R)) ⊆ D(L2−,R)
or φ−1(D(L2−,R)) ⊆ D(L2,R). The graphs E2 and E2− are finite, essential, non-trivial and
strongly connected. Therefore, it follows from Corollary 4.7 that

sgn(det(I − AE2)) = sign(det(I − AE2−)).

However det(I − AE2) = −1 and det(I − AE2−) = +1, so we obtain a contradiction. �

4.3. Graded ring-isomorphisms of Kumjian–Pask algebras. In this section, we
emphasise what extra information we obtain by keeping track of the graded structure in
Section 3. Recall that for every k-graph Λ, the associated k-graph groupoid GΛ (see [15]
or [12]) is Zk-graded, and c−1(0) is a principal groupoid. So our main theorem yields the
following:

Corollary 4.9. Suppose that Λ and Γ are k-graphs and that R is a commutative integral
domain with 1. There is a graded ring-isomorphism φ : KPR(Λ) ∼= KPR(Γ) such that
φ(sµsµ∗)sηsη∗ = sηsη∗φ(sµsµ∗) for all µ ∈ Λ and η ∈ Γ if and only if the groupoids
GΛ and GΓ are isomorphic, in which case there is a diagonal preserving isomorphism
KPS(Λ) ∼= KPS(Γ) for every ring S, and there is a diagonal-preserving isomorphism
C∗(Λ) ∼= C∗(Γ).

Proof. The argument is essentially the same as the corresponding implications in Corol-
lary 4.4, except that we apply Theorem 3.1 instead of Corollary 4.3. �

References

[1] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), 319–334.
[2] G. Abrams and M. Tomforde, Isomorphism and Morita equivalence of graph algebras, Trans. Amer.

Math. Soc. 363 (2011), 3733–3767.



18 PERE ARA, JOAN BOSA, ROOZBEH HAZRAT, AND AIDAN SIMS
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