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REFINEMENT MONOIDS AND ADAPTABLE SEPARATED GRAPHS

PERE ARA, JOAN BOSA, AND ENRIQUE PARDO

Abstract. We define a subclass of separated graphs, the class of adaptable separated graphs,
and study their associated monoids. We show that these monoids are primely generated
conical refinement monoids, and we explicitly determine their associated I-systems. We also
show that any finitely generated conical refinement monoid can be represented as the monoid
of an adaptable separated graph. These results provide the first step toward an affirmative
answer to the Realization Problem for von Neumann regular rings, in the finitely generated
case.

Introduction.

The structure of commutative refinement monoids is generally very intricate, and it is
difficult to rephrase their architecture in terms of combinatorial data. These monoids appear
naturally in different contexts, such as non-stable K-theory of exchange rings and real rank
zero C∗-algebras (see e.g. [9, 18]), classification of Boolean algebras (see e.g. [17, 20]),
the realization problem for von Neumann regular rings (see below), and the theory of type
semigroups (see e.g. [21, 22]). In this paper, based on the work developed in [11] and [12],
we provide a concrete and useful description of a subclasss of all primely generated conical
refinement monoids, which contains all the finitely generated ones, in terms of a specific type
of separated graphs.

Recall that a separated graph [8] is a pair (E,C), where E is a directed graph and C is a
partition of the set of edges of E which is finer than the partition induced by the source map
s : E1 → E0. Visually one may think of a separated graph as a directed graph where the
edges have been given different colours. Several interesting algebras and C∗-algebras have
been attached to these combinatorial objects, some of them having exotic behaviour (see
for instance [7, 8]). Given a separated graph (E,C), one can naturally associate a monoid
M(E,C) to it [8]. However, it is not always true that M(E,C) is a refinement monoid [8,
Section 5].

Generalizing earlier work by Dobbertin [14] and Pierce [20], the first and third-named
authors have completely determined in [11] the structure of primely generated conical refine-
ment monoids. The main ingredient of this characterization is the notion of an I-system,
which is a certain poset of semigroups generalizing the posets of groups used by Dobbertin
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Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445). Third author was partially supported
by PAI III grant FQM-298 of the Junta de Andalućıa.
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in [14] (see Definition 1.1 below). Using this description, a characterization of the finitely
generated conical refinement monoids which are isomorphic to a graph monoid M(E) for a
(non-separated) directed graph E has been obtained in [12]. In particular, we stress the fact
that not all such monoids are isomorphic to graph monoids. It is the purpose of this paper
to show that a large class of primely generated conical refinement monoids, including all the
finitely generated ones, can be obtained as monoids of the formM(E,C) for (E,C) belonging
to a particularly well-behaved class of separated graphs, the adaptable separated graphs (see
Definition 1.4 below).

Concretely, the main result of this paper (Theorem 2.1) is the following:

Theorem. The following two statements hold:

(1) If (E,C) is an adaptable separated graph, then M(E,C) is a primely generated conical
refinement monoid.

(2) For any finitely generated conical refinement monoid M , there exists an adaptable
separated graph (E,C) such that M ∼=M(E,C).

We now outline some of the applications of the results obtained in this note. Concretely,
we use the structure of an adaptable separated graph in order to get two realization results.
The first application is given in [5], where the authors, jointly with A. Sims, attach to each
adaptable separated graph (E,C) an E∗-unitary inverse semigroup S(E,C). Moreover, using
techniques developed by Paterson [19] and Exel [15], they build from this inverse semigroup
S(E,C) an ample Hausdorff étale topological groupoid G(E,C) satisfying

Typ(G(E,C)) ∼= M(E,C).

In particular, we see from Theorem 2.1(2) that all finitely generated conical refinement
monoids arise as type semigroups of this well-behaved class of topological groupoids. The
second application concerns the Realization Problem for von Neumann regular rings, posed
by Goodearl in [16]. This wonders which refinement monoids appear as a V(R) for a von
Neumann regular ring R, where the latter stands for the monoid of isomorphism classes of
finitely generated projective (left, say) R-modules, with the operation induced from direct
sum (see [2] for a survey on this problem). For an adaptable separated graph (E,C) and
an arbitrary field K, we build in [4] a von Neumann regular K-algebra QK(E,C), which is
a certain universal localization of the Steinberg algebra AK(G(E,C)) of the above groupoid
G(E,C), and which satisfies that

V(QK(E,C)) ∼= M(E,C).

Again, Theorem 2.1(2) gives that the realization problem for von Neumann regularK-algebras
has a positive answer for any finitely generated conical refinement monoid. This construction
extends at once the constructions given in [3] and [6].

The paper is organized as follows. In the first section we introduce background material
needed for our results. We have splitted this in three subsections, concerning commutative
monoids, primely generated refinement monoids, and separated graphs, respectively. In Sec-
tion 2, we prove our results. We have divided this section into two subsections, in each of
which we prove one of the statements of our Theorem.
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1. Preliminaries

1.1. Basics on commutative monoids. All semigroups and monoids considered in this
paper are commutative. We will denote by N the semigroup of positive integers, and by Z

+

the monoid of non-negative integers.
Given a commutative monoid M , we set M∗ := M \ {0}. We say that M is conical if M∗

is a semigroup, that is, if, for all x, y in M , x+ y = 0 only when x = y = 0.
We say that a monoid M is separative provided 2x = 2y = x + y always implies x = y;

there are a number of equivalent formulations of this property, see e.g. [9, Lemma 2.1]. We
say thatM is a refinement monoid if, for all a, b, c, d inM such that a+b = c+d, there exist
w, x, y, z in M such that a = w + x, b = y + z, c = w + y and d = x+ z. A basic example
of refinement monoid is the monoid M(E) associated to a countable row-finite graph E [10,
Proposition 4.4].

If x, y ∈ M , we write x ≤ y if there exists z ∈ M such that x + z = y. Note that ≤ is a
translation-invariant pre-order on M , called the algebraic pre-order of M . All inequalities in
commutative monoids will be with respect to this pre-order. An element p in a monoid M is
a prime element if p is not invertible in M , and, whenever p ≤ a+ b for a, b ∈M , then either
p ≤ a or p ≤ b. The monoid M is primely generated if every non-invertible element of M can
be written as a sum of prime elements.

An element x ∈ M is regular if 2x ≤ x. An element x ∈ M is an idempotent if 2x = x.
An element x ∈ M is free if nx ≤ mx implies n ≤ m. Any element of a separative monoid
is either free or regular. In particular, this is the case for any primely generated refinement
monoid, by [13, Theorem 4.5]. Furthermore, every finitely generated refinement monoid is
primely generated [13, Corollary 6.8].

A subset S of a monoid M is called an order-ideal if S is a subset of M containing 0,
closed under taking sums and summands within M . An order-ideal can also be described as
a submonoid I of M , which is hereditary with respect to the canonical pre-order ≤ on M :
x ≤ y and y ∈ I imply x ∈ I. A non-trivial monoid is said to be simple if it has no non-trivial
order-ideals.

If (Sk)k∈Λ is a family of (commutative) semigroups,
⊕

k∈Λ Sk (resp.
∏

k∈Λ Sk) stands for the
coproduct (resp. the product) of the semigroups Sk, k ∈ Λ, in the category of commutative
semigroups. If the semigroups Sk are subsemigroups of a semigroup S, we will denote by∑

k∈Λ Sk the subsemigroup of S generated by
⋃

k∈Λ Sk. Note that
∑

k∈Λ Sk is the image of
the canonical map

⊕
k∈Λ Sk → S. We will use the notation 〈X〉 to denote the semigroup

generated by a subset X of a semigroup S.
Given a semigroupM , we will denote by G(M) the Grothendieck group ofM . There exists

a semigroup homomorphism ψM : M → G(M) such that for any semigroup homomorphism
η : M → H to a group H there is a unique group homomorphism η̃ : G(M) → H such that
η̃ ◦ ψM = η. G(M) is abelian and it is generated as a group by ψ(M). If M is already a
group then G(M) =M . IfM is a semigroup of the form N×G, where G is an abelian group,
then G(M) = Z × G. In this case, we will view G as a subgroup of Z × G by means of the
identification g ↔ (0, g).

LetM be a conical commutative monoid, and let x ∈M be any element. The archimedean
component of M generated by x is the subsemigroup

GM [x] := {a ∈M : a ≤ nx and x ≤ ma for some n,m ∈ N}.
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For any x ∈M , GM [x] is a simple semigroup. If M is separative, then GM [x] is a cancella-
tive semigroup; if moreover x is a regular element, then GM [x] is an abelian group.

1.2. Primely generated refinement monoids. The structure of primely generated refine-
ment monoids has been recently described in [11]. We recall here some basic facts.

Given a poset (I,≤), we say that a subset A of I is a lower set if x ≤ y in I and y ∈ A
implies x ∈ A. For any i ∈ I, we will denote by I ↓ i = {x ∈ I : x ≤ i} the lower subset
generated by i. We will write x < y if x ≤ y and x 6= y.

The following definition is crucial for this work:

Definition 1.1 ([11, Definition 1.1]). Let I = (I,≤) be a poset. An I-system

J = (I,≤, (Gi)i∈I , ϕji (i < j))

is given by the following data:

(a) A partition I = Ifree ⊔ Ireg (we admit one of the two sets Ifree or Ireg to be empty).
(b) A family {Gi}i∈I of abelian groups. We adopt the following notation:

(1) For i ∈ Ireg, set Mi = Gi, and Ĝi = Gi =Mi.

(2) For i ∈ Ifree, set Mi = N×Gi, and Ĝi = Z×Gi

Observe that, in any case, Ĝi is the Grothendieck group of Mi.
(c) A family of semigroup homomorphisms ϕji : Mi → Gj for all i < j, to which we

associate, for all i < j, the unique extension ϕ̂ji : Ĝi → Gj of ϕji to a group homo-
morphism from the Grothendieck group of Mi to Gj (we look at these maps as maps

from Ĝi to Ĝj). We require that the family {ϕji} satisfies the following conditions:
(1) The assignment {

i 7→ Ĝi

(i < j) 7→ ϕ̂ji

}

defines a functor from the category I to the category of abelian groups (where
we set ϕ̂ii = idĜi

for all i ∈ I).
(2) For each i ∈ Ifree we have that the map

⊕

k<i

ϕik :
⊕

k<i

Mk → Gi

is surjective.

We say that an I-system J = (I,≤, (Gi)i∈I , ϕji (i < j)) is finitely generated in case I is a
finite poset and all the groups Gi are finitely generated.

To every I-system J one can associate a primely generated conical refinement monoid
M(J ), and conversely to any primely generated conical refinement monoid M , we can asso-
ciate an I-system J such that M ∼=M(J ), see Sections 1 and 2 of [11] respectively.

1.3. Separated graphs. Here, we recall definitions and properties about separated graphs
that will be needed in the sequel. In particular, we define the notion of adaptable separated
graph, which is crucial for this paper. We refer the reader to [1] and [8] for more information
and general notation about (separated) graphs.

Let E be a directed graph, and let ≤ be the preorder on E0 determined by w ≥ v if there
is a path in E from w to v. Let I be the antisymmetrization of E0, with the partial order ≤
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induced by the order on E0. Thus, denoting by [v] the class of v ∈ E0 in I, we have [v] ≤ [w]
if and only if v ≤ w.

For v ∈ E0, we refer to the set [v] as the component of v, and we will denote by E[v] the
restriction of E to [v], that is, the graph with E[v]0 = [v] and E[v]1 = {e ∈ E1 | s(e) ∈
[v] and r(e) ∈ [v]}. If J is a lower subset of I, we will denote by E|J the restriction of the
graph E to the set of vertices {v ∈ E0 | [v] ∈ J}.

We now describe our graphs.

Definition 1.2 ([8, Definition 2.1]). A separated graph is a pair (E,C) where E is a directed
graph, C =

⊔
v∈E0 Cv, and Cv is a partition of s−1(v) (into pairwise disjoint nonempty subsets)

for every vertex v. (In case v is a sink, we take Cv to be the empty family of subsets of s−1(v)).
If all the sets in C are finite, we shall say that (E,C) is a finitely separated graph.

From now on, we will assume that all our separated graphs are finitely separated graphs
without any further comment.

Following [8], we associate the following monoid to any finitely separated graph.

Definition 1.3 ([8, Definition 4.1]). Given a finitely separated graph (E,C), we define the
monoid of the separated graph (E,C), to be

(1.1) M(E,C) =
〈
av (v ∈ E0) : av =

∑

{e∈X}

ar(e) for every X ∈ Cv, v ∈ E0
〉
.

Recall that a directed graph is said to be transitive if any two vertices can be connected
by a finite directed path.

Definition 1.4. Let (E,C) be a finitely separated graph and let (I,≤) be the antisym-
metrization of (E0,≤). We say that (E,C) is adaptable if I is finite, and there exist a
partition I = Ifree ⊔ Ireg, and a family of subgraphs {Ep}p∈I of E such that the following
conditions are satisfied:

(1) E0 =
⊔

p∈I E
0
p , where Ep is a transitive row-finite graph if p ∈ Ireg and E0

p = {vp} is
a single vertex if p ∈ Ifree.

(2) For p ∈ Ireg and w ∈ E0
p , we have that |Cw| = 1 and |s−1

Ep
(w)| ≥ 2. Moreover, all edges

departing from w either belong to the graph Ep or connect w to a vertex u ∈ E0
q , with

q < p in I.
(3) For p ∈ Ifree, we have that s−1(vp) = ∅ if and only if p is minimal in I. If p is

not minimal, then there is a positive integer k(p) such that Cvp = {X
(p)
1 , . . . , X

(p)
k(p)}.

Moreover, each X
(p)
i is of the form

X
(p)
i = {α(p, i), β(p, i, 1), β(p, i, 2), . . . , β(p, i, g(p, i))},

for some g(p, i) ≥ 1, where α(p, i) is a loop, i.e., s(α(p, i)) = r(α(p, i)) = vp, and
r(β(p, i, t)) ∈ E0

q for q < p in I. Finally, we have E1
p = {α(p, 1), . . . , α(p, k(p))}.

The edges connecting a vertex v ∈ E0
p to a vertex w ∈ E0

q with q < p in I will be called
connectors. �
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2. Adaptable separated graphs and their associated monoids.

In this section we show the main result of the paper:

Theorem 2.1. The following two statements hold:

(1) If (E,C) is an adaptable separated graph, then M(E,C) is a primely generated conical
refinement monoid.

(2) For any finitely generated conical refinement monoid M , there exists an adaptable
separated graph (E,C) such that M ∼=M(E,C).

We have divided the proof in two parts. First we show statement (1) (Proposition 2.6),
and, subsequently, we show the realization result stated in (2) (Theorem 2.11).

2.1. The monoid of an adaptable separated graph. We show below that the monoid
M(E,C) associated to an adaptable separated graph (E,C) is a primely generated conical
refinement monoid. As a consequence, we obtain from [11, Theorem 2.7] that there is a poset
P, with a partition P = Pfree ⊔ Preg, and a P-system J such that M(E,C) ∼=M(J ). We will
explicitly determine this system.

To show our results, we will need the “confluence” property of the congruence associated to
our separated graphs (E,C). This was established for all graph monoids M(E) of ordinary
row-finite graphs in [10, Lemma 4.3]. Amongst other things, this enables us to show the
refinement property of the monoids M(E,C), when (E,C) is an adaptable separated graph.

Let (E,C) be an adaptable separated graph, and F be the free commutative monoid on
the set E0. The nonzero elements of F can be written in a unique form up to permutation
as

∑n

i=1 vi, where vi ∈ E0. Now we will give a description of the congruence on F generated
by the relations (1.1) (see Definition 1.3) on F .

It will be convenient to introduce the following notation. For X ∈ Cv (v ∈ E0), write

r(X) :=
∑

e∈X

r(e) ∈ F.

With this new notation, the relations in (1.1) become v = r(X) for every v ∈ E0 and every
X ∈ Cv.

Definition 2.2. Define a binary relation →1 on F \ {0} as follows. Let
∑n

i=1 vi ∈ F \ {0},
and let X ∈ Cvj for some j ∈ {1, 2, . . . , n}. Then

∑n
i=1 vi →1

∑
i 6=j vi + r(X). Let → be the

transitive and reflexive closure of →1 on F \ {0}, that is, α→ β if and only if there is a finite
string α = α0 →1 α1 →1 · · · →1 αt = β.

Let ∼ be the congruence on F generated by the relation →1 (or, equivalently, by the
relation →). Namely α ∼ α for all α ∈ F and, for α, β 6= 0, we have α ∼ β if and only if
there is a finite string α = α0, α1, . . . , αn = β, such that, for each i = 0, . . . , n − 1, either
αi →1 αi+1 or αi+1 →1 αi. The number n above will be called the length of the string. �

It is clear that ∼ is the congruence on F generated by relations (1.1), and so M(E,C) =
F/∼.

The support of an element γ in F , denoted supp(γ) ⊆ E0, is the set of basis elements
appearing in the canonical expression of γ.

The proof of the following easy lemma is similar to the one of [10, Lemma 4.2].
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Lemma 2.3. (cf. [10, Lemma 4.2]) Let (E,C) be any finitely separated graph. Let → be the
binary relation on F defined above and α, β ∈ F \ {0}. Assume that α = α1+α2 and α→ β.
Then β can be written as β = β1 + β2, with α1 → β1 and α2 → β2.

We are now ready to obtain the crucial lemma that gives the important “confluence”
property of the congruence ∼ on the free commutative monoid F .

Lemma 2.4. Let (E,C) be an adaptable separated graph. Let α and β be nonzero elements
in F . Then α ∼ β if and only if there is γ ∈ F such that α → γ and β → γ.

Proof. The proof is similar to the proof of [10, Lemma 4.3]. We highlight the point in which
both proofs differ.

Assume that α ∼ β. Then there exists a finite string α = α0, α1, . . . , αn = β such that,
for each i = 0, . . . , n − 1, either αi →1 αi+1 or αi+1 →1 αi. We proceed by induction on n.
If n = 0, then α = β and there is nothing to prove. Assume the result is true for strings of
length n−1, and let α = α0, α1, . . . , αn = β be a string of length n. By induction hypothesis,
there is λ ∈ F such that α → λ and αn−1 → λ. Now there are two cases to consider. If
β →1 αn−1, then β → λ and we are done. Assume that αn−1 →1 β. By definition of →1,
there is a basis element v ∈ E0 in the support of αn−1 and X ∈ Cv such that αn−1 = v+α′

n−1

and β = r(X)+α′
n−1. By Lemma 2.3, we have λ = λ(v)+λ′, where v → λ(v) and α′

n−1 → λ′.
If the length of the string from v to λ(v) is positive, then we have r(Y ) → λ(v) for some
Y ∈ Cv. If [v] ∈ Ireg, then X = Y and the proof continues as in [10, Lemma 4.3]. If [v] ∈ Ifree,
then X may be distinct from Y , but in this case we play with the special form of the sets in
Cv. Indeed, assume that [v] ∈ Ifree. In this case, write λ′′ := λ+ (r(X)− v). Then we have

β = r(X) + α′
n−1 = v + (r(X)− v) + α′

n−1

→1 r(Y ) + (r(X)− v) + α′
n−1

→ λ(v) + α′
n−1 + (r(X)− v)

→ λ(v) + λ′ + (r(X)− v)

= λ+ (r(X)− v) = λ′′.

On the other hand, since v + α′
n−1 → λ and since [v] ∈ Ifree, it follows easily by induction

on the length of this string that v ∈ supp(λ) and thus λ →1 λ + (r(X) − v) = λ′′. Hence
α → λ→ λ′′ and β → λ′′, as desired.

In the remaining case that v = λ(v), set γ = r(X) + λ′. Then we have λ →1 γ and so
α → γ, and also β = r(X) + α′

n−1 → r(X) + λ′ = γ. This concludes the proof. �

Now, exactly the same proof as in [10, Proposition 4.4] (using Lemmas 2.3 and 2.4) gives
the following result.

Proposition 2.5. Let (E,C) be an adaptable separated graph. Then the monoid M(E,C) is
a refinement monoid.

We now show that, for any adaptable separated graph, the monoid M(E,C) is a primely
generated monoid.

Proposition 2.6. Let (E,C) be an adaptable separated graph and let (I,≤) be the anti-
symmetrization of E0 with respect to the path-way pre-order. Then M(E,C) is a primely
generated conical refinement monoid.
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Proof. By [8, Lemma 4.2], M(E,C) is a nonzero, conical monoid whenever (E,C) is an
arbitrary finitely separated graph such that E0 is non-empty.

Suppose now that (E,C) is an adaptable separated graph. By Proposition 2.5, M(E,C) is
a refinement monoid. We now show thatM(E,C) is primely generated. For this, it is enough
to observe that each generator av, with v ∈ E0 is prime in M(E,C). For this purpose, we
work in the free monoid F generated by E0 and we use the notation introduced above. We
have to show that if we have a relation [v] + [δ] = [α1] + [α2] in F/∼ =M(E,C), then there
is i ∈ {1, 2} such that [v] ≤ [αi]. Now since v + δ ∼ α1 + α2 in F , we have by Lemma 2.4
that there is γ ∈ F such that v + δ → γ and α1 + α2 → γ. By Lemma 2.3, we can write
γ = γ1 + γ2 with αi → γi for i = 1, 2. Since v + δ → γ and, by the definition of an adaptable
separated graph, each X ∈ C contains at least a loop, we see that v belongs to the support
of γ. Therefore, it belongs to the support of γi for some i ∈ {1, 2}. We can thus assume that
γ1 = v + γ′1 and therefore

[α1] = [γ1] = [v] + [γ′1] ,

showing that [v] ≤ [α1], as desired. �

It follows from Proposition 2.6 and [11, Theorem 2.7] that for any adaptable separated
graph (E,C) there exists a poset P, a partition P = Pfree ⊔ Preg, and a P-system J such that
M(E,C) ∼= M(J ). We close this subsection by explicitly computing this system. Together
with our main result in the next subsection (Theorem 2.11), this allows us to express all
the structure of a finitely generated conical refinement monoid in terms of the information
contained in a representing adaptable separated graph.

Let (E,C) be an adaptable separated graph and let (I,≤) be the antisymmetrization of
E0 with respect to the path-way pre-order. In order to neatly express our result, we first
define a certain I-system and then we will show it is isomorphic to the system corresponding
to M(E,C).

Definition 2.7. Let (E,C) be an adaptable separated graph, let (I,≤) be the antisym-
metrization of E0, and let I = Ifree ⊔ Ireg be the canonical partition of I = E0/∼ (see
Definition 1.4). Define an I-system J ′′ = (I,≤, (G′′

p)p∈I , ϕ
′′
p,q (q < p)) as follows:

(1) For each p ∈ Ifree minimal, define G′′
p := {0} (i.e. Mp = N). Now for each non-minimal

p ∈ Ifree , consider the abelian group G′′
p generated by elements xpw, where w is a vertex in E

such that [w] < p = [vp], subject to the relations

(2.1) xpw =
∑

e∈s−1

E
(w)

xp
r(e), [w] ∈ Ireg,

and

(2.2)

g(q,i)∑

j=1

xp
r(β(q,i,j)) = 0, (i = 1, . . . , k(q)) for q ∈ Ifree, q ≤ p.

(2) For p ∈ Ireg, we let G′′
p be the abelian group with generators xpw, where w is a vertex in E

such that [w] ≤ p, and with relations (2.1) for every w ∈ E0 such that [w] ∈ Ireg and [w] ≤ p,
and (2.2) for every q ∈ Ifree (note that in the latter case, q < p for any q ∈ Ifree, because
p ∈ Ireg).
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Recalling that M ′′
p = G′′

p if p ∈ Ireg and M ′′
p = N × G′′

p is p ∈ Ifree, we now define the
connecting homomorphisms ϕ′′

p,q : M
′′
q → G′′

p, for q < p, as follows:

ϕ′′
p,q(x

q
w) = xpw, if q ∈ Ireg,

and
ϕ′′
p,q(n,

∑

w<vq

cwx
q
w) = nxpvq +

∑

w<vp

cwx
p
w, if q ∈ Ifree

where n ∈ N, and cw ∈ Z are almost all 0. It is straightforward to show that J ′′ is an
I-system.

Remark 2.8. Note that, in case p ∈ Ireg, the relations in G′′
p can be expressed in the form

xpw =
∑

e∈X x
p

r(e), for each X ∈ Cw and each w ∈ E0 such that [w] ≤ p. The resulting

group is therefore the Grothendieck group of the monoid M(EH , C
H), where (EH , C

H) is the
restriction of the separated graph (E,C) to the hereditary set H := {w ∈ E0 : [w] ≤ p}.
However, this is not the case when p ∈ Ifree, due to the fact that, in that case, we are only
considering generators xpw for w ∈ E0 such that [w] < p.

Proposition 2.9. Let (E,C) be an adaptable separated graph, let I = Ifree ⊔ Ireg be the
canonical partition of I = E0/∼, and let J ′′ be the I-system of Definition 2.7. Let P =
Pfree ⊔ Preg be the poset associated to M(E,C), and J = (P,≤, (Gp)p∈P, ϕp,q (q < p)) be the
corresponding P-system. Then there is an isomorphism of systems J ′′ ∼= J . In particular

M(E,C) ∼=M(J ) ∼= M(J ′′).

Proof. Since M(E,C) is a primely generated conical refinement monoid, there is a P-system
J such that M(E,C) ∼=M(J ). This system is described in detail in [11, Section 2]. We are
going to follow that reference in order to identify the P-system J with the I-system J ′′. The
first thing we do is to identify P with I.

Let us define a relation ⊳ on I as follows. For p, q ∈ I, set p ⊳ q if p < q or p = q ∈ Ireg.
Observe that ⊳ is an antisymmetric and transitive relation on I. Now define the monoid
M(I,⊳) as the commutative monoid with family of generators I and with relations q = q+ p
if p ⊳ q. The monoid M(I,⊳) is an antisymmetric finitely generated refinement monoid,
and its set of primes is precisely I. Moreover, the regular (resp. free) primes of M(I,⊳)
are exactly the elements in Ireg (resp. Ifree). Now, it is straightforward, using the defining

properties of an adaptable separated graph, to show that the antisymmetrization M(E,C)

of M(E,C) is isomorphic to M(I,⊳), sending av ∈ M(E,C) to [v] ∈ M(I,⊳). It follows
from the description of the poset P associated to M(E,C) given in [11, p. 390, (1)] and the
above observations that P, with its canonical partition P = Pfree⊔Preg, can be identified with
I, and its partition I = Ifree ⊔ Ireg. Hence, the construction in [11, Section 2] gives rise to an
I-system J = (I,≤, {Gp}p∈I , ϕpq (q < p)).

It remains to identify the groups Gp, for p ∈ I, and the maps ϕpq : Mq → Gp for q < p (see
[11, Section 2]). First, we observe that every hereditary subset of E0 is C-saturated, because
each X ∈ C contains at least one loop. Therefore it follows from [8, Corollary 6.10] that the
order-ideal of M(E,C) generated by a hereditary subset H of E0 is generated as a monoid
by {av : v ∈ H}.

Following [11, Section 2], the group G′
p is defined for each p ∈ Ifree to be the set

{avp + α : α ∈ M(E,C) and avp + α ≤ avp},
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endowed with the product (avp+α)◦(avp+β) = avp+(α+β). We want to show that G′′
p
∼= G′

p.

To this end we define a map λp : G
′′
p → G′

p by λp(x
p
w) = avp + aw for w ∈ E0 with [w] < p.

Clearly, the defining relations of G′′
p are preserved by λp, so this assignment defines a group

homomorphism. Now if α ∈M(E,C) and avp +α ≤ avp , then α belongs to the order-ideal of
M(E,C) generated by avp , and by the previous remark, it follows that α must be a sum of
elements of the form aw with w ≤ v. Now, it follows from the fact that avp is free that α is a
sum of elements of the form aw with w < vp. This shows that λp is surjective. In order to show
that λp is injective, let

∑
w∈A nwx

p
w −

∑
w′∈B mw′xpw′ be an element in the kernel of λp, where

A∩B = ∅, and nw, mw′ > 0. It then follows that avp +
∑

w∈A nwaw = avp +
∑

w′∈Bmw′aw′ in
M(E,C). Let F be the free commutative monoid generated by E0. It follows from Lemma
2.4 that there is γ ∈ F such that vp+

∑
w∈A nww → γ and vp+

∑
w′∈Bmw′w′ → γ in F . Note

that γ = vp+γ′, where γ′ =
∑

w<vp lww for some lw ≥ 0. Now we transform
∑

w∈A nwx
p
w using

corresponding steps to the ones used in the transformation vp +
∑

w∈A nww → γ, replacing

each occurrence of a step vq →1 v
q+

∑g(q,i)
j=1 r(β(q, i, j)) for some i = 1, . . . , k(q) by the identity

0 =
∑g(q,i)

j=1 xp
r(β(q,i,j)) in G′′

p, for each i = 1, . . . , k(q), if [w] = q ∈ Ifree and q ≤ p, and each

occurrence of a step w →1

∑
e∈s−1(w) r(e) by the identity xpw =

∑
e∈s−1

E
(w) x

p

r(e) if [w] ∈ Ireg
and [w] < p. By using this process, we arrive at the identity

∑
w∈A nwx

p
w =

∑
w<vp lwx

p
w

in G′′
p. With the same reasoning, we obtain

∑
w′∈B mw′xpw′ =

∑
w<vp lwx

p
w. So we get that∑

w∈A nwx
p
w −

∑
w′∈Bmw′xpw′ = 0, as desired. Finally the group Gp is naturally isomorphic

to G′
p through the map G′

p → Gp, avp +α 7→ (avp +α)− avp ([11, Remark 2.5]), so we get the
isomorphism G′′

p
∼= Gp, which sends xpw to (avp + aw)− avp .

If p = [v] ∈ Ireg, then the archimedian component of av in M(E,C) is a group, and Gp is
defined to be this group, see [11, Section 2]. Let ep be the neutral element of Gp. Then one
may check as before that the map λp : G

′′
p → Gp given by xpw 7→ ep+aw for [w] ≤ p, is a group

isomorphism.

Finally it is straightforward to show that ϕp,q ◦ λ̃q = λp ◦ ϕ
′′
p,q whenever q < p in I, where

λ̃q : M
′′
q → Mq is the map induced by λq. Hence we get an isomorphism of I-systems J ′′ ∼= J .

Since M(J ) ∼=M(E,C) ([11, Theorem 2.7]), we get the last assertion in the statement. �

2.2. Representing finitely generated refinement monoids. In this subsection, given
any finitely generated conical refinement monoid M , we build an adaptable separated graph
(E,C) such that its associated monoid is isomorphic to M .

To this end recall from Section 1 and [11, Sections 1 and 2] that, given any finitely generated
conical refinement monoid M , one canonically associates to it an I-system

J = (I,≤, (Gi)i∈I , ϕji (i < j))

such that M ∼= M(J ) ([11, Theorem 2.7]). Moreover, the I-system J is finitely generated
(meaning that I is finite and all the abelian groups Gi are finitely generated, [11, Proposition
2.9]).

We now remind some terminology and facts concerning our monoids before proving the
main result of this section (see [14, 13, 11, 12] for background material).

For i ∈ I, we define the lower cover L(I, i) of i in I as

L(I, i) := {j ∈ I | j < i and [j, i] = {j, i}}.
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Let p ∈ Ifree and let L(I, p) = {q1, . . . , qn} be its lower cover. The archimedian component
Mp of p has the form Mp = N×Gp for the finitely generated abelian group Gp.

Using the notation established in [12, Section 2], we denote by Jp the lower subset of I
generated by q1, . . . , qn, and let MJp be the associated semigroup (cf. [12, Corollary 2.4]).
Then, by [12, Lemma 5.1], there is a surjective semigroup homomorphism

ϕp : MJp → Gp

which is induced by the various maps ϕpq for q < p. Consequently, we obtain a surjective
group homomorphism G(ϕp) : G(MJp) → Gp. We say that an element x in G(MJp) is strictly
positive if it belongs to the image of the canonical map ιJp : MJp → G(MJp). We write
G(MJp)

++ = ιJp(MJp) for the set of strictly positive elements.
With the notation above, we provide the last proposition needed for Theorem 2.11.

Proposition 2.10. With the above notation and caveats, we have that the kernel of G(ϕp)
is generated by a finite number x1, . . . , xk of strictly positive elements.

Proof. Since G(MJp) is a finitely generated abelian group, we have that the kernel of G(ϕp)
is generated by a finite number of elements y1, . . . , ym. So, it is enough to show that the
subgroup generated by an element y in the kernel of G(ϕp) is contained in the subgroup
generated by two strictly positive elements in the kernel of G(ϕp).

Recall that L(I, p) = {q1, . . . , qn} is the lower cover of p. We assume that q1, . . . , qr are free
and that qr+1, . . . , qn are regular. Now, let y ∈ ker(G(ϕp)). Using that the element y can be
expressed as a difference of two elements from G(MJp)

++ and [12, Lemma 5.3], we see that
there exist positive integers ni, mi, i = 1, . . . , r, and elements gi ∈ Gqi, i = 1, . . . , n, hj ∈ Gqj ,
j = 1, . . . , r, such that

y = ιJp

( r∑

i=1

χqi(ni, gi) +

n∑

i=r+1

χqi(gi)
)
− ιJp

( r∑

j=1

χqj(mj , hj)
)

Since ϕp is surjective and G(ϕp)(y) = 0, there exists z ∈MJp such that

−ϕp

( r∑

i=1

χqi(ni, gi) +
n∑

i=r+1

χqi(gi)
)
= −ϕp

( r∑

j=1

χqj(mj , hj)
)
= ϕp(z).

Therefore, if we define the elements x1 = (
∑r

i=1 χqi(ni, gi) +
∑n

i=r+1 χqi(gi)) + z ∈ MJp and
x2 = (

∑r

j=1 χqj(mj , hj)) + z ∈MJp, then we have ιJp(x1), ιJp(x2) ∈ ker(ϕp) ∩G(MJp)
++, and

y = ιJp(x1)− ιJp(x2). This shows the result. �

Theorem 2.11. Let M be a finitely generated refinement monoid, and let J be the associated
I-system, so that M ∼=M(J ). Then there is an adaptable separated graph (E,C) such that

M(E,C) ∼=M(J ) ∼= M.

Proof. The proof follows the lines of the proof of [12, Proposition 5.13]. This result says that,
if the natural map G(ϕp) : G(MJp) → Gp is an almost isomorphism for every free prime p,
then there is a row-finite directed graph E such that M ∼= M(E). (In particular, this holds
if every prime in M is regular). We will only outline the point in which the proof has to be
adapted, recalling some of the relevant notation.



12 PERE ARA, JOAN BOSA, AND ENRIQUE PARDO

The proof works by induction. Assume that J is a lower subset of I and that an adaptable
separated graph (EJ , C

J) of the desired form has been constructed so that there is a monoid
isomorphism

γJ : M(J) → M(EJ , C
J),

where M(J) is the order-ideal of M generated by J , sending the canonical semigroup gener-
ators to the corresponding sets of vertices, as specified in [12, p. 113]. In case J 6= I, let p be
a minimal element of I \ J , and write J ′ = J ∪ {p}. If p is a regular prime or p is minimal,
proceed as in the proof of [12, Proposition 5.13].

Assume that p is a non-minimal free prime. By Proposition 2.10, there are a finite number
of strictly positive elements x1, . . . , xk which generate the kernel of the map G(ϕp). Now,
using the same arguments as in the proof of [12, Proposition 5.13], we may find elements
x̂i ∈ M(EJ , C

J), i = 1, . . . , k, which are non-negative integer combinations of the vertices of
EJ such that γJ(xi) = x̂i for i = 1, . . . , k. Observe that x̂i ∈ HγJ (Jp), so that we may consider
its class (denoted in the same way) in MγJ (Jp). Now, we introduce the adaptable separated

graph (EJ ′, CJ ′

). We define E0
J ′ = E0

J ⊔ {vp}, and CJ ′

\ CJ ′

vp = CJ , that is, the structure of
(EJ ′ , CJ ′

) is the same as the structure of (EJ , C
J) when restricted to the vertices of EJ . For

the new vertex vp we define CJ ′

vp = {X
(p)
1 , . . . , X

(p)
k }, where each X

(p)
i has the form described

in Definition 1.4(3), and the edges α(p, i), β(p, i, t), t = 1, . . . , g(p, i) are chosen in such a way
that the relations

(2.3) vp = vp + x̂i

are satisfied in the graph monoid M(EJ ′ , CJ ′

), for i = 1, . . . , k. (Here we set k(p) = k).
By Proposition 2.6, M(EJ ′ , CJ ′

) is a primely generated conical refinement monoid. Its
corresponding system has been determined in Proposition 2.9. In particular, we know that
the set of primes of M(EJ ′ , CJ ′

) is P(M(EJ , C
J)) ∪ {vp} and that vp is a free prime in

M(EJ ′ , CJ ′

). Consequently, we have that the archimedian component M(EJ ′ , CJ ′

)[vp] of
M(EJ ′ , CJ ′

) at vp satisfies

M(EJ ′ , CJ ′

)[vp] = N×G′
vp

for some abelian group G′
vp , and that the map φp : M(EJ ′ , CJ ′

)γJ (Jp) → G′
vp induced by the

various semigroup homomorphisms

φp
q : M(EJ ′ , CJ ′

)γJ (q) → G′
vp

y 7→ (vp + y)− vp

for q < p is surjective. So, we obtain a surjective group homomorphism

G(φp) : G(M(EJ ′ , CJ ′

)γJ (Jp)) → G′
vp .

In order to simplify the notation, we will write M(EJ ′ , CJ ′

)Jp instead of M(EJ ′ , CJ ′

)γJ (Jp).

It is readily seen that the natural mapM(EJ , C
J) → M(EJ ′ , CJ ′

) defines a monoid isomor-
phism fromM(EJ , C

J) onto an order-ideal ofM(EJ ′ , CJ ′

); hence, we will identifyM(EJ , C
J)

with its image without further comment. Moreover, the component M(EJ ′ , CJ ′

)Jp clearly co-
incides with the component M(EJ , C

J)Jp.
Now, the monoid isomorphism γJ : M(J) → M(EJ , C

J) restricts to a semigroup isomor-
phism MJp →M(EJ , C

J)Jp, which induces a group isomorphism

γ̃Jp : G(MJp) → G(M(EJ , C
J)Jp)
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of the Grothendieck groups. Set K := ker(G(φp)), and notice that the relation (2.3) implies
that γ̃Jp(xi) = x̂i ∈ K for i = 1, . . . , k.

Hence, there is a commutative diagram with exact rows

(2.4)

0 −−−→ 〈x1, . . . , xk〉 −−−→ G(MJp)
G(ϕp)
−−−→ Gp −−−→ 0y

yγ̃Jp

yγp

0 −−−→ K −−−→ G(M(EJ , C
J)Jp)

G(φp)
−−−→ G′

vp −−−→ 0 ,

where γp : Gp → G′
vp

is the map induced from the cokernel of the inclusion 〈x1, . . . , xk〉 →֒

G(MJ) to the cokernel of the inclusion K →֒ G(M(EJ , C
J)Jp). Notice that γp is an onto

map.
We now define the map

γJ ′ : M(J ′) → M(EJ ′ , CJ ′

)

extending the monoid isomorphism γJ : M(J) → M(EJ , C
J), and defining γJ ′ on the com-

ponent Mp
∼= N×Gp of M(J ′) by the formula

γJ ′(mp+ g) = mvp + γp(g)

for m ∈ N and g ∈ Gp. By [11, Corollary 1.8], to show that γJ ′ is a well-defined monoid
homomorphism, it suffices to show that if q < p and y ∈ GM [q] =Mq then γJ ′(y) + γJ ′(p) =
γJ ′(ϕp,q(y) + p), that is, γJ(y) + vp = γp(ϕp,q(y)) + vp. For x ∈MJp, we may define a map

τq : Mq → G(MJp)

by τq(y) = (x + y) − x ∈ G(MJp). The map τq is a semigroup homomorphism and does
not depend on the particular choice of x ∈ MJp. Moreover, we have ϕp,q = G(ϕp) ◦ τq.
Analogously, we have a map

τγJ (q) : M(EJ ′ , CJ ′

)γJ (q) → G(M(EJ ′ , CJ ′

)Jp) = G(M(EJ , C
J)Jp)

such that φvp

γJ(q)
= G(φp) ◦ τγJ (q), and clearly γ̃Jp ◦ τq = τγJ (q) ◦ γJ |Mq

.

Using this fact, and the commutativity of (2.4), we have that

γp(ϕp,q(y)) + vp = γp(G(ϕp)(τq(y))) + vp

= G(φp)(γ̃Jp(τq(y))) + vp

= G(φp)(τγJ (q)(γJ(y))) + vp

= φvp

γJ (q)
(γJ(y)) + vp

= ((vp + γJ(y))− vp) + vp

= vp + γJ(y) ,

as desired.
This shows that there is a well-defined monoid homomorphism

γJ ′ : M(J ′) → M(EJ ′ , CJ ′

)

sending the canonical semigroup generators of M(J ′) to the corresponding canonical sets of
vertices seen in M(EJ ′ , CJ ′

). In particular, γJ ′ is an onto map.
In order to prove the injectivity of γJ ′, we can build an inverse map δJ ′ : M(EJ ′ , CJ ′

) →
M(J ′), as follows: on M(EJ , C

J) we define δJ ′ to be γ−1
J , while δJ ′(vp) := p. Notice that
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the only relations on M(EJ ′ , CJ ′

) not occurring already in M(EJ , C
J) are vp = vp + x̂i,

i = 1, . . . , k, where γJ(xi) = x̂i. Thus, δJ ′(x̂i) = xi. But x1, . . . , xk generate the kernel of the
map

G(ϕp) : G(MJp) → Gp →֒ Ĝp = Z×Gp,

so that (p + xi) − p equals 0 in Ĝp. Hence, the relations p = p + xi hold in M(J ′), for
i = 1, . . . , k. Thus, δJ ′ is a well-defined monoid homomorphism, and it is the inverse of γJ ′.
This completes the proof of the inductive step. �
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