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Abstract. Given an adaptable separated graph, we construct an associated groupoid and
explore its type semigroup. Specifically, we first attach to each adaptable separated graph
a corresponding semigroup, which we prove is an E∗-unitary inverse semigroup. As a con-
sequence, the tight groupoid of this semigroup is a Hausdorff étale groupoid. We show
that this groupoid is always amenable, and that the type semigroups of groupoids obtained
from adaptable separated graphs in this way include all finitely generated conical refinement
monoids. The first three named authors will utilize this construction in forthcoming work to
solve the Realization Problem for von Neumann regular rings, in the finitely generated case.

Introduction.

There has been significant recent interest in the structure of the type semigroup of an ample
groupoid [12, 28, 29] and its influence in determining properties of the associated (reduced)
groupoid C∗-algebra. In particular the stably finite versus purely infinite dichotomy has been
established, under mild hypotheses in the above-mentioned papers, using the type semigroup.
Additionally, the enveloping group of the type semigroup of an ample groupoid G is precisely
the homology group H0(G) of the groupoid, and so the induced map Typ(G) → V(C∗r (G))
from Typ(G) to the Murray-von Neumann semigroup V(C∗r (G)) can be viewed as a non-stable
precursor of the natural map H0(G) → K0(C∗r (G)) appearing in the statement of Matui’s
Conjecture (recently resolved in the negative by Scarparo [32]). In particular it is of great
interest to determine the family of ample groupoids such that the map Typ(G)→ V(C∗r (G))
and its stabilized sibling H0(G)→ K0(C∗r (G)) are injective (see [24, 26, 27, 19]).

In this paper, we introduce a new class of ample Hausdorff groupoids associated to separated
graphs, and describe concrete representations of their Steinberg algebras and C∗-algebras.
This new class of groupoids generalizes the well-known graph groupoids of row-finite graphs
[22], and are designed to have a more general type semigroup than those. Specifically, for a
row-finite graph E, our methods demonstrate that the type semigroup of the associated graph
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groupoid is canonically isomorphic to the graph monoid M(E) introduced in [8]; that is, the
commutative monoid with generators {av : v ∈ E0}, and defining relations av =

∑
e∈s−1(v) ar(e)

whenever v is not a sink in E. The graph monoids M(E), as well as all the monoids Typ(G)
of an ample groupoid G, are refinement monoids, in the sense that they satisfy the Riesz
refinement property. However, the class of graph monoids does not even cover the very
natural class of all finitely generated conical refinement monoids. Indeed it was already
shown in [11] that the finitely generated refinement monoid 〈p, q1, q2 : p+ q1 = p = p+ q2〉 is
not a graph monoid; that is, it is not isomorphic to M(E) for any row-finite graph E. In this
paper we show that this problem can be solved by considering a special class of separated
graphs, which we call adaptable separated graphs.

Our work is also motivated by the realization problem for von Neumann regular rings (see
for instance [3, 20]). Using the construction in this paper, the three first-named authors
will show in [5] that every finitely generated conical refinement monoid arises as the monoid
V(AK(G)Σ−1) associated to a von Neumann regular ring of the form AK(G)Σ−1 for a suit-
able universal localization of the Steinberg algebra AK(G), where G belongs to the class of
groupoids constructed here and K is an arbitrary field. In this respect, it is relevant the
structure of a Steinberg algebra AK(G) of an ample groupoid G over a field K [15, 35], which
has received quite a bit of attention in the last few years, see for instance the survey papers
[16, 31].

Recall from [7] that a separated graph is a pair (E,C) where E is a directed graph and C =⊔
v∈E0 Cv is a partition of E1 which is finer than the partition induced by the source function

s : E1 → E0. Given a finitely separated graph, that is, a separated graph such that all the sets
in the partition C are finite, the monoid M(E,C) is defined in [7] as the commutative monoid
with generators {av : v ∈ E0} and defining relations given by the equations av =

∑
x∈X ar(x)

for v ∈ E0 and X ∈ Cv. Unlike graph monoids, M(E,C) is not always a refinement monoid,
but sufficient conditions under which M(E,C) is a refinement monoid were identified in [7,
Section 5]. The key observation for the present paper is that a restricted class of separated
graphs, which we have termed adaptable separated graphs, is enough for our purposes. In fact,
for this family of separated graphs (E,C), the refinement property for M(E,C) does hold,
and the monoids M(E,C) belong to a especially well-behaved class of refinement monoids, the
primely generated refinement monoids. Moreover any finitely generated conical refinement
monoid arises as M(E,C) for some adaptable separated graph (E,C); see [4] for all these
results, which we have also summarized in Section 1.

Having identified the suitable combinatorial object, namely adaptable separated graphs,
we associate to each such separated graph a suitable inverse semigroup. Our guiding model
is the graph inverse semigroup defined in [21], but difficulties arise in trying to modify the
definition of the graph inverse semigroup from [21] to our context. These arise from the fact
that the algebra relations naturally attached to a separated graph [7] are not tame; that
is, they do not force commutation of range projections of the generating partial isometries,
which precludes their generating an inverse semigroup. This problem was solved in [6] by
forming a universal quotient, called the tame algebra of the separated graph, in which the
range projections of the generating partial isometries do commute. Unfortunately, though,
this introduced a new difficulty problem: in general, passing from the universal C∗-algebra
or algebra of a separated graph to its tame quotient as in [6] induces a nontrivial map from
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the monoid M(E,C) to the monoid VO(E,C) or VLab
K (E,C); so we can no longer be sure

that we are representing the desired monoid M(E,C).
Our solution to this problem is to introduce a set of auxiliary variables {tvi : i ∈ N, v ∈

E0} which are designed to tame the natural relations associated to the separated graph
(E,C), without altering the associated monoid. Indeed the starting point of our paper is
the construction of an inverse semigroup S(E,C) for any adaptable separated graph (E,C),
which makes use of these auxiliary variables tvi . The crucial semilattice of idempotents E
is described solely in terms of paths and monomials in the separated graph, and we are
able to show that S(E,C) is an E∗-unitary inverse semigroup, and consequently the tight
groupoid Gtight(S(E,C)) is an ample Hausdorff groupoid (see Section 2). Following the by-now

well-trodden path described in [17], we then build the space of tight filters Êtight associated
to S(E,C), and we relate it to the space of infinite paths in our separated graph (E,C).
The desired groupoid is obtained as the groupoid Gtight(S(E,C)) of germs of the canonical

action of S(E,C) on the space Êtight of tight filters. Our main result is Theorem 7.5: for
any adaptable separated graph (E,C), the type semigroup of the ample Hausdorff groupoid
Gtight(S(E,C)) is canonically isomorphic to the graph monoid M(E,C). In particular, every
finitely generated conical refinement monoid arises as the type semigroup of a groupoid in
our class.

We show in addition that the groupoids G := Gtight(S(E,C)) are all amenable (Proposi-
tion 6.2), and that the corresponding Steinberg algebras AK(G) and C∗-algebras C∗(G) =
C∗r (G) can be described as universal objects for appropriate generators and relations (The-
orem 4.14 and Corollary 4.15). We also obtain a very concrete description of the groupoid
Gtight(S(E,C)) (see Theorem 5.3), similar to the one given in [22] for usual graphs, which
makes computations much more tractable.

We briefly outline the contents of this paper. In Section 1, we record the basic definitions
and results we will need throughout the rest of the paper. In particular we introduce the key
notion of an adaptable separated graph. In Section 2, we define a natural inverse semigroup
S(E,C) associated to an adaptable separated graph (E,C). We provide two equivalent
definitions of the semigroup and analyse its semilattice of idempotents E . We also show that
S(E,C) is an E∗-unitary inverse semigroup (Proposition 2.19). We analyse the structure of
the spaces of filters, ultrafilters, and tight filters on E in Section 3. We show in Theorem 3.6
that the space of ultrafilters on E coincides with the space of tight filters on E . In Section 4, we
show that the natural K-algebra SK(E,C), associated to an adaptable separated graph (E,C)
is isomorphic to the Steinberg algebra AK(Gtight(S(E,C))) of the groupoid Gtight(S(E,C)) of
germs of the canonical action of S(E,C) on the space of tight filters on E . In Section 5,
we provide an equivalent, more concrete picture of Gtight(S(E,C)). This is used in Section 6
to show that Gtight(S(E,C)) is an amenable groupoid. We finish by showing in Section 7
that, for any adaptable separated graph (E,C), the type semigroup Typ(Gtight(S(E,C))) of
the groupoid Gtight(S(E,C)) is naturally isomorphic to the monoid M(E,C) associated to
(E,C). We deduce from the results of [4] that every finitely generated conical refinement
monoid arises as the type semigroup of the groupoid associated to an adaptable separated
graph.
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1. Preliminaries.

In this section, we will recall the basic definitions and results needed to follow the paper.

1.1. Basics on commutative monoids. We will denote by N the semigroup of positive
integers, and by Z+ the monoid of non-negative integers.

Given a commutative monoid M , we set M∗ := M \ {0}. We say that M is conical if M∗

is a semigroup, that is, if, for all x, y in M , x+ y = 0 only when x = y = 0.
We say that M is a refinement monoid if, for all a, b, c, d in M such that a + b = c + d,

there exist w, x, y, z in M such that a = w + x, b = y + z, c = w + y and d = x+ z.
A basic example of a refinement monoid is the monoid M(E) associated to a countable

row-finite graph E [8, Proposition 4.4].
If x, y ∈ M , we write x ≤ y if there exists z ∈ M such that x + z = y. Note that ≤ is a

translation-invariant pre-order on M , called the algebraic pre-order of M . All inequalities in
commutative monoids will be with respect to this pre-order. An element p in a monoid M is
a prime element if p is not invertible in M , and, whenever p ≤ a+ b for a, b ∈M , then either
p ≤ a or p ≤ b. The monoid M is primely generated if every non-invertible element of M can
be written as a sum of prime elements.

An element x ∈M is regular if 2x ≤ x. An element x ∈M is an idempotent if 2x = x. An
element x ∈ M is free if nx ≤ mx implies n ≤ m, for n,m ∈ N. By [13, Theorem 4.5], any
element of a primely generated refinement monoid is either free or regular.

1.2. Adaptable Separated Graphs. In [9] the first and third-named authors characterized
the primely generated conical refinement monoids in terms of the so-called I-systems. Using
this theory, the first, second and third-named authors obtained in [4] a combinatorial model for
all finitely generated conical refinement monoids. The basic ingredient in this combinatorial
description is the theory of separated graphs [7]. (Note that ordinary graphs are not sufficient
for this purpose, see [10, 11].)

Definition 1.1 ([7, Definitions 2.1 and 4.1]). A separated graph is a pair (E,C) where E
is a directed graph, C =

⊔
v∈E0 Cv, and Cv is a partition of s−1(v) (into pairwise disjoint

nonempty subsets) for every vertex v. If v is a sink, we take Cv to be the empty family of
subsets of s−1(v).

If all the sets in C are finite, we shall say that (E,C) is a finitely separated graph.
Given a finitely separated graph (E,C), we define the monoid of the separated graph (E,C)

to be the commutative monoid given by generators and relations as follows:

M(E,C) =
〈
av (v ∈ E0) : av =

∑
{e∈X}

ar(e) for every X ∈ Cv, v ∈ E0
〉
.

We recall some basic graph-theoretic notions that we will need along the sequel. For further
background, see, for example, [1].

Definition 1.2. Given a directed graph E = (E0, E1, s, r):

(1) We define a pre-order on E0 (the path-way pre-order) by v ≤ w if and only if there is
a directed path γ in E with s(γ) = w and r(γ) = v.

(2) We will denote by (I,≤) the poset arising as the antisymetrization of (E0,≤). Thus,
denoting by [v] the class of v ∈ E0 in I, we have [v] ≤ [w] if and only if v ≤ w.
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(3) We say that E is transitive if every two vertices of E0 are connected through a finite
path.

Let us now define the main notion used throughout the paper.

Definition 1.3. Let (E,C) be a finitely separated graph and let (I,≤) be the antisym-
metrization of (E0,≤). We say that (E,C) is adaptable if I is finite, and there exist a
partition I = Ifree t Ireg, and a family of subgraphs {Ep}p∈I of E such that the following
conditions are satisfied:

(1) E0 =
⊔
p∈I E

0
p , where Ep is a transitive row-finite graph if p ∈ Ireg and E0

p = {vp} is
a single vertex if p ∈ Ifree.

(2) For p ∈ Ireg and w ∈ E0
p , we have that |Cw| = 1 and |s−1

Ep
(w)| ≥ 2. Moreover, all edges

departing from w either belong to the graph Ep or connect w to a vertex u ∈ E0
q , with

q < p in I.
(3) For p ∈ Ifree, we have that s−1(vp) = ∅ if and only if p is minimal in I. If p is

not minimal, then there is a positive integer k(p) such that Cvp = {X(p)
1 , . . . , X

(p)
k(p)}.

Moreover, each X
(p)
i is of the form

X
(p)
i = {α(p, i), β(p, i, 1), β(p, i, 2), . . . , β(p, i, g(p, i))},

for some g(p, i) ≥ 1, where α(p, i) is a loop, i.e., s(α(p, i)) = r(α(p, i)) = vp, and
r(β(p, i, t)) ∈ E0

q for q < p in I. Finally, we have E1
p = {α(p, 1), . . . , α(p, k(p))}.

The edges connecting a vertex v ∈ E0
p to a vertex w ∈ E0

q with q < p in I will be called
connectors. �

This is the main theorem connecting graphs and monoids.

Theorem 1.4. [4] The following two statements hold:

(1) If (E,C) is an adaptable separated graph, then M(E,C) is a primely generated conical
refinement monoid.

(2) For any finitely generated conical refinement monoid M , there exists an adaptable
separated graph (E,C) such that M ∼= M(E,C).

In particular, it is shown in [4] that, for an adaptable separated graph (E,C), all the
elements av, for v ∈ E0, are prime elements of the monoid M(E,C), and that av is free
(respectively, regular) in M(E,C) if and only if [v] ∈ Ifree (respectively, [v] ∈ Ireg). We often
refer to the elements of Ifree as free primes and to the elements of Ireg as regular primes.

1.3. Groupoids and Steinberg algebras. Recall that a groupoid is a small category in
which every morphism is an isomorphism (see [30] for further details). Given a groupoid G,
we will always denote its unit space by G(0), the set of composable pairs by G(2), and its source
and range maps by s and r, respectively. A bisection in G is a subset U ⊆ G such that the
restrictions of r and s to U are both injective.

A topological groupoid G is said to be étale if G(0) is locally compact and Hausdorff in the
relative topology, and its range map (equivalently, its source map) is a local homeomorphism
from G to G(0). It is easy to see that the topology of an étale groupoid admits a basis of open
bisections. In an étale groupoid, G(0) is open in G. If, in addition, G is Hausdorff, then G(0) is
also closed in G. An étale groupoid G is ample if G admits a basis of open compact bisections.
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Definition 1.5 ([35], [15]). Given an ample groupoid G, and a field with involution (K, ∗),
the Steinberg algebra associated to G is defined to be the ∗-algebra over K

AK(G) = span{1B : B is an open compact bisection }

with the convolution product

(fg)(γ) =
∑

(γ1,γ2)∈G(2)

γ1γ2=γ

f(γ1)g(γ2).

and the involution f ∗(γ) = f(γ−1)∗. When G is Hausdorff, AK(G) is just the ∗-algebra of
compactly supported, locally constant functions f : G → K.

It is interesting to notice that 1B1D = 1BD, whenever B and D are compact open bisections
in G.

2. The inverse semigroup associated to an adaptable separated graph

In this section we define the semigroup S(E,C) associated to an adaptable separated graph
(E,C), and show that it is an E∗-unitary inverse semigroup.

We first define S(E,C) as an abstract ∗-semigroup by using generators and relations, and
then we prove that it is isomorphic to a concrete ∗-semigroup defined in terms of paths and
monomials in our separated graph. This will be very useful in showing that S(E,C) is an
inverse semigroup and characterizing the semi-lattice of idempotents of S(E,C), which is a
key step for all what follows.

2.1. Definition of the inverse semigroup S(E,C). We start by defining S(E,C) by
generators and relations. Roughly, it is generated by elements v indexed by vertices of
E, elements e and e∗ indexed by edges of E, and some additional variables tvi and (tvi )

−1

whose role is to “tame” the relations associated to the separated graph. Specifically, for each
v ∈ E0, we consider a collection of mutually commuting elements {tvi , (tvi )−1 | i ∈ N} such
that tvi (t

v
i )
−1 = v = (tvi )

−1tvi , and (tvi )
∗ = (tvi )

−1. The way these elements interact with the
natural generators corresponding to the separated graph is specified below. Before we give
the definition of S(E,C), let us fix some notation.

Notation. Assume notation provided in Definition 1.3. If p ∈ I is non-minimal and free,
we denote by σp the map N→ N given by

σp(i) = i+ k(p)− 1.

Moreover, if 1 ≤ j ≤ k(p), we denote by σpj the unique bijective, non-decreasing map from
{1, . . . , k(p)} \ {j} onto {1, . . . , k(p)− 1}.

We are now ready for the definition of the semigroup S(E,C). Recall from Definition 1.3
the definition of an adaptable separated graph.

Definition 2.1. Given an adaptable separated graph (E,C), denote by S(E,C) the ∗-
semigroup (with 0) generated by E0 ∪ E1 ∪ {(tvi )± | i ∈ N, v ∈ E0} and with defining
relations given by all relations in 2.2 except 2.2(ii)(d) and 2.2(1)(ii).



TYPE SEMIGROUP 7

2.2 (Relations). There are two blocks of relations in which we are interested. In the first
block we write the natural relations arising from the separated graph structure (cf. [7]). In
the second block, we specify the relation between the generators of S(E,C), using the special
form of our adaptable separated graph.

Block 1:

(i) For all v, w ∈ E0, we have v · w = δv,wv and v = v∗.
(ii) For all e ∈ E1, we have:

(a) e = s(e)e = er(e)
(b) e∗e = r(e)
(c) e∗f = δe,fr(e) if e, f ∈ X ⊆ Cs(e).
(d) v =

∑
e∈X ee

∗, for X ∈ Cv, v ∈ E0.

Block 2:

(1) For each free prime p ∈ I and i = 1, . . . , k(p), we have:
(i) α(p, i)∗α(p, i) = vp

(ii)

α(p, i)α(p, i)∗ = vp −
g(p,i)∑
t=1

β(p, i, t)β(p, i, t)∗

(iii) For i 6= j, α(p, i)α(p, j) = α(p, j)α(p, i), and α(p, i)α(p, j)∗ = α(p, j)∗α(p, i).
(iv) β(p, i, s)∗β(p, j, t) = 0 if either i 6= j, or i = j and s 6= t. (Note that when i = j

and s 6= t, these relations follow from the separated graph relations).
(v) α(p, i)∗β(p, i, t) = 0 = β(p, i, t)∗α(p, i) for all 1 ≤ i ≤ k(p) and all 1 ≤ t ≤ g(p, i).

Note that relations (i), (ii) and (v) follow from the separated graph relations.
(2) Moreover, in terms of the {tvi }, we impose the following relations:

(i) For each v ∈ E0, {(tvi )± : i ∈ N} is a family of mutually commuting elements
such that

vtvi = tvi = tvi v, tvi (t
v
i )
−1 = v = (tvi )

−1tvi , (tvi )
∗ = (tvi )

−1.

(ii) If p ∈ I is regular, e ∈ E1 is such that s(e) ∈ E0
p and i ∈ N,

t
s(e)
i e = et

r(e)
i .

(iii) If p ∈ I is free, i ∈ N, 1 ≤ j ≤ k(p) and 1 ≤ s ≤ g(p, j),

(tv
p

i )±β(p, j, s) = β(p, j, s)(t
r(β(p,j,s))
σp(i) )±,

(iv) If p ∈ I is free, i 6= j, and 1 ≤ s ≤ g(p, j),

α(p, i)β(p, j, s) = β(p, j, s)t
r(β(p,j,s))

σp
j (i)

, and α(p, i)∗β(p, j, s) = β(p, j, s)(t
r(β(p,j,s))

σp
j (i)

)−1.

(v) If p ∈ I is free, tv
p

i α(p, j) = α(p, j)tv
p

i and tv
p

i α(p, j)∗ = α(p, j)∗tv
p

i for all i ∈ N
and j ∈ {1, . . . , k(p)}.

Remark 2.3. Since we are working within the category of ∗-semigroups, the ∗-relations of
all the relations described in 2.2 are indeed enforced in the ∗-semigroup S(E,C).

We next plan to provide a different description of S(E,C). This will be given via the
paths that one can intuitively associate to any adaptable separated graph. We show in
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Proposition 2.13 that S(E,C) is isomorphic to this semigroup, which we will momentarily
denote by S.

Let us start defining the notion of finite paths in this setting. Roughly, a finite path is
described as follows: consider a sequence of elements p1 > p2 > . . . > pn of the poset I,
and for each i a path γi in Epi ; we form a finite path by connecting the γi together via the
connectors β. Diagrammatically, we may write

p1 yβ1,2 p2 yβ2,3 . . .yβn−1,n pn.

More formally, we make the following definition.

Definition 2.4 (Finite paths). Let (E,C) be an adaptable separated graph. Then, we define
a step from a vertex v ∈ E0

p to a vertex w ∈ E0
q with q < p, denoted by γ̂v,w,as follows:

(1) if v = vp for p a free prime, then a step from vp to w is defined as

γ̂v,w := α(p, i)mβ(p, i, t) for some i and some m ≥ 0, where r(β(p, i, t)) = w.

(2) if v ∈ E0
p for a regular prime p, then a step from v to w is defined as

γ̂v,w := γβ, with s(β) = v′, r(β) = w,

where γ is a directed path of finite length connecting v and v′ in Ep, and β is a
connector from v′ to w.

Then, given two vertices v ∈ E0
p and w ∈ E0

q with p > q in I, we define a finite path from v
to w as a concatenation of steps, i.e. we find p = q0 > q1 > q2 > . . . > qn = q, and vertices
vi ∈ E0

qi
, with v0 = v and vn = w, such that

γv,w := γ̂v0,v1 . . . γ̂vn−1,vn .

We say that the path γv,w has depth n, denoted by depth(γv,w) = n.
A trivial finite path is a single vertex v ∈ E0. These are the finite paths of depth 0.
Given two finite paths γ1, γ2, we will write γ1 ≺ γ2 if γ2 = γ1η for some other finite path

η; we write γ1 6≺ γ2 otherwise.

Remark 2.5. Our finite paths are only some of the allowed paths of finite length in E. In
particular note that this definition does not agree with the usual notion of a finite path in
the underlying directed graph E. When we want to refer to the usual notion for a path in
the graph E, we will speak of a path of finite length in the graph E. The usual length of such
a path of finite length γ will be denoted by |γ|. Later on, we will also give a technical sense
to the following terms: infinite path, semifinite path, and E-path.

Definition 2.6 (Monomials). We continue with our standing assumptions on (E,C). We now
define the monomials as the possible multiplicative expressions one can form using generators
(excluding connectors) corresponding to a given prime. They will be denoted by m(p) for
p ∈ I. Namely,

(1) if p is a free prime, we define

m(p) = (tv
p

i1
)d1 . . . (tv

p

ir )dr
k(p)∏
j=1

α(p, j)kj(α(p, j)∗)lj , d1, . . . , dr ∈ Z \ {0}, r ≥ 0, kj, lj ≥ 0
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(2) if p is a regular prime, we define

m(p) = (tvi1)
d1 . . . (tvir)

drγν∗,

where γ, ν are paths of finite length in Ep satisfying s(γ) = v, v ∈ E0
p , and r(γ) = r(ν).

For p a free prime, two monomials m(p) and m′(p) corresponding to p are equal if they have
the same exponents of tv

p

i , α(p, j) and α(p, j)∗. For p a regular prime, two monomials m(p)
and m′(p) corresponding to p are equal if they have the same exponents of tvi , and γ = γ′,
ν = ν ′, where γ, ν correspond to m(p) and γ′, ν ′ correspond to m′(p).

Guided by the multiplication rules defined in 2.2, we will define an inverse semigroup S
using finite paths and monomials. For the moment, let us deal with the set of monomials at
a given p ∈ I.

Lemma 2.7. For each p ∈ I, the set of monomials at p, together with {0} in case p ∈ Ireg,
forms a ∗-semigroup. Moreover we have

(2.1) m(p)m(p)∗m(p) = m(p)

for each monomial m(p).

Proof. Assume first that p is regular. Then, by using our assumption that |sEp(v)| ≥ 2 for all
v ∈ E0

p (Definition 1.3(2)), we see, using [1, Corollary 1.5.12], that the set of monomials m(p)
at p, together with {0}, can be identified with a ∗-subsemigroup of the multiplicative semi-
group of the Leavitt path algebra LZ[t±i ](Ep), where Z[t±i ] is the ring of Laurent polynomials

on {ti | i ∈ N}. Under this correspondence (tvi )
± ←→ (ti)

± · v for each v ∈ E0
p . Equality (2.1)

is easily verified.
Suppose now that p is free. Then, the multiplication of p-monomials is defined using the

rules in 2.2. Concretely, suppose that

ms(p) =
∏
i

(tv
p

i )d
(s)
i

k(p)∏
j=1

α(p, j)k
(s)
j (α(p, j)∗)l

(s)
j

for s = 1, 2, 3, then

m1(p)m2(p) = m3(p)

if and only if d
(3)
i = d

(1)
i + d

(2)
i for all i ∈ N and k

(3)
j = max{k(1)

j , k
(1)
j + k

(2)
j − l

(1)
j }, and

l
(3)
j = max{l(2)

j , l
(2)
j + l

(1)
j − k

(2)
j } for each j ∈ {1, . . . , k(p)}. Associativity, as well as the

formula (2.1), are easily checked. �

Using this whole data, we define the desired semigroup S. First, we fix the set:

Definition 2.8. Let (E,C) be an adaptable separated graph. Then, we define S to be the
union of {0} and the set of all triples (γ,m(p), η), where γ, η are finite paths (Definition 2.4),
m(p) is a monomial at some prime p ∈ I (Definition 2.6), and r(γ) = s(m(p)), r(η) =
r(m(p)). So, S consists of combinations of “finite paths” and monomials m. We shall use
a less formal notation, writing the elements of S just as concatenations γm(p)η∗ of a finite
path, a monomial and the star of a finite path. Note that finite paths do not involve the
variables tvi , whilst monomials may involve these variables.
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Our next goal is to show that S is a ∗-semigroup, obeying the multiplication rules stated
in 2.2. It is important to highlight here that only the purely multiplicative relations in 2.2 are
used to define the product of S. Explicitly, this means that relations 2.2(ii)(d) and 2.2(1)(ii)
are not used to define it. In order to define its product, let us firstly define what we call
the translation part φη(m(p)) for η a finite path from v ∈ E0

p to w ∈ E0
p′ , with p > p′,

and m(p) a monomial at p. This translation part is a monomial involving only the variables

(t
r(η)
i )±, designed to satisfy the relation

(2.2) m(p)η = η̃φη(m(p)).

for a suitable finite path η̃, in case the product m(p)η is nonzero.
Assume first that p is a free prime. By definition, the monomial m(p) is of the form

m(p) = (tv
p

i1
)d1 . . . (tv

p

ir )dr
k(p)∏
j=1

α(p, j)kj(α(p, j)∗)lj

and the finite path to w ∈ E0
p′ has the form

η = γ̂vp,v1 γ̂v1,v2 . . . γ̂vn,w = α(p, i)mβ(p, i, t)γ̂v1,v2 . . . γ̂vn,w with r(β(p, i, t)) = v1.

We write η = η1η2, where η1 = α(p, i)mβ(p, i, t) and η2 = γ̂v1,v2 . . . γ̂vn,w.
Thus, applying the commutation rules 2.2(1)(iii), we get

m(p)η = (tv
p

i1
)d1 . . . (tv

p

ir )dr
k(p)∏
j=1

α(p, j)kj(α(p, j)∗)ljα(p, i)mβ(p, i, t)η2

(tv
p

i1
)d1 . . . (tv

p

ir )dr
(∏
j 6=i

α(p, j)kj(α(p, j)∗)lj
)
α(p, i)ki(α(p, i)∗)liα(p, i)mβ(p, i, t)︸ ︷︷ ︸

(∗)

η2.

Looking carefully at (∗), we just have two possibilities:

(1) if li > m, then (∗) = 0 by 2.2(1)(i),(v); and
(2) if li ≤ m, then (∗) = α(p, i)ki+m−liβ(p, i, t).

Hence, in the latter case (the other is zero), one has that

m(p)η = α(p, i)ki+m−liβ(p, i, t)η2φη(m(p)),

where φη(m(p)) is a monomial in (twi )± that comes from:

• passing (tv
p

i1
)d1 . . . (tv

p

ir )dr to the right through η using repeatedly the rules in 2.2(2),
and
• passing the product

∏
j 6=i α(p, j)kj(α(p, j)∗)lj to the right through η using again re-

peatedly the rules in 2.2(2). (Note that 2.2(2)(iv) is used here in an essential way.)

We have thus shown that the relations 2.2 force us to define the product m(p)η in the
following way:

Definition 2.9. Assume that p ∈ I is free, and adopt the above notation for m(p) and η.
Then we define the product m(p)η to be nonzero if and only if vp = s(η) and li ≤ m. In this
case we set

m(p)η = η̃φη(m(p)).
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where η̃ = α(p, i)ki+m−liβ(p, i, t)η2 and φη(m(p)) is a monomial involving only the variables

(t
r(η)
s )±, s ∈ N, as described above.

We now consider the case where p is a regular prime.

Definition 2.10. Assume that p ∈ I is regular, and let

m(p) = (tvi1)
d1 . . . (tvir)

drγν∗

be a monomial at p, with s(γ) = v, s(ν) = v′ and v, v′ ∈ E0
p . Let η be a finite path from v′

to w of the form
η = γ̂v′,v1 γ̂v1,v2 . . . γ̂vn,w = γ′βγ̂v1,v2 . . . γ̂vn,w,

where γ′ is a path in the graph Ep connecting v′ and v′′, and β is a connector with s(β) =
v′′ and r(β) = v1.

The product m(p)η is nonzero if and only if γ′ = νγ′′, and then

m(p)η = (tvi1)
d1 . . . (tvir)

dr(γγ′′)βγ̂v1,v2 . . . γ̂vn,w = η̃φη(m(p)),

where η̃ = γγ′′βγ̂v1,v2 . . . γ̂vn,w and φη(m(p)) is a monomial in {(twi )±} that comes from passing
(tv
′′
i1

)d1 . . . (tv
′′
ir )dr to the right through βγ̂v1,v2 . . . γ̂vn,w by repeated use of the rules in 2.2(2).

We have thus established the formula (2.2) for any prime p in I, whenever the product
m(p)η is nonzero. Note that φη(m(p)) only depends on m(p) and on the connectors appearing
in η. In particular, one has φη(m(p)) = φη̃(m(p)). Note also that φη(m(p)∗) = φη(m(p))∗,
so that φη preserves adjoints.

Using the above partial definitions, we are now ready to fully define the multiplication of
the elements in S.

Definition 2.11. Let γ1m(p)η∗1 and γ2n(p′)η∗2 be two elements in S. We define

γ1m(p)η∗1 · γ2n(p′)η∗2 =


γ1[m(p)φη′1(n(p′))](η2η̃

′
1)∗ if η1 = γ2η

′
1 andn(p′)∗η′1 6= 0

γ1γ̃
′
2[φγ′2(m(p))n(p′)]η∗2 if γ2 = η1γ

′
2 and m(p)γ′2 6= 0

0 otherwise

Lemma 2.12. Let (E,C) be an adaptable separated graph. Then the set S, endowed with the
above operation, is a ∗-semigroup, and we have s = ss∗s for all s ∈ S.

Proof. The only delicate point is the associativity. Assume that we have three elements
si = γim(pi)η

∗
i . Write A = (s1s2)s3 and B = s1(s2s3). We will show that if A 6= 0 then

B 6= 0 and A = B. The result then follows from symmetry.
So assume that A 6= 0. We will suppose that p1, p2, p3 are free primes, leaving the easier

case where one of them is regular to the reader. There are four cases to consider, all similar.
So we will only provide the details in one case. Recall that associativity of the semigroup of
monomials at a given prime has been established in Lemma 2.7.

Write

m(ps) =
∏
i

(tv
ps

i )d
(s)
i

k(ps)∏
j=1

α(ps, j)
k
(s)
j (α(ps, j)

∗)l
(s)
j

for s = 1, 2, 3. We suppose that η1 = γ2η
′
1 and that k

(2)
i0
≤ m1, where

η′1 = α(p2, i0)m1β(p2, i0, t0) · · · .
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By Definition 2.11, we then have that s1s2 is nonzero and

s1s2 = γ1[m(p1)φη′1(m(p2))](η2η̃
′
1)∗,

where η̃′1 = α(p2, i0)m1+l
(2)
i0
−k(2)i0 β(p2, i0, t0) · · · (see Definition 2.9). Now assume that γ3 =

(η2η̃
′
1)γ′3, and that l

(1)
i1
≤ m2, where γ′3 = α(p1, i1)m2β(p1, i1, t1) · · · . Then the product A =

(s1s2)s3 is nonzero and

A = (γ1γ̃
′
3)
[
φγ′3

(
m(p1)φη′1(m(p2))

)
m(p3)

]
η∗3.

Let us check that s2s3 6= 0. First note that γ3 = η2γ
′′
3 , where γ′′3 = η̃′1γ

′
3. Therefore, we have

γ′′3 = η̃′1γ
′
3 = α(p2, i0)m1+l

(2)
i0
−k(2)i0 β(p2, i0, t0) · · · .

It follows that s2s3 6= 0 if and only if l
(2)
i0
≤ m1 + l

(2)
i0
− k

(2)
i0

, which is equivalent to our

assumption m1 ≥ k
(2)
i0

. Hence s2s3 is nonzero, and

s2s3 = (γ2γ̃
′′
3 )[φγ′′3 (m(p2))m(p3)]η∗3,

where γ̃′′3 = α(p2, i0)m1+l
(2)
i0
−k(2)i0

+k
(2)
i0
−l(2)i0 β(p2, i0, t0) · · · = η′1γ

′
3. Now we have

γ2γ̃
′′
3 = (γ2η

′
1)γ′3 = η1γ

′
3,

and so the product s1(s2s3) is nonzero if and only if m2 ≥ l
(1)
i1

, which holds by our hypothesis.
So we get

B = s1(s2s3) = (γ1γ̃
′
3)[φγ′3(m(p1))φγ′′3 (m(p2))m(p3)]η∗3.

Hence, the equality A = B follows from the computation

φγ′3

(
m(p1)φη′1(m(p2))

)
= φγ′3(m(p1))φγ′3φη̃′1(m(p2)) = φγ′3(m(p1))φγ′′3 (m(p2)).

This concludes the proof of the result. �

We have the following natural characterization of the ∗-semigoup S:

Proposition 2.13. Let (E,C) be an adaptable separated graph. Then, there is a natural
∗-isomorphism S(E,C) ∼= S.

Proof. It is easy to see that there is a ∗-homomorphism ϕ : S(E,C)→ S sending the gener-
ators of S(E,C) to their canonical images in S. The obvious map ψ : S → S(E,C) is easily
seen to be a ∗-homomorphism, which is clearly the inverse of ϕ. �

2.2. Idempotents of S(E,C). Another crucial point of the given characterization of S(E,C)
is the easy description of the idempotent elements in S(E,C).

Definition 2.14 (Set of idempotents). We denote the set of idempotents in S(E,C) by E .
By the rules of multiplication just defined, we easily deduce that the idempotents are the
elements of the form:

γm(p)γ∗,

where γ is a finite path to v ∈ E0
p and the monomial m(p) is either equal to the product∏k(p)

j=1 α(p, j)lj(α(p, j)∗)lj , when p is free, or λλ∗, for a path of finite length λ in the graph Ep,

with s(λ) = v, when p is regular. Hence, an idempotent never contains the variables tvi .
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Remark 2.15. (1) Let γ1m(p)γ∗1 and γ2n(p′)γ∗2 be two idempotents in S(E,C). Notice
that m(p)n(p′) = 0 if p 6= p′. Moreover, if p = p′ then m(p)n(p′) = n(p′)m(p), i.e.
idempotent monomials commute.

(2) Notice that if e = γm(p)γ∗ is an idempotent, then φη(m(p)) is trivial for any compat-
ible finite path η, and moreover η̃ = η (see Definitions 2.9 and 2.10). In particular,
when we multiply e · γ1n(p′)γ∗2 , with γ1 = γη and η a non-trivial finite path, we have
the following:
(a) If p is free and m(p)η 6= 0, then

e · γ1n(p′)γ∗2 = γm(p)γ∗γηn(p′)γ∗2 = γηn(p′)γ∗2 = γ1n(p′)γ∗2 .

Hence, it follows that either e · γ1n(p′)γ∗2 = γ1n(p′)γ∗2 or e · γ1n(p′)γ∗2 = 0.
(b) If p is regular, when computing e · γ1n(p′)γ∗2 , one has to look at the corresponding

paths of finite length inside Ep. In this situation, depending on them, the product
might be either zero or γ1n(p′)γ∗2 , as before.

Gathering all the tools described, we finally conclude that S is an inverse semigroup.

Proposition 2.16. Let (E,C) be an adapated searated graph. Then, the semigroup S(E,C)
is an inverse semigroup.

Proof. By [23, Theorem 1.1.3], it is enough to show that given any two elements e, f ∈ E ,
then one has that ef = fe. To this end, we write e, f in standard form, i.e. e = γ1m(p)γ∗1
and f = γ2n(p′)γ∗2 , where γ1 is a finite path to p and γ2 is a finite path to p′.

Assume that ef 6= 0. Then either γ1 = γ2 or γ2 = γ1η for a non-trivial finite path η and
the product m(p)η is nonzero, or γ1 = γ2η for a non-trivial finite path η and n(p′)∗η = n(p′)η
is nonzero. In the first case we obtain p = p′ and the result follows from the commutation
of idempotent monomials. We shall see that in the second case we have ef = f = fe. By
symmetry we will have ef = e = fe in the third case.

So assume that γ1 = γ2η for a non-trivial finite path η and that m(p)η 6= 0. Then, using
the computation in Remark 2.15 we get

ef = γ1m(p)γ∗1γ2n(p′)γ∗2 = γ1ηn(p′)γ∗2 = f.

Similarly (or taking stars in the above), one gets fe = f . �

Knowing that S(E,C) is an inverse semigroup, it is natural to describe the natural order
in E , the set of projections. This will play an important role in the sequel. The following
describes the order induced on E . We omit the proof since it follows from the same techniques
appearing in later proofs.

Lemma 2.17. Let e, f ∈ E described as e = γ1m(p)γ∗1 , f = γ2n(p′)γ∗2 . Then ef = 0 except
in the following cases:

(1) γ2 = γ1η for some non-trivial finite path η such that m(p)η 6= 0. In this case, we
have f ≤ e.

(2) γ1 = γ2η for some non-trivial finite path η such that n(p′)η 6= 0. In this case, we
have e ≤ f .

(3) γ1 = γ2. In this case we have p = p′, and
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(a) if p is free, then ef = γ1m
′(p)γ∗1 , where, for each 1 ≤ i ≤ k(p), the exponent of

α(p, i) in m′(p) is the maximum between the exponents of α(p, i) in m(p) and in
n(p).

(b) if p is regular, and m(p) = λλ∗, n(p) = µµ∗, then either µ = λν ′, and then f ≤ e,
or λ = µλ′, and then e ≤ f .

Remark 2.18. If p is a free prime, and e = γm(p)γ∗, f = γn(p)γ∗, we can also define the
join e ∨ f of e and f by the formula

e ∨ f = γm(p)γ∗,

where, for each 1 ≤ i ≤ k(p), the exponent of α(p, i) in m(p) is the minimum amongst the
exponents of α(p, i) in m(p) and in n(p). It is clear that e∨ f is the least upper bound of
e and f in E .

2.3. The semigroup S(E,C) is E∗-unitary. Continuing our analysis of the semigroup
S(E,C), in this last part of the section we show that it is E∗-unitary; recall that an inverse
semigroup with zero S is E∗-unitary if for any s ∈ S, e ∈ E \ {0}, e ≤ s implies s ∈ E . This
will have crucial implications later.

Proposition 2.19. Let (E,C) be an adaptable separated graph. Then the associated inverse
semigroup S(E,C) is E∗-unitary.

Proof. Fix a nonzero idempotent e = γ1m(p)γ∗1 and an element s = γ2n(q)γ∗3 , and suppose
that e ≤ s; that is, e = es. We will distinguish several cases.

• (γ1 ≺ γ2). By assumption, we have γ2 = γ1γ, for some non-trivial finite path γ; hence,

γ1m(p)γ∗1 = γ1m(p)γ∗1γ2n(q)γ∗3 = γ1γ̃[φγ(m(p))n(q)]γ∗3 .

Since e is an idempotent, this is equal to γ2n(q)γ∗3 . Therefore, γ1 = γ2 = γ3, contra-
dicting γ1 ≺ γ2.
• (γ1 = γ2). In this case, we have

γ1m(p)γ∗1 = γ1m(p)n(q)γ∗3 ,

obtaining that γ1 = γ2 = γ3, p = q and m = mn. We consider two cases:
(i) If p ∈ I is free, then by the description of the monomials in this case, one obtains

that n is an idempotent monomial. Therefore, s is an idempotent, as desired.
(ii) If p ∈ I is regular, then by the description of the monomials, it follows that

m(p) = α1α
∗
1 and n(q) = α2α

∗
3 for some paths α1, α2, α3 in Ep. Hence,

α1α
∗
1 = α1α

∗
1α2α

∗
3,

which implies that α3 = α2; hence, s is an idempotent.
• (γ2 ≺ γ1). In this case, let us write γ1 = γ2η for some non-trivial finite path η. We

have

γ1m(p)γ∗1 = γ1m(p)η∗n(q)γ∗3 = γ1[m(p)φη(n(q))](γ3η̃)∗.

We get γ1 = γ2η = γ3η̃. Since depth(η̃) = depth(η), we have that depth(γ3) =
depth(γ2), and consequently we obtain γ2 = γ3 and η̃ = η. Moreover, φη(n(q)) = 1.
Now, we separate two cases:
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(i) If q ∈ I is free, then, writing η = α(p, i)mβ(p, i, s) · · · , one gets from η = η̃ that
the exponents of α(p, i) and of α(p, i)∗ in n(q) are equal. Now, since φη(n(q)) = 1,
we obtain that, for j 6= i, also the exponents of α(p, j) and α(p, j)∗ in n(q) are
equal, and n(q) does not involve the variables tv

q

i . Hence, n(q) is an idempotent
monomial. Consequently, s = γ2n(q)γ∗2 ∈ E .

(ii) If q ∈ I is regular, then n(q) = αµ∗. Write η = αµ′β · · · , where β is the first
connector appearing in the expression of η. Recalling that n(q)∗η = η̃φη(n(q)∗) =
η, we obtain

µµ′β · · · = (µα∗)(αµ′β · · · ) = αµ′β · · · ,
so that µ = α and n(q) = αα∗ is an idempotent monomial, showing that s is
idempotent.

�

As a consequence of Proposition 2.19 and [17, Proposition 6.4 and 6.2], we obtain the
following result about the Hausdorff property of the tight groupoid Gtight(S(E,C)) associated
to the inverse semigroup S(E,C) (see Section 4 for further details).

Corollary 2.20. Suppose that (E,C) is an adapated separated graph. Then the tight groupoid
Gtight(S(E,C)) associated to S(E,C) is Hausdorff.

3. Filters of the inverse semigroup S(E,C)

In this section we study the filters associated to the inverse semigroup S(E,C), and we
characterize its tight filters. They will be useful in the next section to determine the groupoid
induced by the partial action of the inverse semigroup on the set of tight filters.

We first recall the definition of a filter in a semilattice E of idempotents.

Definition 3.1. A filter on E is a non-empty subset η ⊂ E such that :

(1) 0 6∈ η.
(2) If e ∈ η, and f ∈ E satisfy e ≤ f , then f ∈ η.
(3) If e, f ∈ η, then ef ∈ η.

We will denote the set of filters on E as Ê0.

From now on, and in accordance with the notation established in Section 2, we let E
denote the semilattice of idempotents of the inverse semigroup S(E,C) associated to a fixed
adaptable separated graph (E,C).

Recall that we can endow the set Ê0 of filters with a natural topology such that it becomes
a totally disconnected locally compact Hausdorff space. A basis of this topology is given as
follows. For finite sets X, Y ⊆ E , define

U(X, Y ) = {η ∈ Ê0 | X ⊆ η and Y ∩ η = ∅}.
Then, {U(X, Y ) | X, Y ⊆ E are finite} is a basis for the abovementioned topology.

Let us provide a concrete description of any η ∈ Ê0 using the concrete form of the idempo-
tent elements. Recall that an idempotent e ∈ E is of the form γm(p)γ∗ (see Definition 2.14),
and that depth(γ) denotes the depth of the finite path γ. Also, remembering that the poset
I is finite, we see that the depth of any possible finite path γ is bounded on N.

In order to understand the filters, it is convenient to introduce the following definition.
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Definition 3.2. Let γ be a finite path. A semifinite path µ starting at γ is one of the
following:

(1) If r(γ) = vp, with p a free prime, then

µ = γ

k(p)∏
j=1

α(p, j)kj ,

where 0 ≤ kj ≤ ∞ for all j ∈ {1, . . . , k(p)}. We say that µ is an infinite path if
kj =∞ for all j ∈ {1, . . . , k(p)}.

(2) If r(γ) = v with v ∈ E0
p and p a regular prime, then

µ = γλ,

where λ is either a finite or an infinite path in the graph Ep. We say that µ is an
infinite path if λ is an infinite path in Ep.

Definition 3.3. An initial segment of the semifinite path µ is a semifinite path µ′ of the
form µ′ = γ′λ′, where γ′ is a finite path such that γ = γ′γ′′ for some finite path γ′′, and either:

(1) γ = γ′, and

(i) if p is free, then λ′ =
∏k(p)

j=1 α(p, j)lj with lj ∈ Z+ and lj ≤ kj for all j =

1, . . . , k(p), and
(ii) if p is regular, then λ′ is an initial segment of the path λ in the graph Ep; or

(2) γ′ 6= γ, and

(i) if γ′′ = α(q, i)mβ(q, i, s) · · · , where q ∈ Ifree, then λ′ =
∏k(q)

j=1 α(q, j)tj with tj ∈
Z+, j = 1, . . . , k(q), and ti ≤ m, and

(ii) if [r(γ′)] ∈ Ireg, then λ′ is an initial segment of γ′′ that does not contain a
connector.

With these definitions of finite and semifinite paths, all finite paths are semifinite. However,
there are semifinite paths of finite length which are not finite paths according to our definition.

Our goal is to show that the filters on E correspond to the collection of all semifinite paths.
To this end, we need the following definition. Let µ = γλ be a semifinite path. Then, for
each initial segment µ′ = γ′λ′ of µ, we will denote the idempotent arising from µ′ as:

e(µ′) := γ′λ′(λ′)∗(γ′)∗ ∈ E .
Using this notion, we show the desired equivalence.

Theorem 3.4. Let S be the collection of all semifinite paths. Then there is a bijective
correspondence

ϕ : S → Ê0

such that, for µ ∈ S,

ϕ(µ) = {e(µ′) | µ′ is an initial segment of µ}.

Proof. It is easy to see that ϕ(µ) is a filter, and that the map ϕ is one-to-one.
It remains to check that ϕ is surjective. Let η be a filter on E . Observe that, since I is a

finite poset, there is a maximum for the depths of the finite paths appearing in the expressions
of the elements of η. Let e = γm(p)γ∗ be an element in η such that γ has maximum depth,
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say k. We distinguish two cases. If p is a regular prime, then there exists a path (of finite or
infinite length) λ in Ep such that

{λ′ | γλ′(λ′)∗γ∗ ∈ η} = {λ′ | λ = λ′λ′′};

that is, the set of paths λ′ of finite length in Ep such that γλ′(λ′)∗γ∗ belongs to η is the set
of initial segments of the path λ. Write µ = γλ for this path λ, and observe that ϕ(µ) = η.
If p is a free prime, then for each 1 ≤ j ≤ k(p), we let kj ∈ Z+ ∪ {∞} be the supremum of
the positive integers lj such that η contains an element of the form γm′(p)γ∗ such that the
exponent of α(p, j) in m′(p) is lj. Now set

µ = γ

k(p)∏
j=1

α(p, j)kj ,

which is a semifinite path.
We claim that ϕ(µ) = η. We first check that ϕ(µ) ⊆ η. Write µ = γλ and let µ′ = γ′λ′ be an

initial segment of µ. If r(γ′) is a regular prime, then it follows easily that γ′(λ′)(λ′)∗(γ′)∗ ∈ η,
so that e(µ′) ∈ η. Assume that q := r(γ′) is a free prime. If γ′ = γ, then write µ′ = γλ′,

where λ′ =
∏k(p)

j=1 α(p, j)lj(α(p, j)∗)lj , where the lj are non-negative integers with lj ≤ kj for

all j. By definition of kj, for each 1 ≤ j ≤ k(p) there exists fj = γmj(p)γ
∗ ∈ η such that the

exponent of α(p, j) in mj(p) is at least lj. Let f =
∏k(p)

j=1 fj. Since η is a filter, we have that

f ∈ η, and the exponent of each α(p, j) in f is ≥ lj, for j = 1, . . . , k(p). Hence

e(µ′)f = (γλ′(λ′)∗γ∗)f = f.

Since η is a filter, we get that e(µ′) = γλ′(λ′)∗γ∗ ∈ η, as desired. Finally, assume now that
γ′ 6= γ, and let

λ′ =

k(q)∏
j=1

α(q, j)tj(α(q, j)∗)tj , γ′′ = α(q, i)mβ(q, i, s) · · · ,

where γ = γ′γ′′. Since ti ≤ m, we have that e(µ′)e = e (see Lemma 2.17). Therefore e < e(µ′)
and since e ∈ η and η is a filter, we get that e(µ′) ∈ η. Hence we have verified that ϕ(µ) ⊆ η.

Now we prove that η ⊆ ϕ(µ). If f = γ′n(q)(γ′)∗ is another element of η, then the condition
that ef 6= 0, Lemma 2.17, and the maximality of k, give that γ = γ′γ′′ for a finite path γ′′.
If γ′′ is trivial, then γ = γ′, and by definition of µ we have that n(p) = λ′(λ′)∗, where λ′ is

an initial segment of λ in the graph Ep if p is regular, and λ′ =
∏k(p)

j=1 α(p, j)lj , where lj are
non-negative integers with lj ≤ kj if p is free. In either case, µ′ = γλ′ is an initial segment of
µ and so, that f ∈ ϕ(µ). Assume that γ′ 6= γ. If q is regular, then f = γ′λ′(λ′)∗(γ′)∗, where
λ′ is a path in Eq and, since fe 6= 0, we get that λ′ must be an initial segment of γ′′. If q is

free, write γ′′ = α(q, i)mβ(q, i, s) · · · and n(q) =
∏k(q)

j=1 α(q, j)tj(α(q, j)∗)tj . Since fe 6= 0 we

see from Lemma 2.17 that ti ≤ m, and thus µ′ := γ
∏k(q)

j=1 α(q, j)tj is an initial segment of µ.
Hence

f = e(µ′) ∈ ϕ(µ). �

Corollary 3.5. The above isomorphism ϕ restricts to a bijection between the set of infinite
paths and the set Ê∞ of ultrafilters.
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Proof. This follows from Theorem 3.4 and the fact that the ultrafilters are precisely the
maximal filters. �

We can now show that the ultrafilters coincide with the tight filters. Recall that, by

[17, Theorem 12.9], the space Êtight of tight filters coincides with the closure of the space of

ultrafilters Ê∞ in the space of filters Ê0.

Theorem 3.6. The space Ê∞ of ultrafilters is closed in the space Ê0 of filters. Consequently,
the space of ultrafilters coincides with the space of tight filters.

Proof. It is enough to show that the complement of Ê∞ in Ê0 is open. Let η = ϕ(µ), where
µ = γλ is a semifinite path which is not an infinite path. If w := r(γ), with w ∈ E0

p and
p a regular prime, then λ must be a finite path in the graph Ep. Let X = {µµ∗} and
Y = {µee∗µ∗ | e ∈ s−1

E (rE(λ))}. Since E is a row-finite graph, it follows that Y is a finite set.
Now

U(X, Y ) = {η},
which implies that η is an isolated point of Ê0 in this case.

Now suppose that p is a free prime, and that w = vp. Then, λ =
∏k(p)

j=1 α(p, j)kj , and, by
assumptions, there exists an index i0 such that ki0 is finite. Assume, for convenience, that
i0 = 1. Define semifinite paths µ′ and δ by

µ′ := γα(p, 1)k1 and δ := γα(p, 1)k1+1,

which define idempotents e(µ′) = µ′(µ′)∗, e(δ) = δδ∗ ∈ E . Let

Y1 = {e(µ′β(p, 1, s)) | 1 ≤ s ≤ g(p, 1)},

and define

X = {e(µ′)} and Y = {e(δ)} ∪ Y1.

Then U(X, Y ) is a neighborhood of η consisting entirely of semifinite paths which are not
infinite. Indeed, if η′ ∈ U(X, Y ), then either η′ is of the form ϕ(µ′′), where µ′′ is a semifinite
path of the form

γ

k(p)∏
j=1

α(p, j)lj ,

where l1 = k1, which is therefore not an infinite path, or it is of the form ϕ(ρ), where
ρ = γα(p, j)mβ(p, j, s)ρ′, where j > 1 and ρ′ is a semifinite path. Notice that in this case,

e(δ) = γα(p, 1)k1+1(α(p, 1)∗)k1+1γ∗ ∈ ϕ(ρ) = η′

because e(δ) ≥ g, where g = e(γα(p, j)mβ(p, j, s)) ∈ η′. Hence, e(δ) ∈ η′, contradicting that
η′ ∈ U(X, Y ).

So, this second case is not possible and we obtain that U(X, Y ) is a neighborhood of η
consisting entirely of semifinite paths which are not infinite. �

We close this section by providing an important characterization of the topology associated
to the space Ê∞. To do so, we use the identification of the space of ultrafilters Ê∞ with the
space of infinite paths.
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Definition 3.7. We denote by P the set of semifinite paths of the form µ = γλ, where γ
is a finite path, and λ is a path of finite length in the component of a regular prime, or

λ =
∏k(p)

j=1 α(p, j)kj for kj ∈ Z+, 1 ≤ j ≤ k(p) for a free prime p.

Notice that every e ∈ E is of the form e(µ) for a unique µ ∈ P . Accordingly, elements of
P will be called E-paths. For µ ∈ P , write

Z(µ) = {η ∈ Ê∞ | µµ∗ ∈ η}.
Depending on the situation, Z(µ) might also be denoted by the idempotent it determines,

i.e., Z(e(µ)). Notice that Z(µ) = U({µµ∗}, ∅) ∩ Ê∞.

Given finite X, Y ⊆ P , we write U∞(X, Y ) := U(X, Y ) ∩ Ê∞. Then the induced topology

on Ê∞ is generated by {U∞(X, Y ) : X, Y ⊆ P are finite}. The next result provides some
properties of the sets Z(µ) just defined.

Proposition 3.8. Let P be the set of E-paths. Then

(1) the family {Z(µ) | µ ∈ P} ∪ {∅} is closed under finite intersections;

(2) the family {Z(µ) | µ ∈ P} is a basis for the topology of Ê∞;
(3) for µ, ρ ∈ P, the set Z(µ) \ Z(ρ) is a finite disjoint union of sets of the form Z(µ′),

for µ′ ∈ P; and
(4) for each µ ∈ P, the set Z(µ) is open and compact.

Proof. (1) If µ = γλ and ρ = γ′λ′, where γ, λ and γ′, λ′ are as in Definition 3.7, then
Z(µ)∩Z(ρ) = ∅ except when either µ is an initial segment of ρ (in which case Z(ρ) ⊆ Z(µ)),

or ρ is an initial segment of µ (in which case Z(µ) ⊆ Z(ρ)), or γ = γ′ and λ =
∏k(p)

j=1 α(p, j)kj ,

λ′ =
∏k(p)

j=1 α(p, j)lj for kj, lj ∈ Z+, 1 ≤ j ≤ k(p), for a free prime p. In the latter case, we
have

Z(µ) ∩ Z(ρ) = Z(γ

k(p)∏
k=1

α(p, j)tj),

where tj = max{kj, lj}, for j = 1, . . . , k(p).
(2) This is [18, Proposition 2.5].
(3) Suppose that Z(µ) \ Z(ρ) is non-empty for a given pair µ, ρ ∈ P . Since

Z(µ) \ Z(ρ) = Z(µ) \ (Z(µ) ∩ Z(ρ)),

we may assume, using (1), that Z(ρ) ⊂ Z(µ), and hence that µ is an initial segment of ρ.
Thus, Z(µ)\Z(ρ) is the set of infinite paths which have µ as initial segment but do not have

ρ as initial segment. Now, using that E is row-finite, we see that it suffices to consider the
situation where there is a finite path γ ending at vp for some p ∈ Ifree, and there are exponents
lj ≤ kj for all j, with strict inequality for at least one of the indices j ∈ {1, . . . , k(p)}, such
that

µ = γ

k(p)∏
j=1

α(p, j)lj and ρ = γ

k(p)∏
j=1

α(p, j)kj .

We have

Z(µ) \ Z(ρ) =
⊔

{j:lj<kj}

⊔
lj≤tj<kj

g(p,j)⊔
s=1

Z(γα(p, j)tjβ(p, j, s)),
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which gives the desired decomposition.
(4) This is a standard argument, which we review for the sake of completeness. The

topology of Ê0 is the topology induced by the embedding into the compact set {0, 1}E . The

sets of the form U(X, ∅), for X 6= ∅, are compact in Ê0 because they are closed subsets of the
basic compact and open subsets

{f ∈ {0, 1}E | f(x) = 1 ∀x ∈ X}

of {0, 1}E . (Note that the assumption X 6= ∅ is crucial here). Since the space Ê∞ is closed in

Ê0 (Theorem 3.6), we conclude that U∞(X, ∅) = U(X, ∅) ∩ Ê∞ is compact in Ê∞. �

For the next corollary, we need a straightforward lemma, probably well-known.

Lemma 3.9. Let X be a topological space with a basis B of the topology satisfying the following
properties:

(1) Each B ∈ B is a compact open subset of X.
(2) B is closed under finite intersections
(3) For each B1, B2 ∈ B, we have that B1 \B2 is a finite disjoint union of sets from B.

Then every compact open subset of X is a finite disjoint union of members of B.

Proof. Let U be a compact open subset of X. By compactness we can write U =
⋃
i∈I Bi,

where I is finite and Bi ∈ B. Now we can refine this decomposition to a disjoint decomposition
into compact and open subsets of the form

(Bi1 ∩Bi2 ∩ · · · ∩Bir) \
[ ⋃
j /∈{i1,...,ir}

(Bi1 ∩Bi2 ∩ · · · ∩Bir ∩Bj)
]
,

where i1, . . . , ir are different elements of I, and 1 ≤ r ≤ |I|. (In case r = |I| this term should
be interpreted as

⋂
i∈I Bi.) Now use the hypothesis to express each of these sets as a finite

disjoint union of members of B. �

Corollary 3.10. The space Ê∞ of ultrafilters admits a basis of compact open subsets, namely
the family {Z(µ)}µ∈P . Moreover, every compact open subset of Ê∞ is a finite disjoint union
of sets of the form Z(µ), for µ ∈ P.

Proof. By Proposition 3.8, the family {Z(µ)}µ∈P ∪{∅} satisfies the hypothesis of Lemma 3.9.
Therefore the result follows from Lemma 3.9. �

4. The K-algebra SK(E,C) induced by the inverse semigroup S(E,C)

Following the notation of section 2, given an adaptable graph (E,C), we denote its associ-

ated inverse semigroup by S(E,C), and it space of tight filters by Êtight. By Corollary 3.5 and
Theorem 3.6, the set of tight filters corresponds to the set of infinite paths. The main result
of this section is Theorem 4.14, where we prove that the Steinberg algebra AK(Gtight(E,C))

of the groupoid Gtight(E,C) of germs of the canonical action of S(E,C) on Êtight is canonically
isomorphic to the ∗-algebra SK(E,C) defined by the family of generators E0 ∪ E1 ∪ {(tvi )±}
and the relations given in 2.2. In order to ease understanding this section we have divided
it in three parts. Firstly we recall the construction of the groupoid Gtight(E,C). Then, we
study the behaviour of SK(E,C), and we finish the section proving Theorem 4.14.
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4.1. Steinberg algebras and inverse semigroup representations. In this subsection
we explain the construction of the groupoid of germs of a partial action of an inverse semi-
group S, and review the fact that the Steinberg algebra is the universal *-algebra for tight
representations of S.

Let S be an inverse semigroup with 0, and denote by E its semilattice of idempotents. First
recall that, if F ⊆ E is any subset, then a finite subset Σ ⊆ F is a finite cover of F when
for any 0 6= f ∈ F there exists e ∈ Σ such that fe 6= 0.

Definition 4.1. (cf. [17], [36, Section 5]) Let S be an inverse semigroup, and A be a ∗-
algebra over a field with involution K. Then, we say that π : S → A is a representation if
π(st) = π(s)π(t) and π(s∗) = π(s)∗ for all s, t ∈ S. A representation π is said to be a tight
representation if for every idempotent e ∈ E and every finite cover Z of Fe := {f ∈ E | f ≤ e},
we have

π(e) =
∨
z∈Z

π(z)

in the (generalized) Boolean algebra of idempotents of the commutative ∗-subalgebra AE of
A generated by π(E).

Given a semilattice E with 0, the space Ê is the space of semicharacters on E , that is
the space of non-zero semilattice homomorphisms ϕ : E → {0, 1}, endowed with the relative

topology from {0, 1}E . The space of characters Ê0 is the space of those semicharacters ϕ such
that ϕ(0S) = 0 [17, Definition 12.4], and may be identified with the space of filters over E
(see Definition 3.1) via the map that associates to each filter F its characteristic function
1F : E → {0, 1}. A character ϕ is said to be tight if ϕ(e) =

∨
f∈Z ϕ(f) for every idempotent

e ∈ E and every finite cover Z of Fe. By [17, Proposition 11.8], this is equivalent to the
original definition of tight character in [17, Definition 12.8]. The space of tight characters

will be identified with the space of tight filters, and will be denoted by Êtight in accordance
with the notation employed in Section 3.

We recall below the construction of the groupoid of germs for completeness (see [17] for
further details). If α is an action of an inverse semigroup S on a locally compact Hausdorff
space X, then the groupoid of germs S ×α X is defined as follows: define a relation ∼ on
{(s, x) ∈ S × X : x ∈ dom(αs)} by (s, x) ∼ (s′, y) if x = y and there is an idempotent
p ∈ E(S) such that x ∈ dom(αp) and sp = s′p. This is an equivalence relation, and the
collection S ×α X of equivalence classes for this relation is a locally compact étale groupoid
with unit space X and structure maps r([s, x]) = αs(x), s([s, x]) = x, [s, αt(x)][t, x] = [st, x],

and [s, x]−1 = [s∗, αs(x)]. When X is the space Êtight of tight filters on the semilattice E of

idempotents of S, the topology of the groupoid of germs Gtight(S) := S ×α Êtight is generated
by the sets

Θ(s, U) := {[s, x] ∈ G | x ∈ U},
where U is an open subset of Êtight such that U ⊆ Ds∗s := {ϕ ∈ Êtight | ϕ(s∗s) = 1}. Endowed
with this topology, Gtight(S) is an ample groupoid. Recall that the canonical action α of S

on Êtight is given as follows. For s ∈ S, the map αs : Ds∗s → Dss∗ is the map defined by
αs(ϕ)(e) = ϕ(s∗es) for all ϕ ∈ Ds∗s.

Now, given an inverse semigroup S and a field with involution K, we may consider the
Steinberg K-algebra AK(Gtight(S)) associated to the ample groupoid Gtight(S) (Definition 1.5).
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If Gtight(S) is Hausdorff, then the algebra AK(Gtight(S)) is just the algebra of K-valued locally
constant functions with compact support, endowed with the convolution product and the
involution f ∗(α) = f(α−1)∗.

We say that a ∗-algebra A, together with a tight representation ι : S → A, is universal for
tight representations if given any ∗-algebra B and any tight representation φ : S → B, there
is a unique ∗-homomorphism φ̃ : A→ B such that φ̃ ◦ ι = φ. By the usual argument, such a
universal tight ∗-algebra is unique up to ∗-isomorphism.

We will need the following result, due to Steinberg [36].

Theorem 4.2. [36, Corollary 5.3] Let S be a Hausdorff inverse semigroup with zero and let
K be a field with involution. Then AK(Gtight(S)) is the universal ∗-algebra for tight represen-
tations of S.

We refer the reader to [36] for the definition of a Hausdorff inverse semigroup. For us, it is
enough to know that any E∗-unitary inverse semigroup is Hausdorff (see [36, page 1037]).

4.2. The ∗-algebra SK(E,C) and expansions. We define the K-algebra SK(E,C) as the
∗-algebra over K with generators E0 ∪ E1 ∪ {(tvi )± : i ∈ N, v ∈ E0} and defining relations
given in 2.2 (including this time all the relations); notice that SK(E,C) is the K-span of the
elements of the inverse semigroup S(E,C). We will show that the natural representation of
S(E,C) inside SK(E,C) is its universal tight representation (Theorem 4.12, Theorem 4.13).

Let us start fixing the notation ι : S(E,C) → SK(E,C) for the natural representation of
S(E;C) into SK(E,C), and recalling that all relevant notions have been defined in Section 4.1.

Remark 4.3. There are a couple of equalities that play a key role in checking tightness of ι.
We recall them below for convenience.

(a) for each p ∈ Ireg and each v ∈ E0
p ,

v =
∑

e∈s−1(v)

ee∗.

(b) for each p ∈ Ifree and each 1 ≤ i ≤ k(p),

vp = α(p, i)α(p, i)∗ +

g(p,i)∑
s=1

β(p, i, s)β(p, i, s)∗

Let us start by establishing the following result about suprema in SK(E,C):

Lemma 4.4. For p ∈ Ifree, let m1,m2 ∈ E monomials associated to p. Then ι(m1 ∨m2) =
ι(m1) ∨ ι(m2).

Proof. We can describe m1 and m2 as follows:

m1 =

k(p)∏
i=1

α(p, i)ki(α(p, i)∗)ki and m2 =

k(p)∏
i=1

α(p, i)li(α(p, i)∗)li .

Let si := max{ki, li} and ri := min{ki, li} for 1 ≤ i ≤ k(p). Then

m1 · m2 =

k(p)∏
i=1

α(p, i)si(α(p, i)∗)si and m1 ∨m2 =

k(p)∏
i=1

α(p, i)ri(α(p, i)∗)ri .
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By using the expansion rule explained in Remark 4.3 (b) as much as needed, we have:

ι(m1 ∨m2) = m1m2 +
∑
ki<li

g(p,i)∑
r=1

li−ki−1∑
t=1

α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t

+
∑
lj<kj

g(p,j)∑
r=1

kj−lj−1∑
t=1

α(p, j)lj+tβ(p, j, r)β(p, j, r)∗(α(p, j)∗)lj+t,

where the latter computation is performed in the algebra SK(E,C).
Now, we have:

(1) [ι(m1) ∨ ι(m2)](m1m2) = m1m2.
(2) For each summand where ki < li,

[ι(m1) ∨ ι(m2)]

g(p,i)∑
r=1

li−ki−1∑
t=1

α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t


= (m1 + m2 −m1m2)

g(p,i)∑
r=1

li−ki−1∑
t=1

α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t


= (a)

Fixing r and t, we have

m1(α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t)

=

k(p)∏
j=1

α(p, j)kj(α(p, j)∗)kj(α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t)

= α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t.

Indeed, for j 6= i, we have an absorption of the j-th part and, for i = j, one has
α(p, i)ki(α(p, i)∗)kiα(p, i)ki+t = α(p, i)ki+t.

The same product for m2 equals 0 since ki + t < li. And, of course, the same
happens for m1m2. Therefore,

(a) =

g(p,i)∑
r=1

li−ki−1∑
t=1

α(p, i)ki+tβ(p, i, r)β(p, i, r)∗(α(p, i)∗)ki+t.

(3) For the summands where kj < lj, an analogous argument works.

Therefore, (ι(m1)∨ι(m2)) · (ι(m1∨m2)) = ι(m1∨m2), whence ι(m1∨m2) ≤ ι(m1)∨ι(m2).
Since the reverse inequality is obvious, we are done. �

Let us now introduce some properties for finite covers Σ of Fe.

Definition 4.5. Given Σ ⊂ Fe a finite cover, we will say that Σ is irredundant if for all
f 6= g ∈ Σ, we have that f is orthogonal to g, i.e. fg = 0.
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Proposition 4.6. Let e ∈ E and Σ ⊂ Fe a finite cover of Fe. Then there exists an irredundant
finite cover Σ̂ such that ∨

f∈Σ

ι(f) =
∨
g∈Σ̂

ι(g).

Proof. We proceed by induction on the cardinality of Σ. If |Σ| = 1 , then the result is obvious.
Assume that |Σ| > 1 and the result holds for finite covers of cardinality less than |Σ|. Suppose
that there are f, g ∈ Σ such that fg 6= 0. By induction, it suffices to show that there is a
finite cover Σ′ of Fe, with |Σ′| < |Σ|, such that

∨
h∈Σ ι(h) =

∨
h∈Σ′ ι(h). By Lemma 2.17, we

have that either f and g are comparable, or there is a free prime p such that f = γm(p)γ∗

and g = γm′(p)γ∗ for some finite path γ and monomials m(p) and m′(p) at p. If f and g
are comparable, for instance f ≤ g, then we consider the finite cover Σ′ = Σ \ {f}. In case f
and g are not comparable, then set

Σ′ := (Σ \ {f, g}) ∪ {f ′},

where f ′ = γ(m(p) ∨m′(p))γ∗. By Lemma 4.4, we have that ι(f ′) = ι(f) ∨ ι(g), and thus
∨h∈Σ′ι(h) = ∨h∈Σι(h), concluding the proof. �

We now introduce a crucial concept for our construction.

Definition 4.7. If
∑
ei is a finite orthogonal sum of idempotents ei ∈ E in SK(E,C), then a

simple expansion of
∑
ei consists of another orthogonal sum of the form

∑
z∈Z e

′
z+
∑

i 6=i0 ei,
for some i0, obtained by applying the rules described in Remark 4.3 to ei0 ; concretely, the
idempotents e′z ∈ E , z ∈ Z, are of one of the following forms:

(1) If ei0 = γ
∏k(p)

j=1 α(p, j)kj(α(p, j)∗)kjγ∗ for a free prime p, then

∑
z∈Z

e′z = γ
[
α(p, j0)kj0+1(α(p, j0)∗)kj0+1

∏
j 6=j0

α(p, j)kj(α(p, j)∗)kj
]
γ∗

+

g(p,j0)∑
s=1

[γα(p, j0)kj0β(p, j0, s)β(p, j0, s)
∗(α(p, j0)∗)kj0γ∗]

for some 1 ≤ j0 ≤ k(p).
(2) If ei0 = γλλ∗γ∗ for some path of finite length λ in the graph Ep, where p is a regular

prime, then Z = s−1(r(λ)), and

e′z = γλzz∗λ∗γ∗ (z ∈ Z).

Definition 4.8. An expansion of e ∈ E in SK(E,C) is any expression obtained by applying
a finite number of simple expansions to the original expression of e. We define the expanded
set of the given expression as the set of orthogonal idempotents in E that appear in the
expansion.
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Example 4.9. Let e = γm(p)γ∗ be a projection in E , with p a free prime in I, γ a finite
path to vp and m(p) = α(p, i)α(p, i)∗ for some i ∈ {1, . . . , k(p)}. Then

e = γα(p, i)α(p, i)∗γ∗ = γα(p, i)vpα(p, i)∗γ∗

= γα(p, i)α(p, i)α(p, i)∗α(p, i)∗γ∗ + γα(p, i)

g(p,i)∑
s=1

β(p, i, s)β(p, i, s)∗

α(p, i)∗γ∗

= γα(p, i)α(p, i)α(p, i)∗α(p, i)∗γ∗ +

g(p,i)∑
s=1

[γα(p, i)β(p, i, s)β(p, i, s)∗α(p, i)∗γ∗].

The latter equation is what we call an expansion of e. The expanded set of the above
expression contains the projections γα(p, i)α(p, i)α(p, i)∗α(p, i)∗γ∗ and also each of the pro-
jections γα(p, i)β(p, i, s)β(p, i, s)∗α(p, i)∗γ∗.

A consequence of the above definition is the following.

Lemma 4.10. If Σ is an expanded set of e ∈ E, then it is an irredundant finite cover of Fe.

Proof. If Σ is an expanded set of e ∈ E , then Σ ⊂ Fe, and its elements are pairwise orthogonal.
We will show that for any idempotent f ≤ e and any expanded set Σ of e, either f ≤ g for
some g ∈ Σ or g ≤ f for some g ∈ Σ. We proceed by induction on the number of simple
expansions (Definition 4.7) used to get Σ from e. If the number of simple expansions is 0,
then Σ = {e} and f ≤ e, as desired. Assume the result holds for expansions obtained by
using n − 1 simple expansions of e, for n ≥ 1, and let Σ be an expansion of e obtained by
using n simple expansions. Then there exists an expansion Σ′ obtained from e by using n− 1
simple expansions and an element g′ of Σ′ such that

Σ = (Σ′ \ {g′}) ∪ {g1, g2, . . . , gN}.
Indeed, write g′ = γm(p)γ∗ in its standard form. If p is a free prime, then write g′ =

γ
∏k

j=1 α(p, j)kj(α(p, j)∗)kjγ∗ for kj ∈ Z+, and, for some 1 ≤ i ≤ k(p), we have

g1 = γα(p, i)ki+1(α(p, i)∗)ki+1
∏
j 6=i

α(p, j)kj(α(p, j)∗)kjγ∗

and
gs+1 = γα(p, i)kiβ(p, i, s)β(p, i, s)∗(α(p, i)∗)kiγ∗,

for 1 ≤ s ≤ g(p, i), where N = g(p, i) + 1. If p is a regular prime, one has

g′ = γλλ∗γ∗,

where λ is a path of finite length in the graph Ep, and

gi = γλeie
∗
iλ
∗γ∗,

with s−1(r(λ)) = {e1, . . . , eN}.
By the induction hypothesis, there is some g′′ ∈ Σ′ such that either f ≤ g′′ or g′′ ≤ f . Now,

if g′ 6= g′′, then we take g = g′′ and either f ≤ g or g ≤ f . So assume that g′ = g′′. If g′ ≤ f
then clearly gi ≤ f for i = 1, 2, . . . , N , so we can take g to be any of them. Finally assume
that f < g′. When p is a free prime, this means that f = γγ′n(p′)(γ′)∗γ∗, where γ′ is a finite
path from vp to w ∈ E0

p′ . If γ′ is a trivial finite path, then n(p′) =
∏
α(p, j)lj(α(p, j)∗)lj and
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necessarily we have that lj ≥ kj for all j. Now if li ≥ ki + 1, then we get f ≤ g1, so we
can take g = g1. If li = ki, then gs+1 ≤ f for s = 1, . . . , g(p, i), so we can take g to be any
of them. Assume now that γ′ is non-trivial and write γ′ = α(p, i′)mβ(p, i′, s) · · · , for some
i′ ∈ {1, . . . , k(p)} and some s ∈ {1, . . . , g(p, i′)}. Since f ≤ g′, we must have m ≥ ki′ . Now if
i 6= i′, then we will have f ≤ g1, and we take g = g1. If i = i′ and m = ki, then f ≤ gs+1 and
we take g = gs+1. Finally, if i = i′ and m > ki, then f ≤ g1 and we take g = g1.

If p is a regular prime, then since f < g′, there exists ei ∈ s−1(r(λ)) such that f ≤
γλeie

∗
iλ
∗γ∗ = gi. �

The next result shows that the converse of Lemma 4.10 also holds.

Proposition 4.11. Let e ∈ E, and let Σ ⊂ Fe be an irredundant finite cover of Fe. Then, Σ
is an expanded set of e.

Proof. We will proceed by induction on the number of elements of Σ. The result is clear if
|Σ| = 1. Assume that |Σ| > 1 and the result holds for finite irredundant covers of idempotents
in E of cardinality less than |Σ|.

Suppose first that e = γ
∏k(p)

i=1 α(p, i)ki(α(p, i)∗)kiγ∗, where p is a free prime. We first show

that Σ must contain some element e′ of the form e′ = γ
∏k(p)

i=1 α(p, i)li(α(p, i)∗)liγ∗, where
li > ki for at least one index i. Assume not. Then each f ∈ Σ is of the form γγ′m(γ′)∗γ∗,
where γ′ = α(p, i(f))m(f)β(p, i(f), s(f)) · · · for some non-negative integers m(f) and positive
integers s(f). Let Π = {i(f) | f ∈ Σ} ⊆ {1, . . . , k(p)} be the set of indices appearing in the
starting terms of the elements of Σ. For each i ∈ Π, take an integer Mi such that Mi > m(f)
for every f ∈ Σ such that i(f) = i. Note that Mi > ki for i ∈ Π. If i /∈ Π, set Mi = ki. Now
consider f ∈ E defined by

f = γ

k(p)∏
i=1

α(p, i)Mi(α(p, i)∗)Miγ∗.

Then 0 6= f ∈ Fe and fg = 0 for each g ∈ Σ, which is a contradiction. Therefore there is
an element e′ in Σ of the form described above, and it is necessarily unique, because Σ is
irredundant, and the product of idempotents of this form is always nonzero. Note that e′ 6= e
because |Σ| > 1 and thus there is at least one index i such that li > ki.

Now we consider the following expansion of e in SK(E,C) leading to e′:

e = e′ +
∑
ki<li

li−ki−1∑
t=0

g(p,i)∑
s=1

α(p, i)ki+tβ(p, i, s)β(p, i, s)∗(α(p, i)∗)ki+t.

Let

Ω = {α(p, i)ki+tβ(p, i, s)β(p, i, s)∗(α(p, i)∗)ki+t | ki < li, 0 ≤ t ≤ li − ki − 1, 1 ≤ s ≤ g(p, i)}
and observe that Ω ∪ {e′} is an expanded set of e. The proof of Lemma 4.10 shows that for
any g ∈ Σ \ {e′} there exists f ∈ Ω such that either g ≤ f of f ≤ g. But now if f ≤ g for
f ∈ Ω and g ∈ Σ \ {e′} then necessarily f = g. Thus, in any case, for each g ∈ Σ \ {e′} there
is f ∈ Ω such that g ≤ f . Since the elements of Ω are pairwise orthogonal, there is exactly
one f ∈ Ω such that g ≤ f .

For f ∈ Ω, let Σf = {g ∈ Σ \ {e′} | g ≤ f}. By the above argument, {Σf | f ∈ Ω} is a
partition of Σ \ {e′}, Moreover, it follows easily that Σf is an irredundant finite cover of f for
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each f ∈ Ω. By the induction hypothesis, Σf is an expanded set of f , for f ∈ Ω. Hence Σ is
an expanded set of e. This shows the result in the case where p is a free prime.

Assume now that p is a regular prime, and write e = γλλ∗γ∗, where γ is a finite path and
λ is a path of finite length in the graph Ep. By a similar argument as before, there is e′ ∈ Σ
of the form e′ = γλλ′(λ′)∗λ∗γ∗, where λ′ is a path of finite length in Ep. We assume that λ′

has maximal length, say r, amongst all the paths in Ep giving rise to an element of Σ. Write
λ′ = e1e2 · · · er, where ei ∈ E1

p . We consider the following expansion of e in SK(E,C):

e = e′ +
r−1∑
i=0

∑
f 6=ei+1,s(f)=s(ei+1)

γλe1 · · · eiff ∗e∗i · · · e∗1λ∗γ∗.

Let

Ω = {γλe1 · · · eiff ∗e∗i · · · e∗1λ∗γ∗ | i = 0, . . . , r − 1, f ∈ E1, f 6= ei+1, s(f) = s(ei+1)}.

Then Ω ∪ {e′} is an expanded set of e. Therefore, by the proof of Lemma 4.10, for any
g ∈ Σ \ {e′} there exists h ∈ Ω such that either g ≤ h or h ≤ g. If h ≤ g, where h =
γλe1 · · · eiff ∗e∗i · · · e∗1λ∗γ∗ and h 6= g, then g = γλe1 · · · eje∗j · · · e∗1λ∗γ∗ for some j ≤ i, forcing
ge′ 6= 0, and contradicting irredundancy of Σ. Thus, in any case, for each g ∈ Σ\{e′} there is
h ∈ Ω such that g ≤ h. Now the proof ends exactly as in the case where p is a free prime. �

Now, we are ready to show that the map ι is tight.

Theorem 4.12. The map ι : S(E,C)→ SK(E,C) is tight.

Proof. Let e ∈ E , and Σ ⊂ Fe be a finite cover. Then, by Proposition 4.6, there exists an
irredundant finite cover Σ̂ of Fe such that∨

f∈Σ

ι(f) =
∨
g∈Σ̂

ι(g).

By Proposition 4.11, Σ̂ is an expanded set of an expression of e in SK(E,C), whence

ι(e) =
∑
g∈Σ̂

ι(g) in SK(E,C).

Because the elements in Σ̂ are pairwise orthogonal,∑
g∈Σ̂

ι(g) =
∨
g∈Σ̂

ι(g).

Hence

ι(e) =
∑
g∈Σ̂

ι(g) =
∨
g∈Σ̂

ι(g) =
∨
f∈Σ

ι(f). �

4.3. Universality of the Representation. In this subsection, we will show that the tight
representation ι of S(E,C) described above is universal for tight representations.

Theorem 4.13. The map ι : S(E,C) → SK(E,C) is universal for tight representations of
S(E,C) on ∗-algebras over K.
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Proof. Let A be a ∗-algebra, φ : S(E,C)→ A be a tight representation and denote by x the
images of the elements of S(E,C) under φ. Since φ is tight, Definition 4.1 and Lemma 4.10
show that

(1) for each p ∈ Ireg and each ∈ E0
p ,

v =
∑

e∈s−1(v)

e · e∗, and

(2) for each p ∈ Ifree and each 1 ≤ i ≤ k(p),

vp = α(p, i) · α(p, i)
∗

+

g(p,i)∑
s=1

β(p, i, s) · β(p, i, s)
∗
.

All other relations in SK(E,C) are preserved because φ is a representation. Thus there exists
a unique K-algebra ∗-homomorphism Φ : SK(E,C) → A such that Φ(ι(x)) = φ(x) for each
generator x of S(E,C). �

Using Theorem 4.13 and the results of Section 4.1, we obtain an isomorphism between the
K-algebra SK(E,C) and the Steinberg algebra AK(Gtight(S(E,C))).

Theorem 4.14. Let (E,C) be an adaptable separated graph, let S(E,C) be the inverse semi-
group associated to (E,C), let K be a field with involution and let SK(E,C) be the ∗-algebra
over K associated to (E,C). Let AK(Gtight(S(E,C))) be the Steinberg algebra of the tight
groupoid Gtight(S(E,C)). There is a ∗-isomorphism

SK(E,C) ∼= AK(Gtight(S(E,C)))

sending ι(s) ∈ SK(E,C) to 1Θ(s,Ds∗s) for each s ∈ S(E,C).

Proof. Since S(E,C) is E∗-unitary (Proposition 2.19), it is a Hausdorff inverse semigroup.
Hence the result follows from Theorem 4.2 and Theorems 4.12 and 4.13. �

Corollary 4.15. Let (E,C) be an adaptable separated graph, S(E,C) be the inverse semi-
group associated to (E,C). Let C∗(S(E,C)) be the C∗-algebra universal for generators
E0 ∪ E1 ∪ {(tvi )± : i ∈ N, v ∈ E0} and the relations 2.2. Then there is an isomorphism

C∗(S(E,C)) ∼= C∗(Gtight(S(E,C)))

sending ι(s) ∈ C∗(S(E,C)) to 1Θ(s,Ds∗s) for each s ∈ S(E,C).

Proof. The proofs of [33, Theorem 3.2.2 and Lemma 3.2.3] are easily modified to show that
C∗(Gtight(S(E,C)) is universal for ∗-representations of AC(Gtight(S(E,C))). By definition,
C∗(S(E,C)) is universal for ∗-representations of SC(E,C). So the result follows from Theo-
rem 4.14. �

5. A new description of the groupoid Gtight(S(E,C))

In this section, we obtain a more concrete description of the tight groupoid Gtight(S(E,C))
defined in the last section, paralleling the well-known description of graph groupoids (see, for
example, [15]).

To this end, let Ê∞ be the space of infinite paths, described above (see Section 3), and
consider the additive group Γ := Z(∞) × Z(∞). Here, the first copy of Z(∞) will encode the
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exponents of the indeterminates tvi and the second copy of Z(∞) will encode the difference of
lengths between initial segments of infinite paths.

Our new approach to Gtight(S(E,C)) is based on understanding the groupoid we subse-
quently define. First, if γ is an initial segment ending in Ep, we define |γ|∞ ∈ Z(∞) as
follows: if p is a regular, then |γ|∞ := (|γ|, 0, 0, . . . , ) ∈ Z(∞); and, if p is a free prime,

then, expressing γ = γ′
∏k(p)

j=1 α(p, j)lj where γ′ is a finite path and lj ∈ Z+, then |γ|∞ :=

(l1 + |γ′|, . . . , lk(p) + |γ′|, 0, 0, . . . ).
Now consider the set H of triples (x, n, y) such that

(i) x and y are infinite paths ending at the same prime p of I; say x = γλ, and y = νλ,
where γ and ν are initial segments ending in Ep, and λ is an infinite path in Ep (see
Definitions 3.2 and 3.3); and

(ii) n = (n1, |γ|∞ − |ν|∞) ∈ Γ for some n1 ∈ Z(∞).

We define H(2) = {((w,m, x), (y, n, z)) ∈ H × H : x = y}, and we define multiplication
from H(2) to H by

(x, n, y)(y,m, z) = (x, n+m, z).

Then H is a groupoid, with inverses given by (x, n, y)−1 = (y,−n, x), and units H(0) =

{(x, 0, x) : x ∈ Ê∞} identified with Ê∞.
We now introduce a topology in H. A basis of this topology is indexed by the elements in

the inverse semigroup S.

Definition 5.1. Given s ∈ S(E,C), written in the standard notation as s = γm(p)ν∗, for
finite paths γ, ν and monomial m(p) at p ∈ I, define Z(s) as the set of elements (x, n, y) ∈ H
which satisfy the following conditions:

(1) If p is a regular prime, then m(p) =
∏

(tvi )
diλη∗, for paths of finite length λ, η in Ep,

with s(λ) = v ∈ E0
p and r(λ) = r(η). In this case, x = γλx0 and y = νηx0, for an

infinite path x0 = γ′λ′ starting at r(λ), where γ′ is a finite path and λ′ is an infinite
path in the component corresponding to r(γ′). Moreover, n = (n1, n2), where n1 ∈
Z(∞) is the sequence of exponents of φγ′(m(p)) and n2 = |γλγ′|∞ − |νηγ′|∞ ∈ Z(∞).
(Observe that n2 is determined by the integer |γ|+ |λ| − |ν| − |η|).

(2) If p is a free prime, then m(p) =
∏

(tv
p

i )di
∏k(p)

j=1 α(p, j)kj(α(p, j)∗)lj . In this case,

either x = γ
∏k(p)

j=1 α(p, j)∞, y = ν
∏∞

j=1 α(p, j)∞, and n = (n1, n2), with n1 = (di)i∈N,

n2 = (k1 + |γ| − l1 − |ν|, . . . , kk(p) + |γ| − lk(p) − |ν|, 0, . . . ), or there exists an infinite
path γ′λ′, where γ′ = α(p, i)mβ(p, i, s) · · · , 1 ≤ i ≤ k(p) is a non-trivial finite path
and λ′ is an infinite path in the component corresponding to r(γ′), such that

x = γα(p, i)kiγ′λ′, y = να(p, i)liγ′λ′,

and n = (n1, n2), with n1 equal to the sequence of exponents of φγ′(m(p)) and n2 =
|γα(p, i)kiγ′|∞ − |να(p, i)liγ′|∞ ∈ Z(∞). (Note that n2 is determined by the integer
|γ| − |ν|+ ki − li).

Remark 5.2. Notice that when e = γm(p)γ∗ is an idempotent in S(E,C), then

(a) if p is a free prime, then m(p) =
∏k(p)

j=1 α(p, j)kj(α(p, j)∗)kj , and Z(e) is the set of elements

(x, (0, 0), x) ∈ H such that λ
∏k(p)

j=1 α(p, j)kj is an initial segment of x; and



30 PERE ARA, JOAN BOSA, ENRIQUE PARDO, AND AIDAN SIMS

(b) if p is a regular prime, then m(p) = λλ∗ for a path of finite length λ in the graph Ep, and
Z(e) is the set of elements (x, (0, 0), x) ∈ H such that γλ is an initial segment of x.

Therefore, using the identification of ultrafilters with infinite paths given in Corollary 3.5, we
notice that Z(e) may be identified with the set Z(e) of Definition 3.7.

We now establish the isomorphism between the groupoid of germs of the action of S(E,C)

on Ê∞ and the groupoid H.

Theorem 5.3. Let (E,C) be an adaptable separated graph. Then there is a canonical iso-
morphism

φ : Gtight(S(E,C))→ H
between the topological groupoid Gtight(S(E,C)) and the topological groupoid H defined above.

Proof. We start by observing that the elements of Gtight(S(E,C)) can be represented by

classes [s, x], where (s, x) is of a special form. Recall that x is a point in the space Ê∞, and
that s is an element in S(E,C) such that s∗s ∈ x (interpreting x as a subset of E). Let us
describe the structure of x by cases:

(1) Assume first that x = νλ, where ν is a finite path and λ is an infinite path in the
component of a regular prime p. Then, we can assume that s = γ(

∏
(tvi )

di)λ′(λ′′)∗ν∗,
where γ is a finite path, r(γ) = s(λ′) = v ∈ E0

p , r(λ
′) = r(λ′′) and λ′′ is an initial

segment of λ, that is, λ = λ′′x0 for an infinite path x0. In this case, we set

φ([s, x]) = (γλ′x0, ((di)i∈N, (|γ|+ |λ′| − |λ′′| − |ν|, 0, . . . )), νλ′′x0) ∈ H.

(2) Assume now that x = ν
∏k(p)

j=1 α(p, j)∞ for a free prime p, where ν is a finite path
ending at vp. Then, s can be chosen of the form

(5.1) s = γ
(∏

(tv
p

i )di
) k(p)∏
j=1

α(p, j)kj(α(p, j)∗)ljν∗,

where γ is a finite path ending at vp. For an element [s, x] of this form, we define

φ([s, x]) =
(
γ

k(p)∏
j=1

α(p, j)∞, ((di)i∈N, (|γ|+ kj − lj − |ν|)j), ν
k(p)∏
j=1

α(p, j)∞
)
∈ H.

In both cases (1) and (2), we can achieve the representative of the desired form by replacing
the given element [s, x] with a suitable element of the form [sf, x], where f ∈ E .

Notice that φ is a well-defined map. Indeed, if [s, x] = [t, y], then x = y and there exists

f ∈ x (thinking x as a subset of Ê∞) such that sf = tf . In the free case, we can assume that
f = ν

∏
α(p, j)tj(α(p, j)∗)tjν∗, where tj is bigger or equal than the corresponding powers of

α(p, j)∗ in s and t. Hence, the elements [s, x] and [t, x] have the same image under φ. The
regular case is analogous.

It is straightforward to check that φ is an algebraic morphism of groupoids. Moreover, by
the definition of H, φ is surjective. Let us check that φ is injective. To this end, let us firstly

work the free prime case out. Assume that x = ν
∏k(p)

j=1 α(p, j)∞ for a free prime p and, fixing
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notation, that s, t ∈ S(E,C), with s as in (5.1) and

t = γ′
(∏

(tv
p

i )d
′
i

) k(p)∏
j=1

α(p, j)k
′
j(α(p, j)∗)l

′
jν∗.

If φ([s, x]) = φ([t, x]), then γ = γ′, di = d′i for all i and kj − lj = k′j − l′j for all 1 ≤ j ≤ k(p).

But then kj + l′j = k′j + lj for all j, and so the element f = ν
∏k(p)

j=1 α(p, j)kj+l′j(α(p, j)∗)k
′
j+ljν∗

is a idempotent in S(E,C) such that f ∈ x and sf = tf , which implies that [s, x] = [t, x].
The case where x is an infinite path ending in a regular prime is left to the reader. Therefore,
we conclude that φ is a bijective isomorphism of algebraic groupoids.

It remains only to show that the map φ is a homeomorphism. Recall that the topology of
G := Gtight(S(E,C)) is generated by the sets

Θ(s, U) := {[s, x] ∈ G | x ∈ U},

where U is an open subset of Ê∞ such that U ⊆ Ds∗s := {x ∈ Ê∞ | s∗s ∈ x}. Given such
an open set U , we know from Corollary 3.10 that U =

⋃
f∈ZU

Z(f), where ZU is the set of

idempotents f ∈ E such that Z(f) ⊆ U , and thus

Θ(s, U) =
⋃
f∈ZU

Θ(sf,Z(f)).

Therefore, the topology of G is generated by the open sets

Us := Θ(s,Z(s∗s)) = {[s, x] | s∗s ∈ x},
for s ∈ S. It is straightforward to check that φ(Us) = Z(s) for each s ∈ S(E,C). This shows
that φ is a homeomorphism, and the proof is complete. �

Summing up, we obtain the following result.

Theorem 5.4. Let (E,C) be an adaptable separated graph, and S(E,C) be the inverse semi-
group associated to (E,C). Let Gtight(S(E,C)) be the groupoid of germs associated to the

canonical action of S(E,C) on the space of ultrafilters Ê∞, and let H be the groupoid defined
above. Then Gtight(S(E,C)) ∼= H is an ample Hausdorff étale topological groupoid.

Proof. By Theorem 5.3, there is an isomorphism of topological groupoids Gtight(S(E,C)) ∼= H.
By [17, Proposition 4.17], the groupoid Gtight(S(E,C)) is an étale topological groupoid. Since
S(E,C) is E∗-unitary by Proposition 2.19, it follows from [17, Propositions 6.4 and 6.2] that
Gtight(S(E,C)) is Hausdorff. Finally, observe that Us = Θ(s,Z(s∗s)), s ∈ S(E,C), is a basis
of compact open bisections for the topology of Gtight(S(E,C)). �

6. Amenability of Gtight(S(E,C))

In this section we show that the groupoid Gtight(S(E,C)) associated to any adaptable sep-
arated graph is amenable (Proposition 6.2). Thus the full and reduced C∗-algebras of this
groupoid coincide, are nuclear, and belong to the UCT class. In particular, Corollary 4.15
shows that C∗r (Gtight(S(E,C)) is universal for tight representations of S(E,C), so C∗(S(E,C))
has a faithful representation on

⊕
x∈Ê∞ `

2(Gtight(S(E,C))x). These results open the possibil-
ity of addressing the realisation problem via nuclear C∗-algebras in the UCT class.
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The first step is to reduce the question to dealing with the groupoid sitting over any prime
p ∈ I, because this significantly simplifies the question. To do this, we will use the following
general lemma, together with the fact that, since I is finite, the groupoid admits a finite
“composition series.” In the following result, given a poset O and an element V ∈ O we will
say that U ∈ O is subjacent to V if U is a maximal element of the set {W ∈ O\{V } : W � V }.

Lemma 6.1. Let G be a second-countable Hausdorff étale groupoid. Suppose that O is a
finite collection of open invariant subsets of G(0) that is closed under intersections. Suppose
that G(0) and ∅ both belong to O, and regard O as a poset under ⊆. Suppose that, whenever
U is subjacent to V in O, the groupoid G|V \U is amenable. Then, G is amenable.

Proof. We proceed by induction on |O|. First, suppose that |O| = 1. Since G(0) and ∅ both
belong to O, we deduce that G(0) = ∅, and so G = ∅ is trivially amenable.

Now fix n ≥ 1. Suppose as an inductive hypothesis that the result holds for groupoids in
which |O| ≤ n, and suppose that |O| = n + 1. Let V be a maximal element of O \ {G(0)}.
By hypothesis, G|G(0)\V is amenable. Let O′ := {U ∩ V : U ∈ O}. Since O is closed under
intersections, we have O′ = {W ∈ O : W ⊆ V } ⊆ O, and in particular if U is subjacent to U ′

in O′ then U is subjacent to U ′ in O. So O′ is a finite collection of open invariant subsets of

G|(0)
V that is closed under intersections and contains G|(0)

V and ∅, and whenever U is subjacent
to U ′ in O′ the groupoid (G|V )U ′\U = G|U ′\U is amenable. Since V ∩ V = G(0) ∩ V , we see
that |O′| ≤ |O|− 1 = n. So the inductive hypothesis implies that G|V is amenable. Thus [38,
Proposition 9.82] shows that G is amenable. �

Proposition 6.2. Let (E,C) be an adaptable separated graph. The groupoid Gtight(S(E,C))
is amenable.

Proof. Let H be the groupoid, isomorphic to Gtight(S(E,C)), described in Section 5. We say
that a subset P ⊆ I is hereditary if p ∈ P and p ≥ q implies q ∈ P . For each hereditary
P ⊆ I, the set

WP :=
⋃
p∈P{γλ ∈ H(0) : γ is an initial segment, r(γ) ∈ E0

p and λ ∈ E∞p }

is an open invariant subset of H(0). Clearly, the collection O = {WP : P ⊆ I is hereditary} is
a finite collection of open invariant sets that contains ∅ = W∅ and H(0) = WI , and is closed
under intersections since WP ∩WQ = WP∩Q.

If P,Q are hereditary subsets of I, then WP ⊆ WQ if and only if P ⊆ Q. Suppose that
U, V ∈ O, and that U is subjacent to V in O. Then V = WQ and U = WP for some nested
pair P ( Q of hereditary subsets of I. Since Q \ P is nonempty, we deduce that it contains
a maximal element q ∈ Q. Hence Q′ = Q \ {q} is a proper hereditary subset of Q containing
P . Thus Q′ = P , forcing Q \ P = {q}. So by Lemma 6.1 it suffices to show that if P,Q
are hereditary subsets of I, with P ⊂ Q, and Q \ P = {q} is a singleton, then H|WQ\WP

is
amenable.

Fix such a P,Q and q. Then,

WQ \WP = {γλ ∈ H(0) : γ is an initial segment, r(γ) ∈ E0
q and λ ∈ E∞q }.

The subset Xq := {λ ∈ H(0) : λ is an infinite path in Eq} is a full open subset of the unit
space of H|WQ\WP

. Hence, the final statement of [19, Theorem 3.10] shows that H|WQ\WP

is equivalent in the sense of [25, Definition 2.1] (see also [30, Section 3]) to the groupoid
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H|Xq . Since amenability is preserved by groupoid equivalence [2, Theorem 2.2.17], it therefore
suffices to show that each H|Xq is amenable.

By definition, we have H|Xq = {(γλ, (n1, |γ|∞− |ν|∞), νλ) : γ, ν ∈ E∗q , λ ∈ E∞q , n1 ∈ Z(∞)},
and the map c : (γλ, (n1, |γ|∞ − |ν|∞), νλ) 7→ n1 is a continuous cocycle from H|Xq to the

countable abelian group Z(∞). Thus [34, Proposition 9.3] implies that H|Xq is amenable
provided that c−1(0) is amenable. We have c−1(0) ∼= {(γλ, |γ|∞ − |ν|∞, νλ) : γ, ν ∈ E∗q , λ ∈
E∞q }. If q is a regular prime, this is precisely the graph groupoid GEq , which is amenable by
[22, Corollary 5.5]; and if q is a free prime, then γ and ν are finite products of the α(q, j),
and the map (γλ, |γ|∞−|ν|∞, νλ) 7→ |γ|∞−|ν|∞ is an isomorphism of H|Xq onto Zk(q), which
again is amenable. So in either case H|Xq is amenable, completing the proof. �

7. The type semigroup

7.1. The type semigroup of a Boolean inverse semigroup. Let S be an inverse semi-
group (always with 0). We denote by E(S) the semilattice of idempotents of S. We say that
x, y ∈ S are orthogonal, written x ⊥ y if x∗y = yx∗ = 0

Recall that a Boolean inverse semigroup is an inverse semigroup S such that E(S) is a
Boolean ring (a ring with x = x2 for all x), and such that every pair x, y ∈ S satisfying x ⊥ y
has a supremum, denoted x⊕ y ∈ S (see [37, Definition 3-1.6] for further details).

Definition 7.1. [37, page 98] Let S be a Boolean inverse semigroup. The type semigroup (or
type monoid) of S is the commutative monoid Typ(S) freely generated by elements typ(x),
where x ∈ E(S), subject to the relations

(1) typ(0) = 0,
(2) typ(x) = typ(y) whenever x, y ∈ E(S) and there is s ∈ S such that ss∗ = x and

s∗s = y.
(3) typ(x⊕ y) = typ(x) + typ(y) whenever x, y are orthogonal elements in E(S).

By [37, Corollary 4-1.4], Typ(S) is a conical refinement monoid.

7.2. The type semigroup of an ample groupoid. Let G be a (not-necessarily-Hausdorff)
étale groupoid, with a Hausdorff locally compact unit space X := G(0). Then the collection
S(G) of all compact open bisections of G forms a Boolean inverse semigroup. Indeed, it is
well-known that it is an inverse semigroup, and since the topology on X is Hausdorff, one
obtains that the semilattice of idempotents of S(G), which coincides with the set of all the
compact open subsets of X, is a Boolean ring. Moreover, if we have two orthogonal compact
open bisections, it is clear that their disjoint union is again a compact open bisection.

Definition 7.2. Let G be a (non-necessarily Hausdorff) étale groupoid, with a Hausdorff
locally compact base space X := G(0). We define the type semigroup of G as

Typ(G) = Typ(S(G)).

If G is second countable, then the type semigroup Typ(G) is a countable conical refinement
monoid.

Now, we will show that Typ(G) coincides with some recently defined type semigroups
[12, 28, 29]. To this end, we recall the definition in [12] (which is equivalent to the ones given
in [28] and [29], as shown in [29]).
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Let G be an ample Hausdorff groupoid. Define an equivalence relation ∼ on the set{
n⋃
i=1

Ai × {i} | n ∈ N, Ai ∈ E(S(G))

}
,

as follows: for A =
⋃n
i=1Ai × {i} and B =

⋃m
j=1Bj × {j}, write A ∼ B if there exist l ∈ N,

open compact bisections W1, . . . ,Wl, and n1, . . . , nl,m1, . . . ,ml ∈ N such that

A =
l⊔

k=1

d(Wk)× {nk}, B =
l⊔

k=1

r(Wk)× {mk}.

The type semigroup of G is then defined in [12] to be

S(G,Ga) =

{
n⋃
i=1

Ai × {i} | n ∈ N, Ai ∈ E(S(G))

}
/ ∼ .

Proposition 7.3. Let G be an ample Hausdorff groupoid. Then Typ(G) ∼= S(G,Ga).

Proof. There is a well-defined monoid homomorphism

Φ: Typ(G)→ S(G,Ga)
defined by Φ([A]) = [A × {1}], for every compact open subset A of G0. Since [A × {1}] =
[A×{i}] in S(G,Ga), we easily see that this map is surjective. To show it is injective, assume
that Φ(

∑n
i=1[Ai]) = Φ(

∑m
j=1[Bj]) for compact open subsets Ai, Bj of G0. Then

A :=
n⋃
i=1

Ai × {i} ∼ B :=
m⋃
j=1

Bj × {j},

so there are open compact bisections W1, . . . ,Wl, and elements n1, . . . , nl,m1, . . . ,ml ∈ N
such that

A =
l⊔

k=1

d(Wk)× {nk}, B =
l⊔

k=1

r(Wk)× {mk}.

It follows that there is a partition {1, . . . , l} =
⊔n
i=1 Ii such that for each i ∈ {1 . . . , n} we

have Ai =
⊔
j∈Ii d(Wj). We thus get in Typ(G)

n∑
i=1

[Ai] =
n∑
i=1

∑
j∈Ii

[d(Wj)] =
n∑
i=1

∑
j∈Ii

[r(Wj)] =
l∑

j=1

[r(Wj)] =
m∑
j=1

[Bj],

showing injectivity. �

Let us now move to the framework of these notes. Namely, let (E,C) be an adaptable
separated graph, and consider the ample Hausdorff groupoid Gtight(S(E,C)).

We want to relate the type semigroup of Gtight(S(E,C)) with our original primely generated
refinement monoid M(E,C) (see Section 1.2). To do this, we need the next lemma. Recall
that the notation Z(s), for s ∈ S(E,C), has been introduced in Definition 5.1, and that the
family {Z(s)}s∈S(E,C) is a basis of open compact bisections of H. Since Gtight(S(E,C)) ∼=
H with an isomorphism sending Us onto Z(s), we will identify these two groupoids, and
thus consider Z(s) as open compact subsets of Gtight(S(E,C)). Under this identification,
Definition 3.7 and Definition 5.1 agree on Z(e) for any idempotent e ∈ E .
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Lemma 7.4. The following properties hold for the groupoid Gtight(S(E,C)).

(1) Suppose that e, e1, . . . , eN ∈ E. Then

Z(e) =
N⊔
i=1

Z(ei)

if and only if {e1, . . . eN} is an irredundant finite cover of e.
(2) Given any compact open bisection U , we have

U =
N⊔
i=1

Z(si),

for suitable si ∈ S, i = 1, . . . , N .

Proof. (1) If {e1, . . . , eN} is an irredundant finite cover of e, then Z(e) =
⊔N
i=1Z(ei) be-

cause the representation ι : S(E,C) → SK(E,C) is tight. Conversely, assume that Z(e) =⊔N
i=1Z(ei). Then the idempotents ei are mutually orthogonal. Now let f be a non-zero

idempotent such that f ≤ e. Then Z(f) is a non-empty subset of Z(e), and thus Z(fei) =
Z(f)∩Z(ei) is non-empty for some i = 1, . . . , n. This implies that fei 6= 0. Hence {e1, . . . eN}
is an irredundant finite cover of e.

(2) Let U be a compact open bisection. We have U =
⋃n
i=1Z(si) for elements si ∈

S(E,C). Now, observe that s(U) =
⋃n
i=1 s(Z(si)) =

⋃n
i=1Z(s∗i si). By using the standard

decomposition sketched in the proof of Lemma 3.9, we can write

s(U) =
N⊔
k=1

Uk,

a disjoint union of open compact subsets Uk of Ê∞ such that each Uk is contained in a (not
necessarily unique) set Z(s∗i si). Now, by using Corollary 3.10, we can write each Uk as a
disjoint union of sets of the form Z(ek,l), for idempotents ek,l ∈ E . For each k ∈ {1, . . . , N},
let τ(k) ∈ {1, . . . , n} be such that Uk ⊆ s(Z(sτ(k))). Then

U =
⊔
k,l

Z(sτ(k)ek,l),

because, since U is a bisection, s defines a homeomorphism U → s(U), sending Z(sτ(k)ek,l)
onto Z(ek,l). �

With this lemma, we are ready to show the main result of this paper.

Theorem 7.5. Let (E,C) be an adaptable separated graph, S(E,C) be the inverse semigroup
associated to (E,C), and let Gtight(S(E,C)) be the groupoid of germs associated to the canon-

ical action of S(E,C) on the space of ultrafilters Ê∞. Then, there is a monoid isomorphism

ψ : M = M(E,C)→ Typ(Gtight(S(E,C)))

such that ψ(av) = [Z(v)] for every v ∈ E0.

Proof. Since the defining relations in the semigroup M(E,C) are generated by the expansions
in Remark 4.3, Lemmas 4.10 and 7.4 show that these relations are preserved under ψ. Hence,
we obtain a monoid homomorphism ψ satisfying ψ(av) = [Z(v)] for every v ∈ E0.



36 PERE ARA, JOAN BOSA, ENRIQUE PARDO, AND AIDAN SIMS

Given an idempotent e = γm(p)γ∗ in S(E,C), we obviously have [Z(e)] = [Z(v)], where
v = vp if p is a free prime and v = r(λ) ∈ E0

p if p is a regular prime and m(p) = λλ∗. It
follows that the map ψ is surjective.

We now show that ψ is injective. Assume that ψ(
∑n

i=1 avi) = ψ(
∑m

j=1 awj
) in Typ(G).

Using Proposition 7.3, we see that this implies that

A :=
n⊔
i=1

Z(vi)× {i} ∼ B :=
m⊔
j=1

Z(wj)× {j}

in S(G,Ga). Now, by the definition of ∼ and Lemma 7.4, there exist l ∈ N, s1, . . . , sl ∈
S(E,C), and n1, . . . nl,m1, . . . ,ml such that

A =
l⊔

k=1

s(Z(sk))× {nk}, B =
l⊔

k=1

r(Z(sk))× {mk}.

It follows that there are partitions {1, . . . , l} =
⊔n
i=1 Ii and {1, . . . , l} =

⊔m
j=1 Jj such that

Z(vi) =
⊔
k∈Ii

s(Z(sk)) and Z(wj) =
⊔
k∈Jj

r(Z(sk))

for i = 1, . . . , n and j = 1, . . . ,m. But now, s(Z(sk)) = Z(s∗ksk), and r(Z(sk)) = Z(sks
∗
k).

Thus, Z(vi) =
⊔
k∈Ii Z(s∗ksk), which by Lemma 7.4(1) implies that {s∗ksk}k∈Ii is an irredun-

dant finite cover of vi, for i = 1, . . . , n. It follows from Proposition 4.11 that {s∗ksk}k∈Ii is
an expanded set of vi, and thus that avi =

∑
k∈Ii [s

∗
ksk] for i = 1, . . . , n, where we denote by

[s∗ksk] the class in M(E,C) of the vertex in E representing the idempotent s∗ksk. Analogously,
awj

=
∑

k∈Jj [sks
∗
k] for j = 1, . . . ,m. Since [s∗ksk] = [sks

∗
k] in M(E,C), we obtain

n∑
i=1

avi =
n∑
i=1

∑
k∈Ii

[s∗ksk] =
l∑

k=1

[s∗ksk] =
l∑

k=1

[sks
∗
k] =

m∑
j=1

∑
k∈Jj

[sks
∗
k] =

m∑
j=1

awj
,

and so ψ is injective. �

The following corollary follows immediately from Theorems 1.4 and 7.5.

Corollary 7.6. Let M be a finitely generated conical refinement monoid. Then there is an
adaptable separated graph (E,C) such that

M ∼= Typ(Gtight(S(E,C))).

In particular, all finitely generated conical refinement monoids arise as type semigroups of
ample Hausdorff groupoids.
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Matemàtica as part of the Intensive Research Program Operator algebras: dynamics and
interactions in 2017, and the work was significantly supported by the research environment
and facilities provided there. We thank the Centre de Recerca Matemàtica for its support.
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