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Abstract. For any ring R, we introduce an invariant in the form of a partially
ordered abelian semigroup S(R) built from an equivalence relation on the class of
countably generated projective modules. We call S(R) the Cuntz semigroup of
the ring R. This construction is akin to the manufacture of the Cuntz semigroup
of a C*-algebra using countably generated Hilbert modules. To circumvent the
lack of a topology in a general ring R, we deepen our understanding of countably
projective modules over R, thus uncovering new features in their direct limit
decompositions, which in turn yields two equivalent descriptions of S(R). The
Cuntz semigroup of R is part of a new invariant SCu(R) which includes an
ambient semigroup in the category of abstract Cuntz semigroups that provides
additional information. We provide computations for both S(R) and SCu(R) in
a number of interesting situations, such as unit-regular rings, semilocal rings,
and in the context of nearly simple domains. We also relate our construcion to
the Cuntz semigroup of a C*-algebra.

1. Introduction

The study of a ring using the collection of its projective (right) modules is cen-
tral in modern algebra. Much attention has been directed to finitely generated
projective modules, mostly with K-Theory in mind, since for a unital ring R the
Grothendieck group K0(R) is constructed out of the monoid V(R) of isomorphism
classes of such modules. There has also been an intensive use of countably gen-
erated projective modules. This may be justified keeping in mind that, by a well
known theorem of Kaplansky, any projective module is a direct sum of countably
generated projective ones. In this case, one might use the monoid V∗(R) of iso-
morphism classes of countably generated projective modules to analize the ring R.
It is worth noticing that both monoids V(R) and V∗(R) are naturally equipped
with the so-called algebraic order, given by complements.
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Maŕıa de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

1



2 R. ANTOINE, P. ARA, J. BOSA, F. PERERA, AND E. VILALTA

The structure of V∗(R) has attracted considerable attention in the last years;
see, for instance, [22] and [23]. For a semilocal ring, and following a result obtained
in [31], one has that V∗(R) can be viewed as a submonoid of V∗(R/J(R)), which
in turn is isomorphic to Nr

for a suitable r, where N = N∪ {∞} with the obvious
operations. A relevant problem is then to determine which submonoids of Nr

are realized by semilocal rings. A full characterization of such submonoids in the
noetherian case is obtained in [22, Theorem 2.6], as those submonoids defined by
a system of equations in the sense of [22, Definition 2.5]. (We note that previous
results for semilocal rings, but for the monoid V(R) and full affine submonoids
of Nr, were already obtained in [17].) Further progress was carried out in [23,
Theorem 1.6] for not necessarily noetherian semilocal rings. There, the authors
studied countably generated projective modules that are finitely generated modulo
the Jacobson radical and showed that they appear in a wide variety of situations.

Our aim here is to introduce an object S(R) that can also be built out of
countably generated projective modules, albeit using a relation weaker than iso-
morphism. Its construction is inspired by that of the Cuntz semigroup of a C*-
algebra, as the latter possesses a rich ordered structure that extends the algebraic
order, and has played an important role in the theory of C*-algebras in recent
years. Let us review this construction in relation to the main theme of this paper.

For the class of C*-algebras, that is, self-adjoint, norm-closed subalgebras of
the algebra of bounded operators on a Hilbert space, we encounter in countably
generated Hilbert modules the analytic siblings of countably generated projective
modules. Roughly speaking, a Hilbert module over a C*-algebra A is an A-module,
together with an A-valued inner product, which is complete with respect to a
suitable norm. The A-module A(N), with a natural inner product, gives rise to
the standard Hilbert module HA. It is a celebrated theorem due to Kasparov
that any countably generated Hilbert A-module H is isometrically isomorphic
to a complement of HA; see [26]. From this point of view, countably generated
Hilbert modules play a role akin to countably generated projective modules for
C*-algebras. In fact, an algebraically finitely generated Hilbert module is a finitely
generated projective module; see, e.g. [8, Theorem 3.12]. Further, the monoid of
isomorphism classes of finitely generated Hilbert A-modules is isomorphic to the
monoid V(A) of the C*-algebra, as shown in [8, Proposition 3.10]. We also remark
that, as proved recently by Brown and Lin in [11], over a separable C*-algebra
every countably generated Hilbert module is projective (with bounded module
maps as morphisms). This is a step forward in the direction of characterizing
projective Hilbert modules over a C*-algebra.

An equivalence relation among countably generated Hilbert A-modules, weaker
than isomorphism, was studied in [14]. In there, the authors proved that the
monoid arising from said equivalence relation may be identified with the complete
Cuntz semigroup invariant Cu(A) of the C*-algebra A. (The terminology ‘semi-
group’ is used for historical reasons, although in fact Cu(A) is a monoid.) The
original (uncomplete) Cuntz semigroup WC(A) was constructed by Cuntz in [15]
using positive elements and a suitable comparison relation among them that, when
restricted to idempotents, yields the usual Murray-von Neumann comparison. In
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short, we say that a is Cuntz subequivalent to b, and write a ≾Cu b, provided
a can be approximated arbitrarily well by elements of the form xby. Compared
with the construction of the group K0, this approach is advantageous since every
C*-algebra has an abundance of positive elements but may have a complete lack
of idempotents. The exact relation between WC(A) and Cu(A) may be expressed
by the isomorphism Cu(A) ∼= WC(A ⊗ K), where K is the algebra of compact
operators on an infinite dimensional Hilbert space. Alternatively, Cu(A) may be
thought of as the completion of WC(A); see [3, Theorem 3.2.8]. It was shown in [14]
that Cu(A) sits in a well-behaved category of partially ordered monoids, termed
Cu, in which each object admits suprema of increasing sequences, among other
continuity properties. Furthermore, the assignment A 7→ Cu(A) is a continuous
functor; see [14, 3].

The Cuntz semigroup plays a prominent role in the classification programme
of C*-algebras initiated by G. A. Elliott and is a key ingredient in delimiting the
optimal class of such algebras amenable to classification by the Elliott invariant
(that consists essentially of K0, K1, and the trace simplex). Indeed, the examples
constructed by A. S. Toms in [34] can be distinguished by their Cuntz semigroups,
but not by a swath of other well known topological invariants for C*-algebras that
include, among others, the Elliott invariant and the stable rank.

When trying to adapt the ideas above to the purely algebraic setting one has to
bear in mind that, in nature, the Cuntz semigroup is an analytic object. Thus one
first needs to use an algebraic analogue of Cuntz comparison for general elements
in a ring. We take advantage of the approach carried out in [9], in which one
defines x ≾1 y, provided x = rys for some elements r, s ∈ R, in order to construct
a partially ordered monoid W(R) for any weakly s-unital ring R; see Paragraphs
2.4 and 2.5. By considering suitable equivalence classes of increasing sequences
with respect to the relation ≾1, we obtain a monoid Λ(R) in the category Cu that
contains W(R). The object Λ(R) can be conveniently identified with the monoid
of intervals in W(R), but it is in general too large for our purposes. This differs
fundamentally from what happens in the C*-algebraic case, and the reason may
be found in the lack of a topology in R. To remedy this drawback, we restrict our
attention to a well-behaved partially ordered submonoid S(R) of Λ(R) which, for
a C*-algebra A, is resemblant to Cu(A) and its role as the completion of WC(A).
We will term S(R) the Cuntz semigroup of the ring R and this is the main object
of study in this paper. At this point, we mention that the construction of the
Cuntz semigroup WC(A) for a C*-algebra A served as inspiration to Hung and
Li to introduce in [25] a semigroup for any unital ring R, termed the Malcolmson
semigroup, and denoted by WM(R), in order to study Sylvester rank functions
over the ring R. To construct this semigroup one uses a relation stronger than ≾1

and, as it turns out, for any C*-algebra A the semigroup WC(A) is a homomorphic
image of WM(A) via an order-preserving map; see [25, Lemma 5.1, Proposition
5.2]. We shall review this construction and its relation to our semigroup W(R) in
Section 3.
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To explain how one constructs the Cuntz semigroup S(R) we take a slight detour
that finally yields two equivalent pictures of the same object and spurs our mo-
tivation at the same time. More concretely, given countably generated projective
modules P and Q over R, we combine the approach carried out for Hilbert modules
in [14] with an abstraction of the above-mentioned relation ≾1 to write P ≾ Q if
the inclusion of any finitely generated module X of P may be factorized through
Q; see Paragraph 4.4. By antisymmetrizating the above relation, we get an or-
dered abelian monoid CP(R) and a natural surjective morphism V∗(R) → CP(R).
As we show in Section 6, if R is either unit-regular or unital and semilocal, this is
an isomorphism of abelian monoids, but not of ordered monoids, as V∗(R) is alge-
braically ordered, but CP(R) is not, except in trivial situations. Further investiga-
tion on countably generated projective modules structure leads us to reformulate
the proof, obtained in [29], that any such module can be written as a sequential
inductive limit of free modules such that, for each n, the nth transition map con-
sists of multiplication by a matrix xn with the property that xn = yn+1xn+1xn for
a suitable matrix yn+1 (hence in particular xn ≾1 xn+1). Our arguments uncover
additional and crucial information in such an inductive limit decomposition and
in doing so we are able to relate the monoid CP(R) to the submonoid S(R) of
Λ(R) consisting of (suitable equivalence classes of) increasing sequences (xn) with
respect to ≾1 arising from inductive limits as above:

Theorem A (4.13, 4.3). Let R be any ring. Then CP(R) and the Cuntz semigroup
S(R) of R are order-isomorphic monoids. Moreover, every increasing sequence in
CP(R) (or S(R)) has a supremum.

Despite the analogy of the construction of the Cuntz semigroup S(R) of a ring
R with that of a C*-algebra, it is unclear whether S(R) is a Cu-semigroup. We
remedy this fact by considering the pair SCu(R) = (Λ(R), S(R)). This is an
instance of an object in the category SCu of pairs (Λ, S), where Λ is a monoid in
the category Cu and S is a submonoid of Λ closed under suprema of a certain type
of sequences. The definition of this new abstract category balances the fact that
S(R) might not be an object in Cu with an ambient object which does belong to
the category and is still intimately related to S(R). More concretely, we prove:

Theorem B (5.7). Let Ringsws denote the category of weakly s-unital rings. Then,
the assignment

SCu: Ringsws −→ SCu
R 7→ (Λ(R), S(R))

is functorial.

In a subsequent paper ([1]) we examine other structural properties of the object
SCu(R), such as a natural notion of ideal and quotient, and how these notions
parametrize the ideal lattice of a ring. There, we also show that the category
SCu admits inductive limits and analyse when the assignment R 7→ SCu(R) is
continuous.

We analyse the construction of this new Cuntz semigroup in a variety of situa-
tions. Firstly, since the original motivation of this paper comes from C*-algebra
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theory, we relate Cu(A) to S(A) for any C*-algebra A, by showing the former is a
retract of the latter, as follows:

Theorem C (7.6). Given a C*-algebra A, there exist ordered monoid morphisms
φ : Cu(A) → S(A) and ϕ : S(A) → Cu(A) that preserve suprema of increasing
sequences and such that ϕ ◦ φ = idCu(A).

Secondly, we show that in a number of interesting examples outside the class
of C*-algebras the monoids W(R) and S(R), together with their order structure,
can be identified:

Theorem D (6.11, 6.13, 8.4). Let R be a unital ring, and let P and Q be countably
generated projective R-modules. Then:

(i) If R is unit-regular, we have [P ] ≤ [Q] in CP(R) precisely when P is iso-
morphic to a submodule of Q. It follows that W(R) ∼= V(R) and S(R) ∼=
CP(R) ∼= Λ(R). Thus S(R) is a Cu-semigroup.

(ii) If R semilocal, we have [P ] ≤ [Q] in CP(R) precisely when P is isomorphic
to a pure submodule of Q. In this case, as abelian monoids, we have S(R) ∼=
CP(R) ∼= V∗(R).

(iii) If R is a nearly simple domain, then W(R) ∼= N × N, and (r, s) ≤ (r′, s′)
precisely when r ≤ r′ and r + s ≤ r′ + s′. Moreover, SCu(J(R)) ∼= (N, 0).

The article is organized as follows. In Section 2 we review the definition of the
Cuntz semigroup WC(A) for a C*-algebra A and the category its completion nat-
urally belongs to, and we define its algebraic counterpart W(R) together with the
natural construction Λ(R), which will conveniently serve as an ambient monoid
later on. In Section 3 we relate the semigroup W(R) with the Malcolmson semi-
group introduced in [25], and show both semigroups may be identified for unital
von Neumann regular rings. Section 4 constitutes the heart of this paper, where
we construct the Cuntz semigroup S(R) for a ring R and prove Theorem A. This
is technically demanding as we need to split the proof into the unital and non-
unital case. In Section 5 we introduce the category SCu and establish Theorem
B. In Section 6 we study compact elements in S(R) and prove parts (i) and (ii) of
Theorem D. We revisit C*-algebras in Section 7 to relate S(A) and Cu(A), thus
proving Theorem C. Section 8 is devoted to the analysis of the class of nearly
simple domains and to prove part (iii) of Theorem D.
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2. The Cuntz semigroup of a C∗-algebra and the semigroup W(R)

In this section we recall the definition of the Cuntz semigroup of a C∗-algebra
and its most natural adaptation to a purely algebraic framework.



6 R. ANTOINE, P. ARA, J. BOSA, F. PERERA, AND E. VILALTA

2.1 (Diagonal sum in M∞(R)). Given a ring R, we denote by M∞(R) the ring of
infinite matrices with only a finite number of nonzero entries. That is, given an
element x ∈ M∞(R) there exist n,m ≥ 1 and a finite matrix z ∈ Mn×m(R) such
that

x =

z 0 · · ·
0 0
...

. . .

 .

We will call z a finite representative of x, and we will say that x is the infinite
matrix represented by z. We will tacitly identify x and z when no confusion can
arise.

Given two finite rectangular matrices x ∈ Mn1×m1(R) and y ∈ Mn2×m2(R), we
will denote by x⊕ y the infinite matrix

x 0 0 · · ·
0 y 0
0 0 0
...

. . .

 .

In other words, x⊕y is the infinite matrix represented by the rectangular matrix(
x 0
0 y

)
∈M(n1+n2)×(m1+m2)(R).

2.2 (Cuntz subequivalence and the Cuntz semigroup). We shall denote by K
the algebra of compact operators over an infinite-dimensional Hilbert space. Let
A be a C∗-algebra. Given positive elements a, b ∈ A, we say that a is Cuntz
subequivalent to b, in symbols a ≾Cu b, provided that there is a sequence (xn) in
A such that a = limn xnbx

∗
n. Equivalently, there are sequences (xn), (yn) in A

such that a = limn xnbyn (see [15]). We say that a and b are Cuntz equivalent,
in symbols a ∼Cu b, if both a ≾Cu b and b ≾Cu a occur. One can use the second
equivalent definition of Cuntz subequivalence to extend ∼Cu to arbitrary elements.
That does not have any effect on the theory since, as it happens, a∗a ∼Cu aa

∗ ∈ A+

for any a ∈ A.
By extending this relation in the natural way to M∞(A)+, one can define a

partially ordered set
WC(A) =M∞(A)+/∼,

with order given by [a]Cu ≤ [b]Cu whenever a ≾Cu b (and where [a]Cu denotes the
equivalence class of a). It becomes a positively ordered semigroup by defining
[a]Cu + [b]Cu = [a ⊕ b]Cu. The semigroup WC(A), originally defined in [15], is
most currently referred to as the classical Cuntz semigroup. The complete Cuntz
semigroup of a C∗-algebra A is Cu(A) = WC(A⊗K). (See [8], and [18] for survey
articles on the Cuntz semigroup.)

Coward, Elliott, and Ivanescu introduced in [14] the category Cu, which captures
continuity properties of the semigroup Cu(A).

2.3 (The category Cu and abstract Cu-semigroups). Given a positively ordered
monoid S, we write x ≪ y (and say that x is compactly contained in y, or that
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x is way-below y), if whenever (yn) is an increasing sequence in S for which the
supremum supn yn exists, then y ≤ supn yn implies that there exists k such that
x ≤ yk. (See [19, I-1].)

Using it, we consider the following axioms for S:

(O1) Every increasing sequence (xn) in S has a supremum supn xn ∈ S.
(O2) Every element x ∈ S is the supremum of a sequence (xn) such that xn ≪

xn+1 for all n. We say that (xn) is a rapidly increasing sequence.
(O3) If x′, x, y′, y ∈ S satisfy x′ ≪ x and y′ ≪ y then x′ + y′ ≪ x+ y.
(O4) If (xn) and (yn) are increasing sequences in S, then supn(xn + yn) =

supn xn + supn yn.

An abstract Cuntz semigroup (or just a Cu-semigroup) is a positively ordered
monoid satisfying axioms (O1)-(O4). A Cu-morphism between two Cu-semigroups
S and T is a positively ordered monoid morphism f : S → T that preserves com-
pact containment and suprema of increasing sequences. The category Cu has as
objects the Cu-semigroups and as morphisms the Cu-morphisms. It was shown in
[14] that the natural models of Cu-semigroups are the complete Cuntz semigroups
of C∗-algebras.

Also, the natural models of Cu-morphisms are the *-homomorphisms of C∗-
algebras. More specifically, given C∗-algebras A and B and a *-homomorphism
φ : A→ B, we may define Cu(φ) : Cu(A) → Cu(B) by Cu(φ)([a]) = [(φ⊗ id)(a)],
for any a ∈ (A ⊗ K)+, which is a Cu-morphism. In this way, the assignment
A 7→ Cu(A) determines a functor from the category of C∗-algebras to the category
Cu, which turns out to be continuous (see [14] and also [3]). It was shown in [3,
Theorem 3.28] that Cu(A) is, suitably interpreted, a completion of WC(A).
Elements that will become relevant in the theory are the so-called compact

elements. By definition, an element x in a Cu-semigroup S is termed compact
provided x ≪ x. The natural sources of compact elements in Cuntz semigroups
of C∗-algebras are the classes of projections, i.e. self-adjoint idempotents. In
significant cases, these are the only ones (see, e.g. [12]). A Cuntz semigroup S
is said to be algebraic provided every element is the supremum of a sequence of
compact elements ([3, Definition 5.5.1]).

A sub-Cu-semigroup of a Cu-semigroup T is a submonoid S of T such that the
inclusion ι : S → T is a Cu-morphism; see, for example, [3]. For example, let N
be the set of natural numbers with 0. Then, N := N ∪ {∞} is a Cu-semigroup
and a submonoid of the Cu-semigroup [0,∞], but it is not a Cu-subsemigroup of
[0,∞], because, for instance, 2 ≪ 2 in N but 2 is not compactly contained in itself
in [0,∞].

We now introduce an algebraic analog of the classical Cuntz semigroup. For
this, we first need to consider a class of rings suitable to our needs. The relation
≾1 below was already considered in [9].

2.4 (s-unital rings). We recall that a ring R is said to be s-unital if, for every
element a ∈ R, there is b ∈ R such that a = ba = ab. Evidently this includes all
unital rings, σ-unital rings, and rings with local units.
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We will say that a ring R is weakly s-unital if for every n ≥ 1 and every element
a ∈Mn(R), there are b, c ∈Mn(R) such that a = bac.

By [4, Lemma 2.2], given a finite family a1, . . . , an of elements of an s-unital
ring R, there is b ∈ R such that bai = ai = aib for i = 1, . . . , n. From this, one
can show that if R is s-unital then so is the ring M∞(R). It also follows that any
s-unital ring is weakly s-unital.

2.5 (The semigroup W(R)). Let R be any ring. Given elements a, b ∈ R, we write
a ≾1 b if there exist elements r, t ∈ R such that

a = rbt.

The relation ≾1 is clearly transitive by construction. Assume further that R is
weakly s-unital, and then ≾1 is also reflexive. We write a ∼1 b provided a ≾1 b
and b ≾1 a.

If e, f are idempotents in R, then an easy argument shows that e ≾1 f if and
only if e ∼ f ′ and f ′ ≤ f in the sense that e = xy whilst yx = f ′, for elements
x ∈ eRf ′, y ∈ f ′Re. That is, the relation ≾1 agrees with the usual Murray-von
Neumann subequivalence ≾MvN for idempotents. Therefore, if e ∼ f , then e ∼1 f ,
but the converse does not necessarily hold – it will if all idempotents are finite, in
the sense that they do not contain proper equivalent copies of themselves.

In case A is a C∗-algebra and p, q ∈ A are projections, then it is known that
p ≾Cu q if and only if p = vv∗ and v∗v ≤ q. In other words, Cuntz subequiva-
lence, when restricted to projections, agrees with the usual Murray-von Neumann
subequivalence. It follows from this that p ≾Cu q precisely when p ≾1 q. However,
this will not hold for general positive elements, and thus one cannot expect that
our algebraic construction below coincides with the C∗-algebraic one. Notice also
that C∗-algebras are in general neither weakly s-unital nor s-unital.

We now extend the relation ≾1 to M∞(R) and define

W(R) =M∞(R)/∼1 .

Denote the class of a ∈M∞(R) by [a]. As we show below, this partially ordered set
becomes an abelian semigroup by defining [a]+[b] = [( a 0

0 b )], for any a, b ∈M∞(R).

Lemma 2.6. For any weakly s-unital ring R, the poset W(R), equipped with the
addition defined above, is a positively ordered commutative monoid.

Proof. We first have to show that addition is well-defined.
Note the following fact. Let u ∈ Mk×l(R) and v ∈ Mt×s(R) be finite matrices

with coefficients in R, and let x, y be the infinite matrices represented by u and v
respectively. Then x ≾1 y inM∞(R) if and only if there are matrices a ∈Mk×t(R)
and b ∈Ms×l(R) such that u = avb.

For the addition, let w,w′ ∈ W(R) and suppose that u and v are finite repre-
sentatives of w, and that u′ and v′ are finite representatives of w′. Using the above
observation we find finite matrices a, b, a′, b′ of suitable sizes such that

u = avb and u′ = a′v′b′.

We then have that u⊕u′ = (a⊕a′)(v⊕v′)(b⊕b′). This shows that (u⊕u′) ≾1 (v⊕v′),
and similarly we have that (v ⊕ v′) ≾1 (u⊕ u′), and thus [(u⊕ u′)] = [(v ⊕ v′)].
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The same argument shows that addition is compatible with the order in W(R).
Further, it is clear that the class [0] is the zero element and that addition is
associative.

To see that it is also commutative, let w,w′ ∈ W(R), and let u, u′ be finite
representatives of w,w′, respectively. Since R is weakly s-unital, we may choose
finite matrices v, z, v′, z′ of suitable sizes such that vuz = u and v′u′z′ = u′.

Then, we have(
u′ 0
0 u

)
=

(
0 v′

v 0

)(
u 0
0 u′

)(
0 z
z′ 0

)
≾1

(
u 0
0 u′

)
.

Hence u′ ⊕ u ≾1 u⊕ u′. Thus, one gets

w′ + w = [u′ ⊕ u] ≤ [u⊕ u′] = w + w′,

and by symmetry w+w′ ≤ w′ +w, showing that w′ +w = w+w′, as desired. □

2.7 (The semigroup V(R)). We shall denote as customary by V(R) the semigroup
of Murray-von Neumann equivalence classes of idempotents in M∞(R), and we
denote the class of an idempotent e ∈M∞(R) by [e]MvN. Our observations above
mean that there is a an order-embedding ι : V(R) → W(R), given by [e]MvN 7→ [e].
This map is injective if R is stably finite, in the sense that x + y = x in V(R)
precisely when y = 0.
In particular, the next result shows how the different orders behave via ι. Indeed,

it is shown that every element of ι(V (R)) can be complemented in W(R). It is
worth noticing the converse does not always hold; see Remark 8.5.

Lemma 2.8. Let R be a weakly s-unital ring, and let x ∈ ι(V (R)) and y ∈ W(R).
If x ≤ y, then there exists z ∈ W(R) such that x+ z = y.

Proof. Let e be an idempotent in M∞(R) such that x = [e], and let v ∈ M∞(R)
satisfy y = [v]. Using that e ≾1 v, we can find elements r, s such that e = rvs.
Since e is idempotent, we may also assume that r = er and s = se. Thus, the
element f := vsr = vser is an idempotent in vR satisfying [f ] = [e] = x.
Now set w := v − fv ∈ M∞(R). Since R is weakly s-unital, there exist a, b ∈

M∞(R) such that awb = w. Thus, we have

v =
(
f a

)(f 0
0 v − fv

)(
v
b

)
and, consequently, y = [v] ≤ [f ] + [w] = x+ [w].
Using once again that R is weakly s-unital, let c, d ∈ M∞(R) satisfy v = cvd.

One gets (
f 0
0 v − fv

)
=

(
fc

c− fc

)
v
(
dsr d− dsrv

)
.

This shows that [f ] + [w] ≤ [v] = y. Setting z := [w], we obtain

x+ z = [f ] + [w] = y,

as desired. □
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In a more concrete settting, recall that an element a in a ring R is said to be a
von Neumann regular element provided there is x ∈ R such that a = axa. Upon
replacing x by x′ = xax, we may also assume that x = xax. The ring R is said
to be a von Neumann regular ring if every element is von Neumann regular. (See
[20].)

Lemma 2.9. Let R be a stably finite von Neumann regular ring. Then, the natural
map V(R) → W(R) is an order-isomorphism.

Proof. Let a ∈ R, and write a = axa with x = xax. It is then an easy exercise
to verify that a ∼1 ax =: e, which is an idempotent. Since matrices over a von
Neumann regular ring are also von Neumann regular, this shows that the map
V(R) → W(R) is surjective. □

The relation between ≾1 and ≾Cu for general positive elements in a C*-algebra
is examined with some more detail in the lemma below.

Lemma 2.10. Let A be a C∗-algebra, and let a, b ∈ A. If a ≾1 b, then a
∗a ≾Cu b

∗b.
Therefore, there is a positively ordered monoid morphism ιC : W(A) → WC(A),
given by ιC([a]) = [a∗a]Cu.

Proof. Suppose that a ≾1 b, and write a = sbr for some s, r ∈ A. Then

a∗a = r∗b∗s∗sbr ≾Cu b
∗s∗sb ≤ ∥s∥2b∗b ≾Cu b

∗b.

Notice that, in particular, since x ∼Cu x2 for any x ∈ A+, we have a ≾Cu b
whenever a, b ∈ A+ and a ≾1 b. □

2.11 (The semigroup Λ(R)). We now proceed to construct an object in the cat-
egory Cu for any weakly s-unital ring R. In the C∗-setting this can be done by
simply considering WC(A⊗K), but there is no algebraic analogue of the compact
operators K. Another approach is through a completion of W(R) by a so called
auxiliary relation in W(R); see [19, Definition I-1.11], [3, Definition 2.2.4] and
also Remark 6.4 below. But again, there is no clear algebraic analogue of such an
auxiliary relation for our needs.

The approach below is partly inspired by the description of Cu(A) in [14] using
certain increasing sequences. We will first make a general construction that works
for a general ring, and then specialize to the weakly s-unital setting.
Let R be a ring. Set

T (R) = {(an)n | an ∈M∞(R) and an ≾1 an+1 for all n}.

Given (an), (bn) ∈ T (R), write (an) ≾ (bn) if for any n, there exists m with
an ≾1 bm. We also write (an) ∼ (bn) provided (an) ≾ (bn) and (bn) ≾ (an). Notice
that, since for (an) ∈ T (R) we have an ≾1 an+1, we see that (an) ≾ (an) and thus
the relation ≾ is reflexive even if R is not unital. It is also clearly transitive. Let

Λ(R) = T (R)/∼,

which is a partially ordered set with the order induced by ≾. We denote by [(an)]
the ∼-equivalence class of a sequence (an) in T (R). We now equip Λ(R) with a
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semigroup structure, and to this end we need to be careful with the choices of
representatives.

Thus, in analogy to the terminology introduced in Paragraph 2.1, given an
element w ∈ Λ(R), a finite matricial representative of w is any sequence (un) such
that un ∈ Mkn+1×kn(R), where (kn) is a sequence of positive integers, for which
there exist matrices vn+1 ∈ Mkn+1×kn+2(R) and zn+1 ∈ Mkn+1×kn(R) such that
un = vn+1un+1zn+1 for all n, and with w = [(xn)], where xn is the infinite matrix
represented by un for each n ∈ N.

For w,w′ ∈ Λ(R), let (un) and (u′n) be finite matricial representatives of w and
w′ respectively. The sum w + w′ is then defined as

w + w′ = [(un ⊕ u′n)] ∈ Λ(R).

Lemma 2.12. For any ring R, the poset Λ(R), equipped with the addition defined
above, is a positively ordered commutative monoid.

Proof. The argument is similar to Lemma 2.6. We sketch the main steps in the
proof.

If w,w′ ∈ Λ(R), let (un), (vn) be two finite matricial representatives of w, and
let (u′n) and (v′n) be finite matricial representatives of w′. Given n ∈ N, we see,
using the first observation in the proof of Lemma 2.6, that there is m ∈ N and
finite matrices a, b, a′, b′ of suitable sizes such that

un = avmb, u′n = a′v′mb
′.

Then un⊕u′n = (a⊕a′)(vm⊕v′m)(b⊕b′), and thus (un⊕u′n) ≾ (vn⊕v′n). Likewise,
(vn ⊕ v′n) ≾ (un ⊕ u′n), whence [(un ⊕ u′n)] = [(vn ⊕ v′n)].
The rest of the argument follows the lines of Lemma 2.6. □

Proposition 2.13. Let R be any ring. Then every increasing sequence in Λ(R)
has a supremum. If, further, R is weakly s-unital, then Λ(R) is a Cu-semigroup.

Proof. This is fundamentally contained in the arguments of [3, Proposition 3.1.6].
We offer some details for the convenience of the reader.

Let ([xk])k in Λ(R) be an increasing sequence. We thus have that xk ≾ xk+1 for

all k. Write xk = (x
(k)
n )n, with x

(k)
n ≾1 x

(k)
n+1 for all n and all k. By an inductive

process, we find an increasing sequence nk such that x
(i)
ni+j

≾1 x
(k)
nk if i+ j ≤ k.

To see this, set n1 = 0 and using that x1 ≾ x2, find n2 such that x
(1)
n1+1 = x

(1)
1 ≾1

x
(2)
n2 . If ni is constructed for i ≤ k, we use that x1, . . . , xk ≾ xk+1 to find nk+1 such

that x
(1)
ni+k

, x
(2)
n2+k−1, . . . , x

(k)
nk+1 ≾1 x

(k+1)
nk+1 , and thus the induction is complete.

After reindexing we may assume that ni = i and therefore x
(i)
i+j ≾1 x

(i+j)
i+j for all

i, j. Setting yn = x
(n)
n , we have that y := (yn) satisfies [y] = supn[xk]. This shows

the first part of the statement.
Assume now that R is weakly s-unital, hence x ≾1 x for each x ∈ M∞(R).

Then, if [(xn)] ∈ Λ(R), the sequence x(k) := (x1, . . . , xk, xk, . . . ) belongs to T (R),
and it is not difficult to show that [(xn)] = supk[x

(k)].
Using this fact, one may check that, given [(xn)], [(yn)] ∈ Λ(R), we have [(xn)] ≪

[(yn)] in Λ(R) if and only if there is m such that xn ≾1 ym for all n.
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From this, one gets that axioms (O2)-(O4) are satisfied in Λ(R) and, combined
with the first part of the proof, we obtain that Λ(R) is a Cu-semigroup. □

In the weakly s-unital setting, the semigroup Λ(R) can be conveniently identi-
fied with the monoid of intervals in the semigroup W(R). We make this connection
explicit below, and in the sequel we will use both pictures interchangeably. In-
tervals have been used in many places, in connection with C∗-algebras and other
algebraic structures; see, for example, [35], [30], [2], or [3]. Our discussion below
consists of well-known facts on intervals.

2.14 (Intervals). Let M be a positively ordered monoid. Recall that an interval
in M is a subset I ⊆M which is upward directed and downward hereditary. The
set of intervals is denoted by Λ(M), and it becomes a positively ordered monoid
by defining

I + J = {z ∈M | z ≤ x+ y where x ∈ I and y ∈ J},
and where order is given by set inclusion.

We say that an interval I inM is countably generated provided I has a countable,
cofinal subset. Equivalently, there is an increasing sequence (xn) in I such that
I = {x ∈M | x ≤ xn for some n}. The set of countably generated intervals in M
is denoted by Λσ(M), which is clearly a positively ordered submonoid of Λ(M).
Indeed, if I and J have countable cofinal subsets (xn) and (yn), respectively, then
(xn + yn) is a countable cofinal subset for I + J .
We have a positively ordered monoid morphism ϕ : M → Λσ(M) given by ϕ(x) =

[0, x], which is an order-embedding. Notice that every increasing sequence (In) in
Λσ(M) has a supremum, simply given by ∪nIn. From this, and writing every
interval J ∈ Λσ(M) as J = ∪n[0, yn] for an increasing cofinal sequence (yn), it
follows easily that I ≪ J if and only if there is y ∈ J such that I ⊆ [0, y].
It is then clear that, for each I ∈ Λσ(M) and x ∈ I, we have [0, x] ≪ I and,

if (xn) is an increasing sequence in I which is a countable cofinal subset, then
I = sup[0, xn] with [0, xn] ≪ [0, xn] ≪ [0, xn+1].
It is also easy to verify that addition in Λσ(M) is compatible with suprema and

the compact containment relation.

Lemma 2.15. Let M be a positively ordered monoid. Then, its set of countably
generated intervals Λσ(M) is always an algebraic Cu-semigroup.

Proof. This follows directly from the discussion carried out in Paragraph 2.14. □

2.16 (The semigroup ΛW(R)). Let R be a weakly s-unital ring. We let

ΛW(R) = Λσ(W(R)).

Notice that, if for example D is any division ring, one has W(D) ∼= N, where
the isomorphism is given by assigning to each matrix its rank. It follows that
ΛW(D) ∼= N.

Another example is given by purely infinite simple rings. Recall that a unital
simple ring R is said to be purely infinite provided R is not a division ring and,
for every non-zero element a ∈ R, there are elements x, y ∈ R such that xay = 1
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(see [6, Theorem 1.6]) . This implies in particular that a ∼1 b for any non-zero
elements a, b ∈ R, and thus W(R) ∼= {0,∞} and also ΛW(R) ∼= {0,∞}.

Proposition 2.17. Let R be a weakly s-unital ring. Then there is an ordered
monoid isomorphism

ΛW(R) ∼= Λ(R).

Proof. Given I ∈ ΛW(R), let ([an]) be an increasing sequence in W(R) such that
it is a cofinal subset for I. Define φ : ΛW(R) → Λ(R) by φ(I) = [(an)].

If I ⊆ J and ([an]), ([bn]) are increasing, countable cofinal subsets for I and
J , respectively, then for each n, there is m such that [an] ≤ [bm]. Therefore
(an) ≾ (bn) and thus φ is well defined and order-preserving. It is easy to verify
that φ also preserves addition. Evidently, φ is surjective.

Let us check that φ is an order-embedding. Suppose that I, J ∈ ΛW(R) satisfy
φ(I) ≤ φ(J). Let ([an]), ([bn]) be increasing, countable cofinal sequences for I and
J , respectively. Then by definition of the order in Λ(R) we have that, for each n,
there is m with an ≾1 bm, which clearly implies that I ⊆ J .
Therefore φ is an ordered monoid isomorphism. □

Remark 2.18. We note that Proposition 2.17 offers an alternative proof that
Λ(R) is an object in Cu in the weakly s-unital setting.

3. The Malcomlson semigroup, Sylvester rank functions, and
dimension functions

In this section, we briefly recall the construction of the Malcomlson semigroup
as introduced in [25] and its relation to W(R).

3.1 (The Malcomlson semigroup). Let R be a unital ring. Following [25] with a
slight change of notation, we define a relation ≾0 in M∞(R) by a ≾0 b if either
a ≾1 b or a = ( c 0

0 d ) and b = ( c e0 d ) for suitable c, d, e ∈M∞(R).
Define ≾M to be the transitive closure of ≾0, so that a ≾M b if and only if there

exist a1, . . . , an ∈ M∞(R) with a = a1 ≾0 a2 ≾0 · · · ≾0 an = b. Set ∼M as the
antisymmetrization of ≾M and define

WM(R) =M∞(R)/∼M .

Denote the elements in WM(R) by [a]M. It follows that WM(R) is a positively
ordered abelian semigroup with addition given by [a] + [b] = [( a 0

0 b )] and order
induced by ≾M.

Since clearly ≾M is weaker than ≾1, we have a positively ordered monoid mor-
phism ιM : W(R) → WM(R), given by [a] 7→ [a]M.
As shown in [25, Lemma 5.1], if A is a C*-algebra and a, b ∈ M∞(A), one has

that a ≾M b implies a ≾Cu b. There is then a positively ordered monoid morphism
ι̃C : WM(A) → WC(A). Combining this with Lemma 2.10, we have the following
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commutative diagram

W(A)
ιM
//

ιC
$$

WM(A)

ι̃C
��

WC(A)

.

3.2 (States, Sylvester rank functions and dimension functions). Given a positively
ordered monoid S with an order-unit u, recall that a state on S normalized at u
is a positively ordered semigroup map s : S → [0,∞) such that s(u) = 1. The set
of states is customarily denoted by St(S, u).

Let R be a unital ring. A map d : M∞(R) → [0,∞) such that the following
conditions hold:

(i) d(0) = 0 and d(1) = 1;
(ii) d(ab) ≤ d(a), d(b) or, equivalently, d(a) ≤ d(b) whenever a ≾1 b;
(iii) d(a) + d(b) = d( a 0

0 b ),

will be called a dimension function. If, furthermore, d satisfies

(iv) d(a) + d(b) ≤ d( a c0 b ),

then we say that d is a Sylvester matrix rank function for R.
Denote the set of dimension functions by DF(R), and the subset of Sylvester

matrix rank functions by P(R). Note that P(R) may be identified with the states
on WM(R) normalized at [1]. Indeed, given d ∈ P(R), set sd([a]) = d(a). Con-
versely, if s ∈ St(WM(R), [1]), define ds(a) = s([a]). Likewise, one may check that
the set of dimension functions may be identified with St(W(R), [1]).

Lemma 3.3. Let R be an s-unital ring. Let a, b, c ∈ M∞(R). If a is a von
Neumann regular element, then(

a 0
0 b

)
≾1

(
a c
0 b

)
.

In particular, if R is a unital von Neumann regular ring, then ≾1 is equivalent
to ≾M and thus the natural map ιM : W(R) → WM(R) is an order-isomorphism,
whence DF(R) = P(R).

Proof. Let S = M∞(R). Since a is von Neumann regular and R is s-unital, there
are elements a′, b′ ∈ S such that a = aa′a and b = b′b = bb′ and c = cb′ = b′c.
Therefore(

aa′ 0
0 b′

)
·
(
a c
0 b

)
·
(
a′a −a′c
0 b′

)
=

(
a −aa′c+ aa′cb′

0 b′bb′

)
=

(
a 0
0 b

)
.

The second part of the statement follows by definition of ≾M: if a ≾M b, then
there are elements a1, . . . , an ∈ M∞(R) such that a = a1 ≾0 · · · ≾0 an = b. For
each i, we have by definition of ≾0 and the first part of the proof that ai ≾1 ai+1,
whence a ≾1 b. □

3.4 (Functionals). Let S be a Cu-semigroup. Recall that a functional on S is
a positively ordered monoid morphism λ : S → [0,∞] that respects suprema of
increasing sequences. The set of functionals on S is denoted by F (S).
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Proposition 3.5. Let R be a unital ring. Then, any dimension function d on
R induces a unique functional λd ∈ F (ΛW(R)) such that λd(ϕ([x])) = d(x) for
all x ∈ M∞(R), where ϕ : W(R) → ΛW(R) is the canonical homomorphism. In
particular, this is the case for any Sylvester matrix rank function.

Proof. By Proposition 2.17, ΛW(R) is order-isomorphic to Λ(R). Let x ∈ Λ(R) and
let (xn) be a representative for its class, which by definition satisfies xn ≾1 xn+1

for each n. Given a dimension function d ∈ DF (R), set λd(x) = supn d(xn).
By construction, if (xn) ≾ (yn), then for each n there is m with xn ≾1 ym, and
thus supn d(xn) ≤ supm d(ym). This yields a well defined, order-preserving map
λd : Λ(R) → [0,∞].

Since addition in Λ(R) is defined componentwise, we see that λd is additive.
It remains to check that λd preserves suprema of increasing sequences. To do
so, we recall how suprema of increasing sequences are constructed in Λ(R); see
Proposition 2.13. Given a sequence (xk) in Λ(R) such that xk ≾ xk+1 for all k, we

write xk = (x
(k)
n )n and assume, reindexing if necessary, that x

(i)
i+j ≾1 x

(i+j)
i+j for all

i, j. Then y = (yn), where yn := x
(n)
n , is the supremum of the sequence (xk)k.

Since x
(k)
n = x

(k)
n−k+k ≾1 x

(n)
n whenever n ≥ k, we have

sup
k
λd(xk) = sup

k
sup
n
d(x(k)n ) ≤ sup

n
d(x(n)n ) = λd(y).

Since the reverse inequality λd(y) ≤ supk λd(xk) is obvious, this shows that λd(y) =
supk λd(xk).
Uniqueness of λd follows from the fact that [(xn)] = supn ϕ([xn]) for [(xn)] ∈

Λ(R). □

4. The Cuntz semigroup of a ring

As motivated in the introduction, in this section we pursue a construction of
a semigroup using countably generated projective modules over a ring R. We
first define a subsemigroup S(R) of Λ(R) consisting of certain classes of sequences
that will yield a presentation of a countably generated module. Secondly, we will
use a direct approach building another semigroup CP(R) as equivalence classes
of countably generated projective right R-modules using a relation weaker than
isomorphism and related to the one used in [14].

The main result of the section is that the semigroups S(R) and CP(R) happen
to be isomorphic in complete generality (see Theorem 4.13). The semigroup S(R)
is closed under suprema of increasing sequences, and it is the invariant that best
resembles the Cuntz semigroup for rings. However, it is not obviously an object in
the category Cu. We remedy this by considering the pair (Λ(R), S(R)), of which
the first component belongs to Cu; see Section 5.

4.1 (The semigroup S(R)). Let R be a ring. Let S(R) be the subset of T (R)
consisting of those sequences (xn)n, with xn ∈M∞(R) for all n ∈ N, such that for
every n there exists yn+1 ∈M∞(R) with yn+1xn+1xn = xn.
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We define S(R) = S(R)/∼, which by construction is a subset of Λ(R); see
Paragraph 2.11. We call S(R) the Cuntz semigroup of R. Let us check it is a sub-
semigroup of Λ(R). We continue to use the terminology introduced in Section 2,
and thus given an element w ∈ S(R), a finite matricial representative of w is any
sequence (un) such that un ∈ Mkn+1×kn(R), where (kn) is a sequence of positive
integers, for which there exists vn+1 ∈ Mkn+1×kn+2(R) such that un = vn+1un+1un
for all n, and with w = [(xn)], where xn is the infinite matrix represented by un for
each n ∈ N. Therefore, for w,w′ ∈ S(R), we let (un) and (u′n) be finite matricial
representatives of w,w′, respectively, and define w + w′ = [(un ⊕ u′n)].
That addition is well defined, associative, commutative, and that the class of

the zero sequence is the identity follows as in the arguments in Lemmas 2.6 and
2.12.

The definition of S(R) is admittedly one-sided, and one can define a left version
of the semigroup Sl(R) as the semigroup whose elements are equivalence classes
under ∼ of sequences (xn)n in M∞(R) such that

xn = xnxn+1yn+1

for every n ∈ N.
It follows that Sl(R) ∼= S(Rop). However, Sl(R) is not always isomorphic to

S(R), as the example below testifies.

Example 4.2. There exists a ring R such that S(R) ̸∼= Sl(R).

Proof. Let K be a field and let K[x0, x1, . . .] be the free algebra on countably
many variables subject to the (non-commutative) relations xi+1xi = xi, and take
the subring R of polynomials with zero constant term.

Given a monomial p =
∏

i≤j≤n x
tj
j with ti, tn > 0, we will write st(p) = i and

end(p) = n.
Then, note that given any other monomial q = xsll . . . x

sm
m with sl, sm > 0, we

either have pq = q if st(p) > st(q) or pq > p in the lexicographic order otherwise.
Note that we always have st(p) ≥ st(pq).

Thus, let P = A1p1 + . . . + Anpn ∈ M∞(R) be a non-zero polynomial with
p1, . . . , pn distinct monomials and Ai ∈M∞(K)\{0} for all i. We may assume that
st(p1) ≥ st(pi) for each i and that p1 is the smallest monomial in the lexicographic
order among all monomials pi with st(p1) = st(pi).
Now let Q = B1q1+. . .+Bmqm ∈M∞(R) be another polynomial with q1, . . . , qm

monomials and Bj ∈M∞(K). If PQ = P , A1p1 must be equal to a combination of
the form M1pi1qj1 + . . .+Mrpirqjr , where Mk ∈M∞(K). In particular, pikqjk = p1
for each k.
However, this would imply

st(p1) ≥ st(pik) ≥ st(pikqjk) = st(p1),

and so st(pik) = st(p1) for all k. This implies p1 = pikqjk > pik ≥ p1, a contradic-
tion. Therefore, we must have P = 0, which shows that Sl(R) = 0.
This is not the case for S(R), since the sequence (x0, x1, x2, . . .) is in S(R). □
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The lemma below shows one of the main properties of S(R): suprema exist for
increasing sequences.

Lemma 4.3. Let R be any ring. Then every increasing sequence in S(R) has a
supremum.

Proof. Let ([xk])k be an increasing sequence in S(R). Write xk = (x
(k)
n )n for each

k, and find y
(k)
n+1 ∈M∞(R) such that x

(k)
n = y

(k)
n+1x

(k)
n+1x

(k)
n .

Note that ([xk])k also belongs to Λ(R) and that the order in S(R) and Λ(R) is
the same. By Proposition 2.13, the sequence ([xk])k has a supremum z = [(zn)] in
Λ(R). It is enough to check that z ∈ S(R).

To this end, recall from Proposition 2.13 that, after a possible reindexing, one

may assume that x
(i)
i+j ≾1 x

(i+j)
i+j for all i, j and then we take zn = x

(n)
n . Since

x
(n)
n ≾1 x

(n+1)
n+1 , there are an+1, bn+1 such that x

(n)
n = an+1x

(n+1)
n+1 bn+1. Thus

x(n)n = y
(n)
n+1x

(n)
n+1x

(n)
n = y

(n)
n+1an+1x

(n+1)
n+1 bn+1x

(n)
n .

If we let un = x
(n)
n bn, it follows that un = (y

(n)
n+1an+1)un+1un, whence (un) ∈ S(R).

By construction we have z = [(zn)] = [(un)] ∈ S(R), as was to be shown. □

We now proceed to introduce a semigroup steming directly from the class of
countably generated projective R-modules, although with a new equivalence rela-
tion inspired by the construction in [14].

4.4 (The semigroup CP(R) for a unital ring R). Let R be a unital ring. Let us
denote by CP(R) the class of all countably generated projective right R-modules.
The first natural relation between (countably generated) projective modules is
given by isomorphism. This yields the semigroup V∗(R) of isomorphism classes of
countably generated projective modules, with addition given by direct sum. This
semigroup has been successfully considered in [22] and [24]. Below, we weaken
the above relation to another relation ∼ compatible with direct sum, thereby
constructing an abelian semigroup CP(R). Thus, in particular, there is a natu-
ral surjective semigroup homomorphism ΦR : V

∗(R) → CP(R), which will be an
isomorphism in some cases, but not always; see Section 6.

Given P,Q ∈ CP(R), we will write P ≾ Q if and only if, for every finitely
generated submodule X of P , there exists a factorization of the inclusion of X in
P by Q, that is, there are module morphisms ϕ : X → Q and ϕ : Q→ P such that
ψ ◦ ϕ = idX . Namely, the diagram below is commutative:

X
ϕ
//

idX

77Q
ψ
// P .

We define the partially ordered set CP(R) to be

CP(R) := CP(R)/∼,
where ∼ is the antisymmetrization of ≾. Given an element P in CP(R), we
will denote its equivalence class by [P ]. For modules P,Q ∈ CP(R), we define
[P ] + [Q] = [P ⊕Q].
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Lemma 4.5. The relation ≾ is reflexive, transitive, and compatible with the direct
sum of projective modules. Therefore, CP(R) is a commutative semigroup.

Proof. That ≾ is reflexive is trivial to verify. Let us show that it s transitive.
To this end, let P1, P2, P3 ∈ CP(R) and assume that P1 ≾ P2 and P2 ≾ P3. Let

X ⊆ P1 be a finitely generated submodule. Then, by definition of ≾, there is a
commutative diagram

X
ϕ1
//

idX

66P2
ψ1
// P1 .

Note that ϕ1(X) is a finitely generated submodule of P2. Thus, since P2 ≾ P3,
there is a commutative diagram

ϕ1(X)
ϕ2
//

idϕ1(X)

55P3
ψ2
// P2

Combining both diagrams, we define ϕ3 = ϕ2 ◦ ϕ1 and ψ3 = ψ1 ◦ ψ2 to obtain:

X
ϕ1
//

ϕ3

55ϕ1(X)
ϕ2

// P3
ψ2
//

ψ3

66P2
ψ1
// P1 ,

which satisfies ψ3 ◦ ϕ3 = ψ1 ◦ ψ2 ◦ ϕ2 ◦ ϕ1 = ψ1 ◦ idϕ1(X) ◦ ϕ1 = ψ1 ◦ ϕ1 = idX .
To show that ≾ is compatible with the direct sum of modules, let P , Q, P ′, Q′ ∈

CP(R) and suppose that P ≾ P ′, Q ≾ Q′. Let X ⊆ P ⊕Q be a finitely generated
submodule. Then, there exist finitely generated submodules XP ⊆ P and XQ ⊆ Q
such that X ⊆ XP ⊕ XQ. By assumption, we have module maps ϕ1 : XP → P ′,
ψ1 : P

′ → P , ϕ2 : XQ → Q′, ψ2 : Q
′ → Q, and commutative diagrams

XP
ϕ1
//

idXP

66P ′ ψ1
// P XQ

ϕ2
//

idXQ

66Q′ ψ2
// Q ,

which yields the following commutative diagram

X ⊆ XP ⊕XQ
ϕ1⊕ϕ2

//

idXP⊕XQ

33P ′ ⊕Q′ψ1⊕ψ2
// P ⊕Q . □

Remark 4.6. Given a finitely generated projective module F and a countably
generated projective module P , it follows from our definition that F ≾ P if and
only if F is isomorphic to a direct summand of P .

We are now going to show that CP(R) is order-isomorphic to S(R). Instrumental
ingredients in our proof will be the facts, proved in [29, Lemma 4.1], that every
countably generated projective R-module P over a unital ring R is isomorphic to
a direct limit of the form

Rn0
x0·
// Rn1

x1·
// . . . // P,

for some sequence of positive integers ni, where for each xi ∈ Mni+1×ni
(R) there

exists yi+1 ∈ Mni+1×ni+2
(R) such that yi+1xi+1xi = xi, and that, conversely, any
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such direct limit is always projective. We will give below independent proofs of
these facts, since our arguments offer additional information that will be useful
later on.

For any ring R, unital or not, we will denote by FCM(R) the ring of those
N × N matrices A with coefficients in R such that each column of A has only
a finite number of nonzero entries. We refer to FCM(R) as the ring of finite-
column matrices over R. When R is unital this ring can be identified with the
ring EndR(R

(N)) of R-module endomorphisms of the free R-module R(N).

Lemma 4.7. Let R be a unital ring, and let P ∈ CP(R). Then P is isomorphic to
a projective module of the form lim−→i

(Rki , Zi·), where Zi ∈Mki+1×ki(R
+) for an in-

creasing sequence of positive integers (ki), and moreover Zi+1Zi =

(
Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N. In particular, P can be written in the form P ∼= lim−→i

(Rni , xi·) for

some sequence of positive integers ni, where for each xi ∈Mni+1×ni
(R) there exists

yi+1 ∈Mni+1×ni+2
(R) such that yi+1xi+1xi = xi.

Proof. We can assume that P = E(R(N)) for an idempotent E = (eij) ∈ FCM(R).
For each n ≥ 1, we identify Rn with Rn × {0} × {0} × · · · in R(N). Take an
arbitrary positive integer k0. Let k1 > k0 be an integer such that ek,l = 0 for
all (k, l) such that k > k1 and l ≤ k0. In particular, one has E(Rk0) ⊆ Rk1 .
Proceeding inductively we may find an increasing sequence of positive integers
(ki) such that ek,l = 0 for all (k, l) such that k > ki+1 and l < ki. Then we have
E(Rki) ⊆ Rki+1 for all i ∈ N. Let Zi be the ki+1× ki upper left corner of E. Thus,

we get Zi ∈ Mki+1×ki(R) and Zi+1Zi =

(
Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N. Moreover

P =
⋃∞
i=0 ZiR

ki and P ∼= lim−→(Rki , Zi·), as claimed. □

4.8 (Splittings). Let (ni) be a sequence of positive integers, and let (xi) be a
sequence, with xi ∈Mni+1×ni

(R), such that there exists yi+1 ∈Mni+1×ni+2
(R) sat-

isfying yi+1xi+1xi = xi. We show that P := lim−→i
(Rni , xi·) is a countably generated

projective R-module by exhibiting a concrete splitting of P into R(N).
Let ϕi : R

ni → P be the canonical morphisms into the direct limit, and denote
by Pi ⊆ P the image of ϕi. Note that Pi is a finitely generated submodule of P ,
with generators zji := ϕi(ej). Setting zi = (z1i , . . . , z

ni
i ), which is a row matrix with

coefficients in P , it follows that P is described by the generators (zji )i,j, subject
to the relations zi+1xi = zi for all i ∈ N.

Further, note that for every pair j ≥ i+1 the following diagram is commutative

Rnj

yi+1...yjxj ·

++

xj ·
��

Rnj+1
yi+1...yj+1xj+1·

// Rni+1

In particular, for every fixed i the previous diagrams induce a morphism gi : P →
Rni+1 . Restricting to each component, we define gji := πj ◦ gi : P → R, for j ∈
{1, . . . , ni+1}, where πj : Rni+1 → R is the projection onto the j-th component.
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Lemma 4.9. Following the above notation, a concrete splitting of P into R(N) is
given by the formulas

π : R(N) = Rn1 ⊕Rn2 ⊕ · · · → P, ι : P → R(N) = Rn1 ⊕Rn2 ⊕ · · · ,
where

π(a1, a2, . . . ) =
∞∑
i=1

ϕi(ai), ι(x) = (g0(x), g1(x)− x1g0(x), g2(x)− x2g1(x), . . . )

for ai ∈ Rni and x ∈ P . Then one has π ◦ ι = idP . In particular, P is a countably
generated projective right R-module.

Proof. Suppose that x ∈ Pi, and write x = ϕi(a) for a ∈ Rni . Then we have

ϕi+1(gi(x)) = ϕi+1(gi(ϕi(a))) = ϕi+1(gi(ϕi+1(xia)))

= ϕi+1(yi+1xi+1xia) = ϕi+1(xia)

= ϕi(a) = x.

Hence (ϕi+1 ◦ gi)|Pi
= idPi

, or equivalently ϕi+1 ◦ gi ◦ ϕi = ϕi. Using this, the
identity π ◦ ι = idP is easily checked. □

Theorem 4.10. Let R be a unital ring. Then

CP(R) ∼= S(R).

Proof. Given a countably generated projective module P , it follows from Lemma 4.7
(see also [29, Lemma 4.1(2)]) that P ∼= lim(Rni , xi·), where xi ∈ Mni+1×ni

(R) are
such that, for each i there exists yi+1 ∈ Mni+1×ni+2

(R) such that xi = yi+1xi+1xi.
In particular, the sequence (xi) determines an element in S(R), through the usual
identification of xi with the matrix diag(xi, 0, 0, . . .) in M∞(R).
We will show that the map [P ] 7→ [(xi)] defines an isomorphism between CP(R)

and S(R).
First, note that this map is surjective by Lemma 4.9 (see also [29, Lemma

4.1(1)]). Moreover, it is also additive by how addition is defined in both CP(R)
and S(R); see 4.1, 4.4.

Hence, we will conclude the proof showing that P ≾ Q if and only if (xi) ≾ (x′i),
where P ∼= lim(Rni , xi·) and Q ∼= lim(Rn′

i , x′i·) are the corresponding representa-
tions as direct limits.

To prove the forward implication, let P , Q ∈ CP(R) and suppose that P ≾ Q.
Write P =

⋃∞
i=1 Pi and Q =

⋃∞
i=1Qi as in Paragraph 4.8. Then, given i, there are

module homomorphisms ϕ : Pi → Q and ψ : Q→ P such that the diagram

Pi
ϕ
//

idPi

77Q
ψ
// P

is commutative.
Since Pi is finitely generated, so is ϕ(Pi). In particular, ϕ(Pi) ⊆ Qj for some j.

By the same reasoning, one has that ψ(Qj+2) ⊆ Pl for some l.
Using the definition of the maps gi, ϕi from Paragraph 4.8, one gets the following

commutative diagram.
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Rni
ϕi

// //

xi·
��

Pi_�

��

ϕ
// Qj� _

��

Rn′
j

ϕ′j
oooo

x′j ·
��

Rni+1
ϕi+1
// //

xi+1·

��

Pi+1
_�

��

Qj+1� _

��

Rn′
j+1

x′j+1·

��

ϕ′j+1
oooo

. . .

��

Rnl
ϕl

// // Pl oo
ψ

Qj+2 Rn′
j+2

ϕ′j+2
oooo

Now note that, given r ∈ Rni and r′ ∈ Rn′
j such that q := ϕϕi(r) = ϕ′

j(r
′), we

have

q = ϕ′
j(r

′) = ϕ′
j+1(x

′
jr

′) = ϕ′
j+1(y

′
j+1x

′
j+1x

′
jr

′)

= ϕ′
j+1g

′
jϕ

′
j+1(x

′
jr

′) = ϕ′
j+1g

′
j(q) = ϕ′

j+2x
′
j+1g

′
j(q),

where in the fourth step we have used that g′jϕ
′
j+1 = y′j+1x

′
j+1.

Thus, one gets that

xl−1 . . . xi(r) = ylxlxl−1 . . . xi(r) = gl−1ϕl(xl−1 . . . xi(r))

= gl−1ϕl−1(xl−2 . . . xi(r)) = . . . = gl−1ϕi(r)

= gl−1ψϕϕi(r) = gl−1ψ(q) = (gl−1ψϕ
′
j+2)x

′
j+1(g

′
jϕϕi)(r).

Since this holds for every r ∈ Rni , we can multiply by yi+1 . . . yl−1 to obtain

xi = (yi+1 . . . yl−1gl−1ψϕ
′
j+2)x

′
j+1(g

′
jϕϕi).

It follows that (xi) ≾ (x′i), as required.
For the converse, let (xi) ≾ (x′i). For any fixed i we need to construct a com-

mutative diagram

Pi
ϕ
//

idPi

66Q
ψ
// Pi .

We know that, for every fixed i, there exist j ∈ N, α ∈ Mn′
j×ni+1

(R) and β ∈
Mni+2×n′

j+1
(R) such that xi+1 = βx′jα. Thus, one gets the following commutative

diagram:

Pi� _

��

Rni
ϕi

oooo

xi·
��

Pi+1� _

��

Rni+1
α·

//
ϕi+1
oooo

xi+1·
��

Rn′
j

ϕ′j
// //

x′j ·
��

Qj� _

��

Pi+2 Rni+2

ϕi+2

oooo Rn′
j+1

β·
oo

ϕ′j+1
// // Qj+1
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Define ϕ := ϕ′
jαgi|Pi

and ψ = ϕi+2βg
′
j. We have

ψϕ = ϕi+2β(g
′
jϕ

′
j)αgi|Pi

= ϕi+2βx
′
jαgi|Pi

= ϕi+2xi+1gi|Pi
= ϕi+1gi|Pi

= idPi
,

as desired. □

4.11 (The semigroup CP(R) for non-unital R). Let R be an arbitrary ring, and
let R+ = Z ⊕ R be the unitization of R. Observe that R sits as a two-sided
ideal of R+. We will denote by Mod-R+ the category of unital right R+-modules,
and by AMod-R the category of arbitrary R-modules. Note that we have an
isomorphism of categories AMod-R ∼= Mod-R+ sending an arbitrary R-module M
to the unique unital R+-module whose underlying additive group is (M,+) and
whose multiplication is given by x(n, r) = nx+ xr for x ∈M , n ∈ Z and r ∈ R.

Recall that, for a ring R, we denote by FCM(R) the ring of finite-column ma-
trices over R. For an arbitrary ring R, we will denote by CP(R) the class of all
countably generated unital projective right R+-modules P such that P = PR.
The class CP(R) agrees with the previously defined class CP(R) whenever R is
a unital ring. Given such module P , there exists an idempotent E ∈ FCM(R+)
such that E((R+)(N)) ∼= P . Since P = PR, it follows that E ∈ FCM(R) and
E((R+)(N)) = E(R(N)). Conversely, given an idempotent E ∈ FCM(R), the unital
R+-module P = E(R(N)) = E((R+)(N)) is countably generated and projective, and
P = PR. Moreover if Q is also in CP(R), then P ∼= Q if and only if E and F are
Murray-von Neuman equivalent idempotents in FCM(R) (see Paragraph 2.5). This
extends the well-known relation between isomorphism classes of finitely generated
unital projective R+-modules P such that P = PR and idempotent matrices in
M∞(R), see e.g. [21, § 5.1].

Observe that, with the above notation, we have that CP(R) is a subclass of
CP(R+). Moreover CP(R) is closed in CP(R+) under direct summands and count-
able direct sums. We consider the relation ≾ inherited from the relation ≾ which
we have defined in CP(R+), that is, for P,Q ∈ CP(R), we set P ≾ Q if and only if
P ≾ Q in CP(R+). We denote by CP(R) the monoid of equivalence classes of ob-
jects in CP(R) with respect to the relation ≾. Note that CP(R) order-embeds in
CP(R+). We further define V∗(R) as the monoid of isomorphism classes of mod-
ules from CP(R). As in the case of unital rings, we have a canonical surjective
homomorphism ΦR : V

∗(R) → CP(R).
It is also easily checked that S(R) order-embeds in S(R+). We will show that

the isomorphism ψ : CP(R+) → S(R+), displayed in Theorem 4.10, restricts to an
isomorphism from CP(R) onto S(R).

In order to obtain this result, we find a concrete realization of the idempotent
matrix E ∈ FCM(R) corresponding to a sequence (xi) in S(R).

Lemma 4.12. Let R be a ring, and let (xi) ∈ S(R), with xi ∈Mni+1×ni
(R), where

all ni’s are positive integers. Then the countably generated projective R+-module
P = lim−→i

((R+)ni , xi·) is isomorphic to a module of the form Q =
⋃
i zi(R

(N)), where

zi ∈ M∞(R) and zi+1zi = zi for all i ∈ N. More precisely, there is a sequence of
positive integers (ki), with ki+1 > ki for all i ∈ N, such that each zi is represented
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by a matrix Zi ∈Mki+1×ki(R) and Zi+1Zi =

(
Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N, so that

P ∼= lim−→i
((R+)ki , Zi·).

Proof. By Lemma 4.9, one can explicitly compute the idempotent matrix E ∈
End(R(N)) such that E(R(N)) ∼= P , where P ∼= lim((R+)ni , xi·).

Using the notation of Paragraph 4.8, the splitting found in Lemma 4.9 gives the
idempotent E = ι ◦π ∈ End(R(N)). For i ≥ 1, the column Ei−1 of E (with respect
to the decomposition (R+)(N) = (R+)n1 ⊕ (R+)n2 ⊕ · · · ), is given by

Ei−1 =



y1y2 · · · yixi
y2y3 · · · yixi − x1y1y2 · · · yixi
y3y4 · · · yixi − x2y2y3 · · · yixi

...
yixi − xi−1yi−1yixi

xi − xiyixi
0


.

Note that the i-th column Ei of E has (at most) i + 1 nonzero coefficients. Let
Zi ∈M(n1+···+ni+2)×(n1+···+ni+1)(R) be the matrix consisting of the upper left (n1 +
· · ·+ ni+2)× (n1 + · · ·+ ni+1) corner of E. One has

Zi+1Zi =

(
Zi

0ni+3×(n1+···+ni+1)

)
.

Let zi ∈ M∞(R) be the infinite matrix represented by Zi. Then (zi) ∈ S(R) and
zi+1zi = zi for all i ≥ 1. Moreover, we have

P ∼= E(R(N)) =
∞⋃
i=0

zi((R
+)(N)) ∼= lim−→

i

((R+)ki , Zi·),

where ki = n1 + · · ·+ ni+1 for all i ≥ 0. □

We can now obtain the following result, generalizing Theorem 4.10.

Theorem 4.13. Let R be a ring. Then there is an isomorphism S(R) ∼= CP(R)
such that the following diagram

CP(R)
ψ|CP(R)

//

_�

��

S(R)
_�

��

CP(R+)
ψ
// S(R+)

is commutative, where ψ : CP(R+) → S(R+) is the isomorphism defined in Theo-
rem 4.10.

Proof. We need to show that the restriction of the map ψ : CP(R+) → S(R+)
defined in the proof of Theorem 4.10 sends CP(R) onto S(R).

Given P ∈ CP(R), we can assume that P = E((R+)(N)) for an idempo-
tent E = (eij) ∈ FCM(R). The procedure given in the proof of Lemma 4.7
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gives us an increasing sequence of positive integers (ki) and a sequence (Zi),

with Zi ∈ Mki+1×ki(R) and Zi+1Zi =

(
Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N, such that

P ∼= lim−→((R+)ki , Zi·). By the definition of the map ψ we have that ψ([P ]) =
[(zi)i] ∈ S(R), where zi ∈ M∞(R) are represented by Zi for all i ∈ N. Hence
ψ([P ]) ∈ S(R), as desired.
Now if w ∈ S(R), it follows from Lemma 4.12 that ψ−1(w) can be represented by

a countably generated unital projective right R+-module of the form P = E(R(N)),
where E ∈ FCM(R). In particular, P = PR, so that P ∈ CP(R), and hence
w = ψ(ψ−1(w)) = ψ([P ]) ∈ ψ(CP(R)). This shows that ψ(CP(R)) = S(R),
completing the proof. □

The following corollary is a useful consequence of the above proof.

Corollary 4.14. Let R be a ring. Then every element in S(R) has a representative
of the form (zi), where zi ∈M∞(R) satisfy zi+1zi = zi for all i ∈ N. More precisely
there is a non-decreasing sequence of positive integers (ki) such that each zi is

represented by a matrix Zi ∈ Mki+1×ki(R) and Zi+1Zi =

(
Zi

0(ki+2−ki+1)×ki

)
for all

i ∈ N.

5. The category SCu and the pair SCu(R)

As mentioned above, we will consider in this section the pair (Λ(R), S(R)) and
show that it sits naturally in a category that we term SCu consisting of pairs
(S,W ) where S is a Cu-semigroup andW is a subsemigroup closed under suprema
of certain sequences. We also show that the assignment R 7→ (Λ(R), S(R)) is
functorial.

5.1 (Weakly increasing sequences). Let S be a Cu-semigroup. A sequence (xn) of
elements in S is said to be weakly increasing if, for every n and for every x≪ xn,
there exists m0 such that x≪ xm whenever m ≥ m0.
It is evident that every increasing sequence in S is also weakly increasing. We

know that increasing sequences always have suprema in S, and we show below
that this is also the case for weakly increasing sequences. Although the concept of
a weakly increasing sequence may seem somewhat artificial, it will become key to
show that the category SCu introduced in Paragraph 5.4 admits inductive limits,
as we prove in [1].

Lemma 5.2. Let S be a Cu-semigroup. Then, every weakly increasing sequence
has a supremum in S.

Proof. We use an argument similar to the proof of Proposition 2.13 (which in turn
is similar to the proof that increasing sequences in a Cu-semigroup have suprema).
We give some details as this will be used again below.

Let (xn) be a weakly increasing sequence in S. Since S is a Cu-semigroup,

we may write each xm as xm = supn x
(m)
n , where (x

(m)
n ) is a rapidly increasing
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sequence. We construct increasing sequences of positive integers (ni), (mi) such

that x
(mi)
ni+j

≪ x
(mk)
nk whenever i+ j ≤ k.

To do this, we define the sequence inductively. Let n1 = 0 and m1 = 1. Since

x
(m1)
n1+1 = x

(1)
1 ≪ x1, there is m2 > 1 such that x

(1)
1 ≪ xm2 , and thus there is n2 > 0

with x
(1)
1 ≪ x

(m2)
n2 . Now, assume that ni, mi have been constructed for i ≤ k.

Since for each 1 ≤ j ≤ k we have x
(mj)

n1+k−(j−1) ≪ xmj
, and the sequence is weakly

increasing, there is mk+1 > mk such that x
(mj)

n1+k−(j−1) ≪ xmk+1
for all j. Thus,

there is nk+1 > nk such that x
(mj)

n1+k−(j−1) ≪ x
(mk+1)
nk+1 for all j. This completes the

inductive step.

After reindexing the sequence (ni), we may assume that ni = i, and thus x
(mi)
i+j ≪

x
(mi+j)
i+j whenever i, j ≥ 1. Now, the sequence (x

(mk)
k ) is rapidly increasing, since

x
(mk)
k ≪ x

(mk)
k+1 ≪ x

(mk+1)
k+1 , and one may check that its supremum is the supremum

of the weakly increasing sequence. □

Remark 5.3. Although we will not be using this, it is worth mentioning that
weakly increasing sequences as defined in Paragraph 5.4 are compatible with other
properties in the category Cu. Namely,

(i) Cu-morphisms preserve weakly increasing sequences and their suprema.
(ii) The addition in a Cu-semigroup is compatible with suprema of weakly in-

creasing sequences.

5.4 (The Category SCu). Let S be a Cu-semigroup. We say that a subset H
of S is closed under suprema of weakly increasing sequences if, given any weakly
increasing sequence (xn) in S whose elements are in H, we have that supxn ∈ H.
We define SCu to be the abstract category whose objects are the pairs (S,W ),

where S ∈ Cu and W is a submonoid of S closed under suprema of weakly in-
creasing sequences. The morphisms in SCu are f : (S1,W1) → (S2,W2) where
f : S1 → S2 is a Cu-morphism such that f(W1) ⊆ W2.

Examples 5.5. The following are natural examples in the category SCu.

(i) Any pair (S,W ) with S ∈ Cu and W a sub-Cu-semigroup of S is an object
in SCu.

(ii) A nonzero Cu-semigroup S is said to be simple if the only ideals of S are
{0} and S (see e.g. [3] for the definition of ideal in a Cu-semigroup). Let S
be a simple Cu-semigroup. Then (S, {0,∞}) is an object in SCu. Note that
{0,∞} is not always a sub-Cu-semigroup of S.

(iii) The pair ([0,∞],N), where N = N ∪ {∞}, is an object in SCu. This follows
since every weakly increasing sequence with elements in N ⊆ [0,∞] has an
increasing cofinal subsequence. (Here, x ≪ y if and only if x < y, for
x ∈ [0,∞] and y ∈ (0,∞].) However, as we have observed above, N is not a
sub-Cu-semigroup of [0,∞].

Proposition 5.6. Let R be a weakly s-unital ring. Then:

(i) The pair SCu(R) := (Λ(R), S(R)) is an object in SCu.
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(ii) If R′ is another weakly s-unital ring and f : R → R′ is a ring homomorphism,
then f induces a morphism SCu(f) : (Λ(R), S(R)) → (Λ(R′), S(R′)).

Proof. (i): By Proposition 2.13, Λ(R) is a Cu-semigroup, and by construction
S(R) is a subsemigroup of Λ(R). We thus have to prove that S(R) is closed under
suprema of weakly increasing sequences.

Let ([xm]) be a weakly increasing sequence in Λ(R) with [xm] ∈ S(R) for
all m. In order to construct the supremum of ([xm]), we follow the argument

in Lemma 5.2. Write xm = (x
(m)
n ), and find y

(m)
n such that y

(m)
n+1x

(m)
n+1x

(m)
n =

x
(m)
n . Since R is weakly s-unital, we have that for each m the sequence zm,n =

(x
(m)
1 , x

(m)
2 , . . . , x

(m)
n , x

(m)
n , . . . ) satisfies that ([zm,n]) is rapidly increasing with supre-

mum [xm] in Λ(R) (see the proof of Proposition 2.13).
Arguing as in the proof of Lemma 5.2, we find an increasing sequence (mk)

such that x
(mk)
k+1 ≾1 x

(mk+1)
k+1 and sup[xm] = [(x

(mk)
k )]. Now, as in Lemma 4.3, since

x
(mk)
k ≾1 x

(mk+1)
k+1 there are elements ak+1, bk+1 such that x

(mk)
k+1 = ak+1x

(mk+1)
k+1 bk+1.

Thus

x
(mk)
k = y

(mk)
k+1 x

(mk)
k+1 x

(mk)
k = y

(mk)
k+1 ak+1x

(mk+1)
k+1 bk+1x

(mk)
k .

Therefore, [(xmk
k )] = [(x

(mk)
k bk)], and the latter belongs to S(R), as

x
(mk)
k bk ≾1 x

(mk+1)
k+1 bk+1 and x

(mk)
k bk = (y

(mk)
k+1 ak+1)(x

(mk+1)
k+1 bk+1)(x

(mk)
k bk).

(ii): Let R′ be another weakly s-unital ring and let f : R → R′ be a ring homomor-
phism, which we can extend to a homomorphism M∞(R) → M∞(R′) compatible
with ≾1 and ⊕, also denoted by f .

Thus, we obtain a morphism of positively ordered monoids W(R) → W(R′)
defined by W(f)([x]) = [f(x)]. By the arguments in [3, Paragraph 5.5.3 and
Remark 5.5.6], the assigment Cu(f) : Λ(R) → Λ(R′) defined by Cu(f)([(xn)]) =
[(f(xn))] is a Cu-morphism.

By definition S(R) is the submonoid of Λ(R) of elements [(x1, x2, . . .)] such that
for each n, there is yn+1 satisfying yn+1xn+1xn = xn. Thus, one has

f(yn+1)f(xn+1)f(xn) = f(xn)

and, consequently, [(f(x1), f(x2), . . .)] ∈ S(R′). Hence Cu(f)(S(R)) ⊆ S(R′), as
desired. □

As an immediate consequence, we obtain:

Corollary 5.7. Let Ringsws be the category of weakly s-unital rings and ring
homomorphisms. The assignment

SCu: Ringsws −→ SCu
R 7→ (Λ(R), S(R))

is a functor.

Remark 5.8. In [1] we will see that SCu is not always sequentially continuous.
However, Λ(R) always is, and SCu ends up being continuous in some relevant
situations.
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6. Compact elements in S(R)

We have shown in Section 5 that for any ring R we have that S(R) is a subsemi-
group of Λ(R). Both semigroups are closed under increasing sequences, and Λ(R)
is a Cu-semigroup in case R is a weakly s-unital ring. However, the question of
whether S(R) is a Cu-semigroup remains elusive, even in the weakly s-unital case.

In this section we continue our study immersing on the way-below relation in-
herited at S(R) from Λ(R). This helps on characterizing our construction in both
the unit-regular and semilocal rings setting.

6.1 (Algebraic Cu-semigroups and compact elements). Recall from Paragraph 2.3
that an element x in a Cu-semigroup S is termed compact if x ≪ x. We also
say that such a semigroup S is algebraic if every element is the supremum of an
increasing sequence of compact elements.

For R be a weakly s-unital ring, if two elements a, b ∈ S(R) satisfy a ≪ b in
Λ(R), then a≪ b in S(R). However, it is unclear when the way-below relation of
S(R) agrees with the one in Λ(R). For example, it is conceivable that the object
(N, {0,∞}) in SCu can be realized as SCu(R) for a weakly s-unital ring R, where
∞ ≪ ∞ in {0,∞} but ∞ ̸≪ ∞ in N.
Keeping this type of examples in mind, for a given weakly s-unital ring R, an

element x ∈ S(R) is termed compact if x ≪ x in Λ(R). Further, we will say that
S(R) is algebraic if every element in S(R) can be expressed as the supremum of
an increasing sequence of compact elements.

Lemma 6.2. Let R be a weakly s-unital ring. If S(R) is algebraic then it is a
Cu-semigroup. Moreover if x ≪ x in S(R), then x ≪ x in Λ(R). Therefore, the
inclusion S(R) → Λ(R) is a Cu-morphism.

Proof. The first assertion is clear. Given x ≪ x ∈ S(R), write x = supn xn with
xn ≪ xn ∈ Λ(R). This implies that there exists m such that x ≤ xm ≪ xm ≤ x
and hence x≪ x in Λ(R). □

This raises the interesting question of characterizing the elements in S(R) that
are compact. To this end, recall that, for elements [(xn)], [(yn)] ∈ Λ(R), we have
[(xn)] ≪ [(yn)] in Λ(R) if, and only if, there is n0 such that xn ≾1 yn0 for all n.

A natural source of compact elements of S(R) comes from the idempotent ele-
ments of M∞(R). Indeed, if e ∈ M∞(R) is idempotent, let us denote by (e) the
constant sequence (in T (R)). We clearly have that [(e)] ∈ S(R) and, for another
idempotent f ∈ M∞(R), it is readily verified that [(e)] ≤ [(f)] if, and only if,
e ≾MvN f .
Although not all compact elements in S(R) come from constant sequences of

idempotents, we show below that there is always a representative given by a con-
stant sequence of an almost idempotent element.

Lemma 6.3. Let R be a weakly s-unital ring and let [(xn)] ∈ S(R) be a compact
element. Then, there exists n0 ≥ 1 such that, for every k ≥ 1, one can find
elements s1, . . . , sk in M∞(R) satisfying

xn0 = skxn0 . . . s1xn0 .
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In particular, an element [(xn)] is compact if and only if there exist elements
s, z ∈M∞(R) such that [(xn)n] = [(z)n] and z = sz2.

Proof. Since [(xn)] ∈ S(R), there are elements yn such that xn = yn+1xn+1xn for
all n. If [(xn)] ≪ [(xn)], this implies that there exists n0 ≥ 1 such that

xn0+k ≾1 xn0 for every k ≥ 1.

For any given k, let rk, tk be such that xn0+k = rkxn0tk. Then, using that

xn0 = (yn0+1 . . . yn0+k)xn0+k . . . xn0+1xn0 ,

we get

xn0 = ((yn0+1 . . . yn0+k)rk)xn0(tkrk−1)xn0(tk−1rk−2) . . . (t1)xn0 .

Thus, if we let sk = (yn0+1 . . . yn0+k)rk, sk−1 = tkrk−1, sk−2 = tk−1rk−2, . . . , s1 = t1,
we obtain xn0 = skxn0 . . . s1xn0 , as desired.
In particular, if k = 2, set z = xn0s1 and s = s2. Now

z = xn0s1 = (s2xn0s1xn0)s1 = s2z
2 = sz2,

and clearly the constant sequence [(z)n] belongs to S(R). Note that xn0 = s2(xn0s1)xn0

implies xn0 ≾1 xn0s1 = z, and also that z = sz2 = s(xn0s1)z. Hence z ≾1 xn0 .
Therefore,

xn0+k ≾1 xn0 ≾1 xn0s1 = z ≾1 xn0 ,

which implies that [(xn)n] = [(z)n].
Finally, if z ∈ M∞(R) satisfies z = sz2 for some s, then clearly z ≾1 z and

therefore [(z)] ≪ [(z)]. □

Remark 6.4. It is reasonable to extend results such as Lemma 6.3 to general
rings. To do this, one may define a transitive relation ≺ on Λ(R) (or on S(R)) as
follows:

[(xn)] ≺ [(yn)] if and only if there is m such that xn ≾1 ym for all n.

Using the construction of suprema in Λ(R) (see the proof of Proposition 2.13),
it is easy to verify that ≺ is formally stronger than the way-below relation ≪ on
Λ(R), and of course it agrees with it in case R is weakly s-unital. Thus, one may
term an element x ∈ S(R) ≺-compact in case x ≺ x.
It is also worth pointing out that the relation ≺ is an auxiliary relation for the

usual order in S(R) (and also Λ(R)). Following [19, Definition I-1.11] (see also
[3, 2.1.1]), an auxiliary relation is a relation satisfying that 0 ≺ x for any x, that
x ≤ y whenever x ≺ y, and whenever x ≤ y ≺ z ≤ u, we have x ≺ u.
A close inspection of the arguments in Lemma 6.3 reveals that, for any ring R,

an element [(xn)] in S(R) is ≺-compact if and only if [(xn)] = [(z)], where z = sz2

for some s.

As the example below shows, certain rings have very few ≺-compact elements.

Example 6.5. There exists a ring R such that x ≺ x in S(R) if and only if x = 0.
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Proof. Let R be the ring in Example 4.2. That is, R is the subring of the free
algebra K[x0, x1, . . .] on infinitely many variables subject to the non-commutative
relations xn+1xn = xn consisting of all polynomials with zero constant term.
We claim that the only compact element of S(R) is 0. To show this, we need

some easily proven facts about R. First of all, observe that the set

B = {xn1
i1
· · ·xnr

ir
| ni ≥ 1, i1 < · · · < ir, r ≥ 1}

is a K-basis of R. This follows for instance by an immediate application of the
Diamond’s Lemma in Ring Theory, see [10], using the reduction system xjxi 7→ xi
for j > i.

Hence each element in M∞(R) can be uniquely written as a linear combination∑
p∈B app, where ap ∈ M∞(K). Recall from Example 4.2 the notion of the start

st(p) of a monomial p ∈ B. The numbers st(p) satisfy the following properties,
some of which have been pointed out in Example 4.2:

(i) st(pq) = min{st(p), st(q)},
(ii) If st(p) = st(q) then pq > p and pq > q in the lexicographic order.
(iii) If st(p) > st(q) then pq = q.

Using these properties we now show that the only compact element of S(R) is
0. By Lemma 6.3, it is enough to show that the equation z = sz2 has no nonzero
solutions in M∞(R). Suppose that z ∈ M∞(R) is a nonzero element such that
z = sz2. Let p be the unique monomial in B in the support of z such that st(p)
is maximum amongst all monomials in the support of z, and such that p is the
smallest monomial in the support of z amongst all monomials q in the support
of z such that st(q) = st(p), with respect to the lexicographic order. From the
identity z = sz2, it follows that there are two monomials p1, p2 in the support of
z, and a monomial q in the support of s such that

p = qp1p2.

By (i) we have

st(p) = min{st(q), st(p1), st(p2)}.
It follows that st(p) = st(p1) = st(p2) ≤ st(q). Now by (ii) we have p1p2 > pi ≥ p in
the lexicographic order, for i = 1, 2, and by (ii),(iii) we have, since st(q) ≥ st(p1p2),

p = q(p1p2) ≥ p1p2 > p,

which is a contradiction.
We remark that the ring R is not weakly s-unital. Indeed, if x0 = rx0s for some

r, s ∈ R, one easily gets a contradiction expressing r and s in terms of the K-basis
B. □

Proposition 6.6. Let R be a unital ring. Then, S(R) is an algebraic Cu-semigroup
whenever every projective module of R is the direct sum of finitely generated mod-
ules.

In particular, this is the case for weakly semi-hereditary rings, one-sided prin-
cipal ideal rings and R = C(X) for any strongly zero dimensional X.
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Proof. Following the observations in Paragraph 6.1, we only need to show that
every element in S(R) is the supremum of an increasing sequence of compact
elements. For this, we will use the isomorphism between S(R) and CP(R) proved
in Theorem 4.10.

First, note that any finitely generated projective module P has an associated
sequence in S(R) of the form (e, e, e, . . . ), where e = e2 ∈ M∞(R). As we have
observed before, the class of such a sequence is compact in S(R), and thus the
class [P ] is compact in CP(R).

Now, let P be a countably generated projective module. From our assumptions
on R, we may write P = ⊕Fi with Fi finitely generated (and projective). We have
F1 ≾ F1 ⊕ F2 ≾ . . ..

This shows that [P ] = supn[⊕i≤nFi] is the supremum of an increasing sequence
of compact elements in CP(R), as desired.

The remaining statement is a consequence of the results in [29]. □

Example 6.7. As an example of a ring that does not satisfy the condition in
Proposition 6.6, let R = C[0, 1]. Then R has an indecomposable, countably pro-
jective and pure ideal (which is not finitely generated). See [27, Example 2.12].

We now do a more in-depth study of the semigroup S(R) when R is a unit-
regular ring (Lemma 6.9) and when R is a semilocal ring (Proposition 6.13). Since
S(R) ∼= CP(R), we use these two pictures interchangeably.

6.8 (Unit-regular rings). Recall that a unital ring R is said to be unit-regular if
for each x ∈ R there is an invertible element u ∈ R such that x = xux. Unit-
regular ring are precisely those unital rings R such that V(R) is cancellative ([20,
Theoremm 4.5]).

We first observe that for a unit-regular ring R, the relation P ≾ Q in CP(R)
is determined solely in terms of isomorphisms of all finitely generated submodules
of P with suitable submodules of Q.

Lemma 6.9. Let R be a unit-regular ring and let P,Q be countably generated
projective modules. Then, P ≾ Q if and only if every finitely generated submodule
of P is isomorphic to a submodule of Q.

Proof. Given any unital ring R, it follows from Paragraph 4.4 that whenever P ≾
Q, then every finitely generated submodule of P is isomorphic to a submodule of
Q.
Conversely, assume that R is a unit-regular ring, and that every finitely gen-

erated submodule of P is isomorphic to a (finitely generated) submodule of Q.
Then P ≾ Q follows from Paragraph 4.4 and the fact that all finitely generated
submodules of Q are direct summands of Q ([20, Theorem 1.11]). □

Next example exhibits that above characterization does not hold in general.

Example 6.10. There exist unital commutative domains R and countably gene-
rated projective modules P and Q such that all finitely generated submodules of
P are isomorphic to submodules of Q but P ≾ Q does not hold.
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Proof. Let R be a commutative domain with an indecomposable, countably gene-
rated projective module Q, which is not free, and take P = RR. Then obviously
R is isomorphic to a submodule of Q. If there is a commutative diagram

R
ϕ
//

idR

77Q
ψ
// R ,

then Q ∼= R ⊕ Q′ for some projective module Q′, which is impossible since Q is
indecomposable and non-free. □

For a unit-regular ring, all semigroups already defined turn out to be isomorphic
to either V(R) or S(R).

Proposition 6.11. Let R be a unit-regular ring. Then we have

(i) V(R) = W(R) = WM(R) as ordered monoids, so that the orders defined in
W(R) and WM(R) agree with the algebraic order.

(ii) V∗(R) = CP(R) = S(R) = ΛW(R) as semigroups. The order ≾ in CP(R) is
given by: P ≾ Q if and only if P is isomorphic to a submodule of Q. We
have that S(R) = CP(R) = Λ(R) as ordered semigroups.

Proof. (i): This follows from Lemmas 2.6 and 3.3.
(ii): By [7, Theorem 1.4], there is a monoid isomorphism

Υ: V∗(R) −→ Λσ(V(R)).

(We warn the reader that the monoid V∗(R) is denoted by W(R) in [7].) By
(i), one has that V(R) = W(R), so Λσ(V(R)) = Λσ(W(R)) = ΛW(R). The
isomorphism Υ satifies that Υ(P ) is the interval determined by the increasding
sequence {[e1R ⊕ · · · ⊕ enR] : n ≥ 1} in V(R), where P =

⊕
n enR and en are

idempotents of R. Hence Υ factors as the composition of homomorphisms

V∗(R)
ΦR−→ CP(R) = S(R)

ιR−→ ΛW(R),

where ΦR is the canonical surjective homomorphism, and ιR : S(R) → ΛW(R) is
the natural inclusion. It follows that both ΦR and ιR are monoid isomorphisms.
By [7, Proposition 1.5] the order in CP(R) is determined by [P ] ≤ [Q] if and only
if P is isomorphic to a submodule of Q. (Observe that this is not the algebraic
order in CP(R).) □

6.12 (Semilocal rings). Recall that a unital ring R is said to be semilocal if the
quotient R/J(R) is semisimple, i.e. if there exist divison rings D1, . . . , Dr such
that

R/J(R) ∼= Mn1(D1)× . . .×Mnr(Dr).

Observe that we have

V∗(R/J(R)) = CP(R/J(R)) = S(R/J(R)) = ΛW(R/J(R)) = Nr
,

where the order here is the algebraic order, or equivalently, the componentwise
order. The generators are the isomorphism classes of the simple R/J(R)-modules.

Moreover V∗(R) embeds in V∗(R/J(R)) by Prihoda’s Theorem [31, Theorem
2.3].
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Note that we also have a surjective homomorphism of ordered monoids

π : W(R) → W(R/J(R)) = V(R/J(R)) = Nr,

which extends to a surjective homomorphism

π : ΛW(R) = Λσ(W(R)) → ΛW(R/J(R)) = Nr
.

Now we characterize the equivalence relation ∼ on CP(R) using the notion of
dimension in the case of semilocal rings ([31]). Recall that we define dim(P ) =
(x1, . . . , xr) ∈ Nr

, where (x1, . . . , xr) is the image of [P ] under the map V∗(R) →
Nr

. Further, given two countably generated projective right R-modules P,Q, we
say that dim(P ) ≤ dim(Q) if the corresponding tuples compare componentwise.
In this case, there exists a split R/J(R)-monomorphism P/PJ(R) → Q/QJ(R).

Using the remarks above, we can easily characterize the order relation in CP(R)
in the case of a semilocal ring:

Proposition 6.13. Let R be a semilocal ring and let P,Q be two countably gene-
rated right R-modules. The following are equivalent:

(i) P ≾ Q
(ii) dim(P ) ≤ dim(Q) (component-wise)
(iii) P is isomorphic to a pure submodule of Q.

Proof. (i) =⇒ (ii): Let x = (x1, . . . , xr) ∈ Nr such that x ≤ dim(P ). Let
ιR : CP(R) → ΛW(R) be the canonical inclusion. Then ιR([P ]) ⊆ ιR([Q]) (as
elements in Λσ(W(R))). Take z ∈ W(R) such that z ∈ ιR([P ]) and π(z) = x.
Then z ∈ ιR([Q]), which means that π(z) ≤ π(ιR[Q]) = π([Q]) = dim(Q). It
follows that dim(P ) ≤ dim(Q).

(ii) =⇒ (iii): Assume that dim(P ) ≤ dim(Q). Then, one can construct a split
monomorphism r̄ : P/PJ(R) → Q/QJ(R). Let s̄ : Q/QJ(R) → P/PJ(R) be such
that s̄r̄ = idP/PJ(R).

Since P,Q are projective, both maps can be lifted to r : P → Q and s : Q→ P .
Moreover, since s̄r̄ = idP/PJ(R), we know from [31, Lemma 2.1], applied to sr,

that for any finite subset X ⊆ P there exists a morphism g : P → P such that
gsr(x) = x for every x ∈ X. Hence h := gs : Q → P satisfies that hr(x) = x for
all x ∈ X. It follows that r is injective and r(P ) is pure in Q (see [27, Exercise
§4.38]).

(iii) =⇒ (i): See [27, Exercise §4.41]. □

Corollary 6.14. Let P,Q be two countably generated projective right modules
over a unital semilocal ring R. Then, P ∼ Q if and only if P ∼= Q. That is,
CP(R) ∼= V∗(R) as semigroups.

Corollary 6.15. Let R be a unital semilocal ring. Then, CP(R) can be embedded
into Nr

as a partially ordered monoid.

7. C∗-algebras

Let A be a C∗-algebra. In this section we explore the relationship between the
Cuntz semigroup Cu(A) of A and the semigroup S(A). We show in Theorem 7.6
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that Cu(A) is a retract of S(A), in the sense that there is an ordered monoid
morphism Cu(A) → S(A) that preserves suprema, compact containment, and has
a left inverse that preserves suprema.

Remark 7.1. Given f, g ∈ C([0,∞)) such that supp(f) = (ε,∞) and supp(g) =
(ε′,∞) with ε′ < ε, there exists r ∈ C([0,∞)) such that f(t) = r(t)g(t)f(t) for
each t ∈ [0,∞). In particular, we have f ≾1 g. In general, if supp(f) ⊆ supp(g),
then f ≾ g (see, e.g. [8, Proposition 2.5])

7.2 (Dense subsemigroups). Let S be a Cu-semigroup. We will say that a sub-
semigroup H of S is a dense subsemigroup provided that whenever x ≪ y in S
there exists s ∈ H such that x ≤ s ≤ y.
For example, if S is algebraic, then the subsemigroup Sc, consisting of the

compact elements in S, is a dense subsemigroup.

Lemma 7.3. Let S be a Cu-semigroup, T a positively ordered monoid where
suprema of increasing sequences exist and are compatible with addition. Let H ⊆ S
be a dense submonoid. Then, for any ordered monoid morphism φ : H → T
that preserves suprema of increasing sequences with supremum in H, there exists
an ordered monoid morphism ϕ : S → T that preserves suprema of increasing
sequences and ϕ|H = φ.

Proof. Given any s ∈ S, write s = sup sn where (sn) is a rapidly increasing
sequence of elements in S. Since by assumption H is dense in S, there is for each
n an element s′n ∈ H such that sn ≤ s′n ≤ sn+1. Thus we may assume that sn ∈ H
for all n. Define ϕ(s) := supn φ(sn).
If (tn) is another rapidly increasing sequence of elements inH such that sup sn ≤

sup tn, then for any n, there is m with sn ≤ tm, whence supn φ(sn) ≤ supn φ(tn).
This implies that ϕ is well-defined and order-perserving. To see that ϕ preserves
addition, let s, t ∈ S and write s = supn sn, t = supn tn, for rapidly increasing
sequences (sn) and (tn) in H. Thus, using our assumption on T , we get

ϕ(s+ t) = sup
n
(φ(sn) + φ(tn)) = sup

n
φ(sn) + sup

n
φ(tn) = ϕ(s) + ϕ(t),

and therefore ϕ is an ordered monoid morphism.
Further, note that for every h ∈ H, we can write h = supn hn for a rapidly

increasing sequence (hn) of elements in H. Since φ preserves the supremum of
such sequences, we have ϕ(h) = supn φ(hn) = φ(h), and thus ϕ|H = φ.

To see that ϕ preserves suprema, fix s ∈ S and let (tn) be an increasing sequence
in S with supremum s. Choose (sn) to be a rapidly increasing sequence of elements
in H with supremum s. Since ϕ is order-preserving, we have that supn ϕ(tn) ≤
ϕ(s). Also, for every n, there is m with sn ≤ tm. Using that ϕ|H = φ and that ϕ
is order-preserving, we obtain φ(sn) = ϕ(sn) ≤ ϕ(tm) ≤ supk ϕ(tk), which implies
that ϕ(s) ≤ supk ϕ(tk) as required. □

7.4 (Retracts). Let S be a Cu-semigroup, and let T be a positively ordered semi-
group admitting suprema of increasing sequences, which are compatible with ad-
dition. Adapting the definition introduced in [33, Definition 3.14], we shall say
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that S is a retract of T if there exist ordered monoid morphisms φ : S → T and
ϕ : T → S such that

(i) φ preserves suprema and compact containment.
(ii) ϕ preserves suprema.
(iii) ϕφ = idS.

Given ε > 0, we shall denote by fε ∈ C([0,∞)) the continuous function that is 0
on [0, ε), linear on [ε, 2ε], and 1 elsewhere. Notice that, for each positive element a
in a C∗-algebra A, the element fε(a) has a unit in A, namely fε/2(a)fε(a) = fε(a).

Lemma 7.5. Let A be a C∗-algebra and let a, b ∈ M∞(A)+ be such that a ≾ b in
A⊗K. Put εn = 1/2n. Then, for any n, there is m such that fεn(a) ≾1 fεm(b).

Proof. Since a ≾ b in A⊗K, given n ∈ N, there exist δn > 0 and rn ∈ A⊗K such
that

(a− εn+1)+ = rn(b− δn)+r
∗
n

(see, for instance, [8, Proposition 2.17]). As a, (b − δn)+ ∈ M∞(A), we can take
rn ∈ M∞(A) as well. Since δn > 0, there exists m such that fεm(b) is a unit for
(b − δn)+. Using this observation at the third step and Remark 7.1 at the first
step, one gets

fεn(a) ≾1 (a− εn+1)+ = rn(b− δn)+fεm(b)r
∗
n ≾1 fεm(b). □

Theorem 7.6. Let A be a C∗-algebra. Then Cu(A) is a retract of S(A).

Proof. Let H = {x ∈ Cu(A) : x = [a] for some a ∈ M∞(A)+}, which is a dense
subsemigroup of Cu(A). We will apply Lemma 7.3 to H. To this end we need
to construct a positively ordered monoid morphism φ0 : H → S(A) that preserves
suprema of increasing sequences.

Let x ∈ H, and let a ∈ M∞(A)+ be such that x = [a]. For every n ≥ 1, put
εn = 1/2n and fεn as in Lemma 7.5. The elements of the sequence (fεn(a)) are
pairwise commuting and, as observed before, fεn+1(a)fεn(a) = fεn(a) for all n.
Thus fεn(a) ≾1 fεn+1(a) for all n, and so (fεn(a))n ∈ S(M∞(A)).

Define φ0 : H → S(A) by φ0([a]) = [(fεn(a))n]. To see that φ0 is well defined and
order-preserving, let b ∈ M∞(A)+ be such that a ≾ b in A ⊗ K. By Lemma 7.5,
for each n there is m with fεn(a) ≾1 fεm(b), which implies that [(fεn(a))n] ≤
[(fεn(b))n].

It is easy to verify that φ0 is additive, and thus it is a positively ordered
monoid morphism. In order to extend φ0 to a positively ordered monoid mor-
phism φ : Cu(A) → S(A) that preserves suprema of increasing sequences, we apply
Lemma 7.3. Thus, we only need to prove that the map φ0 : H → S(A) preserves
suprema of increasing sequences with supremum in H.

To this end, let (an)n, a ∈M∞(A)+ be such that ([an])n is increasing and [a] =
supn[an] in Cu(A). Since φ0 is order-preserving, we already have supn φ0([an]) ≤
φ0([a]). To show the converse inequality, note that for every n ≥ 1 one has
[(a−εn+1)+] ≪ [a] and, consequently, (a−εn+1)+ ≾ ai for some i. By Lemma 7.5,
there is m such that fεn+2((a − εn+1)+) ≾1 fεm(ai). Let gεn(t) = (t − εn)+. By
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Remark 7.1, we have fεn ≾1 fεn+2 ◦ gεn+1 . Thus,

fεn(a) ≾1 fεn+2((a− εn+1)+) ≾1 fεm(ai).

This shows that φ0([a]) ≤ supn φ0([an]), as every element in (fεn(a))n is ≾1-
bounded by an element in (fεm(ai))m for some i. Therefore, φ0([a]) = supn φ0([an]),
as was to be shown, and we have an extension φ : Cu(A) → S(A) that preserves
suprema of increasing sequences.

Next, to prove that φ preserves the way-below relation, take first [a], [b] ∈ Cu(A)
with a, b ∈ M∞(A)+ and suppose that [a] ≪ [b] in Cu(A). Then there is ε > 0
such that a ≾ (b − ε)+. Since again by Remark 7.1, we have fεm ◦ gε ≾1 fε for
each m, another usage of Lemma 7.5 implies that, for each n ≥ 1, there is m ≥ 1
such that

fεn(a) ≾1 fεm((b− ε)+) ≾1 fε(b),

and therefore φ0([a]) = [(fεn(a))n] ≪ [(fεm(b))m] = φ0([b]). If now a, b ∈ (A⊗K)+
satisfy [a] ≪ [b] in Cu(A), then as before there is ε > 0 such that a ≾ (b − ε)+.
Note that there is bε ∈M∞(A)+ such that (b− ε)+ ∼ bε, and since [bε] ≪ [b2ε], we
have

φ([a]) ≤ φ([(b− ε)+]) = φ0([bε]) ≪ φ0([b2ε]) ≤ φ([b]).

To finish the proof, we have to construct an ordered monoid morphism ϕ : S(A) →
Cu(A) that preserves suprema of increasing sequences and is a left inverse for
φ. To do this, let (an)n ∈ S(M∞(A)). By Lemma 2.10, the sequence (a∗nan)n is
≾-increasing and we can consider [a] = supn[a

∗
nan] in Cu(A).

Define ϕ : S(A) → Cu(A) by ϕ([(an)n]) = supn[a
∗
nan]. Let [(an)], [(bn)] ∈ S(A)

be such that [(an)n] ≤ [(bn)n] in S(A). Then, for each n, there is m such that
an ≾1 bm. Again by Lemma 2.10, this implies that a∗nan ≾ b∗mbm. Therefore, if
we put [a] = supn[a

∗
nan] and [b] = supn[b

∗
nbn] in Cu(A), we obtain that [a] ≤ [b].

This shows that ϕ is well defined and order-preserving. It is easy to verify that ϕ
is also additive, hence a positively ordered monoid morphism.

Now, given an increasing sequence ([(ai,n)i])n in S(A), there is a subsequence
(ni) of the natural numbers and elements ri ∈ A such that supn[(ai,n)i] = [(ai,ni

ri)i]
(see Lemma 4.3). Let [an] = ϕ((ai,n)i). We have, for each i,

r∗i a
∗
i,ni
ai,ni

ri ≾ a∗i,ni
ai,ni

≾ ani
,

and thus [r∗i a
∗
i,ni
ai,ni

ri] ≤ [ani
] ≤ supn[an]. Therefore

ϕ(sup
n
[(ai,n)i]) = ϕ([(ai,ni

ri)i]) = sup
i
[r∗i a

∗
i,ni
ai,ni

ri] ≤ sup
n
[an] = sup

n
ϕ([(ai,n)i]).

Since ϕ is order-preserving we always have supn ϕ([(ai,n)i]) ≤ ϕ(supn[(ai,n)i]), and
thus ϕ(supn[(ai,n)i]) = supn ϕ([(ai,n)i], as required.
By construction, ϕ is a left-inverse for φ0 = φ|H . By definition of φ and since

ϕ preserves suprema of increasing sequences, it follows that ϕ is a left-inverse
for φ. □

7.7 (Hilbert C∗-modules). For a C∗-algebra A, we consider the class CH(A) of
countably generated Hilbert A-modules, see for instance [28] for definitions and
background. Let HA be the Hilbert A-module consisting of sequences (an) of
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elements in A such that
∑∞

n=1 a
∗
nan is norm-converging in A. Note that HA is

the Hilbert A-module completion of the A-module A(N). By Kasparov’s Theo-
rem (see e.g. [28, Theorem 1.4.2]) each countably generated Hilbert A-module is
isometrically isomorphic to a complemented A-submodule of HA.
Denote by K(X) the C∗-algebra of compact operators on a Hilbert A-module

X. If X ⊆ Y are Hilbert A-modules, we say that X is compactly contained in Y if
there exists a self-adjoint compact operator θ ∈ K(Y ) such that θ|X = idX . Given
Hilbert A-modules X and Y , we say that X is Cuntz subequivalent to Y , written
X ≾ Y , if each Hilbert submodule X0 of X which is compactly contained in X
is isometrically isomorphic to a Hilbert module Y0 which is compactly contained
in Y . We say that X and Y are Cuntz equivalent, written X ∼ Y , if X ≾ Y and
Y ≾ X. The semigroup CH(A) is then the semigroup of Cuntz equivalence classes
of countably generated Hilbert A-modules, endowed with the operation induced
by the direct sum of Hilbert A-modules.

It was shown in [14] that there is an isomorphism Cu(A) ∼= CH(A) in the
category Cu. This isomorphism sends the class of a positive element a in A ⊗ K
to a(HA), where we use the isomorphism A⊗K ∼= K(HA), see e.g. [8, Proposition
3.15(iii)].

Let A be a C∗-algebra. Then we have, on the one hand, an isomorphism
γc : Cu(A) ∼= CH(A), and on the other hand an isomorphism γa : S(A) ∼= CP(A)
by Theorem 4.13, where CP(A) is built from the category CP(A) of countably
generated projective unital right A+-modules P such that P = PA, see Para-
graph 4.11.

Hence there is a unique morphism ϕ̃ : CP(A) → CH(A) making commutative
the following diagram:

Cu(A)
γc
// CH(A)

S(A)
γa
//

ϕ

OO

CP(A)

ϕ̃

OO

namely ϕ̃ = γc ◦ ϕ ◦ γ−1
a .

Proposition 7.8. Let P be an object in CP(A), and let xn ∈M∞(A) be a sequence
such that xn+1xn = xn for each n ≥ 1 and P ∼= Q :=

⋃∞
i=1 xnA

(N). We then have

ϕ̃([P ]) = ϕ̃([Q]) = [Q],

where Q is the Hilbert A-module obtained by taking the closure of Q in HA.

Proof. We first observe that a sequence (xn) as in the statement always exists by
Corollary 4.14. Given such a sequence (xn), we have xnHA ⊆ xn+1HA and in
particular xnHA ⊆ xn+1HA, so that by [8, Proposition 4.12] we have

sup
n
[xnHA] = [∪∞

n=1xnHA]

in CH(A). On the other hand, by [8, Lemma 4.10], we have

x∗nxnHA
∼= xnx∗nHA = xnHA
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for all n ≥ 1. Therefore we get γc([x
∗
nxn]) = [xnHA]. Using that γc preserves

suprema of increasing sequences, we have

γc ◦ ϕ ◦ γ−1
a ([Q]) = γc ◦ ϕ([(xn)]) = γc(sup

n
[x∗nxn]) = sup

n
γc([x

∗
nxn])

= sup
n
[xnHA] = [∪∞

n=1xnHA] = [Q],

as desired. □

8. Nearly simple domains

In this section we study nearly simple domains, a class of rings where one can
explicitly compute the monoid W(R); see Paragraph 8.1.
As we will prove in Proposition 8.3, the Jacobson radical J of any nearly simple

domain R is always weakly s-unital, although it is not s-unital in general. The
invariants Λ(J) and S(J) are computed in Theorem 8.4 and Remark 8.6 respec-
tively.

8.1 (Uniserial domains and nearly simple domains). Recall that a module over a
ring R is uniserial if its submodules are totally ordered by inclusion, and that the
ring R is said to be right uniserial if it is uniserial as a right module over itself.

One defines left uniserial rings analoguously, and says that R is uniserial if
it is both right and left uniserial. Uniserial rings will be assumed to be unital
throughout the section.

Note that any right uniserial domain R is a local ring. That is, R has a unique
maximal left ideal. The reader is referred to [16] for a thorough exposition.

Let R be a uniserial domain. We will say that R is a nearly simple domain if
R is not simple and the only two-sided ideals of R are {0}, J(R) and R.
Given elements r, s in a unital, uniserial ring R, it is well-known that RrR =

RsR if and only if there exist units u, v ∈ R such that r = usv; see [32, Lemma 4.2].
In particular, if R is a nearly simple domain, this implies that J := J(R) is a

1-simple ring, that is, for each r, s ∈ J \ {0} there exist a, b ∈ J such that r = asb
(see [13], where the concept of an n-simple ring is introduced for unital rings, for
every n ≥ 1). Indeed, applying [32, Lemma 4.2] to r, s3, we obtain units u, v ∈ R
such that

r = us3v = (us)s(sv).

The elements a := us and b := vs are in J and satisfy the desired equality.

As shown in [5, Theorem 2.10], every regular square matrix over an exchange
separative ring can be diagonalized by using row and column elementary transfor-
mations. Since local rings are separative exchange rings, this applies in particular
to any uniserial ring. We will see in Lemma 8.2 below that all square matrices
over a uniserial ring are equivalent to diagonal matrices. This will allow us to
compute W(R) for a nearly simple domain R in Theorem 8.4. Note that there
exist artinian local commutative rings R such that some 2× 2 matrices over R are
not diagonalizable (see [5, Remark 2.12]).

Let us denote by En(R) the set of n× n elementary matrices.
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Lemma 8.2. Let R be a uniserial ring. Then, for each square matrix A ∈Mn(R)
there exist elementary matrices U, V ∈ En(R) such that UAV is diagonal.

Proof. We proceed by induction on n and note that the case n = 1 is trivial.
Thus, let n > 1 be fixed and assume that we have proven the result for every

k × k matrix with k ≤ n− 1.
Take A ∈ Mn(R). If A has an invertible entry, we can move such entry to the

position (1, 1) by means of elementary transformations. Further, since this entry
is now invertible, there exist elementary matrices U, V such that the product
A′ = UAV satisfies A′(1, i) = A′(i, 1) = 0 for all i > 1. The desired result now
follows by induction.

Thus, it remains to consider the case A ∈ Mn(J), where we will show by in-
duction on k that there exist elementary matrices Uk, Vk ∈ En(R) such that the
product

Bk = UkAVk
satisfies Bk(i, j) = 0 for every pair (i, j) such that i ≤ k and i ̸= j. That is, Bk is
of the form

Bk =


Bk(1, 1) 0

. . . 0
0 Bk(k, k)

Ck


for some matrix Ck.
If k = 1, use that R is uniserial to find i ≥ 1 such that A(1, j)R ⊆ A(1, i)R for

every j. Using elementary transformations, we may assume that i = 1. This shows
that A can be transformed into a matrix B1 satisfying the required conditions.

Now fix k < n and assume that we have proven the result for every k′ ≤ k. In
particular, we can find Uk, Vk ∈ Ek(R) such that UkAVk = Bk.
Then, for every i ≤ k, we either have that RBk(k + 1, i) ⊆ RBk(i, i) or

RBk(i, i) ⊆ RBk(k + 1, i). Performing elementary row operations, we may as-
sume that Bk(k + 1, i) = 0 whenever RBk(k + 1, i) ⊆ RBk(i, i).
Let k′ be such that Bk(k+ 1, i)R ⊆ Bk(k+ 1, k′)R for every i. We may assume

that Bk(k + 1, k′) ̸= 0, since we are done otherwise.
If k′ ≥ k + 1, we can perform elementary column operations in order to get

k′ = k + 1. Using once again column operations, we obtain a matrix of the form

Bk(1, 1) 0
. . . 0

Bk(k, k)
0 Bk(k + 1, k + 1)

Ck+1


for some Ck+1, as desired.
Finally, assume that k′ ≤ k. Since Bk(k + 1, k′) ̸= 0, we have

RBk(k
′, k′) ⊆ RBk(k + 1, k′).
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Let B′ be the matrix resulting from adding a multiple of the (k + 1)-th row to
the k′-th row in such a way that B′(k′, k′) = 0.

Performing elementary column operations, we obtain yet another matrix B′′

with B′′(k + 1, i) = 0 for every i ̸= k′.
Swapping the k′-th row with the (k + 1)-th row, we find a matrix B′

k with
B′
k(i, j) = 0 for every (i, j) such that i ≤ k and i ̸= j. Further, B′

k has at
least one more zero than Bk in the (k + 1)-th row. Proceeding by induction, we
get matrices Uk+1, Vk+1 and Bk+1 with the desired properties. This finishes the
inductive argument.

Since Bn is a diagonal matrix, the matrices U := Un and V := Vn satisfy the
required conditions. This finishes the proof. □

Let (M,≤) be a partially ordered monoid, and let I be a submonoid of M .
Recall that I is said to be an o-ideal of M if I is hereditary for ≤, that is, if
whenever x ≤ y with y ∈ I we have x ∈ I.

Proposition 8.3. Let R be a nearly simple domain. Then J(R) is a weakly s-
unital ring, and there is an order-embedding of W(J(R)) into an o-ideal of W(R).

Proof. Set J := J(R) and take A ∈ Mn(J) for some n ≥ 1. We have to show
that there exist matrices X, Y ∈ Mn(J) such that A = XAY . By Lemma 8.2
there exist elementary matrices U, V ∈ En(R) such that UAV = D, where D is
diagonal matrix in Mn(R). Note that, since all the entries of A belong to J , we
have D ∈Mn(J).

Further, we know from Paragraph 8.1 that J is a 1-simple ring. Thus, we can
find diagonal matrices Z, T ∈Mn(J) satisfying D = ZDT . This implies

A = U−1DV −1 = U−1ZDTV −1 = (U−1ZU)A(V TV −1)

and, consequently, the matrices X := U−1ZU and Y := V TV −1 are in Mn(J) and
satisfy A = XAY , as desired.
It follows from Paragraph 2.5 that we can form the semigroup W(J), which is

a positively ordered monoid.
The inclusion map J → R induces a positively ordered monoid-morphism

W(J) → W(R). To see that it is an order-embedding, let A,B ∈ Mn(J) and
assume that A ≾1 B in Mn(R). Let P,Q ∈ Mn(R) be such that A = PBQ.
Using the first part of the proposition, we obtain elements X, Y ∈ Mn(J) such
that A = XAY , and hence A = (XP )B(QY ).

This shows that A ≾1 B in Mn(J) and, therefore, that the map W(J) → W(R)
is an order-embedding.

Identifying W(J) with its image, it is readily checked that W(J) is an o-ideal
of W(R). □

Theorem 8.4. Let R be a nearly simple domain, and let J be its Jacobson radical.
Then,

(i) W(J) ∼= N, with its usual order.
(ii) W(R) ∼= N× N, with the order

(r′, s′) ≤ (r, s) : ⇐⇒ r′ + s′ ≤ r + s and r′ ≤ r.
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Proof. Take A ∈ Mn(R). Using Lemma 8.2, we find invertible matrices U, V and
a diagonal matrix D ∈Mn(R) such that UAV = D. We may assume that D is of
the form

D = diag(d1, . . . , dr, dr+1, . . . , dr+s, 0, . . . , 0)

for some d1, . . . , dr ∈ R \ J and dr+1, . . . , dr+s ∈ J \ {0}. Let
ψ : M∞(R) → N× N

be the map defined by ψ(A) := (r, s).
To see that ψ(A) does not depend on the choice of U and V , set

C := R/dr+1R⊕ . . .⊕R/dr+sR⊕Rn−r−s

and consider the commutative diagram

Rn A
//

OO

V ∼=

Rn //

U ∼=
��

Rn/ARn

∼=
��

// 0

Rn D
// Rn // C // 0

Choosing a ∈ J \ {0}, we have C ∼= (R/aR)s ⊕ Rn−r−s (by [32, Lemma 4.2]).
Thus, for any choice of invertible matrices U ′, V ′ and diagonal matrix D′ such that
D′ = U ′AV ′ with ranks (r′, s′), one gets

(R/aR)s ⊕Rn−r−s ∼= (R/aR)s
′ ⊕Rn−r′−s′ .

At this point we can use Puninski’s Theorem [16, Theorem 9.19] asserting that
every finitely presented right module M over a uniserial ring is the direct sum of
cyclic uniserial modules, and any two decompositions ofM as direct sums of cyclic
modules are isomorphic. Using this result we immediately deduce that s = s′ and
n− r − s = n− r′ − s′, and thus r = r′.
Next we show that A ≾1 B implies ψ(A) ≤ ψ(B), where recall that

(r′, s′) ≤ (r, s) : ⇐⇒ r′ + s′ ≤ r + s and r′ ≤ r.

Thus, let A,B be such that A ≾1 B, and write ψ(A) = (rA, sA) and ψ(B) =
(rB, sB). We may assume that A,B ∈Mn(R), and that there are matrices X, Y ∈
Mn(R) such that A = XBY .

Let π be the quotient map R → R/J . We have

π(A) = π(X)π(B)π(Y ) in Mn(R/J)

and, therefore,

rA = rankR/J(π(A)) ≤ rankR/J(π(B)) = rB.

Let us now prove that ψ(BY ) ≤ ψ(B) for all B, Y ∈ Mn(R). Following the
notation above, we write ψ(B) = (rB, sB) and ψ(BY ) = (rBY , sBY ).

The previous argument shows that rBY ≤ rB, so it remains to check that

rBY + sBY ≤ rB + sB.

Since Rn/BRn is a quotient of Rn/(BY )Rn, we obtain a surjective module
homomorphism

(R/aR)sBY ⊕Rn−rBY −sBY −→ Rn−rB−sB ,
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where a ∈ J \ {0}. Using that Rn−rB−sB is free, we find a right R-module M such
that

(R/aR)sBY ⊕Rn−rBY −sBY ∼= Rn−rB−sB ⊕M.

By Puninski’s Theorem [16, Theorem 9.19] we have that n − rBY − sBY ≥ n −
rB − sB. Thus, we get rBY + sBY ≤ rB + sB, as desired.
Note that, by symmetry, we have ψ(XB) ≤ ψ(B) for all X,B ∈ Mn(R). Con-

sequently, one gets ψ(A) ≤ ψ(B) whenever A ≾1 B.
Conversely, it is also easy to see (by looking at their associated diagonal matri-

ces) that A ≾1 B whenever ψ(A) ≤ ψ(B).
Thus, ψ induces an order-isomorphism from W(R) to N × N with the stated

order. This shows (ii).
To see (i), note that the image of W(J) through this order-isomorphism corre-

sponds to 0 × N ∼= N. The induced order in this submonoid corresponds to the
usual order. □

Remark 8.5. Let R be a nearly simple domain, and let J be its Jacobson radical.
Then, V (J) = 0 and W(J) = N by Theorem 8.4.
Thus, any element x ∈ W(J) satisfies that, whenever x ≤ y, there exists c with

x+ c = y. However, there are no nonzero elements in V(J).
In connection with Lemma 2.8, the above shows that elements x ∈ W(R) which

can be complemented to each element y ∈ W(R) such that x ≤ y do not necessarily
belong to the image of V(R).

Remark 8.6. It follows from Theorem 8.4 above that, if R is a nearly simple
domain, the monoid ΛW(J) associated to its Jacobson radical J = J(R) is indis-
tinguishable from ΛW(D) with D a division ring; see Paragraph 2.16.

However, note that every sequence (xn) defining an element in S(J) induces a
countably generated projective module P over R such that P = PJ(R). Thus, we
have P = 0. This shows that S(J) ∼= 0.
On the other hand, S(D) ∼= N for any division ring. Consequently, S(R) distin-

guishes these two families of rings.
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Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain

Email address: pere.ara@uab.cat
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