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Abstract
We show that every finitely generated conical refinement monoid can be represented
as the monoid V(R) of isomorphism classes of finitely generated projective modules
over a von Neumann regular ring R. To this end, we use the representation of these
monoids provided by adaptable separated graphs. Given an adaptable separated graph
(E,C) and a field K , we build a vonNeumann regular K -algebra QK (E,C) and show
that there is a natural isomorphism between the separated graph monoid M(E,C) and
the monoid V(QK (E,C)).
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Introduction

For a unital ring R, letV(R) denote the commutativemonoid of isomorphism classes of
finitely generated projective right R-modules with the operation given by [A]+[B] =
[A⊕ B]. The commutative monoid V(R) is always conical (i.e., it satisfies the axiom
x+ y = 0 �⇒ x = y = 0 for x, y ∈ V(R)), and has an order-unit given by the class
of the regular module [RR] in V(R). By results of Bergman [20, Theorems 6.2 and
6.4] and Bergman and Dicks [21, page 315] every conical monoid with an order-unit
can be realized in the form V(R) for some unital hereditary ring R. The monoid V(R)

can also be defined in the non-unital case (see Sect. 1.4 below), and it has been shown
by Goodearl and the first-named author [11] that every conical monoid is isomorphic
to the monoid V(R) of a possibly non-unital hereditary ring R.

The purpose of this paper is to show that every finitely generated conical refinement
monoid can be realized as the monoid V(R) for some (unital) von Neumann regular
ring R (see Theorem B below). This result follows immediately from our main result
(TheoremA), and the representation theorem for finitely generated conical refinement
monoids in terms of combinatorial data obtained in [7].

The realization question for (von Neumann) regular rings was posed by K. R.
Goodearl in [29]. Indeed, Goodearl formulated there the following fundamental open
problem: “Which monoids arise as V(R) for regular rings R?”. Because of the abun-
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dance of idempotents in regular rings, the knowledge of the structure of V(R) is a vital
piece of information for a regular ring R. For instance, V(R) contains full information
on the lattice of ideals of R (see [31, Proposition 7.3]). For a regular ring R it is well-
known that the monoid V(R) satisfies the Riesz refinement axiom (see [28, Theorem
2.8]) and this was the only additional property that was known at the time the above
fundamental problem was formulated. An example of a conical refinement monoid of
size ℵ2 which cannot be realized as the V-monoid of any regular ring was given by
Wehrung in [37]. It is still an open problemwhether all the conical refinement monoids
of size ≤ ℵ1 can be realized by regular rings. The countable case is especially inter-
esting since most direct sum decomposition problems involve only countably many
modules. We refer the reader to [4] for a survey on the realization problem for regular
rings.

A systematic approach to the realization problem was initiated in [9] through the
consideration of graph monoids. Given a directed graph E such that each vertex emits
only a finite number of edges, the graph monoid M(E) is the graph generated by
elements av , with v ∈ E0, subject to the relations av = ∑

e∈E1:s(e)=v ar(e) for each
vertex v which is not a sink. By [15, Proposition 4.4], the graph monoid M(E) is a
conical refinement monoid, and it was shown in [9] that, for each fixed field K , there
exists a von Neumann regular K -algebra QK (E) such that V(QK (E)) ∼= M(E). This
immediately raised the question of whether all finitely generated conical refinement
monoids can be represented as graph monoids. The answer to this question is negative
even for antisymmetric refinement monoids, the most basic counter-example is the
monoid M = 〈p, a, b | p = p + a = p + b〉 which was proved to not even be
a retract of a graph monoid in [18]. Another crucial step towards the solution of the
realization question, covering in particular the monoid M just described, was provided
by the first-named author in [5]. Indeed, he showed that the realization problem has a
positive answer for any finitely generated antisymmetric conical refinement monoid
with all its prime elements free.

Although [5] covers a large class of examples, it became clear that a better com-
binatorial model was needed in order to understand the complexity of all finitely
generated conical refinement monoids. After the work done in [16] and [17] (based on
previous work by Pierce [33], Dobbertin [24] and Brookfield [22]), the main missing
combinatorial tool was discovered in [8] and [7]. The key idea is revealed through the
consideration of the monoid M described above, which is not a graph monoid. If we
consider the following graph E :

p

a b

alongwith a partition of the set of edges of E into two classes, the oneswith continuous
lines, and the ones with dashed lines, we can localize the relations of the graphmonoid
to each set of the edge partition and obtain indeed the two required relations p = p+a
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and p = p + b. In general one defines a separated graph as a pair (E,C), where E
is a directed graph and C = ⊔

v∈E0 Cv is a partition of E1 which is finer than the
partition {s−1(v) | v ∈ s(E1)}, induced by the source map s. Given a separated graph
(E,C) with |X | < ∞ for all X ∈ C , we define the monoid M(E,C) as the monoid
generated by av , v ∈ E0, with the relations av = ∑

x∈X ar(x) for all v ∈ E0 and
X ∈ Cv (see Definition 1.2).

The class of all separated graph monoids is too large for our purposes, and indeed
it contains non-refinement monoids (see [11, Section 5]). In order to deal with our
realization question, a special class is required, and this is precisely the class of all
adaptable separated graphs (introduced in [7] and [8]), see Definition 1.4 below for
the precise definition.

We can now state the main result of the paper:

Theorem A Let (E,C) be an adaptable separated graph and let K be a field. Then
there exists a von Neumann regular K -algebra QK (E,C) and a natural monoid
isomorphism

M(E,C)→ V(QK (E,C)).

Using a result from [7] and Theorem A we obtain:

Theorem B Let M be a finitely generated conical refinement monoid and let K be
a field. Then there exists a von Neumann regular (unital) K -algebra R such that
M ∼= V(R).

We can provide right away the proof of Theorem B (assuming Theorem A has been
proved). Let M be a finitely generated conical refinement monoid. By [7, Theorem
(2)], there exists an adaptable separated graph (E,C) such that M ∼= M(E,C). By
Theorem A, we have

V(QK (E,C)) ∼= M(E,C) ∼= M

for the von Neumann regular K -algebra QK (E,C) introduced in Sect. 2. The algebra
QK (E,C) might be non-unital, but it can be replaced by a unital one using a standard
trick. Indeed, observe that M has an order-unit, for instance the sum of all elements in
a finite generating set is an order-unit for M . Let e be a projection in M∞(QK (E,C))

corresponding to the order-unit through the isomorphism M ∼= V(QK (E,C)). Then
we have that Q := eM∞(QK (E,C))e is a unital regular K -algebra with V(Q) ∼= M .

We now briefly discuss the realization problem for countable refinement monoids
in the light of our present achievement. Goodearl and the first-named author made in
[12] a fundamental division in the class of all conical refinement monoids. Namely,
they defined the class of tame refinement monoids as the class of those monoids which
can be written as a direct limit of finitely generated refinement monoids. A refinement
monoid is wild if it is not tame. There are some fundamental distinctions between
the classes of tame and wild refinement monoids. All tame refinement monoids are
well-behaved, in particular they are separative, unperforated and satisfy the Riesz
interpolation property (see [12, Section 3] for details). On the other hand, countable
wild refinement monoids can fail to satisfy any of the above properties. With respect
to the realization problem, both classes seem to behave differently too. While it is
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conceivable –and plausible given the result in the present paper– that any countable
tame conical refinement monoid can be represented as the monoid V(R) of a regular
K -algebra R for an arbitrary field K , there are known examples of countable wild
conical refinement monoids M which are not representable by a regular K -algebra
for any uncountable field K (see [4, Section 4]). Indeed a sufficient condition for this
to happen is that M is a conical non-cancellative refinement monoid with order-unit
admitting a faithful state. An explicit example of such a wild refinement monoid is
studied in detail in [13] in connection with the semigroup algebra of the monogenic
free inverse monoid. A natural next step in the realization problem is to extend the
methods of the present paper to the study of the realization of homomorphisms between
two finitely generated conical refinement monoids, with the objective of showing a
realization theorem for the class of all the countable tame conical refinement monoids.
Advances in the realization problem for wild monoids have been scattered through
the literature up to this moment. Some interesting constructions in this direction are
contained in [13] and in [34]. See also [19] for realization results for semiartinian
regular rings, and [36] for realization results in the setting of graded algebras.

In the next subsection we briefly discuss the strategy we follow for the proof of our
main result.

Presentation of the techniques

As already recalled above, our basic tool is the notion of an adaptable separated
graph (see Definition 1.4). The structure of such object (E,C) is shaped by the poset
I := E0/∼. Indeed, let ≤ be the pre-order relation on E0 defined by v ≤ w if there
is a directed path from w to v, and ∼ be the equivalence relation on E0 defined by
v ∼ w if v ≤ w and w ≤ v. Then, I := E0/∼ is a poset with respect to the partial
order induced by the pre-order ≤ on E0.

We now give a brief sketch of the proof of Theorem A. In broad outline, the proof
consists in decomposing our original adaptable separated (E,C) into a family of non-
separated graphs, wherewe can apply the results from [9], and then reconstruct (E,C),
themonoidM(E,C) and the K -algebra QK (E,C) in terms of the ones corresponding
to the above-mentioned family of non-separated graphs. This is done in such away that
we keep control of maintaining the desired isomorphisms between the graph monoids
and the V-monoids of the algebras.

Leaving apart Sect. 1, which establishes preliminary definitions and results, each
of the points below corresponds to a section in the article.

(1) In Sect. 2 we define and study the target K -algebras, denoted by QK (E,C), for
any adaptable separated graph (E,C) and any field K .
The algebra QK (E,C) is a suitable universal localization of the algebra
SK (E,C) built in [8]. The latter should be understood as an analogue of the
Leavitt path algebra LK (E) [1], although we warn the reader that SK (E,C) is
isomorphic to neither of the algebras LK (E,C) nor Lab

K (E,C) defined in [11]
and [10] respectively. As in [9] and [5], the process of universal localization is
required in order to get a von Neumann regular ring. We also develop in Sect. 2
some basic technical tools needed later.
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After having established all the necessary properties of the algebras QK (E,C),
we proceed in the next sections to the proof of Theorem A. This is done by a
method which is reminiscent to the method employed in [5], although we need
to develop a new construction in the present paper. This transforms our origi-
nal adaptable separated graph (E,C) into a new one (Ẽ, C̃) with an additional
property, described below.

(2) In Sect. 3 we build, for each adaptable separated graph (E,C), another adaptable
separated graph (Ẽ, C̃) satisfying a condition called condition (F). This condition
requires that each strongly connected component [v] ∈ Ĩ = Ẽ0/∼ receives edges
from at most one strongly connected component [w] ∈ Ĩ with [w] 
= [v] and,
moreover, if |C̃w| > 1, then only one set X ∈ C̃w emits edges ending at the
strongly connected component [v]. This implies in particular that its associated
poset Ĩ is a forest (Lemma 3.1). Moreover, there is a cover map φ : (Ẽ, C̃) →
(E,C) that relates both adaptable separated graphs. Roughly speaking, to build
(Ẽ, C̃), we copy as many times as needed all the information arising from our
original separated graph (E,C) in order to both not loosing information and
obtaining just one set of edges that leads to each vertex. The specific development
of this machinery is described in Sect. 3, which ends up with Theorem 3.3. An
easy example of this first step is drawn below (different colours means different
sets of edges).

(E,C)

1

2

3

(Ẽ, C̃)

1

2’ 2”

3’ 3”

(3) Let us now consider an adaptable separated graph (Ẽ, C̃) satisfying condition (F).
In this third step, corresponding to Sect. 4, we reconstruct (Ẽ, C̃) via successive
pullbacks of what we have called building blocks. In particular, these building
blocks are the connected components of the non-separated graphs obtained by
choosing a single set X ∈ C̃v at each of the vertices v of Ẽ (see Definition 4.2).
Notice that the building blocks Ei are non-separated directed graphs; therefore,
they satisfy M(Ei ) ∼= V(QK (Ei )) ([9]). In our easy separated graph displayed
before, the associated building blocks are:

1

2’

3’

2”

3”

1

2”

3”

2’

3’
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The behaviour of the above-mentioned pullbacks is analyzed at the different
frameworks: monoids, K -algebras and V-functor. We finish this section show-
ing in Theorem 4.1 our main result for the class of adaptable separated graphs
satisfying condition (F), i.e.

M(Ẽ, C̃) ∼= V(QK (Ẽ, C̃)).

It is worth to mention here that there are two technical difficulties we need to
overcome in this step. First, at the level of the K -algebra for the building blocks,
a slight variation of the usual Leavitt path algebra of a directed graph is needed.
This has been worked out in [6], so we only need to refer the results in that
paper. Second, in the transition from the algebra setting to the monoid setting,
we encounter the difficulty that the V-monoid of a pullback of rings is not in
general the pullback of the corresponding V-monoids. A necessary and sufficient
condition for this to hold, involving the K1-groups of algebraic K -theory, was
established (for a large class of rings) in [5].Weare able to verify this K1-condition
in our situation (see Proposition 4.15).

(4) In this final step, we return to the covermapφ : (Ẽ, C̃)→ (E,C) described in (2)
in order to move back from the auxiliary separated graph (Ẽ, C̃) to our original
separated graph (E,C). To this end, we use the crowned push-out construction.
We consider diagrams of the form

I I

I ′ P

=

ϕ ι1

ι2

where I and I ′ are order-ideals in P that are isomorphic via ϕ and satisfy I ∩ I ′ =
{0}. Then, we define the crowned pushout of (P, I , I ′, ϕ) as the coequalizer of
the maps ι1 and ι2 ◦ϕ (Definition 5.4). In Sect. 5 we show that this construction is
well-behaved at all our settings: monoids, K -algebras and V-functor, and agrees
with what we expect at the level of adaptable separated graphs. In particular, we
build a finite chain of adaptable separated graphs and cover maps

(Ẽ, C̃) = (Ẽn, C̃n)
φn−→ (Ẽn−1, C̃n−1)

φn−1−→ . . .
φ1−→ (Ẽ0, C̃0) = (E,C),

satisfying that eachM(Ẽk−1, C̃k−1) is the crowned push-out of a quadruple deter-
mined by (Ẽk, C̃k) and φk , for all k ∈ {1, . . . , n}. At the algebra level, we use
the results in [5] to show in Theorem 5.7 that if M(Ẽk, C̃k) ∼= V(QK (Ẽk, C̃k))

for some k ∈ {1, . . . , n}, then M(Ẽk−1, C̃k−1) ∼= V(QK (Ẽk−1, C̃k−1)), i.e., the
realization theorem holds inductively along the displayed chain.

Combining Theorem 5.7 with step (2) (Theorem 4.1), where it is shown that
M(Ẽ, C̃) ∼= V(QK (Ẽ, C̃)), one obtains the desired proof of TheoremA by induction.
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1 Preliminaries

In this section we collect some basic definitions and facts needed to follow the paper.

1.1 Posets

A pre-ordered set is a set J endowed with a reflexive and transitive relation ≤. If ≤
is in addition antisymmetric, we say that (J ,≤) is a poset (partially ordered set). We
refer the reader to [26] for a recent interesting paper on the structure of pre-ordered
sets.

Let (I ≤) be a poset. A subset J of I is a lower subset if x ≤ y and y ∈ J
imply x ∈ J . We denote by L(I ) the set of all the lower subsets of I . Note that
L(I ) is a complete distributive lattice, with

∧
and

∨
given by intersection and union

respectively. For p ∈ I , I ↓ p := {x ∈ I : x ≤ p} is the lower subset of I generated
by p.

For an element p of a poset I , write

L(p) = L(I , p) = {q ∈ I : q < p and [q, p] = {q, p}},

where [q, p] = {x ∈ I : q ≤ x ≤ p} is the interval determined by q and p. The set
L(p) is called the lower cover of p.

We will also need the concepts of tree and forest for a poset, as follows:

Definition 1.1 Let (I ,≤) be a poset. We say that I is a tree in case there is a greatest
element i0 ∈ I and for every i ∈ I the interval [i, i0] := { j ∈ I | i ≤ j ≤ i0} is a
chain. The element i0 will be called the root of the tree I . A forest is a disjoint union
of trees, that is I = ⋃

α∈� Iα such that each Iα is a tree with the induced order, and
for each α 
= β the elements of Iα and Iβ are pairwise incomparable. ��

1.2 Commutative monoids

We will denote by N the semigroup of positive integers, and by Z
+ the monoid of

non-negative integers. All the monoids appearing in this paper will be commutative
and additive.

A monoid M is conical if x + y = 0 implies x = y = 0 for x, y ∈ M , and M is
said to be a refinement monoid if, for all a, b, c, d ∈ M such that a+ b = c+ d, there
exist x , y, z, t in M such that a = x + y, b = z+ t , c = x + z and d = y+ t . We can
represent this situation in the form of a square:

c d
a x y
b z t

.

If x, y ∈ M , we write x ≤ y if there exists z ∈ M such that x + z = y. Note
that ≤ is a translation-invariant pre-order on M , called the algebraic pre-order of M .
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All inequalities in commutative monoids will be with respect to this pre-order. An
element p in a monoid M is a prime element if p is not invertible in M , and, whenever
p ≤ x + y for x, y ∈ M , then either p ≤ x or p ≤ y. A monoid M is said to be
primely generated if every non-invertible element of M can be written as a sum of
prime elements. By [22, Theorem 6.8], every finitely generated refinement monoid is
primely generated.

A monoid M is said to be separative in case, whenever a, b ∈ M and a + a =
a + b = b + b, then we have a = b. The reader is referred to [14] for information
on the class of separative monoids and its connections with the non-stable K -theory
of rings. We just remind the following useful characterization of separativity (see [14,
Lemma 2.1]). A monoid M is separative if and only if the following cancellation of
small elements holds:

(a + c = b + c and c ≤ na, c ≤ mb for some n,m ∈ N) �⇒ a = b .

By [22, Theorem 4.5], every primely generated refinement monoid is separative. In
particular every finitely generated refinement monoid is separative.

An element x ∈ M is regular if 2x ≤ x . An element x ∈ M is free if nx ≤ mx
implies n ≤ m, for n,m ∈ N. It is straightforward to show, using the above-mentioned
characterization of separativity, that any element of a separative monoid is either free
or regular. In particular, this holds for every primely generated refinement monoid.

Let M be a monoid. An order-ideal of M is a submonoid I of M satisfying that

if x + y ∈ I , then x ∈ I and y ∈ I ∀x, y ∈ M .

If I is an order-ideal of M , the equivalence relation ≡I defined on M by the rule

x ≡I y ⇐⇒ ∃u, v ∈ I such that x + u = y + v, for all x, y ∈ M

is a monoid congruence of M . We put M/I = M/≡I and we shall say that M/I is
an ideal quotient of M .

It is worth to mention that order-ideals are called divisor-closed submonoids in
some references, see for example [25, Chapter 1] and [27].

When M is a conical refinement monoid, the set L(M) of order-ideals of M forms
a complete distributive lattice, with suprema and infima given by the sum and the
intersection of order-ideals respectively.

Along the sequel we will denote the Grothendieck (or enveloping) group of a
commutative semigroup S by G(S). Recall that there is a canonical semigroup homo-
morphism ι : S→ G(S), which is injective if and only if S is cancellative.

1.3 Adaptable separated graphs

Using the theory of I -systems, as developed in [16], the authors have developed in
[7] a combinatorial model for all finitely generated conical refinement monoids. This
combinatorial model encompasses indeed a larger class of refinement monoids, which
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can be studied using the same methods. The basic ingredient in this combinatorial
description is the theory of separated graphs [11]. (Note that ordinary graphs are not
sufficient to describe all finitely generated refinement monoids, see [17,18].)

We will use the notation and conventions from [1] and [11] concerning graphs and
separated graphs respectively. In particular, for a directed graph E = (E0, E1, s, r),
we denote by E0 the set of vertices, by E1 the set of edges, and we use s(e) and r(e)
to denote the source and the range of an edge e ∈ E1. Throughout, we will use the
symbol

⊔
to denote the union of pairwise disjoint subsets of a given set.

Let us now recall the definition of separated graphs.

Definition 1.2 ([11, Definitions 2.1 and 4.1]) A separated graph is a pair (E,C)where
E is a directed graph andC =⊔

v∈E0 Cv is a partition of E1 such thatCv is a partition
of s−1(v) (into pairwise disjoint non-empty subsets) for every vertex v ∈ E0. (If v is
a sink, we take Cv to be the empty family of subsets of s−1(v).)

If all the sets in C are finite, we shall say that (E,C) is a finitely separated graph.
Given a finitely separated graph (E,C), we define the monoid of the separated

graph (E,C) to be the commutative monoid given by generators and relations as
follows:

M(E,C) =
〈
av : av =

∑

e∈X
ar(e) for every X ∈ Cv, v ∈ E0

〉
.

We will make extensive use of the following basic concepts:

Definition 1.3 Given a directed graph E = (E0, E1, s, r):

(1) We define a pre-order on E0 (the path-way pre-order) by v ≤ w if and only if
there is a directed path γ in E with s(γ ) = w and r(γ ) = v.

(2) Let ∼ be the equivalence relation on the set E0 defined, for every v,w ∈ E0,
by v ∼ w if v ≤ w and w ≤ v. Set I = E0/∼, so that the preorder ≤ on E0

induces a partial order on I . We will also denote by ≤ this partial order on I .
Thus, denoting by [v] the class of v ∈ E0 in I , we have [v] ≤ [w] if and only if
v ≤ w. We will often refer to [v] as the strongly connected component of v.

(3) We say that E is strongly connected if every two vertices of E0 are connected
through a directed path, i.e., if I is a singleton.

We now define the main notion used throughout the paper, which was introduced
in [7,8]. This is the class of adaptable separated graphs.

Definition 1.4 Let (E,C) be a finitely separated graph and let (I ,≤) be the partially
ordered set associated to the pre-ordered set (E0,≤). We say that (E,C) is adaptable
if I is finite, and there exist a partition I = Ifree � Ireg, and a family of subgraphs
{Ep}p∈I of E such that the following conditions are satisfied:

(1) E0 = ⊔
p∈I E0

p, where Ep is a strongly connected row-finite graph if p ∈ Ireg
and E0

p = {v p} is a single vertex if p ∈ Ifree.

(2) For p ∈ Ireg and w ∈ E0
p, we have that |Cw| = 1 and |s−1Ep

(w)| ≥ 2. Moreover,
all edges departing fromw either belong to the graph Ep or connectw to a vertex
u ∈ E0

q , with q < p in I .
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(3) For p ∈ Ifree, we have that s−1(v p) = ∅ if and only if p is minimal in I . If p is not
minimal, then there is a positive integer k(p) such that Cv p = {X (p)

1 , . . . , X (p)
k(p)}.

Moreover, each X (p)
i is of the form

X (p)
i = {α(p, i), β(p, i, 1), β(p, i, 2), . . . , β(p, i, g(p, i))},

for some g(p, i) ≥ 1, where α(p, i) is a loop, i.e., s(α(p, i)) = r(α(p, i)) =
v p, and r(β(p, i, t)) ∈ E0

q for q < p in I . Finally, we have E1
p =

{α(p, 1), . . . , α(p, k(p))}.
The edges connecting a vertex v ∈ E0

p to a vertex w ∈ E0
q with q < p in I will be

called connectors. ��
Following thework in [16,17], we have established in [7] the following fundamental

result, which links adaptable separated graphs and refinement monoids.

Theorem 1.5 [7] The following two statements hold:

(1) If (E,C) is an adaptable separated graph, then M(E,C) is a primely generated
conical refinement monoid.

(2) For any finitely generated conical refinement monoid M, there exists an adaptable
separated graph (E,C) such that M ∼= M(E,C).

In particular, it is shown in [7] that, for an adaptable separated graph (E,C), all
the elements av , for v ∈ E0, are prime elements of the monoid M(E,C), and that
av is free (respectively, regular) in M(E,C) if and only if [v] ∈ Ifree (respectively,
[v] ∈ Ireg). We often refer to the elements of Ifree as free primes and to the elements
of Ireg as regular primes.

Recall that a subset H of vertices of a directed graph E is said to be hereditary
if v ≤ w and w ∈ H imply v ∈ H . Note that hereditary subsets of E0 correspond
to lower subsets of I = E0/∼. If (E,C) is a separated graph and H is a hereditary
subset of E0, we denote by (EH ,CH ) the restriction of (E,C) to H . We thus have
(EH )0 = H and CH

v = Cv for v ∈ H . The following lemma will be used through the
article without an explicit mention.

Lemma 1.6 Let (E,C) be an adaptable separated graph and let H be a hereditary
subset of E0. Then the order-ideal M(H) of M(E,C) generated by H is isomorphic
to the monoid M(EH ,CH ) of the separated graph (EH ,CH ).

Proof This follows exactly as in [17, Lemma2.18], due to the validity of the confluence
property for the monoids of adaptable separated graphs ([7, Lemma 2.4]). ��

1.4 Rings and algebras

A ring R is called von Neumann regular if for every x ∈ R there is y ∈ R such that
x = xyx . We refer the reader to [28] for the general theory of von Neumann regular
rings. The rings appearing in this paper will not be unital in general, but they have
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local units, that is, there is a set of idempotents E in R, which is directed with respect
to the order e ≤ f ⇐⇒ e = e f = f e, such that R = ⋃

e∈E eRe. By [3, Example
1], any von Neumann regular ring is a ring with local units.

For a ring R, let M∞(R) be the directed union of Mn(R) (n ∈ N), where the
transition maps Mn(R) → Mn+1(R) are given by x �→ (

x 0
0 0

)
. Two idempotents

e, f ∈ M∞(R) are equivalent in case there are x ∈ eM∞(R) f and y ∈ f M∞(R)e
such that xy = e and yx = f . We defineV(R) to be themonoid of equivalence classes
[e] of idempotents e in M∞(R) with the operation

[e] + [ f ] := [( e 0
0 f

)]

for idempotents e, f ∈ M∞(R). For unital R, the monoid V(R) is the monoid of
isomorphism classes of finitely generated projective right R-modules, where the oper-
ation is induced by direct sum. We will occasionally use the expression “V-monoid
of a ring” to refer to the above construction. It is straightforward to extend the above
definition to a functor V from the category of rings to the category of commutative
monoids.

If I is an ideal of a unital ring R, then V(I ) can be identified with the monoid
of isomorphism classes of finitely generated projective right R-modules P such that
P = P I (see [32, page 296]).

If R is a ring with local units, then the K -theory group K0(R) can be computed
as the Grothendieck group of the monoid V(R), that is, K0(R) = G(V(R)) (see [32,
Proposition 0.1]). Recall that a ring R is said to be separative if its monoid V(R) is a
separative monoid.

When R is a von Neumann regular ring, the monoid V(R) contains a lot of infor-
mation about the structure of R. In the next proposition, we collect various results on
this connection, that we will need later.

Proposition 1.7 Let R be a von Neumann regular ring. Then the following hold:

(1) V(R) is a refinement monoid.
(2) The lattice L(R) of (two-sided) ideals of R is a complete distributive lattice

and there is a lattice isomorphism L(R) ∼= L(V(R)) sending I ∈ L(R) to
V(I ) ∈ L(V(R)).

(3) If I ∈ L(R) then there is a natural monoid isomorphism V(R)/V(I ) ∼= V(R/I ).

Proof (1) and (3) were proved in [14, Corollary 1.3, Proposition 1.4] for the larger
class of exchange rings. The proof of (2) is contained in [31, Proposition 7.3]. ��

2 The algebras

2.1 Preliminaries on universal localization and rational series

In this subsection we introduce the tools from the theory of universal localization and
rational series that we need for our main construction. We refer the reader to [23] and
[35] for the general theory of universal localization.
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We will need the following particular instance of universal localization. Given
a family of idempotents {ei }i∈I of a possibly non-unital K -algebra R and sets of
square matrices 	i over ei Rei , for i ∈ I , we consider the K -algebra unitization
R1 of R, and the algebra R1(

⋃
i∈I ϒi )

−1, where ϒi is the set of all the matrices
(1−ei )In+ A ∈ Mn(R1), where A in an n×n matrix in	i and In is the n×n identity
matrix. Then we define R(

⋃
i∈I 	i )

−1 as the ideal of R1(
⋃

i∈I ϒi )
−1 generated by R.

Note that this corresponds to universally inverting each A ∈ Mn(ei Rei ) over ei Rei ,
that is, the canonical map ι : R → R(

⋃
i∈I 	i )

−1 satisfies the following universal
property:

Given any K -algebra T and any K -algebra homomorphism ϕ : R → T such that
ϕ(A) is invertible over Mn(ϕ(ei )Tϕ(ei )) for any A ∈ 	i ∩ Mn(R), there exists a
unique K -algebra homomorphism ϕ̃ : R(

⋃
i∈I 	i )

−1 → T such that ϕ̃ ◦ ι = ϕ.
We now recall and extend some constructions from [9]. The notation we follow

here is slightly different from the one in [9], but it agrees with the notation followed
in [6].

Let K be a field an let E be a row-finite graph. We denote by PK (E) the usual
path algebra over E with coefficients in K . Denote by F the directed family of all
the finite complete subgraphs of E (see [1, Definition 1.6.7]). Note that PK (E) =
lim−→F∈F PK (F). We define, for a finite graph F , PK ((F)) as the K -algebra of power
series on F (see [9]) and then we define

PK ((E)) = lim−→
F∈F

PK ((F)).

If F is a finite graph, the algebra of rational series P rat
K (F) is the division closure

of PK (F) in PK ((F)), see [9]. We define P rat
K (E) := lim−→F∈F P rat

K (F). Using [9,

Theorem 1.20], it is easy to see that P rat
K (E) is the universal localization PK (E)	−1,

where 	 = ⋃
F∈F 	F , and 	F is the set of square matrices A over PK (F) such

that εF (A) is invertible, where εF : PK (F) →⊕
v∈F0 vK is the augmentation map.

Note that 	F is a set of square matrices over the corner algebra vF PK (E)vF , where
vF :=∑

v∈F0 v, of the possibly non-unital algebra PK (E).
Following [9], we define, for e ∈ E1, the right transduction δ̃e : PK ((E)) →

PK ((E)) corresponding to e ∈ E1 by

δ̃e

⎛

⎝
∑

α∈Path(E)

λαα

⎞

⎠ =
∑

α∈Path(E)
s(α)=r(e)

λeαα.

Note that, by the argument given after the proof of Proposition 2.7 in [9], the
algebras P rat

K (E) are stable under all the right transductions δ̃e.
It will be convenient for our purposes to slightly modify the definition of the maps

τe given in [9, page 220]. (Again our definition here is the same as the one presented
in [6].)
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For each e ∈ E1, define the map τe as the endomorphism of PK ((E)) given by the
composition

PK ((E))→
⊕

v∈E0

Kv →
⊕

v∈E0

Kv → PK ((E)),

where the first map is the augmentation homomorphism, the third map is the canonical
inclusion, and the middle map is the K -lineal map given by sending s(e) to r(e), and
any other idempotent v with v 
= s(e) to 0. The reader can check that the right trans-
duction δ̃e : PK ((E)) → PK ((E)) corresponding to e ∈ E1 is a right τe-derivation,
that is,

δ̃e(rs) = δ̃e(r)s + τe(r)δ̃e(s) (2.1)

for all r , s ∈ PK ((E)) (see [9, Lemma 2.4]).
We now review the main construction in [9, Section 2].

Proposition 2.1 [9, Proposition 2.5] Let E be a row-finite graph, let E∗ be the opposite
graph, and let R be a subalgebra of PK ((E)) closed under all the right transductions
δ̃e, e ∈ E1. Then there exists a ring S such that:

(i) There are embeddings

L : R → S, r �→ Lr , z : P(E∗)→ S, w∗ �→ zw∗ ,

such that zv = Lv for all v ∈ E0, and

ze∗Lr = Lτe(r)ze∗ + L δ̃e(r)

for all e ∈ E1 and all r ∈ R.
(ii) S is projective as a left R-module. Indeed, S =⊕

γ∈Path(E) Sγ with Sγ
∼= Rr(γ )

as R-modules. Moreover, every element of S can be uniquely written as a finite
sum

∑
γ∈Path(E) Laγ zγ ∗ , where aγ ∈ Rr(γ ) for all γ ∈ Path(E).

Proof Set T = EndK (R). For r ∈ R let us denote by Lr the element of T given by
left multiplication by r . The map L : R → T is clearly an injective algebra homomor-
phism. For each e ∈ E1 consider the elements ze∗ of T defined by

ze∗(r) = δ̃e(r).

Let S be the subalgebra of T generated by L(R) and all the elements ze∗ defined above.
It is proved as in [9, Proposition 2.5] that S satisfies the stated properties. ��

The algebra S defined above will be denoted by R〈E∗; τ, δ̃〉. Note that both R and
PK (E∗) embed into S. Identifying the elements of R with their images in R〈E∗; τ, δ̃〉,



The realization problem for refinement monoids Page 15 of 63    33 

we see from Proposition 2.1 that every element in R〈E∗; τ, δ̃〉 can be uniquely written
as a finite sum

∑
γ∈Path(E) aγ γ ∗, where aγ ∈ Rr(γ ).

We can now introduce the following definition, which generalizes the definition of
Q(E) given in [9, page 234].

Definition 2.2 Let E be a row-finite graph, let K be a field, and let X be a subset of
regular vertices of E0. Set R := P rat

K (E) be the algebra of rational series over E and
S := R〈E∗; τ, δ̃〉. For each v ∈ X let qv = v −∑e∈s−1(v) ee

∗ ∈ R and let I X be the
ideal of S generated by all the idempotents qv with v ∈ X . Then the regular algebra
of E relative to X , denoted by QX

K (E), is the algebra

QX
K (E) := S/I X .

The regular algebra of E is the algebra QK (E) = QReg(E)

K (E), where Reg(E) is the
set of all the regular vertices of E . ��

We summarize below some of the main properties of the algebras QX
K (E). The

proof of such properties is basically the same as in the non-relative case, see [9].

Theorem 2.3 Let E be a row-finite graph, let K be a field, and let X be a subset of
regular vertices of E0. Then the algebra QX

K (E) satisfies the following properties:

(a) QX
K (E) is a von Neumann regular ring.

(b) The subalgebra of QX
K (E) generated by PK (E) and PK (E∗) is isomorphic to the

relative Cohn path algebra CX
K (E) defined in [1, Definition 1.5.9].

(c) We have a natural isomorphism CX
K (E)	−1 ∼= QX

K (E), where 	 = ⋃
F∈F 	F

is the set of square matrices over PK (E) which are sent to invertible matrices by
the augmentation map.

2.2 Definition and first properties of the regular algebraQK(E, C).

In this subsection wewill define our algebras QK (E,C), where (E,C) is an adaptable
separated graph. The algebra QK (E,C) is defined as a certain universal localization
of the algebraSK (E,C) introduced in [8].We briefly recall the definition ofSK (E,C)

below. Throughout, let K denote a field.
Let (E,C) be an adaptable separated graph with associated poset I := E0/∼ (see

Definition 1.4).

Notation 2.4 (1) If p ∈ I is non-minimal and free, we denote by σ p the mapN → N

given by

σ p(i) = i + k(p)− 1.

Moreover, if 1 ≤ j ≤ k(p), we denote by σ
p
j the unique bijective, non-decreasing

map from {1, . . . , k(p)} \ { j} onto {1, . . . , k(p)− 1}.
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(2) Recall that a connector is an edge e ∈ E1 such that s(e) ∈ E0
p and r(e) ∈ E0

q ,
with q < p. We will use β to denote general connectors, and we remind the reader
that the connectors departing from v p, with p ∈ Ifree, are of the form β(p, j, s)
for some 1 ≤ j ≤ k(p) and some 1 ≤ s ≤ g(p, j) (see Definition 1.4).

The algebra SK (E,C) is the ∗-algebra over K with generators E0 ∪ E1 ∪
{tvi , (tvi )−1 | i ∈ N, v ∈ E0} subject to the following relations:

(Relations) 2.5 There are two blocks of relations. In the first block we specify the
natural relations arising from the separated graph structure (cf. [11]). In the second
block, we give the relations between the generators of SK (E,C), using the special
form of our adaptable separated graph.

Block 1

(i) For all v,w ∈ E0, we have v · w = δv,wv and v = v∗.
(ii) For all e ∈ E1, we have:

(a) e = s(e)e = er(e)
(b) e∗e = r(e)
(c) e∗ f = δe, f r(e) if e, f ∈ X ⊆ Cs(e).
(d) v =∑

e∈X ee∗, for X ∈ Cv , v ∈ E0.

Block 2

(1) For each free prime p ∈ I and i = 1, . . . , k(p), we have:

(i) α(p, i)∗α(p, i) = v p

(ii)

α(p, i)α(p, i)∗ = v p −
g(p,i)∑

t=1
β(p, i, t)β(p, i, t)∗

(iii) For i 
= j , α(p, i)α(p, j) = α(p, j)α(p, i), and α(p, i)α(p, j)∗ =
α(p, j)∗α(p, i).

(iv) β(p, i, s)∗β(p, j, t) = 0 if either i 
= j , or i = j and s 
= t . (Note that when
i = j and s 
= t , these relations follow from the separated graph relations).

(v) α(p, i)∗β(p, i, t) = 0 = β(p, i, t)∗α(p, i) for all 1 ≤ i ≤ k(p) and all
1 ≤ t ≤ g(p, i).
Note that relations (i), (ii) and (v) follow from the separated graph relations,
i.e., from the relations given in Block 1.

(2) Moreover, in terms of the {tvi }, we impose the following relations:

(i) For each v ∈ E0, {(tvi )± : i ∈ N} is a family of mutually commuting elements
such that

vtvi = tvi = tvi v, tvi (tvi )−1 = v = (tvi )−1tvi , (tvi )∗ = (tvi )−1.
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(ii) If p ∈ I is regular, e ∈ E1 is such that s(e) ∈ E0
p and i ∈ N,

t s(e)i e = etr(e)i .

(iii) If p ∈ I is free, i ∈ N, 1 ≤ j ≤ k(p) and 1 ≤ s ≤ g(p, j),

(tv
p

i )±β(p, j, s) = β(p, j, s)(tr(β(p, j,s))
σ p(i) )±,

(iv) If p ∈ I is free, i 
= j , and 1 ≤ s ≤ g(p, j),

α(p, i)β(p, j, s) = β(p, j, s)tr(β(p, j,s))
σ
p
j (i)

, and

α(p, i)∗β(p, j, s) = β(p, j, s)(tr(β(p, j,s))
σ
p
j (i)

)−1.

(v) If p ∈ I is free, tv
p

i α(p, j) = α(p, j)tv
p

i and tv
p

i α(p, j)∗ = α(p, j)∗tv p

i for
all i ∈ N and j ∈ {1, . . . , k(p)}.

Remark 2.6 (1) Sincewe areworkingwithin the category of∗-algebras, the∗-relations
of all the relations described in 2.5 are enforced in the ∗-algebra SK (E,C). How-
ever, we warn the reader that the involution ∗ cannot be extended in general to the
algebra QK (E,C) that we will consider later.

(2) Although it will not be used in the present paper, we point out that, by [8, Theorem
4.14], there is a ∗-isomorphism SK (E,C) ∼= AK (G(E,C)), where G(E,C) is a
natural ample groupoid associated to (E,C) and AK (G(E,C)) is the Steinberg
algebra of G(E,C).

We are now ready to define the algebraQK (E,C) as a suitable universal localization
of SK (E,C).

Definition 2.7 For v ∈ E0, let 	v
1 ⊆ vSK (E,C)v be the set of all polynomials

p(tvi ) = 1 + λ1tvi + · · · + λn(tvi )n ∈ vSK (E,C)v, (n ≥ 1, λn 
= 0). Consider the
universal localization S1

K (E,C) := SK (E,C)(
⋃

v∈E0 	v
1 )
−1.

Let L = K (t1, t2, . . . , ) be an infinite purely transcendental extension of K . For
each v ∈ E0 there is a natural unital embedding L → vS1

K (E,C)v sending ti to tvi .
For p(ti ) ∈ L , we will denote by p(tvi ) its image under this embedding. Note that
relations 2.5(2)(iii) hold in the form

f (tv
p

i )β(p, j, s) = β(p, j, s)σ p( f (tv
p

i )) (2.2)

whenever p is non-minimal and free, where σ p : L → L is the natural extension of
σ p to an endomorphism of L .

We now proceed to define sets 	(p) for p ∈ I . We will differentiate between the
free and regular cases.

• Take p ∈ Ifree (cf. [5]). For each polynomial f (xi ) ∈ L[xi : 1 ≤ i ≤ k(p)] in
commuting variables {xi : 1 ≤ i ≤ k(p)} and each j ∈ {1, . . . , k(p)}, write v j ( f )
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for the valuation of f (xi ), seen as a polynomial in the one-variable polynomial
ring (L[xi : i 
= j])[x j ], at the ideal generated by x j . In other words, v j ( f ) is the
highest integer n such that xnj divides f . Write

v( f ) = max{v j ( f ) : 1 ≤ j ≤ k(p)}.

Note that {α(p, i) : 1 ≤ i ≤ k(p)} is a family of commuting variables so there is
a well-defined evaluation map

L[x1, . . . , xk(p)] → L[α(p, 1), . . . , α(p, k(p))], f (xi ) �→ f (α(p, i)).

Let 	(p) be the set of all elements of v pS1
K (E,C)v p given by

	(p) = { f (α(p, i)) : f ∈ L[xi ] and v( f ) = 0}. (2.3)

• Take p ∈ Ireg. Here we follow the inspiration provided by [9]. We consider the
graph Ep, and we write it in the form Ep = lim−→F

F , where each F is a complete
finite subgraph of Ep (see [1, Section 1.6]). Given such complete finite subgraph
F , we consider the usual path L-algebra PL(F) with coefficients in L , seen as
subalgebra of the corner vFS1

K (E,C)vF , where vF =∑
v∈F0 v, and the canonical

augmentation map εF : PL(F) → ⊕v∈F0vL . Then 	(εF ) is the set of all square
matrices A over PL(F) such that εF (A) is invertible as a matrix over ⊕v∈F0vL .
Now define

	(p) =
⋃

F

	(εF ),

where F ranges over all the complete finite subgraphs of Ep.

We can finally define the algebra

QK (E,C) := S1
K (E,C)

(⋃

p∈I
	(p)

)−1
,

which will be called the regular algebra of (E,C). ��
The proof of the following lemma follows the same steps as in the proof of [5,

Lemma 2.9], so we omit it. We point out that the idempotent e(p, q) used in that proof
must be replaced by the idempotent v p − α(p, i)α(p, i)∗ in our setting.

Lemma 2.8 For p ∈ Ifree, 1 ≤ i ≤ k(p) and f ∈ 	(p) we have

(v p − α(p, i)α(p, i)∗) f −1=( f ′0)−1w∗(v p−α(p,i)α(p, i)∗) = (v p − α(p, i)α(p, i)∗)( f ′0)−1w∗,
(2.4)

and

α(p, i)∗ f −1 = f −1α(p, i)∗ + f −1( f ′0)−1gw∗(v p − α(p, i)α(p, i)∗), (2.5)
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where w is a monomial in {α(p, j) : j 
= i}, f ′0 ∈ L[α(p, j) : j 
= i] ∩ 	(p), and
g ∈ L[α(p, j) : j = 1, 2, . . . , k(p)].

We now present a suitable spanning family for the algebra QK (E,C). This extends
the work done in [5] and in [8]. Recall from [8] that every element of SK (E,C) can
be written as a K -linear combination of terms of the form

λm(p)ν∗

where λ and ν are “connector paths” (c-paths for short) and m(p) is a “monomial”
based at p ∈ I . We refer the reader to [8, Section 2] for the exact meaning of these
terms.

Here we will generalize these notions to the concepts of “fractional connector path”
(fractional c-path for short) and “fractional monomial” in order to describe QK (E,C)

in Theorem 2.12.

Definition 2.9 (Fractional c-path) Let (E,C) be an adaptable separated graph with
associated poset I . Then, we define a step from a vertex v ∈ E0

p to a vertex w ∈ E0
q

with q < p, denoted by γ̂v,w,as follows:

(i) if v = v p for a free prime p, then a step from v p to w is defined as

γ̂v,w := f −1α(p, i)mβ(p, i, t) for some f ∈ 	(p), some i and some m ≥ 0,

where r(β(p, i, t)) = w.

(ii) if v ∈ E0
p for a regular prime p, then a step from v to w is defined as

γ̂v,w := f β, with s(β) = v′, r(β) = w,

where v′ ∈ E0
p, f ∈ vP rat

L (Ep)v
′ \ {0} and β is a connector from v′ to w.

Then, given two vertices v ∈ E0
p and w ∈ E0

q in I with p > q, we define a fractional
c-path from v to w as the concatenation of steps, i.e. we find p = q0 > q1 > q2 >

. . . > qn = q, and vertices vi ∈ E0
qi , with v0 = v and vn = w, such that

γv,w := γ̂v0,v1 . . . γ̂vn−1,vn .

Moreover, wewill say that the fractional c-path γv,w has depth n, and it will be denoted
by depth(γv,w) = n.

A trivial fractional c-path consists of a single vertex v ∈ E0. These are the fractional
c-paths of depth 0. ��
Remark 2.10 Note that a c-path in the sense of [8, Definition 2.4] is a special sort of
fractional c-path. Indeed, one just needs to modify f in the latter definition of a step.
In particular, in the free prime case one just deletes f −1, and one substitutes f by a
directed path of finite length connecting v and v′ in Ep, in the regular case.
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Definition 2.11 (Fractional monomial)Wecontinuewith our standing assumptions on
(E,C). Nowdefine the fractionalmonomials as the possiblemultiplicative expressions
one can form using generators (excluding connectors) corresponding to a given prime.
They will be denoted by m(p) for p ∈ I . Namely,

(1) if p is a free prime, we define

m(p) = f −1
k(p)∏

j=1
α(p, j)k j (α(p, j)∗)l j , r ≥ 0, k j , l j ≥ 0,

where f ∈ 	(p).
(2) if p is a regular prime, we define

m(p) = f ν∗,

where f ∈ vP rat
L (Ep)v

′ \ {0}, and ν is a finite directed path in Ep with r(ν) = v′
and v, v′ ∈ E0

p. ��
We are now ready to obtain a nice spanning family for our algebra QK (E,C).

Note that the path ν in Theorem 2.12 can be chosen to be a c-path in the sense of [8,
Definition 2.4].

Theorem 2.12 The algebra QK (E,C) is the K -linear span of the elements of the
form γm(p)ν∗ where γ is a fractional c-path,m(p) is a fractional monomial at some
p ∈ I , and ν is a c-path .

Proof We start by noting that the product of two fractional monomials corresponding
to the same p ∈ I is a finite sum of fractional monomials. For p ∈ Ifree, this follows
from (2.5), since f −1α(p, i) = α(p, i) f −1 for all i and all f ∈ 	(p), together
with [8, Lemma 2.7]. For p ∈ Ireg, use the formula e∗ f = δ̃e( f ) + τe( f )e∗ for
f ∈ P rat

L (Ep) and e ∈ E1
p and the fact that P rat

L (Ep) is closed under all the right

transductions δ̃e, for e ∈ E1
p (see Sect. 2.1).

Let S be the K -linear span of all the terms γm(p)ν∗ as in the statement. Note that S
contains (the image of)S1

K (E,C).Moreover, if p ∈ Ifree and f ∈ 	(p), then S clearly
contains the element f (α(p, i))−1, and if p ∈ Ireg and F is a complete subgraph of
Ep, then, by Proposition 2.1, QL(F) is contained in vF SvF . If we show that S is a
ring, then it follows from the above that all the matrices in 	(p) are invertible over
the corresponding corner of S, and thus we get that S = QK (E,C). So, to show
that S = QK (E,C), it is enough to prove that S is closed under multiplication,
which amounts to show that a product of two terms γ1m(p)η∗1 and γ2n(p′)η∗2 as in the
statement can be expressed as a K -linear combination of terms of the stated form. This
was shown to be the case when γ1, γ2 are c-paths andm(p),n(p′) are monomials (in
the sense of [8]) in [8, Proposition 2.13]. Using the observations in the first paragraph,
Lemma 2.8, and the rules established in [8, Definitions 2.9 and 2.10], we see that it
suffices to check that β(p, j, s)∗ f −1 ∈ Lβ(p, j, s)∗ for f ∈ 	(p) in case p ∈ Ifree,
and that β∗ f ∈ Lβ∗ for a connector β starting at a vertex of Ep and f ∈ P rat

L (Ep) in
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case p ∈ Ireg. We have, writing e(p, j) = v p − α(p, j)α(p, j)∗ and using (2.4) and
the relations in Block 2 of 2.5,

β(p, j, s)∗ f −1 = β(p, j, s)∗e(p, j) f −1 = β(p, j, s)∗( f ′0)−1w∗e(p, j)

= (σ p( f ′0)(t
r(β(p, j,s))
σ j (i)

))−1w((tr(β(p, j,s))
σ j (i)

)−1)β(p, j, s)∗

where w is a monomial in {α(p, i) : i 
= j} (involving only positive powers of the
α(p, i)), and f ′0 ∈ L[α(p, i) : i 
= j] ∩ 	(p), and σ p( f ′0)(t

r(β(p, j,s))
σ j (i)

) ∈ L is the

polynomial obtained by applying σ p to all the coefficients of f ′0 and replacing α(p, i)

with tr(β(p, j,s))
σ j (i)

, for i 
= j .
We now consider the case where p ∈ Ireg. In this case, we have to deal with a term

of the form β∗ f where β is a connector starting at a vertex of Ep and f ∈ P rat
L (Ep).

By [23, Theorem 7.1.2], we can write f = (a1 · · · am)(vF Im − A)−1(b1 · · · bm)t ,
where ai , bi ∈ PL(F) and A ∈ Mm(PL(F)) with εF (A) = 0, where F is a suitable
finite complete subgraph of Ep. Now using that diag(β∗, . . . , β∗)(vF Im − A) =
diag(β∗, . . . , β∗), we get that diag(β∗, . . . , β∗)(vF Im − A)−1 = diag(β∗, . . . , β∗).
Since β∗ai ∈ Lβ∗ and β∗bi ∈ Lβ∗ for all i , we get that β∗ f ∈ Lβ∗, as desired.

This concludes the proof. ��

2.3 A representation ofQK(E, C).

We are now going to extend the representations studied in [5] to our context. These
are far-reaching extensions of the usual Toeplitz representation, which provide useful
information about the structure of the algebra QK (E,C).

We start with an elementary (and well-known) lemma:

Lemma 2.13 Let L be a field and z an indeterminate, and denote by L[z](z) the local-
ization of L[z] at the maximal ideal (z). Let ε : L[z] → L be the augmentation map.
The map δ : L[z] → L[z] given by

δ(a0 + a1z + · · · + amz
m) = a1 + a2z + · · · + amz

m−1

is an ε-derivation and can be uniquely extended to an ε-derivation δ : L[z](z) →
L[z](z) by the formula

δ( f g−1) = δ( f )g−1 − ε( f )ε(g)−1δ(g)g−1

for f , g ∈ L[z] with ε(g) 
= 0. Moreover id− zδ = ε.

Proof The proof is routine. We just check the equality id − zδ = ε. We clearly have
f = zδ( f )+ ε( f ) for f ∈ L[z], so that

(id− zδ)( f g−1) = f g−1 − zδ( f )g−1 + ε( f )ε(g)−1(zδ(g))g−1

= ε( f )g−1 + ε( f g−1)− ε( f )g−1 = ε( f g−1).
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This completes the proof. ��

Let (E,C) be an adaptable separated graph with associated poset I . Let L(I ) be
the lattice (under set inclusion) of lower subsets of I . For each J ∈ L(I ), let (EJ ,C J )

be the restriction of (E,C) to the set E0
J = {v ∈ E0 | [v] ∈ J }. Let e(J ) be the

idempotent in the multiplier algebra of QK (E,C) given by e(J ) = ∑
v∈E0

J
v. Then

there is a natural homomorphism ψJ : QK (EJ ,C J )→ e(J )QK (E,C)e(J ) sending
the generators of QK (EJ ,C J ) to the corresponding generators in QK (E,C). Note
that this map is surjective by Theorem 2.12.

Theorem 2.14 The algebra QK (E,C) acts faithfully by K -linear maps on a K-vector
space

V (I ) =
⊕

p∈I
VI (p),

If J is a lower subset of I then the canonical map ψJ : QK (EJ ,C J ) −→
e(J )QK (E,C)e(J ) is an isomorphism, and V (J ) = ⊕p∈J VI (p). Moreover
ψJ (x)(v) = x(v) for all x ∈ QK (EJ ,C J ) and all v ∈ V (J ).

Proof We proceed to build the vector spaces and the corresponding actions by order-
induction. Define the action τI with the property that a vertex v ∈ E0

p acts non-trivially
only on the component V (p), so that, by definition, the action of v on a component
V (q) with q 
= p is 0. Therefore, if we want to define the action of a certain element
x with x = v1xv2, where v1, v2 ∈ E0

p, we only have to define its action on V (p).
When p ∈ Ifree, we will have τI (v

p)(b) = b for b ∈ V (p), and when p ∈ Ireg, for
each b ∈ V (p) there will be a finite subset F of E0

p such that τI (vF )(b) = b, where
vF =∑

v∈F v.
Set I 0 := Min(I ), the set ofminimal elements of I . For p ∈ I 0∩ Ifree, set V (p) = L

and let QK (Ep,C p) = L act on V (p) by left multiplication. For p ∈ I 0 ∩ Ireg, set
V (p) = QL(Ep), and let QK (Ep,C p) = QL(Ep) act on V (p) by left multiplication.
Observe that the spaces V (p) defined here are L-vector spaces in a natural way.

Now assume that J is a lower subset of I containing all the minimal elements of
I , and that we have defined the K -vector spaces V (q) for q ∈ J , with wV (q) 
= 0
for each w ∈ E0

q , and a faithful action τJ of QK (EJ ,C J ) on V (J ) = ⊕
q∈J V (q)

with the desired properties. If J = I , we have the desired result. If J 
= I , let p be a
minimal element in I \ J , and consider the lower subset J ′ = J ∪ {p}. We will define
an action of QK (EJ ′ ,C J ′) on V (J ′) = V (J )⊕ V (p).

First we define a structure of L-vector space on each V (q) with q ∈ J . If q ∈
Ifree ∩ J , then we define

f (ti ) · b = τJ ( f (t
vq

i ))(b) ∈ V (q)
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for f (ti ) ∈ L and b ∈ V (q). If q ∈ Ireg ∩ J and b ∈ V (q) then there exists a finite
subset F of E0

p such that τJ (vF )(b) = b. We define, for f (ti ) ∈ L ,

f (ti ) · b = τJ

(∑

v∈F
f (tvi )

)
(b).

It is easy to see that this does not depend on the choice of F and that this gives a
structure of L-vector space on V (q).

Now we define a suitable vector space V (p). Suppose first that p ∈ Ifree. Let
z1, z2, . . . , zk(p) be k(p) indeterminates, and let L[z j ](z j ) denote the localization of
L[z j ] at the maximal ideal (z j ). Then we define the K -vector space

V (p) =
k(p)⊕

j=1

g(p, j)⊕

s=1
L[z j ](z j ) ⊗L V (β(p, j, s)),

whereV (β(p, j, s)) is the L-vector space τJ (r(β(p, j, s)))V ([r(β(p, j, s))]). (Actu-
ally V (p) is a left L-vector space in a natural way, but this natural structure is not the
one induced by τJ ′ , because of (2.6).) To define the action τJ ′ of QK (EJ ′,C J ′), it is
enough to define the action of the generators, and to show that the defining relations
are preserved in the representation. The image τJ ′(x) of any generator x coming from
(EJ ,C J ) is defined as τJ (x), extended trivially to the new factor V (p). By induction,
all the relations involving these generators will be preserved by τJ ′ . It remains to define
the action on the rest of generators. The action of v p on V (p) is the identity (and 0
on V (J )). The action of the generators α(p, i) is given as follows, for a j ∈ L[z j ](z j )
and b j ∈ V (β(p, j, s)):

τJ ′(α(p, i))(a j ⊗ b j ) =
{
tσ p

j (i)a j ⊗ b j if i 
= j

z j a j ⊗ b j if i = j .

The action of α(p, i)∗ is given as follows, for a j ∈ L[z j ](z j ) and b j ∈ V (β(p, j, s)):

τJ ′(α(p, i)∗)(a j ⊗ b j ) =
{
t−1
σ
p
j (i)

a j ⊗ b j if i 
= j

δ(a j )⊗ b j if i = j,

where δ is the endomorphsim of L[z j ](z j ) described in Lemma 2.13. One can easily
show that the relations (1)(i) and (1)(iii) in 2.5 are preserved by this assignment. The
action on the generators (tv

p

i )± is defined by

τJ ′((t
v p

i )±)(a j ⊗ b j ) = t±σ p(i)a j ⊗ b j . (2.6)

Note that relations 2.5(2)(i) and 2.5(2)(v) are clearly preserved. Now observe that, by
Lemma 2.13, for all 1 ≤ i ≤ k(p) we have that the action of v p − α(p, i)α(p, i)∗ on
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V (p) is precisely the projection onto

g(p,i)⊕

s=1
L ⊗L V (β(p, i, s)).

This gives us a clue on how to define the action of the generators β(p, i, s). Namelywe
define the action of β(p, i, s)∗ as the natural isomorphism from L ⊗L V (β(p, i, s))
onto V (β(p, i, s)). The action of β(p, i, s)∗ is trivial on the complement of L ⊗L

V (β(p, i, s)). The action of β(p, i, s) is determined by the inverse of the above iso-
morphism, so that the image of β(p, i, s)∗β(p, i, s) is the identity on V (β(p, i, s)).
Relations (1)(ii),(iv),(v) in 2.5 are easily checked.

We check now relation 2.5(2)(iv). For i 
= j and b j ∈ V (β(p, j, s)), we compute

τJ ′(α(p, i))(τJ ′(β(p, j, s))(b j )) = τJ ′(α(p, i))(1⊗ b j ) = tσ p
j (i) ⊗ b j

= 1⊗ tσ p
j (i) · b j = τJ ′(β(p, j, s))(τJ ′(t

r(β(p, j,s))
σ
p
j (i)

)(b j )),

proving that τJ ′(α(p, i)) ◦ τJ ′(β(p, j, s)) = τJ ′(β(p, j, s)) ◦ τJ ′(t
r(β(p, j,s))
σ j (i)

). The
proof of the other equality in 2.5(2)(iv) and the corresponding ∗-relations is sim-
ilar. We also leave to the reader to check 2.5(2)(iii). Since all the relations in the
definition of SK (E,C) are preserved we obtain a well-defined K -algebra homo-
morphism SK (E,C) → EndK (V (J ′)), which clearly extends to S1

K (E,C). Let
f (α(p, i)) ∈ 	(p). We have to show that τJ ′( f ) is invertible as a endomor-
phism of V (p). But for every 1 ≤ j ≤ k(p) the component of τJ ′( f ) on the
factor L[z j ](z j ) ⊗ V (β(p, j, s)) is given by left multiplication by a polynomial
p(z j ) = f0+ f1z j+· · ·+ fmzmj ∈ L[z j ],where fi ∈ L and f0 
= 0because f ∈ 	(p).

Therefore p(z j ) is invertible in L[z j ](z j ) and multiplication by p(z j )−1 ∈ L[z j ](z j )
gives the inverse of the restriction of τJ ′( f ) to this factor. This shows that we have a
well-defined representation τJ ′ from QK (EJ ′,C J ′) on V (J ′) = V (J )⊕ V (p).

Now we show that τJ ′ is injective. For this purpose, suppose that x =∑r
i=1 aiλimi (pi )ν∗i is a nonzero element of QK (EJ ′ ,C J ′) such that τJ ′(x) = 0,

where ai ∈ K \ {0}, λi are fractional c-paths,mi (pi ) are fractional monomials, and νi
are c-paths (see Definitions 2.9 and 2.11 and Theorem 2.12). If v px = 0 and xv p = 0,
then x = 0 using the induction hypothesis. So we can assume that either v px 
= 0 or
xv p 
= 0. Let us assume the former, a similar argument can be done for the latter. If
v px 
= 0, then we can assume that λi = v pλi for all i . Left multiplying by a suitable
element of 	(p), we can further assume that each λi is either trivial (i.e. λi = v p) or
of the form α(p, j)m j β(p, j, s) · · · for some j ′s and m j ≥ 0.

If mi (pi ) is a fractional monomial in the support of x such that pi = p, then by
successive replacements of termsα(p, i)α(p, i)∗ by v p−∑g(p,i)

s=1 β(p, i, s)β(p, i, s)∗
and after rearranging the terms, we may assume that these monomials are of the form

f (tv
p

i )α(p, 1)r1α(p, 2)r2 · · ·α(p, k(p))rk(p) ,
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where rt ∈ Z and f is a nonzero element of L . (Here we use the convention that
α(p, j)0 = v p and α(p, j)−i = (α(p, j)∗)i for i > 0.)

With all these standing assumptions, we can further suppose that the family
{λimi (pi )ν∗i | i = 1, . . . , r} is K -linearly independent. Now we observe that the
expression of x must involve terms γimi (pi )ν∗i with pi = p, which with our present

assumptions, means that γi = v p, νi = v p and that mi = f (tv
p

i )
∏k(p)

j=1 α(p, j)r j

with r j ∈ Z and f ∈ L \ {0}. Otherwise we can find a term β(p, i, s)∗(α(p, i)∗)k so
that

x ′ := β(p, i, s)∗(α(p, i)∗)k x 
= 0.

Now, if x ′v p 
= 0, we can find another term α(p, j)lβ(p, j, t) so that x ′′ :=
x ′α(p, j)lβ(p, j, t) is a nonzero element in the kernel of τJ ′ |e(J )QK (EJ ′ ,C J ′ )e(J )

. Since

v px ′′ = x ′′v p = 0, this is impossible by the induction hypothesis. If already x ′v p = 0,
then x ′ itself gives the desired contradiction.

In conclusion, we can assume that x = x0 + x1, where x0 is of the form
f (α(p, i), α(p, i)∗) for a nonzero polynomial f ∈ L[x±1 , x±2 , . . . , x±k(p)], and where
x1 = ∑m

i=1 γim(pi )η∗i , where each ηi is a non-trivial c-path, and so it starts with a
term of the form α(p, ji )ui β(p, ji , ti ) for some ui ≥ 0 and some ji , ti . Now select
any j and t and let b be a nonzero element of V (β(p, j, t)). Let N be a positive
integer larger than all the integers ui above, for i = 1, . . . ,m. Then we will have that
τJ ′(x1)(zNj ⊗ b) = 0. If we also choose in addition N bigger than all the powers of
α(p, j)∗ appearing in the expression of f , we will obtain that

τJ ′(x0)(z
N
j ⊗ b) = g(z j )⊗ b,

where g(z j ) ∈ L[z j ] \ {0}. This shows that τJ ′(x)(zNj ⊗ b) 
= 0, and we have reached
a contradiction.

Assume now that p ∈ Ireg. LetC be the family of connectorsβ such that s(β) ∈ E0
p,

and set R = P rat
L (Ep) and V (r(β)) := r(β)V ([r(β)]) for β ∈ C . Also we set

X = E0
p \ s(C) and note that by the assumption that |s−1Ep

(v)| ≥ 2, X is a subset of

regular vertices of Ep, so that we can consider the relative regular algebra QX
L (Ep)

(see Definition 2.2).
Define

V (p) =
⊕

β∈C
Rs(β)⊗L V (r(β)).

Now we define the action of the generators corresponding to Ep. Let e ∈ E1
p. Then

τJ ′(e) is given by left multiplication by e in any of the factors of the above sum, and
similarly, the action of any vertex v ∈ E0

p is given by left multiplication. For e ∈ E1
p,

the element e∗ acts on a factor Rs(β)⊗L V (r(β)), by

τJ ′(e
∗)(r ⊗ b) = δ̃e(r)⊗ b.
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The action of the elements (tvi )±, for v ∈ E0
p, is also given by left multiplication in

all the factors. Note that R acts by left multiplication on V (p). In particular the image
by τJ ′ of every element of 	(p) is invertible in (matrices over) EndK (V (p)). Now
observe that for any w ∈ E0

p and r ∈ R, we have the following identity:

∑

e∈s−1Ep
(w)

(Le ◦ δ̃e)(r)+ εw(r) = wr ,

where εw(r) is thew-component of the augmentation map ε : R →⊕
v∈E0

p
vL . Using

this we may easily check that the above assignments give an action of QX
L (Ep) on

V (p), denoted also by τJ ′ , and that τJ ′(w −∑e∈s−1Ep
(w)

ee∗) is nonzero if and only if
w = s(β) for some β ∈ C , and that in this case we have that τJ ′(w−∑e∈s−1Ep

(w)
ee∗)

is the projection onto the factor

⊕

β∈C∩s−1E (w)

wL ⊗L V (r(β))

of V (p). Again this gives us a clue on how to define the action of the connectors.
Namely for a connector β ∈ C , the action of β∗ on V (p) is given by the natural
isomorphism from wL⊗L V (r(β)) onto V (r(β)) on this factor, and 0 on the comple-
ment. The action of β is given by the inverse of the above isomorphism, so that β∗β
is precisely the projection onto V (r(β)) for every β ∈ C . Also it is obvious from the
above calculation that

∑

e∈s−1E (w)

ee∗ =
∑

e∈s−1Ep
(w)

ee∗ +
∑

β∈C∩s−1E (w)

ββ∗

acts by left multiplication by w on V (p), so that relations of the form 2.5(ii)(d), for
v ∈ E0

p, are preserved by the representation.

Now using that ti · b = τJ (t
r(β)
i )(b) for each b ∈ V (r(β)), we see that relations

2.5(2)(ii) are satisfied for p.
Therefore we have obtained a representation of QK (EJ ′ ,C J ′) on V (J ′) =

V (J ) ⊕ V (p). Note that wV (p) 
= 0 for each w ∈ E0
p. It remains to show that

it is injective. This is similar to the argument above. Suppose that x is a nonzero
element in QK (EJ ′,C J ′) such that τJ ′(x) = 0. By an argument similar to the
one used above, we can assume that there is v ∈ E0

p such that vx = x . Sup-
pose that in the expression x = ∑r

i=1 aiγimi (pi )ν∗i given by Theorem 2.12 we
have that pi < p for all i = 1, . . . , r . We can then write x as a finite sum

x =∑
β∈C (

∑dβ

i=1 a
(β)
i βb(β)

i ), wherea(β)
i ∈ P rat

L (Ep), and b
(β)
i ∈ r(β)QK (EJ ′ ,C J ′).

Select β0 ∈ C such that
∑dβ0

i=1 a
(β0)
i β0b

(β0)
i 
= 0. Using 2.5(2)(ii), we may assume that

the family {b(β0)
i : i = 1, . . . , dβ0} is L-linearly independent. We may also assume

that all paths λ in the support of each a(β0)
i satisfy that s(λ) = v and r(λ) = s(β0).
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Now let γ ∈ Path(Ep) be a path of minimal length appearing in the support of the

elements a(β0)
i , i = 1, . . . , dβ0 . By simplicity of notation, let us assume that γ appears

in the support of a(β0)
1 . Setting v′ := s(β0), we see that all paths in the support of

γ ∗a(β0)
1 start and end at v′, and in addition we have that εv′(γ ∗a(β0)

1 ) 
= 0. It fol-

lows that g := γ ∗a(β0)
1 is invertible in v′P rat

L (Ep)v
′. We denote by g−1 its inverse in

v′P rat
L (Ep)v

′.
We now compute

β∗0 (g−1γ ∗a(β0)
i ) = εv′(g

−1γ ∗a(β0)
i )β∗0 ,

and

β∗0 (g−1γ ∗a(β)
i )β = 0 for β 
= β0.

It follows that x ′ := β∗0 g−1γ ∗x = b(β0)
1 +∑dβ0

i=2 εv′(g−1γ ∗a(β0)
i )b(β0)

i , and this ele-

ment is nonzero because the family {b(β0)
i } is L-linearly independent. We have thus

obtained a nonzero element x ′ in the kernel of τJ ′ such that wx ′ = 0 for all w ∈ E0
p.

If x ′w = 0 for all w ∈ E0
p, then we arrive to a contradiction with the induction

hypothesis. If x ′w 
= 0 for some w ∈ E0
p then an easier argument enables us to pick

a term of the form γ ′β ′ with γ ′ ∈ Path(Ep) and β ′ ∈ C such that x ′′ := x ′γ ′β ′ is a
nonzero element in the kernel of τJ ′ and belongs to the image of the natural map from
QK (EJ ,C J ) to QK (EJ ′,C J ′). This is a contradiction.

Therefore, we can assume that x = x0+ x1, where x0 is nonzero and belongs to the
image of the naturalmap from QX

L (Ep) to QK (EJ ′ ,C J ′) and x1 =∑s
i=1 λimi (pi )η∗i ,

where eachηi is a c-path startingwithαiβi withαi ∈ Path(Ep) andβi ∈ C . Let v ∈ E0
p

such that xv 
= 0. Then we must have that x0v 
= 0. Indeed, if x0v = 0 we may apply
the above argument to xv to get a contradiction. We may thus assume that x = xv and
xiv = xi for i = 0, 1. Let u =∑

γ∈Path(Ep)
aγ γ ∗ be a lifting in S := R〈E∗p; δ̃, τ 〉 of

x0 such that uv = v, and all aγ ∈ Rr(γ ). If xe = 0 for all e ∈ s−1Ep
(v) then we have

x = xv = x
( ∑

e∈s−1Ep
(v)

ee∗ +
∑

β∈C∩s−1E (v)

ββ∗
)
= x

( ∑

β∈C∩s−1E (v)

ββ∗
)
.

This gives again a contradiction, using the above arguments. Iterating this reasoning,
we obtain that for any length k > 0 there exists a path μ ∈ Path(Ep) of length k such
that xμ 
= 0. Again, we may then deduce that x0μ 
= 0. By taking k larger than all the
lengths of the paths γ in the support of u, we shall obtain that 0 
= uμ ∈ P rat

L (Ep).
Moreover if we choose in addition the length k strictly larger than the lengths of all
the paths αi , i = 1, . . . , s, we obtain that x1μ = 0. Therefore 0 
= xμ = x0μ and it is
represented by the element u′ := uμ ∈ P rat

L (Ep). Letw := s(β) for some β ∈ C , and
let η be a path in Ep with s(η) = r(μ) and r(η) = w. Let b be any nonzero element
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of V (r(β)). Then u′η 
= 0 and for the element w ⊗ b ∈ Rw ⊗ V (r(β)) we have

τJ ′(xμη)(w ⊗ b) = τJ ′(x0μη)(w ⊗ b) = u′η ⊗ b 
= 0.

Therefore we get a contradiction. This shows that the action τJ ′ is faithful.
Since the poset I is finite, this process terminates and we get the desired faithful

representation of QK (E,C). Now it is easy to deduce thatψJ is injective for any lower
subset J of I . Indeed, if ψJ (x) = 0 for x ∈ QK (EJ ,C J ), then 0 = τI (ψJ (x))(v) =
τJ (x)(v) for all v ∈ V (J ), and so τJ (x) = 0 . Since τJ is faithful, we get that x = 0.

��
Let us draw some immediate consequences of Theorem 2.14. For p ∈ I denote

by e(p) the idempotent
∑

v∈E0
p
v in the multiplier algebra of QK (E,C). Note that

e(p) = v p if p ∈ Ifree.
Recall from Sect. 1 that L(I ) denotes the lattice of lower subsets of the poset

I = E0/∼, and that, for a ring R, L(R) denotes the lattice of ideals of R. For each
J ∈ L(I ), define I(J ) to be the K -linear span of terms of the form λm(p)ν∗ with
p ∈ J , where λ is a fractional c-path,m(p) is a fractional monomial and ν is a c-path
(see Definitions 2.9 and 2.11). It is easy to show that I(J ) is an ideal of QK (E,C),
and we have the following result:

Corollary 2.15 With the above notation, let p ∈ I and set J = {q ∈ I : q < p}, which
is a lower subset of I . Then the following holds:

(i) If p ∈ Ifree, then there is a natural isomorphism

v pQK (E,C)v p/v pI(J )v p ∼= L(z1, . . . , zk(p)).

(ii) If p ∈ Ireg, then there is a natural isomorphism

e(p)QK (E,C)e(p)/e(p)I(J )e(p) ∼= QL(Ep).

Proof Let J ′ = J ∪ {p}.
(i) We can define a K -algebra homomorphism

ρ : QK (EJ ′,C
J ′)→ L(z1, . . . , zk(p))

by sending α(p, i) to zi , α(p, i)∗ to z−1i , tv
p

i to ti and all the other gen-

erators to 0. By Theorem 2.14, QK (EJ ′ ,C J ′) can be identified with the
algebra e(J ′)QK (E,C)e(J ′). Note that ρ is surjective and that its kernel
is precisely the ideal e(J ′)I(J )e(J ′) of QK (EJ ′,C J ′). It now follows that
v pQK (E,C)v p/v pI(J )v p ∼= L(z1, . . . , zk(p)), as desired.

(ii) As in (i), there is a surjective algebra homomorphism QK (EJ ′,C J ′)→ QL(Ep),
andusingTheorem2.14wecan identifyQK (EJ ′,C J ′)with e(J ′)QK (E,C)e(J ′).
The sameargument as before gives us thedesired isomorphism from e(p)QK (E,C)

e(p)/e(p)I(J )e(p) onto QL(Ep). ��
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2.4 A direct sum decomposition ofQK(E, C)

Wenow introduce another set of monomials into the picture, whichwe call the reduced
fractionalmonomials. Basically thesemonomials constitute a suitable lifting of natural
generating systems of L(z1, . . . , zk(p)) and QL(Ep), respectively, with respect to the
maps introduced inCorollary 2.15.Wewill use thesemonomials to define certain linear
subspaces Q(γ1,γ2), which provide a useful direct sum decomposition of QK (E,C)

(see Theorem 2.21).
As usual we differentiate the free and the regular cases. Let p be a free prime. Set

k := k(p) and 	 := { f ∈ L[z1, . . . , zk] | v( f ) = 0}. Note that L(z1, . . . , zk) is the
directed union of the L-vector spaces L f , for f ∈ 	, where L f is the L-linear span
of the family {zr11 · · · zrkk f −1 | ri ∈ Z}. Here the order in 	 is induced by divisibility:
f ≤ h for f , h ∈ 	 if and only if h = f g for g ∈ 	.
As in [5], there is a well-defined linear map T sending an element zr11 · · · zrkk f −1 of

L f to the element (
∏r

j=1 α(p, j)r j ) f (α(p, i))−1. Here we note that it is important to

place f (α(p, i))−1 to the right. Indeed if h = f g is larger than f , then the embedding
of L f into Lh is given by replacing f −1 by g( f g)−1 = gh−1, expanding g as L-
linear combination of monomials, and multiplying these monomials with the original
monomial zr11 · · · zrkk . Since the monomials of g only involve non-negative exponents,
this gives a well-defined linear map T : L(z1, . . . , zk) → v pQK (E,C)v p because
we have the identity α(p, i)∗α(p, i) = v p, but if we write f (α(p, i))−1 on the left,
we would obtain terms of the form α(p, i)α(p, i)∗ which cannot be simplified to v p

in QK (E,C). Keeping this in mind, we introduce the following definition:

Definition 2.16 (Reduced fractional monomial, p ∈ Ifree) Let p be an element of
Ifree. A reduced fractional monomial at p is a monomial in QK (E,C) of the form

(

r∏

j=1
α(p, j)r j ) f (α(p, i))−1,

where r j ∈ Z and f ∈ 	(p). The L-linear map T : L(z1, . . . , zk)→ v pQK (E,C)v p

defined above provides a linear section of the projection map in Corollary 2.15(i) ��
For the case of regular primes,weneed the following lemma,whose proof is inspired

by the one in [1, Proposition 1.5.11]. See also [2].

Lemma 2.17 Let E be a row-finite graph, let K be a field and set R = P rat
K (E). For

each e ∈ E1, let Be be a K -basis for Re, and set Bv =⋃
e∈s−1(v) Be

⋃{v} for v ∈ E0.

For each non-sink v ∈ E0 select an edge ev ∈ E1 such that s(ev) = v. Then the
family

B′′ = { f η∗ | f ∈ Br(η), η ∈ Path(E)} \ { f e∗vν∗ | f ∈ Bev }

is a K -basis for QK (E).
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Proof Set S = R〈E∗; δ̃, τ 〉 and Q = QK (E,C) . We then have Q = S/I , where I
is the ideal of S generated by all the idempotents qv = v −∑

e∈s−1(v) ee
∗ (see [9,

Proposition 2.13]). We now work in S, and recall from [9] that each element of S can
be written in a unique way as a finite sum

∑
γ∈Path(E) aγ γ ∗, where aγ ∈ Rr(γ ). It

follows that the set

B = { f η∗ | f ∈ Br(η), η ∈ Path(E)}

is a basis for S. We now consider a suitable basis B′ for I . Let

B′ =
⋃

v∈E0\Sink(E)

{ f qvγ
∗ | f ∈ Bv, r(γ ) = v}.

To show that B′ is a basis of I , note first that they generate I , because

γ ∗qv = 0 = qv f

if γ has positive length and if εv( f ) = 0. To show that the elements of B′ are linearly
independent, it suffices to consider terms corresponding to a single idempotent qv .
Suppose that

∑r
i=1 λi fi qvγ

∗
i = 0 in S with all λi ∈ K \ {0}, where {( fi , γi )} are

distinct elements in Bv × {η ∈ Path(E) : r(η) = v}. We may assume that γ1 is of
maximal length among the γi ’s. Expanding this expression, we see that for e ∈ s−1(v)

we have (
∑

i :γi=γ1
λi fi e)(γ1e)∗ = 0, which implies that

∑
i :γi=γ1

λi fi e = 0. Since
fi e are linearly independent, we get that λ1 = 0, a contradiction.
Hence we obtain that B′ is a basis of I . To conclude the proof, we only have

to check that B′ ∪ B′′ is a basis of S. Let f γ ∗ be an element in the basis B, with
r(γ ) = v. Since γ has finite length, after a finite number of substitutions of the form
eve∗v = v−∑e∈s−1(v),e 
=ev ee

∗ −qv , we will arrive at an expression of f γ ∗ as a linear
combination of the elements of B′ ∪ B′′. To show that the family B′ ∪ B′′ is linearly
independent, note that by the above argument (i.e. considering a path γ of highest
length), when we consider a linear combination of different terms f qvγ

∗ in B′ and
we expand it, we will obtain a basis term of the form ge∗vγ ∗, with g ∈ Bev . Therefore
this linear combination cannot belong to the linear span of B′′ in S. This shows that
B′ ∪ B′′ is a linear basis of S. ��

We can now define the notion of a reduced fractional monomial for a regular prime
p.

Definition 2.18 (Reduced fractional monomial, p ∈ Ireg) Let p ∈ Ireg. Fix choices of
edges in E1

p and L-basis in P rat
L (Ep)e as in Lemma 2.17 for the graph Ep, and consider

the corresponding L-basisB′′ for QL(Ep). This choice provides a linear section of the
surjection e(p)QK (E,C)e(p)→ QL(Ep) (see Corollary 2.15). A reduced fractional
monomial at p is a term of the form a f γ ∗, where a ∈ L \ {0} and f γ ∗ ∈ B′′, seen in
QK (E,C). ��

We are going to use the notion of reduced fractional monomial to prove Theorem
2.21. Before doing that, we introduce the definition of the reduced graph, Ered , and
use it to define the subspace Q(γ1,γ2) in Definition 2.20.
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Definition 2.19 Let E be a directed graph with associated poset I . The reduced graph
of E is the graph Ered such that E0

red = I and such that E1
red is the set of connectors

β of E , with sEred (β) = [s(β)] and rEred (β) = [r(β)]. ��
Definition 2.20 Let γ1 = β1β2 · · ·βr and γ2 = β ′1β ′2 · · ·β ′s be paths in Ered such
that r(γ1) = p = r(γ2). We define the subspace Q(γ1,γ2) as the span of all the
terms λm(p)ν∗ in QK (E,C) such that the connectors involved in the fractional c-
path λ are exactly β1, β2, . . . , βr , the connectors involved in the c-path ν are exactly
β ′1, β ′2, . . . , β ′s , and m(p) is a reduced fractional monomial at p. ��
Theorem 2.21 Let (E,C) be an adaptable separated graph with associated poset I .
Then we have

QK (E,C) =
⊕

(γ1,γ2)∈P
Q(γ1,γ2) (2.7)

whereP is the set of pairs of finite paths (γ1, γ2) in Ered such that rEred (γ1) = rEred (γ2).

Proof The fact that QK (E,C) is spanned by the spaces Q(γ1,γ2) follows easily from
Theorem 2.12 and Corollary 2.15, due to the fact that the graph Ered is finite.

To show that the sum is direct, we follow a strategy similar to the one in the proof
of [5, Lemma 2.11].

Let x ∈ Q(γ,γ ′) \ {0} for some (γ, γ ′) ∈ P . We write γ = β1β2 · · ·βr for
connectors β1, β2, . . . , βr . Set p = rEred (γ ) = rEred (γ

′). We claim that there are
y1, y2 ∈ QK (E,C) such that

(1) y2 is a c-path involving exactly the connectors in γ ′,
(2) y1=y1r · · ·y12y11 where each y1 j is either of the formβ(p j ,i j ,s j )∗(α(p j ,i j )∗)m j f −1j

for f j ∈ 	(p j ), if sEred (β j ) = p j ∈ Ifree, where β j = β(p j , i j , s j ) for some
i j , s j , or y1 j = β∗j g jγ

∗
j , where g j ∈ P rat

L (Epj ) and γ j is a finite path in Epj if
p j := sEred (β j ) ∈ Ireg,

(3) y1xy2 is nonzero and a finite sum of reduced fractional monomials at p.

We indicate how to build y1. The easier construction of y2 is left to the reader. Let
γ1 = β2β3 · · ·βr . We will build y11 of the desired form so that y11x is a nonzero
element of Q(γ1,γ ′). This is clearly enough for our purposes. Assume first that p1 =
sEred (β1) belongs to Ifree, and write β1 = β(p1, i1, s1) for some i1, s1. Then we can
choose f ∈ 	(p1) such that

f x =
m∑

l=0
α(p1, i1)

lβ(p1, i1, s1)xl ,

where xl ∈ Q(γ1,γ ′) and xm 
= 0. Now take y11 = β(p1, i1, s1)∗(α(p1, i1)∗)m f −11
and observe that y11x = xm has the desired properties. Now suppose that sEred (β1) =
p1 ∈ Ireg. In this case we just follow the proof of the injectivity of τJ ′ in Theorem 2.14
for p regular. Indeed, we take v ∈ E0

p1 such that vx 
= 0 and write x =∑d
i=1 aiβ1xi

where xi ∈ Q(γ1,γ ′) are L-linearly independent, and ai ∈ vP rat
L (Ep1)s(β1) for all
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i . Following the above-mentioned proof, we find a finite path γ , and an invertible
element g in a corner of P rat

L (Ep1) such that, with y11 = β∗1 g−1γ ∗, we have that y11x
is a nonzero element of Q(γ1,γ ′). This completes the proof of the claim.

Now suppose that we have a relation
∑r

i=1 x(γi ,γ
′
i )
= 0, with each x(γi ,γ

′
i )
∈

Q(γi ,γ
′
i )
\{0}. Consider the following partial order onP: say that (γ1, γ ′1) ! (γ2, γ

′
2) if

γ2 = γ1γ3 and γ ′2 = γ ′1γ ′3 for some paths γ3, γ
′
3 in P . We may assume that (γ1, γ ′1) is

maximal with respect to ! (among the pairs (γi , γ
′
i )). Let y1, y2 be the terms build in

the above paragraph corresponding to the term x(γ1,γ
′
1)
. Then y1x(γ1,γ

′
1)
y2 is nonzero,

and a finite sum of reduced fractional monomials at the strongly connected component
of r(γ1).We set p = [r(γ1)]. By the form of the elements y1 and y2 and themaximality
of (γ1, γ

′
1), we see that the only terms (γi , γ

′
i ) such that y1x(γi ,γ

′
i )
y2 might be nonzero

are precisely those such that (γ1, γ
′
1) ! (γi , γ

′
i ). Therefore we see that y1xy2 ∈

e(p)QK (E,C)e(p). Assume first that p ∈ Ifree. Then by Corollary 2.15(i) there is
a natural surjective homomorphism π : e(p)QK (E,C)e(p) → L(z1, . . . , zk(p)) and
by the definition of the reduced fractional monomials, we see that

0 = π(y1(
r∑

i=1
x(γi ,γ

′
i )

)y2) = π(y1x(γ1,γ
′
1)
y2) 
= 0

which is a contradiction. The same argument, using in this case the surjection of
Corollary 2.15(ii), gives a contradiction in the case where p ∈ Ireg. This concludes
the proof. ��

We are now ready to present a key result, which will be needed later. Recall that,
for a lower subset J of I , I(J ) stands for the K -linear span of terms of the form
λm(p)ν∗, with p ∈ J .

Proposition 2.22 With the above notation, the map I : L(I )→ L(QK (E,C)), J �→
I(J ), is an injective lattice homomorphism.

Proof For J ∈ L(I ), Theorem 2.21 gives the following decomposition:

I(J ) =
⊕

(γ1,γ2)∈P : r(γ1)=r(γ2)∈J
Q(γ1,γ2). (2.8)

The injectivity of I follows easily from this.
It is quite easy to show directly that I(J1∪ J2) = I(J1)+I(J2) for J1, J2 ∈ L(I ).

The inclusion I(J1∩ J2) ⊆ I(J1)∩I(J2) is obvious. To show the remaining inclusion
I(J1) ∩ I(J2) ⊆ I(J1 ∩ J2), we use the formula (2.8). We thus obtain that I is an
injective lattice homomorphism, as desired. ��

3 A cover map

After settling all tools we need for our study, in this section we explain the first step
in our strategy to prove our main result.
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Throughout this section, (E,C)will denote an adaptable separated graph. Themain
goal of this section is to build a certain adaptable separated graph (Ẽ, C̃) such that the
associated poset Ĩ is a forest, and a surjective morphism φ : (Ẽ, C̃) → (E,C). This
new separated graph (Ẽ, C̃) will satisfy the following key condition:
Condition (F): Let ( Ĩ ,≤) be the partially ordered set associated to the pre-ordered set
(Ẽ0,≤) (see Definition 1.3(2)). If [v] ∈ Ĩ is not a maximal element in Ĩ , then there
is a unique element [w] ∈ Ĩ \ {[v]} such that the vertices in the strongly connected
component of w emit arrows to the vertices in the strongly connected component of
v. Moreover, if [w] ∈ Ĩfree, then there is a unique X ∈ C̃w such that all the edges from
w to [v] belong to X . Specifically there are v′ ∈ [v] and w′ ∈ [w] and e ∈ E1 such
that s(e) = w′ and r(e) = v′, and r( f ) /∈ [v] if f ∈ E1 and s( f ) /∈ ([w] ∪ [v]).
Moreover, if w ∈ Ĩfree, then there is a unique X ∈ C̃w such that

s−1
Ẽ

(w) ∩ r−1
Ẽ

([v]) ⊆ X .

(Recall that [w] = {w} if w ∈ Ĩfree.) The strongly connected component [w] will be
called the predecessor component of [v], and if w is free, then the element X ∈ C̃w

will be called the predecessor part of [v].
We then obtain that the poset Ĩ associated to (Ẽ, C̃) is a forest, as follows.

Lemma 3.1 Let (Ẽ, C̃) be an adaptable separated graph. If (Ẽ, C̃) satisfies condition
(F), then Ĩ is a forest.

Proof Let [v] ∈ Ĩ be a non-maximal element. Let [v0] > [v1] > · · · > [vr ] = [v]
be a maximal chain, so that [v0] is a maximal element in Ĩ and each [vi+1] belongs
to the lower cover of [vi ] for each i = 0, 1, . . . , r − 1. (This maximal chain exists
because the poset Ĩ is finite.)We claim that [vi ] is the predecessor of [vi+1]. Indeed, let
γ = e1e2 · · · em be a path starting at vi and ending at vi+1. There exists 1 ≤ t ≤ m such
that [s(et )] > [r(et+1)] = [vi+1]. Then, by condition (F), [s(et )] is the predecessor
of [vi+1]. Moreover [vi ] ≥ [s(et )] > [vi+1], and since [vi+1] is in the lower cover of
[vi ], we conclude that [vi ] = [s(et )], so that [vi ] is the predecessor of [vi+1].

Now suppose that [w] > [v], and let [w] > [u1] > · · · > [us] = [v] be a maximal
chain between [w] and [v]. Just as before, we obtain that [us−1] is the predecessor
of [v], and thus [us−1] = [vr−1]. Using induction, we obtain that r ≥ s and that
[w] = [vr−s]. Thus every element in the interval [[v], [v0]]must be one of the elements
in the chain [v0] > [v1] > · · · > [vr ] = [v]. This shows that Ĩ is a forest, whose trees
are the posets of the form Ĩ ↓ i0, where i0 is a maximal element of Ĩ . ��

Notice that the surjective morphism φ : (Ẽ, C̃)→ (E,C) is not a morphism in the
category SGr as defined in [11]. It rather resembles a cover from topology, and thus
we have adopted this term to our context in the next definition.

Definition 3.2 Let (E,C) and (F, D) be two adaptable separated graphs. A cover
φ : (F, D)→ (E,C) is a graph homomorphism φ = (φ0, φ1) : E → F such that the
following conditions hold:

(1) φ0 and φ1 are surjective.
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(2) For each v ∈ F0, the map φ1 induces a bijection φ1
v : s−1F (v) → s−1E (φ0(v))

such that φ1
v(X) ∈ Cφ0(v) for each X ∈ Dv . In particular, φ1 induces a bijection

X �→ φ1(X) from Dv onto Cφ0(v). ��
Observe that covers are stable under composition, that is, if φ : (F1, D1)→ (F, D)

and ψ : (F, D) → (E,C) are two covers, then ψ ◦ φ : (F1, D1) → (E,C) is also a
cover.

Let (E,C) be an adaptable separated graph, with corresponding poset I . If J is a
lower subset of I , the restriction graph EJ has a natural structure of separated graph
(EJ ,CJ ), under which is clearly adaptable. When J = I ↓ [v] for a vertex v ∈ E0,
we will denote by T (v) the separated graph (EJ ,CJ ), and we will say that T (v)

is the tree of v. Of course, the vertex set of T (v), denoted by T 0(v), is the set of
all w ∈ E0 such that v ≥ w. We will also need to consider the strict tree of v,
which is the separated graph T̃ (v) obtained by restricting (E,C) to the lower subset
J ′ = {[w] ∈ E0 | [w] < [v]} of I .

We need a last piece of notation. Let (E,C) and I be as above. For [v] ∈ Ireg, set

X[v] = {e ∈ E1 | s(e) ∈ [v]} = s−1([v]).

That is, X[v] is the set of arrows departing from the strongly connected component
[v]. Now write

C =
( ⊔

v∈Ifree
Cv

)
� {X[v] | [v] ∈ Ireg}.

Set Cv = Cv if v ∈ Ifree and Cv = {X[v]} if v ∈ Ireg. Now observe that (E,C)

satisfies condition (F) if and only if for each v ∈ E0 there is at most one X ∈ C \ Cv

such that r(X) ∩ [v] 
= ∅.
Theorem 3.3 Let (E,C) be an adaptable separated graph. Then there exists an
adaptable separated graph (Ẽ, C̃) satisfying condition (F) and a cover morphism
φ : (Ẽ, C̃)→ (E,C).

Proof We proceed by order-induction. Let J be a lower subset of the poset I , where
(I ,≤) is the partially ordered set associated to the pre-ordered set (E0,≤). Sup-
pose that we have built an adaptable separated graph (F, D) and a cover morphism
ψ : (F, D)→ (E,C) satisfying the following properties:

(1) For each v ∈ (ψ0)−1(E0
J ) there is at most one X ∈ D\Dv such that r(X)∩[v] 
=

∅.
(2) For each v ∈ F0 \ (ψ0)−1(E0

J ) we have (ψ0)−1({ψ0(v)}) = {v}.
If J = I then we have obtained the desired cover map. If J 
= I then we select a
minimal element [v] in I \ J . (Note that to start the induction we can take J = ∅.)
We set J ′ = J ∪ {[v]}, and let v ∈ F0 be the unique vertex such that ψ0(v) =
v (use condition (2)). We will define an adaptable separated graph (F ′, D′) and a
suitable cover morphism ψ ′ : (F ′, D′) → (F, D). Let {X1, X2, . . . , Xr } be the set
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of those X ∈ D \ Dv such that r(X) ∩ [v] 
= ∅. Let T1(v), T2(v), . . . , Tr (v) be a
family of mutually disjoint separated graphs isomorphic to the tree T (v) of v, and let
σ j : Tj (v)→ T (v) be isomorphisms of separated graphs, for j = 1, . . . , r .

Set

(F ′)0 = (F0 \ T 0(v)) �
( r⊔

j=1
T 0
j (v)

)
.

We now observe that if e ∈ F1 \ T 1(v) and r(e) ∈ T 0(v) then necessarily e ∈ X j for
some j . This is clear by definition of the sets X j in case r(e) ∈ [v]. If r(e) ∈ T 0(v)\[v],
then byminimality of [v] in I\J ,wehave r(e) ∈ (ψ0)−1(E0

J ), so by condition (1) there
exists at most one X ∈ D \ Dr(e) such that r(X)∩ [r(e)] 
= ∅. But r(e) ∈ T 0(v) \ [v]
and thus it follows that X ∈ Dw for some w ∈ T 0(v) and thus e ∈ X ⊆ T 1(v), a
contradiction. This shows our claim.

Now we define sets of arrows X ′1, X ′2, . . . , X ′r in our new graph F ′. The sets X ′j
are in bijection with the sets X j through a map e′ ←→ e, for e ∈ X j . For e ∈ X j ,
define sF ′(e′) = sF (e) ∈ F0 \ T 0(v) and

rF ′(e
′) =

{
rF (e) ∈ F0 \ T 0(v) if rF (e) /∈ [v]
σ−1j (rF (e)) ∈ T 0

j (v) if rF (e) ∈ [v] ,

where one needs to use the above argument to show that, for e ∈ X j , rF (e) ∈ F0 \
T 0(v) if rF (e) /∈ [v]. With this, we can define the set (F ′)1 as follows:

(F ′)1 =
(
F1 \ (T 1(v) �

r⊔

j=1
X j )

)
�
( r⊔

j=1
T 1
j (v) �

r⊔

j=1
X ′j
)
.

By the above observation, we have that rF (e) ∈ F0 \ T 0(v) for e ∈ F1 \ (T 1(v) �⊔r
j=1 X j ), so we can define sF ′(e) = sF (e) and rF ′(e) = rF (e) for these edges e.

We now define D′. For w ∈ ⊔r
j=1 T 0

j (v), the set D′w is the set induced by the

structure of separated graph of Tj (v). If w ∈ F0 \ T 0(v) is free, we simply take the
elements from Dw which are not in the set {X1, . . . Xr }, and we replace the sets X j

such that X j ∈ Dw with the corresponding sets X ′j . If w ∈ F0 \ T 0(v) is regular, then

w will also be regular in F ′ and D′w = s−1F ′ (w).
Define ψ ′ : (F ′, D′) → (F, D) by (ψ ′)0(w) = w if w ∈ F0 \ T 0(v) and

(ψ ′)0(w) = σ j (w) for w ∈ T 0
j (v), and

(ψ ′)1( f ) =

⎧
⎪⎨

⎪⎩

f if f ∈ F1 \ (T 1(v) �⊔r
j=1 X j )

σ j ( f ) if f ∈ T 1
j (v)

e if f = e′ for e ∈⊔r
j=1 X j

.
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Then ψ ′ is clearly a cover morphism, and thus ψ ◦ψ ′ : (F ′, D′)→ (E,C) is a cover
morphism. By construction, the mapψ ◦ψ ′ satisfies properties (1) and (2) with respect
to J ′ = J ∪ {v}. This completes the induction step. ��
Definition 3.4 Let (E,C) be an adaptable separated graph. The adaptable separated
graph (Ẽ, C̃) build in Theorem 3.3 will be called an auxiliary separated graph of
(E,C). ��

4 Adaptable separated graphs with condition (F)

This section is themilestone of the current paper.Herewe study the realization problem
for the adaptable separated graphs satisfying condition (F). In particular, themain result
obtained in this part is the following:

Theorem 4.1 Let (E,C) be an adaptable separated graph satisfying condition (F) and
such that the associated poset I has a largest element i0 = [v0]. Then QK (E,C) is a
separative vonNeumann regular ring and the naturalmap M(E,C) → V(QK (E,C))

is a monoid isomorphism.

To show this result, we reconstruct (E,C) froma family of ordinary (non-separated)
graphs obtained from it, which will be called the building blocks of (E,C). We further
show that this reconstruction is well-behaved at all the needed settings: Monoids, K-
algebras and the V-functor. In order to facilitate the understanding of this material,
we have divided it in different subsections, in each of which we study the different
frameworks.

Throughout this section, (E,C)will denote an adaptable separated graph satisfying
condition (F) and such that the associated poset I has a largest element i0 = [v0].

4.1 Definition of building blocks

Definition 4.2 We define a building block of (E,C) as a connected component of an
ordinary graph obtained by choosing an element Xv ∈ Cv for each v ∈ E0 \Sink(E).
More precisely, say that ϕ : E0 \ Sink(E) → C is a choice function if ϕ(v) ∈ Cv

for each v ∈ E0 \ Sink(E). Given such a choice function ϕ, define a graph Eϕ by
E1

ϕ =
⊔

v∈E0\Sink(E) ϕ(v) and E0
ϕ = sE (E1

ϕ) ∪ rE (E1
ϕ). The source and range maps

in Eϕ are defined in such a way that the inclusion map Eϕ → E becomes a graph
homomorphism. A building block of (E,C) is a connected component of a graph of
the form Eϕ . We will denote by F the collection of all the building blocks of (E,C).
Observe that, since (E,C) satisfies condition (F), the associated poset of each building
block is a tree. ��

We will reconstruct (E,C) from the collection F , and we will be interested in
the effect of this process at the monoid level. Later we will extend this procedure to
algebras.

We now define a family of separated graphs FJ for each lower subset J of Ifree.
(Here Ifree has the order induced from the order of I .) Since [v] = {v}when [v] ∈ Ifree,
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we will identify Ifree with the corresponding subset of vertices of E0. Given a lower
subset J of Ifree, a choice function is a function ϕ : Ifree \ (Sink(E) ∪ J ) → C such
that ϕ(v) ∈ Cv for each v ∈ Ifree \ (Sink(E) ∪ J ). For each choice function ϕ on
Ifree \ (Sink(E) ∪ J ), define a separated graph (Eϕ,Cϕ) by setting

E1
ϕ =

( ⊔

w∈Ifree\(Sink(E)∪J )

ϕ(w)
)
�
( ⊔

w∈E0\(Ifree\J )

s−1E (w)
)

and E0
ϕ = sE (E1

ϕ)∪ rE (E1
ϕ). The source and range maps, and the structure of Cϕ are

the natural ones, making the inclusion map (Eϕ,Cϕ) → (E,C) a morphism in the
category SGr defined in [11, Definition 3.2].

Let FJ be the family of all the connected components of the separated graphs of
the form (Eϕ,Cϕ), where ϕ is a choice function for Ifree \ J . For J = ∅, we obtain
F∅ = F . For J = Ifree, we get FIfree = {(E,C)}. Note that all the separated graphs
in FJ are adaptable and satisfy condition (F).

In particular, for a lower subset J of Ifree, the members (F, D) of FJ have the
following properties:

(i) (F, D) is a connected separated graph satisfying condition (F).
(ii) F0 ⊆ E0 and F1 ⊆ E1,
(iii) For each v ∈ F0 we have Dv ⊆ Cv ,
(iv) For all v ∈ J ∩ F0, we have Dv = Cv ,
(v) For all v ∈ F0 \ J such that v is not a sink in E , we have |Dv| = 1.

Let J be a lower subset of Ifree containing all the sinks of E , and let v ∈ Ifree such
that v is minimal in Ifree \ J . We may further assume that |Cv| > 1, otherwise we
would have FJ = FJ∪{v}. Let ϕ : Ifree \ (J ∪ {v}) → C be a choice function and
let (F, D) be the unique connected component of (Eϕ,Cϕ) such that v ∈ F0. Write
Cv = {X1, . . . , Xr }, and let ϕi : E0 \ J → C be the unique choice function which
extends ϕ and such that ϕi (v) = Xi . Let (Fi , Di ) be the unique connected component
of (Eϕi ,C

ϕi ) with v ∈ F0
i . Observe that (F, D) ∈ FJ ′ and (Fi , Di ) ∈ FJ , where

J ′ := J ∪ {v}.
In the following lemma, recall that T̃E (v) denotes the strict tree of a vertex v of a

separated graph (E,C), thought as a separated graph.

Lemma 4.3 In the above notation, one has that T̃E (v) = T̃F (v) = ⊔r
i=1 T̃Fi (v).

Moreover F0 \ T 0
F (v) = F0

i \ T 0
Fi

(v), and the restriction of (F, D) to F0 \ T 0
F (v)

agrees with the restriction of (Fi , Di ) to F0 \ T 0
F (v), for all i = 1, . . . , r .

Proof Since all vertices in Ifree∩ T̃Fi (v) belong to J , it is clear that T̃F (v) = T̃E (v) and
that T̃F (v) =⋃r

i=1 T̃Fi (v). The fact that T̃Fi (v)∩ T̃Fj (v) = ∅ if i 
= j follows from the

fact that (E,C) satisfies condition (F). Hence, we get T̃E (v) = T̃F (v) =⊔r
i=1 T̃Fi (v).

The second statement follows directly from the definitions of the involved separated
graphs, because ϕi extends ϕ for all i . ��

At this point we need to recall some concepts from [11].
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Definition 4.4 Let (E,C) be a finitely separated graph. Recall the relation ≥ defined
on E0 by setting v ≥ w if and only if there is a path μ in E with s(μ) = v and
r(μ) = w. A subset H of E0 is called hereditary if v ≥ w and v ∈ H always imply
w ∈ H . The set H is called C-saturated provided the following condition holds:

If X ∈ Cv for some v ∈ E0 and r(X) ⊆ H , then v ∈ H . ��

By [11, Corollary 6.10], the set H(E,C) of hereditary C-saturated subsets of E0

parametrizes the set of order-ideals of M(E,C).

Definition 4.5 Let H be ahereditary,C-saturated subset of E0. For any subset X ⊆ E1,
define

X/H := X ∩ r−1(E0 \ H).

For H ∈ H(E,C), define the quotient separated graph (E/H ,C/H), where
(E/H)0 = E0 \ H , (E/H)1 = {e ∈ E1 | r(e) /∈ H}, and (C/H)v = {X/H |
X ∈ Cv} for v ∈ E0 \ H . (Note that since H is C-saturated we get that X/H 
= ∅
whenever X ∈ Cv and v ∈ E0 \ H .)

There is a natural quotient map M(E,C)→ M(E/H ,C/H) which sends to 0 all
the vertices in H . If M(H) denotes the order-ideal of M(E,C) generated by H , then
M(E,C)/M(H) ∼= M(E/H ,C/H) (see [11, Construction 6.8]). ��

We now fix the notation used during the remainder of this section. The second
paragraph of Notation 4.6 reproduces, for latter reference, the hypothesis and notation
under which Lemma 4.3 has been established.

Notation 4.6 Let (E,C) be an adaptable separated graph satisfying condition (F).
Denote by (I ,≤) the natural associated poset and let J be a lower subset of Ifree
containing all the sinks of E .

Let v ∈ Ifree such that v is minimal in Ifree \ J . As observed before, we may further
assume that |Cv| > 1. Let ϕ : Ifree \ (J ∪ {v}) → C be a choice function and let
(F, D) be the unique connected component of (Eϕ,Cϕ) such that v ∈ F0. Write
Cv = {X1, . . . , Xr }, and let ϕi : E0 \ J → C be the unique choice function which
extends ϕ and such that ϕi (v) = Xi . Let (Fi , Di ) be the unique connected component
of (Eϕi ,C

ϕi ) with v ∈ F0
i . Observe that (F, D) ∈ FJ ′ and (Fi , Di ) ∈ FJ , where

J ′ := J ∪ {v}.
Denote H = T̃ 0

F (v) and Hi = T̃ 0
Fi

(v). Then H is a hereditary D-saturated subset

of F0 and each Hi is a hereditary Di -saturated subset of F0
i and a hereditary and

D-saturated subset of F0. Note that, by Lemma 4.3, we have H = ⊔r
i=1 Hi . The

separated graphs (F/H , D/H) and (Fi/Hi , Di/Hi ) are not equal, but they are sim-
ilar. The only difference is that the vertex v emits r different loops α1, α2, . . . , αr
in the graph F/H , which belong to the r different sets X1/H , X2/H , . . . , Xr/H
respectively, and the same vertex v emits only one loop αi in the graph Fi/Hi .
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4.2 Monoids

Assuming Notation 4.6, we observe that the difference between (F/H , D/H) and
(Fi/Hi , Di/Hi ) is not detected by the monoid M(·, ·). Namely, we get that

M(F/H , D/H) = M(Fi/Hi , D
i/Hi )

for all i ∈ {1, . . . , r}. We denote this common monoid by M .
Gathering everything, we have natural surjective monoid homomorphisms

M(F, D)
θi−→ M(Fi , D

i )
ρi−→ M

such that ρi ◦ θi = ρ j ◦ θ j for all 1 ≤ i, j ≤ r . Note that the maps θi can be
identified with the quotient map M(F, D) → M(F/(⊕ j 
=i H j ), D/(⊕ j 
=i H j ) =
M(F, D)/M(⊕ j 
=i H j ) and, similarly, ρi can be identified with the quotient map
M(Fi , Di )→ M(Fi/Hi ,C/Hi ) = M(Fi , Di )/M(Hi ).

We prove next that the maps θi are the limit (pullback) of the maps ρi .

Theorem 4.7 Assuming Notation 4.6, we have that the family of maps

{θi : M(F, D)→ M(Fi , D
i ) | i = 1, . . . , r}

is the limit (in the category of commutative monoids) of the system of maps

{ρi : M(Fi , D
i )→ M | i = 1, . . . , r}.

Proof Let {γi : P → M(Fi , Di ) | i = 1, . . . , r} be the limit of the system {ρi } in the
category of commutative monoids. We will use the usual description of P , namely

P = {(x1, x2, . . . , xr ) ∈
r∏

i=1
M(Fi , D

i ) | ρi (xi ) = ρ j (x j ) ∀i, j = 1, . . . , r},

and γi : P → M(Fi , Di ) are defined by the projection maps. We have a canonical
morphism θ : M(F, D)→ P defined by

θ(x) = (θ1(x), θ2(x), . . . , θr (x)),

and we need to show that θ is a monoid isomorphism. Let us denote by Ii the order-
ideal M(Hi ) generated by the hereditary D-saturated set Hi = T̃ 0

i (v). Note that
θi (⊕ j 
=i I j ) = 0.

Surjectivity of θ : We provide the proof for r = 2 since an easy inductive argument
allows to extend it to the general case.
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In this case, we have the following situation:

0 0

I1 = I1

0 I2 M(F, D) M(F1, D1) 0

= P

0 I2 M(F2, D2) M 0

0 0

θ2

θ1

θ

ρ2

ρ1

where θ(x) = (θ1(x), θ2(x)). Now let (x, y) ∈ P be such that ρ1(x) = ρ2(y) with
x ∈ M(F1, D1) and y ∈ M(F2, D2). By the diagram, there exists x̃ ∈ M(F, D) such
that θ1(x̃) = x . Hence, θ(x̃) = (θ1(x̃), θ2(x̃)) = (x, θ2(x̃)).

By construction, it follows that ρ2 ◦ θ2 = ρ1 ◦ θ1; hence,

ρ2(θ2(x̃)) = ρ1(θ1(x̃)) = ρ1(x) = ρ2(y),

implying the existence of u2, u′2 ∈ I2 such that

θ2(x̃)+ u2 = y + u′2.

Running a similar argument, but now with y, one finds ỹ ∈ M(F, D) such that
θ2(ỹ) = y, and so,

θ2(x̃ + u2) = θ2(x̃)+ u2 = θ2(ỹ)+ u′2 = θ2(ỹ + u′2) since θ2 is the identity on I2.

Therefore, there exist u1, u′1 ∈ I1 such that

x̃ + u2 + u1 = ỹ + u′2 + u′1.

Now, since M(F, D) is a refinement monoid, one can build the following refinement
matrix:

x̃ u2 u1

ỹ y1,1 y1,2 y1,3

u′2 y2,1 y2,2 0

u′1 y3,1 0 y3,3
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where the two zeros arise since I1 ∩ I2 = {0}. Set z := y1,1 + y1,2 + y3,1. Then we
have, using that y1,2, y2,1 ∈ I2,

θ1(z)=θ1(y1,1 + y1,2 + y3,1)=θ1(y1,1 + y3,1)=θ1(y1,1+y2,1 + y3,1)=θ1(x̃)=x .

Similarly, using that y3,1, y1,3 ∈ I1 we get

θ2(z) = θ2(y1,1 + y1,2 + y3,1) = θ2(y1,1 + y1,2 + y1,3) = θ2(ỹ) = y.

Therefore, the element z ∈ M(F, D) satisfies that θ(z) = (x, y) showing the desired
surjectivity.

Injectivity of θ : As before, we will just show the injectivity in the case r = 2. Let
G be the free commutative monoid on the set F0, and recall from [7, Subsection 2.1]
that the monoid M(F, D) can be described as G/∼, where∼ is the congruence on G
generated by v ∼ r(X) for all v ∈ E0 and X ∈ Cv . (Here r(X) = ∑

x∈X r(x).) For
α ∈ G, we will denote the class of α in M(F, D) by α. We employ a similar notation
for the monoids M(Fi , Di ) = Gi/∼i , where Gi is the free commutative monoid on
the set F0

i and ∼i is the corresponding congruence, for i = 1, 2. We will use the
relation→ given in [7, Definition 2.2].

Now, let α and β in M(F, D) be such that θi (α) = θi (β) for i = 1, 2. We can
uniquely write α = α0+α1+α2 and β = β0+β1+β2, where supp(α0), supp(β0) ⊆
F0 \ H and supp(αi ), supp(βi ) ⊆ Hi for i = 1, 2. Then,

θi (α) = α0 + αi = β0 + βi = θi (β) for i = 1, 2.

Sinceα0+α1 ∼ β0+β1 inG1, it follows from [7, Lemma 2.4] that there exists γ ∈ G1
such that α0+α1 → γ and β0+ β1 → γ in G1. Now we can look at γ as an element
of G and clearly the strings in G1 can be used to witness the relations α0 + α1 → γ

and β0 + β1 → γ in G. (This uses in a crucial way the fact, which follows from
condition (F), that the only vertex in F0 \ H that emits edges to H is the vertex v.)
In particular we get α0 + α1 = γ = β0 + β1 in M(F, D). Write γ = γ0 + γ1, with
supp(γ0) ⊆ F0 \ H and supp(γ1) ⊆ H1. We have

γ0 + α2 = θ2(γ0 + γ1 + α2) = θ2(α) = θ2(β) = θ2(γ0 + γ1 + β2) = γ0 + β2

in M(F2, D2), so that γ0 + α2 ∼ γ0 + β2 in G2. Applying again [7, Lemma 2.4], we
obtain γ ′ ∈ G2 such that γ0 + α2 → γ ′ and γ0 + β2 → γ ′ in G2. As above we can
look γ ′ as an element of G and we have γ0 + α2 → γ ′ and γ0 + β2 → γ ′ in G. But
now we have

α = α0 + α1 + α2 → γ0 + γ1 + α2 → γ ′ + γ1

and similarly β → γ ′ + γ1, showing that α = γ ′ + γ1 = β in M(F, D), as desired.
This concludes the proof of the result. ��
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4.3 K-algebras

In this short subsection, we introduce our basic building blocks for the K -algebras.
Throughout the subsection K will be a field and G a finite directed graph. In the
final part of the subsection we will give the definition and the key properties of the
algebra building blocks QK (F, σ ) corresponding to F ∈ F (see Definition 4.2 for the
definition of the family F). This will provide the basis for our inductive arguments.

We first quickly review the theory developed in [6]. Let (I ,≤) be a finite poset.
Following [6], we define a poset of fields as a familyK = {Ki : i ∈ I } of fields Ki with
the property that Ki ⊆ K j if j ≤ i . Let G be a finite directed graph. We assume that
there is a pre-order≤ on G0 such that v ≤ w whenever there is a directed path γ such
that sG(γ ) = w and rG(γ ) = v, and we further assume that the partially ordered set
I := G0/∼, associated to the pre-ordered set (G0,≤), is a tree with greatest element
i0 := [v0]. Denote by [v] the class of v ∈ G0 in I .

Given a poset of fields K over I , we define the algebra PK((G)) as the algebra of
formal power series of the form a =∑

γ∈Path(G) aγ γ , where each aγ ∈ K[r(γ )]. The
usual multiplication of formal power series gives an structure of algebra over K0 :=
Ki0 on PK((G)). Indeed if (aγ )(bμ) is nonzero, where a ∈ K[r(γ )] and b ∈ K[r(μ)],
then s(μ) = r(γ ) and it follows from the property of ≤ that [r(γ )] ≥ [r(μ)] in I .
Then we have K[r(γ )] ⊆ K[r(μ)] and so ab ∈ K[r(μ)] = K[r(γμ)], which shows that
the product in PK((G)) is well-defined.

The path algebra PK(G) is defined as the subalgebra of PK((G)) consisting of all
the series in PK((G)) having finite support. We have a natural augmentation homo-
morphism

ε : PK((G)) −→
⊕

v∈G0

K[v]v.

We denote by 	 the set of all square matrices over PK(G) which are sent to invertible
matrices by ε.

Write R := PK(G). For any v ∈ G0 such that s−1(v) 
= ∅ we put s−1(v) =
{ev

1, . . . , e
v
nv
}, and we consider the left R-module homomorphism

μv : Rv −→
nv⊕

i=1
Rr(ev

i )

r �−→ (
rev

1, . . . , re
v
nv

)

Write 	1 = {μv | v ∈ G0, s−1(v) 
= ∅}.
We have

Theorem 4.8 ([6]) With the previous notation, let QK(G) = PK(G)(	∪	1)
−1. Then

the following properties hold:

(1) QK(G) is a hereditary von Neumann regular ring.
(2) The natural map M(G)→ V(QK(G)) is a monoid isomorphism.



The realization problem for refinement monoids Page 43 of 63    33 

The algebra QK(G) is called the regular algebra of G over the poset of fields K.
Note that it is an algebra over K0 (where K0 = Ki0 ).

We are now interested in a particular type of these algebras. Suppose we are given
positive integers n(i) for each i ∈ IG \ {i0}. For i ∈ IG \ {i0}, let i = ik < ik−1 <

· · · < i1 < i0 be the unique maximal chain between i and i0. Then we set N (i) =∑k
j=1 n(i j )− k, and define fields Ki by K0 = L := K (t1, t2, . . . ) and

Ki = K (t−N (i)+1, t−N (i)+2, t−N (i)+3, . . . ).

Obviously, we have Ki ⊆ K j if j ≤ i , so that K = {Ki : i ∈ IG} is a poset of fields.
We are going to compare QK(G) with another similar construction. For this, we

recall our standing assumption about the separated graph (E,C) through this section,
that is, (E,C) is an adaptable separated graph satisfying condition (F) and such that
the associated poset I is a tree.

Definition 4.9 Let F ∈ F be one of the building blocks for (E,C) (see Definition
4.2). Recall that the graph F is a non-separated graph.

Let SK (F, σ ) be the ∗-algebra with family of generators F0 ∪ F1 ∪ {tvi , (tvi )−1 :
v ∈ F0, i ∈ N} and defining relations (2.5) thinking of F as a separated graph with
the trivial separation, but with a shift in the relations given by

t s(β)
l β = βtr(β)

l+|Cr(β)|−1

for each connectorβ in F such that r(β) is not a sink. HereCr(β) refers to our separated
graph (E,C). Note that this only affects some of the relations 2.5(ii), 2.5(iii), the rest
of relations remain the same, with the understanding that the separation on F is the
trivial one. Also observe that, for β ∈ F1, β is a connector in F if and only if β is
connector in E .

We then invert the same set of matrices 	F as given in Definition 2.7 to get the
algebra

QK (F, σ ) := SK (F, σ )	−1F .

Note that since the separation is trivial, the set 	(p) corresponding to a non-minimal
free prime p consists of univariate polynomials f (α(p)) ∈ L[α(p)] such that f (0) 
=
0. ��

We are now ready to prove the basic result for our induction arguments.

Proposition 4.10 Let (E,C) and F ∈ F be as before. Then the algebra QK (F, σ ) is
a separative von Neumann regular ring and the natural map M(F)→ V(QK (F, σ ))

is a monoid isomorphism.

Proof Let I = F0/∼ be the partially ordered set associated to the pre-ordered set
(F0,≤), where ≤ stands for the path-way pre-order ≤ on F0 (see Definition 1.3). By
Definition 4.2, I is a finite tree.
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Let G be the directed set of all finite complete subgraphs G of F such that the map

G0 −→ I , v �→ [v]

is surjective. For G ∈ G, let ≤G be the pre-order on G0 determined by v ≤G w if
and only if there is a directed path γ in F such that s(γ ) = w and r(γ ) = v. In other
words, ≤G is the restriction of ≤ to G0. Obviously, if μ is a path in G connecting w

to v then v ≤G w, and therefore the order≤G contains the path-way pre-order on G0.
Moreover it is clear that the mapG0 → I induces an order-isomorphismG0/∼G ∼= I .

By using the pre-order ≤G , and the poset of fields K on I = G0/∼G given by the
choices n([v]) = |Cv|−1 for all [v] ∈ I \{i0} such that v is not a sink, and n([v]) = 0
if v is a sink, we obtain K0-algebras QK(G) for each G ∈ G. Note that, for G1 ≤ G2
in G, we have a natural map QK(G1)→ QK(G2) such that the diagram

M(G1) M(G2)

V(QK(G1)) V(QK(G2))

∼= ∼=

is commutative. Hence we get a directed system of K0-algebras {QK(G) : G ∈ G}
and setting

QK(F) := lim−→
G∈G

QK(G),

we see from Theorem 4.8 that QK(F) is von Neumann regular. Moreover, using again
Theorem 4.8, we obtain

M(F) ∼= lim−→
G∈G

M(G) ∼= lim−→
G∈G

V(QK(G)) ∼= V(QK(F)),

where we use continuity of the M-functor on the category of row-finite graphs and
complete graph homomorphisms ([15, Lemma 3.4]) and continuity of the V-functor
on algebras.

Define

ϕ : QK (F, σ ) −→ QK(F)

by sending the generators E0∪E1∪(E1)∗ to the corresponding generators in QK(F),
and

ϕ(tvl ) = t−N ([v])+lv ∈ QK(F).
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Now observing that N ([r(β)]) = N ([s(β)])+ |Cr(β)| − 1 for every connector β in F
such that r(β) is not a sink, we have that

ϕ(t s(β)
l β) = tl−N ([s(β)])β = βtl+|Cr(β)|−1−N ([r(β)]) = ϕ(βtr(β)

l+|Cr(β)|−1).

It follows that the defining relations QK (F, σ ) are preserved by ϕ. Moreover all the
matrices in	F are clearly invertible over QK(F), and this shows thatϕ iswell-defined.
By using [6, Proposition 2.7], we obtain a well-defined inverse map ϕ−1 from QK(F)

onto QK (F, σ ).
We have shown that QK (F, σ ) ∼= QK(F), and thus the result follows from our

previous computations. For the part of the separativity of QK (F, σ ), one needs to
recall that a ring with local units R is separative if and only if its monoid V(R) is a
separative monoid ([1, Proposition 3.6.4]) and that the monoids M(F) associated to
a directed graph F are separative ([15, Theorem 6.3], [1, Theorem 3.6.21]). Thus the
ring QK (F, σ ) is separative, because so is V(QK (F, σ )) ∼= M(F). ��

4.4 Pullbacks of algebras

In this section, we will introduce algebras the QK (F, D, σ ) for (F, D) ∈ FJ , gen-
eralizing the definition of the above subsection. Working under Notation 4.6, we will
show in Proposition 4.12 that the algebra QK (F, D, σ ) is the pullback of a family
of algebra homomorphisms {ρi : QK (Fi , Di , σi ) → QK (F, D, σ ) : i = 1, . . . , r}.
This will be used in the next subsection to show inductively Theorem 4.1.

We start with a definition that extends the one of the previous subsection.

Definition 4.11 We adopt the notation and caveats established in Notation 4.6. In
particular we have (F, D) ∈ FJ ′ for a fixed lower subset J of Ifree, containing all the
sinks of E , and v ∈ Ifree \ J is a minimal element of Ifree \ J with |Cv| > 1, where
J ′ = J∪{v}. The algebra QK (F, D, σ ) is the algebra obtained by the same generators
and relations than those used in Sect. 2, but with a modification in the definition of the
relations 2.5(2)(ii),(iii) at some particular vertices. Concretely let w ∈ Ifree \ J ′ and
consider the endomorphism σw of K (twl ) given by

σw(twl ) = twl+|Cw |−1, (l = 1, 2, . . . ).

We then modify the relations 2.5(2)(ii),(iii) for each connector β such that r(β) ∈
Ifree \ J ′ in the following way:

f (t s(β)
l )β = βσ r(β)( f (tr(β)

l )).

In particular,

t s(β)
l β = βtr(β)

l+|Cr(β)|−1

for each l ∈ N. Relations 2.5(2)(ii),(iii) remain the same for all the other connectors
β in F .
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We will denote this algebra by QK (F, D, σ ). A similar definition applies to
QK (Fi , Di , σi ), where now the new relations involve connectors β in Fi such that
r(β) ∈ Ifree \ J (including v). Recall that we denote by α1, α2, . . . , αr the different
loops at v, with αi ∈ Xi for all i .

The algebras QK (F, D, σ ) have the same essential properties as the algebras
QK (F, D). In particular, all the results stated in Sect. 2 for QK (F, D) hold also
for the algebras QK (F, D, σ ) with very minor modifications in the proofs. ��

We denote by H (respectively Hi ) the ideal of QK (F, D, σ ) (respectively
QK (Fi , Di , σi )) generated by H = T̃ 0

F (v) (respectively Hi = T̃ 0
Fi

(v)). It follows

from Proposition 2.22 thatH =⊕r
i=1Hi . We also define the separated graph (F, D)

by taking (F)0 = E0\H , F
1 = F1\T 1

F (v), Dv = ∅ and Dw = Dw forw ∈ (F)0\{v}.
Note that v is a sink in F . The algebra QK (F, D, σ ) is build in a similar way as the
algebra QK (F, D, σ ). Indeed for all the connectors β in F such that r(β) 
= v, we
take the same relations as in QK (F, D, σ ). If β is a connector in F such that r(β) = v,
then we set

t s(β)
l β = βtvl+r .

We then have a well-defined surjective homomorphism θ : QK (F, D, σ ) →
QK (F, D, σ ) which is the identity on all generators F

0 ∪ F
1 ∪ (F

1
)∗ ∪ {twl : w ∈

F
0 \ {v}}, sends all the vertices of H to 0 and satisfies

θ(αi ) = tvi , (i = 1, . . . , r) and θ(tvl ) = tvl+r (l ∈ N).

If β is a connector in F with r(β) = v then we have

θ(t s(β)
l β) = t s(β)

l β = βtvl+r = θ(βtvl )

so the relation t s(β)
l β = βtvl in QK (F, D, σ ) is preserved by θ . It is easily seen that the

kernel of themap θ is preciselyH (by defining a suitable inversemap QK (F, D, σ )→
QK (F, D, σ )/H)), so that we get a short exact sequence

0 −→ H −→ QK (F, D, σ )
θ−→ QK (F, D, σ ) −→ 0. (4.1)

In order to ease notation, from now on, denote Q := QK (F, D, σ ), Qi :=
QK (Fi , Di , σi ) and Q := QK (F, D, σ ).

For 1 ≤ i ≤ r , define θi : Q → Qi which is the identity on the generators
F0
i ∪ F1

i ∪ (F1
i )∗ ∪ {twl : w ∈ F0

i \ {v}}, sends Hj to 0 for j 
= i , and satisfies

θi (α j ) = tvσv
i ( j) ( j 
= i), θi (t

v
l ) = tvl+r−1 (l ∈ N).

(See Notation 2.4(1) for the definition of σv
i .) Note that θi (αi ) = αi . Let us check that

θi is a well-defined homomorphism. The only critical points are the relations of type
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2.5(2)(ii),(iii) at v for Q and Qi respectively. Suppose first that we have a connector
β in F such that r(β) = v. Then, since r(β) ∈ J ′, the relations for the connector
β are the ones prescribed in 2.5(2)(ii),(iii) for the separated graph (F, D). But, since
s(β) ∈ F0 \ J ′ we have |Ds(β)| = 1 and so t s(β)

l β = βtvl for all l ∈ N. In the algebra
Qi , however, we have that r(β) = v ∈ F0

i \ J and thus we get the modified relation

t s(β)
l β = βtvl+r−1 . Hence, we compute

θi (t
s(β)
l β) = t s(β)

l β = βtvl+r−1 = θi (βt
v
l ),

and we see that the relation t s(β)
l β = βtvl is preserved by θi .

Now consider a connector β ∈ Xi (so that s(β) = v). In the algebra Q, we have
that v ∈ J ′ and so the relation for β is the one prescribed by 2.5(2)(iii) for the
separated graph (F, D). Since |Dv| = r we get tvl β = βtr(β)

l+r−1. Taking into account

that r(β) ∈ J and that Di
v = {Xi }, we have in the algebra Qi that tvl β = βtr(β)

l for
all l ∈ N. Hence we get

θi (t
v
l β) = tvl+r−1β = βtr(β)

l+r−1 = θi (βt
r(β)
l+r−1)

and the relation tvl β = βtr(β)
l+r−1 is preserved by θi .

One can similarly show that the relation:

α jβ = βtr(β)

σ v
i ( j) for β ∈ Xi and j 
= i,

which is valid in Q, is preserved by θi .
Now we define similar maps ρi : Qi → Q, for 1 ≤ i ≤ r . Here we send all

generators F
0 ∪ F

1 ∪ (F
1
)∗ ∪ {twl : w ∈ F

0 \ {v}} to the corresponding generators in
Q, we send all the vertices in Hi to 0, and we let

ρi (αi ) = tvi , and ρi (t
v
l ) =

{
tvl if l < i
tvl+1 if l ≥ i

Then ρi is a well-defined surjective homomorphism with kernel Hi , so that we get a
short exact sequence

0 −→ Hi −→ Qi
ρi−→ Q −→ 0. (4.2)

Moreover, we have ρi ◦ θi = θ for all i ∈ {1, . . . , r}.
In the following Proposition, we show that the maps θi are the limit (pullback) of

the maps ρi .

Proposition 4.12 With the above notation, we have that the family of maps

{θi : Q → Qi | i = 1, . . . , r}
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is the limit (in the category of K -algebras) of the system of maps

{ρi : Qi → Q}.

Proof Since θ = ρi ◦ θi for all i , the following diagram

Q

Q2 Q1

. . . . . .

Qr Q

θ1

θ2

θr
ρ1ρ2

ρr

is commutative. By the universal property of the pullback, denoted by P , there exists
a unique morphism μ : Q → P such that πi ◦ μ = θi for i = 1, . . . , r , where
πi : P → Qi are the structural maps of the pullback, so that ρi ◦ πi = ρ j ◦ π j for all
i, j . For r = 2 we can visualize the situation in the following diagram:

Q

P Q1

Q2 Q

θ1

μ

θ2
ρ1

π1

π2

ρ2

Let π : P → Q denote the composition ρi ◦ πi (which does not depend on i). By the
usual definition of the pullback,

P := {(x1, . . . , xr ) ∈
r∏

i=1
Qi | ρi (xi ) = ρ j (x j )∀i, j},

and one has thatH1×· · ·×Hr is an ideal in P and the quotient algebra is isomorphic to
Q. By using this observation and the exact sequence (4.1), we can build the following
commutative diagram with exact rows:

0 H Q Q 0

0
∏r

i=1Hi P Q 0

=

θ

μ =
π

Therefore, we have that μ is an isomorphism by the Five’s Lemma. This shows the
result. ��
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4.5 The functorV on pullbacks

In this last part of the section we will study the behaviour of the described pullbacks
under the functor V(·). This will enable us to provide the proof of Theorem 4.1.

Our main tool here is [5, Theorem 3.2], which for our purposes we state in the
following way:

Theorem 4.13 Let Q1, . . . , Qr be separative von Neumann regular rings, and let
ρi : Qi → Q be surjective homomorphisms. Let θi : P → Qi be the limit (pullback)
of the morphisms ρi : Qi → Q. Then, P is a separative von Neumann regular
ring, and the maps V(θi ) : V(P) → V(Qi ) are the limit of the family of maps
V(ρi ) : V(Qi )→ V(Q) in the category of monoids if and only if for each idempotent
e = (e1, . . . , er ) in P, we have that for i = 1, . . . , r ,

K1(ρi (ei )Qρi (ei )) = (ρi )∗(K1(ei Qi ei ))+
(⋂

j 
=i
(ρ j )∗(K1(e j Q j e j ))

)
.

In order to accomplish our goal, we will need the following. Note the essential use
of property (F) in its proof, and recall that G(·) stands for the Grothendieck group
construction explained in Sect. 1.3.

Lemma 4.14 Assume Notation 4.6, and fix i ∈ {1, . . . , r}. Let M(Hi ) be the order-
ideal of M(Fi , Di ) generated by Hi . Then M(Hi ) is canonically isomorphic to
M((Fi )|Hi , (D

i )Hi ), themonoid associated to the restriction of (Fi , Di ) to Hi (Lemma
1.6), and the kernel of the natural map

G(M(Hi )) −→ G(M(Fi , D
i ))

is the cyclic subgroup of G(M(Hi )) generated by
∑

β∈X ′i xr(β), where we denote by

xw the generators of G(M(Hi )), and X ′i = Xi \ {αi } is the family of connectors of Xi .

Proof By Lemma 1.6, we have M(Hi ) ∼= M((Fi )|Hi , (D
i )Hi ).

Let G be the free abelian group on F0
i . We write G = G1 ⊕ G2, where G1 is the

free group on Hi and G2 is the free group on F0
i \ Hi . Let π : G → G(M(Fi , Di )) be

the natural projection map. Set L := ker π . Then L = L1 ⊕ L2, where L1 ⊆ G1 and
L2 ⊆ G2. Indeed L1 is the subgroup of G1 generated by all the elements of the form
w −∑e∈X r(e) for X ∈ Cw and w ∈ Hi and the element x :=∑

β∈X ′i r(β), and L2

is generated by all the elements of the form dX = w −∑e∈X r(e) for X ∈ Di
w and

w � v. Thus it suffices to observe that all elements dX as above have their support
completely contained in F0

i \Hi . But this follows because our graph satisfies condition
(F), so the only vertex in the set Hi ∪ {v} that can receive an edge emitted by a vertex
in E0 \ (Hi ∪{v}) is the vertex v, and so the elements dX defined above are completely
supported on the generators of G2.

On the other hand, we have

G(M(Hi )) = G(M((Fi )|Hi , (D
i )Hi )) = G1/L3,
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where L3 is the subgroup of G1 generated by all the elements of the form w −∑
e∈X r(e) for X ∈ Cw and w ∈ Hi , thus L3 ⊆ L1 and the map

G1/L3 = G(M(Hi ))→ G/L = G(M(Fi , D
i ))

factors as follows

G1/L3 −→ G1/L1 −→ G1/L1 ⊕ G2/L2 = G/L

thus the kernel of this map is precisely the element
∑

β∈X ′i xr(β). ��

We next show that the K1 statement in Theorem 4.13 holds in our situation.

Proposition 4.15 Under Notation 4.6 and the above notation, assume that Qi are
separative regular rings and that the natural maps M(Fi , Di )→ V(Qi ) are isomor-
phisms for i = 1, . . . , r . Then, for each idempotent (e1, . . . , er ) in P ∼= Q and each
1 ≤ i ≤ r we have:

K1(ρi (ei )Qρi (ei )) = (ρi )∗(K1(ei Qi ei ))+
(⋂

j 
=i
(ρ j )∗(K1(e j Q j e j ))

)
.

Moreover, Q = QK (F, D, σ ) is a separative regular ring, and the natural map
M(F, D)→ V(Q) is an isomorphism.

Proof Let (e1, . . . , er ) be an idempotent in P ∼= Q. Then each ei is an idempotent in
Qi = QK (Fi , Di , σi ) and e = ρi (ei ) for all i = 1, . . . , r .

We want to analyze the following exact sequence in K -theory, for a given i ∈
{1, . . . , r}:

K1(ei Qi ei )
(ρi )∗−→ K1(eQe)

∂i−→ K0(eiHi ei )
ιi−→ K0(ei Qi ei ).

Since Qi is regular by hypothesis, we have L(Qi ) ∼= L(V(Qi )) by Proposition
1.7(2). In addition we have V(Qi ) ∼= M(Fi , Di ) also by hypothesis, therefore we get
an isomorphism

L(Qi ) ∼= L(V(Qi )) ∼= L(M(Fi , D
i )) ∼= L(Ii ),

where L(Ii ) is the lattice of lower subsets of Ii := F0
i /∼, the partially ordered set

associated to the pre-ordered set (F0
i ,≤) with respect to the path-way pre-order (use

[7, Proposition 2.9] and [16, Proposition 1.9]).
Hence, there is a lower subset I ′i of Ii such that the ideal Qiei Qi of Qi corresponds

to I ′i . Similarly, the idealHi eiHi = Qiei Qi ∩Hi corresponds to a lower subset I ′′i of
Ii such that I ′′i ⊆ I ′i . We let M ′

i (respectively M ′′
i ) denote the order-ideal of M(Fi , Di )

generated by the hereditary subsets HI ′i and HI ′′i respectively. (Recall that, for a lower
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subset L of Ii , we denote by HL the hereditary subset of F0
i consisting of all the

vertices w ∈ F0
i such that [w] ∈ L .) Observe that, using [30, Corollary 5.6], we have

V(ei Qi ei ) = V(Qiei Qi ) ∼= M ′
i , V(eiHi ei ) = V(Hi eiHi ) ∼= M ′′

i .

We distinguish two cases. Suppose first that v /∈ I ′i . Then the map

K0(eiHi ei ) −→ K0(ei Qi ei ),

which corresponds to the map

G(M ′′
i ) −→ G(M ′

i )

is injective. In this case, we get K1(eQe) = (ρi )∗(K1(ei Qi ei )) and we are finish.
Now assume that v ∈ I ′i . Then necessarily I ′′i = Hi/∼ and M ′′

i = M(Hi ). The
map

ιi : K0(eiHi ei ) −→ K0(ei Qi ei )

corresponds to the natural map

η : G(M(Hi )) −→ G(M ′
i ),

and the element
∑

β∈X ′i xr(β) ∈ G(M(Hi )) belongs to the kernel of η, where we are
using the notation introduced in Lemma 4.14. On the other hand, the canonical map
G(M(Hi )) → G(M(Fi , Di )) considered in Lemma 4.14 factors through η, so that
we conclude from that lemma that the kernel of η is precisely the cyclic subgroup of
G(M(Hi )) generated by

∑
β∈X ′i xr(β). Since

∑
β∈X ′i xr(β) corresponds to

∑
β∈X ′i [ββ∗]

under the isomorphism K0(eiHi ei ) ∼= G(M(Hi )), we conclude that the kernel of ιi is
precisely the cyclic subgroup of K0(eiHi ei ) = K0(Hi ) generated by

∑
β∈X ′i [ββ∗].

So the cokernel of the map (ρi )∗ : K1(ei Qi ei ) → K1(eQe) is isomorphic to the
cyclic subgroup generated by

∑
β∈X ′i [ββ∗], and since

∂i ([tvi ]) =
∑

β∈X ′i
[ββ∗]

(cf. [17, p. 110]), we get that it suffices to show that [tvi ] ∈ (ρ j )∗(K1(e j Q j e j )) for all
j 
= i . But this is certainly true by the definition of the map ρ j . Indeed, if i < j then
tvi = ρ j (tvi ) and if i > j then tvi = ρ j (tvi−1).

This shows that the K1 conditions in Theorem 4.13 are satisfied in our situation.
Since, by Proposition 4.12, the family of maps {θi : Q → Qi | i = 1, . . . , r}
is the limit of the system {ρi : Qi → Q}, we obtain from Theorem 4.13 that Q =
QK (F, D, σ ) is a separative vonNeumann regular and that the family ofmaps {V(θi ) :
V(Q)→ V(Qi ) | i = 1, . . . , r} is the limit of the system {V(ρi ) : V(Qi )→ V(Q)}.
Now, by hypothesis, the natural maps M(Fi , Di ) → V(Qi ) are isomorphisms for
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all i = 1, . . . , r , and thus it follows from Theorem 4.7 and the naturality of all the
morphisms involved that the canonical map M(F, D)→ V(Q) is an isomorphism.

This concludes the proof. ��
We can finally prove Theorem 4.1.

Proof of Theorem 4.1 The proof is by order-induction with respect to the separated
graphs in the families FJ , for the lower subsets J of Ifree, defined at the beginning
of this section. Indeed, we will show by order-induction that for any lower subset
J of Ifree, all the algebras QK (F, D, σ ), for (F, D) ∈ FJ , satisfy the conclusions
of Theorem 4.1. Since FIfree = {(E,C)} and QK (E,C, σ ) = QK (E,C), the result
follows from this.

When J = ∅, the family F∅ is just the class F of building blocks of (E,C)

(Definition 4.2). For F ∈ F , the algebra QK (F, σ ) satisfies the properties in the
thesis of Theorem 4.1 by Proposition 4.10.

This establishes the basis for the induction. Now let J be a lower subset of Ifree
such that all the algebras QK (F, D, σ ) with (F, D) ∈ FJ satisfy the conclusions of
Theorem 4.1, and let v be a minimal element in Ifree \ J . We may further assume
that J contains all the sinks of E and that |Cv| > 1. We can now apply Proposition
4.15 to deduce that the conclusions of Theorem 4.1 hold for all the separated graphs
(F, D) ∈ FJ∪{v}. Now the result follows from the fact the poset I is finite. ��

5 Push-outs

In this final section we plan to explain the behaviour of the push-out construction
in our setting. In particular, we develop the last step of the strategy displayed in
the introduction. A related method was used in [5], and as happens there, we will
subsequently work with the notion of a crowned pushout, which we describe below.

Let (E,C) be an adaptable separated graph, and let φ : (Ẽ, C̃) → (E,C) be a
cover morphism, in the sense of Definition 3.2, where (Ẽ, C̃) satisfies condition (F),
see Theorem 3.3. Then it follows from Theorem 4.1 that QK (Ẽ, C̃) is a von Neumann
regular ring and that the natural map M(Ẽ, C̃)→ V(QK (Ẽ, C̃)) is an isomorphism.
In this section we will show that the same properties hold for (E,C).

Recall the definitions and notations introduced in Sect. 3.
By the proof of Theorem 3.3, there is a finite chain of adaptable separated graphs

(Fi , Di ), for i = 0, . . . ,m, such that (F0, D0) = (Ẽ, C̃) satisfies condition (F),
(Fm, Dm) = (E,C), and each pair ((Fi , Di ), (Fi+1, Di+1)) satisfies the conditions
in the following definition:

Definition 5.1 Let (E1,C1) and (E2,C2) be two adaptable separated graphs. We say
that the pair ((E1,C1), (E2,C2)) is a crowned pair if there is a cover morphism
φ : (E1,C1) → (E2,C2) of separated graphs and vertices v1, v2 ∈ E0

1 such that
v := φ0(v1) = φ0(v2) and:

(i) For eachw ∈ T̃ 0(v) there is atmost one X ∈ C2\(C2)w such that r(X)∩[w] 
= ∅.
(ii) T 0(v1) ∩ T 0(v2) = ∅.
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(iii) φ induces an isomorphism of separated graphs from T (vi ) to T (v), for i = 1, 2.
(iv) Let E ′1 be the restriction of the graph E1 to the set of vertices E0

1\(T 0(v1)�T 0(v2))

and let E ′2 be the restriction of the graph E2 to the set of vertices E0
2 \ T 0(v).

Then φ restricts to a graph isomorphism from E ′1 onto E ′2.
(v) Let w ∈ (E ′1)0 and let X ∈ (C2)φ0(w) be such that r(X) ∩ [v] 
= ∅. Since φ is a

cover map, it follows from (i)-(iv) that there is exactly one Y ∈ (C1)w such that
φ1(Y ) = X (see Lemma 5.2(3) below). We ask that there is exactly one i ∈ {1, 2}
such that r(Y ) ∩ [vi ] 
= ∅. ��

Wecollect in the next Lemma several useful properties of the covermaps that appear
in Definition 5.1.We denote by Ii the posets E0

i /∼ of strongly connected components,
for i = 1, 2

Lemma 5.2 Let φ : (E1,C1) → (E2,C2) be a cover morphism between adaptable
separated graphs (E1,C1), (E2,C2). Assume that conditions (i)-(iv) in Definition 5.1
hold. Then the following properties hold:

(1) For w ∈ E0
1 , we have [w] ∈ (I1)free ⇐⇒ [φ0(w)] ∈ (I2)free.

(2) For each w ∈ E0
1 and each X ∈ (C1)w we have that φ1(X) ∈ (C2)φ0(w).

Moreover, φ1 restricts to a bijection from X onto φ1(X).
(3) For each w ∈ E0

1 and each X ∈ (C2)φ0(w) there is exactly one Y ∈ (C1)w such
that φ1(Y ) = X.

(4) If w ∈ T̃ 0(vi ) for some i , then there exists exactly one X ∈ C1 \ (C1)w such that
r(X) ∩ [w] 
= ∅. Moreover, we have X ∈ (C1)w′ for w′ ∈ T 0(vi ).

(5) Suppose that in addition condition (v) also holds, so that ((E1,C1), (E2,C2)) is a
crowned pair. Then ifw ∈ (E ′1)0, and X ∈ (C1)w is such that r(X)∩T 0(vi ) 
= ∅
for some i , then

r(X) ∩ (T 0(v1) ∪ T 0(v2)) = r(X) ∩ [vi ].

Proof (1) If w ∈ T 0(vi ) for some i , this holds by condition (iii) in Definition 5.1.
Otherwise, if w ∈ (E ′1)0, then the result follows from the cover property and
condition (iv). Indeed, if [w] ∈ (I1)free and |C1

w| > 1 then |C2
φ0(w)

| = |C1
w| > 1

because φ is a cover, and so [φ0(w)] ∈ (I2)free. If [w] ∈ (I1)free and |C1
w| = 1

then there is only one loop at w in E ′1 and so there is only one loop at φ0(w) in
E ′2, and thus in E2. Therefore [φ0(w)] ∈ (I2)free. Similarly, if [w] ∈ (I1)reg then
[φ0(w)] ∈ (I2)reg. (Note that in an arbitrary adaptable separated graph (E,C),
the sets Ifree and Ireg are completely determined by the structure of (E,C) as a
separated graph.)

(2) If w ∈ (I1)free, this is a consequence of the fact that φ is a cover map. So
assume thatw ∈ (I1)reg. Recall that in this case we have defined Xw as s−1E1

([w]),
that is, the set of all the edges emitted by vertices in the strongly connected
component [w]. If in addition w ∈ T 0(vi ) for some i , then the result follows
from condition (iii) in Definition 5.1. If w ∈ (E ′1)0 then φ sends the strongly
connected component [w] of w in E1 bijectively to the strongly connected com-
ponent [φ0(w)] of φ0(w) in E2, by condition (iv). If e ∈ Xw = s−1E1

([w]), then
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clearly φ1(e) ∈ s−1E2
([φ0(w)]) = Xφ0(w). Conversely, if f ∈ s−1E2

([φ0(w)]) then
there exists w′ ∈ [w] such that φ0(w′) = s( f ) ∈ [φ0(w)] and so, by the cover
property, there exists a unique e ∈ s−1E1

(w′) such that φ1(e) = f . If e, e′ ∈ Xw

are such that φ1(e) = φ1(e′), then

φ0(s(e)) = s(φ1(e)) = s(φ1(e′)) = φ0(s(e′)) ∈ Xφ0(w)

and since s(e), s(e′) ∈ [w], we get that s(e) = s(e′) by the injectivity of φ0|[w].
Now e = e′ follows from the fact that φ is a cover map.

(3) If w ∈ (I1)free this follows from the cover property of φ. If w ∈ (I1)reg, this
follows from (1) and (2).

(4) Assume for definiteness that w ∈ T̃ 0(v1). Clearly there exists X ∈ (C1)w′ , with
w′ ∈ T 0(v1) and [w′] 
= [w], such that r(X)∩[w] 
= ∅. Let X ′ ∈ (C1)w′′ be such
that r(X ′)∩[w] 
= ∅,where [w′′] 
= [w]. By (2)wehave thatφ1(X ′) ∈ (C2)φ0(w′′)
and clearly r(φ1(X ′)) ∩ [φ0(w)] 
= ∅. If [φ0(w′′)] = [φ0(w)], then by (3) there
is a unique Y ∈ (C1)w such that φ1(Y ) = φ1(X ′). By condition (iv) we have
from [φ0(w′′)] = [φ0(w)] that w′′ ∈ T 0(v1) ∪ T 0(v2) and by condition (iii) we
get that w′′ ∈ T 0(v2), because [w] 
= [w′′]. But now we get that r(X ′) ∩ [w] ⊆
T 0(v2) ∩ T 0(v1) = ∅ (using (ii)), which is a contradiction. Hence we get that
φ1(X ′) ∈ C2 \ (C2)φ0(w), and φ1(X ′) ∩ [φ0(w)] 
= ∅. By condition (i) we get
φ1(X ′) = φ1(X). This in particular implies that [φ0(w′)] = [φ0(w′′)] which,
using again conditions (ii)-(iv), implies that w′′ ∈ T 0(v1). Now by condition (iii)
we get that X = X ′, as desired.

(5) Let w ∈ (E ′1)0 and X ∈ (C1)w be such that r(X) ∩ T 0(vi ) 
= ∅ for some i . By
(4) we have r(X) ∩ T 0(v j ) = r(X) ∩ [v j ] for j = 1, 2. Hence, using condition
(v), we get

r(X) ∩ (T 0(v1) ∪ T 0(v2)) = r(X) ∩ ([v1] ∪ [v2]) = r(X) ∩ [vi ].

��
Remark 5.3 In the conditions of Theorem 3.3, we may obtain the desired chain
of adaptable separated graphs (Fi , Di ), i = 0, 1, . . . ,m, such that each pair
((Fi , Di ), (Fi+1, Di+1)) is a crowned pair, just by considering each time only two
copies of the target separated graph T (v) (instead of the r copies considered in the
proof of that theorem).With this procedure, for a given inductive stepψ ′ : (F ′, D′)→
(F, D) as in the proof of Theorem 3.3, we arrive at the same result by using a chain
of adaptable separated graphs

(F ′0, D′0)→ (F ′1, D′1)→ · · · → (F ′r−1, D′r−1)

of length r − 1, with (F ′0, D′0) = (F ′, D′) and (F ′r−1, D′r−1) = (F, D). One directly
verifies that each pair of consecutive terms in this chain is a crowned pair in the sense
of Definition 5.1. ��
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Let P be a conical monoid, and suppose it contains two order-ideals I and I ′, with
I ∩ I ′ = {0}, such that there is an isomorphism ϕ : I → I ′. We consider the square:

I I

I ′ P

=

ϕ ι1

ι2

Definition 5.4 The crowned pushout Q of (P, I , I ′, ϕ) is by definition the coequalizer
of the maps ι1 : I → P and ι2 ◦ ϕ : I → P , so that there is a map f : P → Q with
f (ι1(x)) = f (ι2(ϕ(x))) for all x ∈ I , and given any other map g : P → Q′ such that
g(ι1(x)) = g(ι2(ϕ(x))) for all x ∈ I , we have that g factors uniquely through f . ��

We now show that if ((E1,C1), (E2,C2)) is a crowned pair, we can obtain
the monoid M(E2,C2) as a crowned pushout of M(E1,C1). Note that the
cover map φ : (E1,C1) → (E2,C2) induces a surjective monoid homomorphism
M(φ) : M(E1,C1)→ M(E2,C2).

Proposition 5.5 In the notation of Definition 5.1, let ((E1,C1), (E2,C2)) be a
crowned pair. Assume P = M(E1,C1), and for i = 1, 2, let Ni = M(T 0(vi )) be the
order-ideal of P generated by the hereditary C1-saturated subset T 0(vi ) of E0

1 . Then
the natural homomorphism M(φ) : P = M(E1,C1) → M(E2,C2) is the crowned
pushout of (P, N1, N2, M(ϕ)), where M(ϕ) is the monoid isomorphism induced by
the isomorphism of separated graphs ϕ := (φ|T (v2))

−1 ◦ (φ|T (v1)).

Proof Let θ : P → Q be the canonical map from P to the crowned pushout Q of
(P, N1, N2, M(ϕ)). Observe that θ(aw) = θ(aϕ(w)) for all w ∈ T 0(v1).

Clearly we have, for w ∈ T 0(v1),

M(φ)(aw) = aφ(w) = aφ(ϕ(w)) = M(φ)(M(ϕ)(aw)).

so M(φ) coequalizes the maps the maps ι1 and ι2 ◦ M(ϕ) in the diagram

M(T (v1)) M(T (v1))

M(T (v2)) M(E1,C1)

=

M(ϕ) ι1

ι2

(5.1)

Therefore there is a unique monoid homomorphism ρ : Q → M(E2,C2) such that
M(φ) = ρ ◦ θ . Since M(φ) is surjective, we see that ρ is also surjective. We now
define a homomorphism γ : M(E2,C2)→ Q by the rules

γ (aw) = θ(a(φ|E ′1 )−1(w)) if w ∈ E0
2 \ T 0(v)
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and

γ (aw) = θ(a(φ|T (v1))
−1(w)) = θ(a(φ|T (v2))

−1(w)) if w ∈ T 0(v).

We need to check that γ is well-defined. So let w ∈ E0
2 and X ∈ Cw. If w ∈ T 0(v),

then it follows from condition (iii) in Definition 5.1 that the relation aw =∑
x∈X ar(x)

is preserved by γ . Suppose now that w ∈ E0
2 \ T 0(v) = (E ′2)0. If r(X)∩ T 0(v) = ∅,

then the fact that the above relation is preserved by γ follows from condition (iv) in
Definition 5.1. Assume finally that r(X) ∩ T 0(v) 
= ∅. By condition (i) in Definition
5.1, we then have that r(X) ∩ T 0(v) = r(X) ∩ [v]. We write X = X1 � X2 with

X1 = {x ∈ X | r(x) /∈ T 0(v)}, X2 = {x ∈ X | r(x) ∈ [v]}.

Let w′ be the unique vertex in E1 such that φ0(w′) = w. Clearly w′ ∈ (E ′1)0. Let
Y be the unique element in (C1)w′ such that φ1(Y ) = X . Since φ is a cover map, it
follows that φ1 induces a bijection between Y and X , so we can write Y = Y1 � Y2
with φ1(Yi ) = Xi for i = 1, 2. Note that necessarily r(y) ∈ (E ′1)0 for y ∈ Y1. By
condition (v) in Definition 5.1 and Lemma 5.2(5), there is a unique i ∈ {1, 2} such
that r(y) ∈ [vi ] for all y ∈ Y2.

We now have

γ (aw) = θ(aw′) =
∑

y∈Y1
θ(ar(y))+

∑

y∈Y2
θ(ar(y))

=
∑

x∈X1

θ(a(φ|E ′1 )−1(r(x)))+
∑

x∈X2

θ(a(φ|T (vi ))
−1(r(x)))

=
∑

x∈X
γ (ar(x)),

which shows that the relation aw =∑
x∈X ar(x) is also preserved in this case.

Hence we have a well-defined monoid homomorphism γ : M(E2,C2) → Q.
Observe that

γ ◦ ρ ◦ θ = γ ◦ M(φ) = θ,

and so by the universal property of the crowned pushout we have that γ ◦ ρ = idQ .
Therefore ρ is injective, and since we already know it is surjective, we conclude that
ρ is a monoid isomorphism. This shows the result. ��

5.1 Crowned pushouts and von Neumann regular rings

Now we describe the crowned pushout construction at the level of algebras and its
relationshipwith the correspondingV-monoids. For this, we strongly use the following
result appearing in [5]:
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Proposition 5.6 [5, Proposition 4.5] Let R be a (not necessarily unital) von Neumann
regular ring with ideals I and I ′ such that I ∩ I ′ = 0, and suppose that I and I ′ are
Morita equivalent. Then there is a von Neumann regular ring U with an ideal J such
that the following holds:

(1) There exists an injective ring homomorphism α : R → U such that α(I ), α(I ′) ⊆
J .

(2) ThemapV(α) : V(R)→ V(U ) restricts to an isomorphism fromV(I ) ontoV(J ),
and it also restricts to an isomorphism from V(I ′) onto V(J ).

(3) Let ϕ : V(I )→ V(I ′) ⊆ V(R) be the isomorphism defined by

ϕ : = (V(α)|V(I ′))
−1 ◦ (V(α)|V(I )).

Then,V(α) : V(R)→ V(U ) is the coequalizer of the following (noncommutative)
diagram:

V(I ) V(I )

V(I ′) V(R)

=

ϕ ι1

ι2

The main result of this section is the next theorem. It is the key ingredient for the
induction step in the proof of Theorem A, which will be given at the end of the
section.

Theorem 5.7 Let ((E1,C1), (E2,C2)) be a crowned pair and assume the notation
in Definition 5.1. Suppose that QK (E1,C1) is von Neumann regular and that the
natural map M(E1,C1) → V(QK (E1,C1)) is an isomorphism. Then QK (E2,C2)

is von Neumann regular and the natural map M(E2,C2) → V(QK (E2,C2)) is an
isomorphism.

Proof Easing notation, we denote by Q := QK (E1,C1), I1 := 〈T 0(v1)〉 and I2 :=
〈T 0(v2)〉 the ideals of Q generated by T 0(v1) and T 0(v2) respectively . Notice that,
using the idempotents

e1 := e(v1) =
∑

w∈T 0(v1)

w and e2 := e(v2) =
∑

w∈T 0(v2)

w,

in the multiplier algebra of Q, one has a canonical isomorphism ei Qei ∼= QK (T (vi ))

for i = 1, 2, by Theorem 2.14.Moreover, we have an isomorphism of separated graphs
ϕ : T (v1)→ T (v2) given by

ϕ = (φ|T (v2))
−1 ◦ (φ|T (v1)),

which gives us an isomorphism e1Qe1 ∼= e2Qe2 given by the composition e1Qe1 ∼=
QK (T (v1)) ∼= QK (T (v2)) ∼= e2Qe2. We will denote this isomorphism e1Qe1 →
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e2Qe2 also by ϕ. Since the rings Ii and ei Qei are Morita-equivalent, we obtain a
Morita-equivalence between the non-unital rings I1 and I2. This Morita equivalence
is explicitly realized as follows. We set

N = Qe1 ⊗e1Qe1 e2Q, M = Qe2 ⊗e2Qe2 e1Q,

where the action of e1Qe1 on e2Q is defined by x · y = ϕ(x)y, and similarly the action
of e2Qe2 on e1Q is defined by x · y = ϕ−1(x)y. Observe that N is an I1-I2-bimodule,
M is an I2-I1-bimodule and that there are isomorphisms

M ⊗I1 N → I2, N ⊗I2 M → I1

implementing a Morita equivalence between I1 and I2.
Write Q1 := Q/I2 and Q2 := Q/I1. In order to use Proposition 5.6, we now

describe the ringU associated to the K -algebra Q, the pair of ideals I1 and I2 and the
concrete Morita context described above (see the proof of [5, Proposition 4.5]). The
following commutative diagram is a pullback:

Q Q1

Q2 Q/(I1 + I2)

π1

π2 π4

π3

where each πi is the corresponding canonical projection map.
Following [5, Proposition 4.5], we now define the ring U whose elements are all

the matrices

X =
(
q1 n
m q2

)

such that q1 ∈ Q1, q2 ∈ Q2, n ∈ N , m ∈ M , and π4(q1) = π3(q2). Moreover, we

consider the ideal J in U given by J :=
(
I1 N
M I2

)

, and the map α : Q → U defined

by α(q) = diag(π1(q), π2(q)) ∈ U .
Since Q is von Neumann regular by hypothesis, we obtain from Proposition 5.6

that U is von Neumann regular and that the map V(Q)→ V(U ) is the coequalizer of
the (non-commutative) diagram

V(I1) V(I1)

V(I2) V(Q)

=

V(ϕ) ι1

ι2



The realization problem for refinement monoids Page 59 of 63    33 

But now observe that since Q is regular and the natural map M(E1,C1) → V(Q)

is an isomorphism, this diagram translates to the diagram (5.1). Therefore we obtain
from Proposition 5.5 a natural isomorphism η : M(E2,C2)→ V(U ). It is easily seen
that η is given by η(aw′) = [α(w)] ∈ V(U ), for w′ ∈ E0

2 , where w is the unique
vertex in E0

1 \T 0(v2) such that φ0(w) = w′ (the fact that there is such a unique vertex
w follows from Definition 5.1).

The rest of the proof consists of showing that QK (E2,C2) ∼= eUe for a certain full
idempotent e ∈M(U ). To this end, we define the full idempotent element

e :=
(
1M(Q1) 0
0 1M(Q2) − e2

)

∈M(U ).

Using it, we show that the map

δ : QK (E2,C
2)→ eUe,

defined below, is an algebra isomorphism such that the composition

M(E2,C
2)

η→ V(U ) ∼= V(eUe)
V(δ−1)→ V(QK (E2,C

2))

is the natural map M(E2,C2)→ V(QK (E2,C2)). This will imply that QK (E2,C2)

is regular and that the natural mapM(E2,C2)→ V(QK (E2,C2)) is an isomorphism.
Based on the description of QK (E2,C2) provided in Sect. 2, we define δ depending

on the vertices and edges used in its definition. For the vertices, let w′ ∈ E0
2 . Then,

by the conditions in Definition 5.1, there is a unique w ∈ E0
1 \ T 0(v2) such that

φ0(w) = w′, and we define δ(w′) = α(w) ∈ eUe. Similarly, we set δ(tw
′

i ) = α(twi ),
where w′ and w are as above.

For the edges, we differentiate two different types of edges. If e′ ∈ E1
2 is of the

form φ1(e) for e ∈ E1
1 satisfying that s(e), r(e) ∈ E0

1 \ T 0(v2), then we define
δ(e′) = α(e) ∈ eUe and δ((e′)∗) = α(e∗). Otherwise, again using the conditions
in Definition 5.1, there is β ∈ E1

1 with s(β) ∈ (E ′1)0 and r(β) ∈ T 0(v2) such that
φ1(β) = e′. Note that β is necessarily a connector. In this case, we define:

δ(e′) = δ(φ1(β)) =
(

0 0
β ⊗ ϕ−1(r(β)) 0

)

, δ((e′)∗) =
(
0 ϕ−1(r(β))⊗ β∗
0 0

)

.

Note that if e′ = φ1(β) as above, we have

δ(e′)δ((e′)∗) =
(

0 0
β ⊗ ϕ−1(r(β)) 0

)(
0 ϕ−1(r(β))⊗ β∗
0 0

)

= α(ββ∗).

One can easily see that the defining relations of SK (E2,C2), given in (2.5), are
preserved by δ. Let us just check that if w′ ∈ E0

2 and X ∈ Cw′ , then

δ(w′) =
∑

x∈X
δ(x)δ(x∗).
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Let w be the unique vertex in E0
1 \ T 0(v2) such that φ0(w) = w′. Since φ is a

cover map, there is a unique Y ∈ C1
w such that φ1(Y ) = X , and φ1 restricts to a

bijection from Y to X . If r(e) ∈ E0
1 \ T 0(v2) for all e ∈ Y , then the above relation

is straightforward. Otherwise, by condition (v) in Definition 5.1, there is a non-trivial
partition Y = Y1 �Y2 such that r(Y1) ⊆ E0

1 \ (T 0(v1)∪T 0(v2)) and r(Y2) ⊆ T 0(v2).
Therefore, using the above observation, we get

∑

x∈X
δ(x)δ(x∗) =

∑

y∈Y
δ(φ1(y))δ(φ1(y)∗) =

∑

y∈Y1
α(yy∗)+

∑

y∈Y2
α(yy∗)

= α(
∑

y∈Y
yy∗) = α(w) = δ(w′).

This shows the desired equality.
We have thus a well-defined K -algebra homomorphism δ : SK (E2,C2) → eUe,

and it is readily seen that thismap extends to a K -algebra homomorphism, also denoted
by δ, from QK (E2,C2) to eUe.

Let us show that δ : QK (E2,C2)→ eUe is an isomorphism. To prove this, we will
use the following diagram:

〈T 0(v)〉 QK (E2,C2) QK (E2,C2)/〈T 0(v)〉

eJe eUe eUe/eJe

δT (v) δ δ

.

Since

QK (E2,C
2)/〈T 0(v)〉 ∼= Q/(I1 + I2) ∼= U/J ∼= eUe/eJe,

we have that the map δ is an isomorphism. We will conclude that δ is an isomorphism
proving that δT (v) is also an isomorphism. For this we will rely on the decomposition
(2.7) (see Theorem 2.21). Therefore we write

QK (E2,C
2) =

⊕

(γ1,γ2)∈P
Q(γ1,γ2),

where P is the set of pairs of finite paths (γ1, γ2) in the reduced graph (E2)red with
r(γ1) = r(γ2). Note that

〈T 0(v)〉 =
⊕

(γ1,γ2)∈P :r(γ1)=r(γ2)∈T 0(v)

Q(γ1,γ2).

We classify the pairs (γ1, γ2) ∈ P such that r(γ1) = r(γ2) ∈ T 0(v) into four classes.
For this, it is convenient to introduce a bit of terminology: let us say that a finite
path γ = β1β2 · · ·βn , with r(γ ) ∈ T 0(v) crosses the border through v2 if there is
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a (necessarily unique) i ∈ {1, . . . , n} such that βi = φ1(β) for β ∈ E1
1 such that

s(β) ∈ (E ′1)0 and r(β) ∈ [v2].
Let γ1 = β1β2 · · ·βr and γ2 = β ′1β ′2 · · ·β ′s for connectors βi , β

′
j in E2. Then the

four classes are as follows:

(i) γ1 and γ2 do not cross the border through v2.
(ii) γ1 crosses the border through v2 and γ2 do not cross the border thorugh v2.
(iii) γ1 do not cross the border through v2 and γ2 crosses the border through v2.
(iv) Both γ1 and γ2 cross the border through v2.

Now each of the above four classes corresponds, through δ|T (v), to a different corner
in the ring

eJe =
(

I1 N (1M(Q2) − e2)
(1M(Q2) − e2)M (1M(Q2) − e2)I2(1M(Q2) − e2)

)

.

It follows that δ|T (v) is an isomorphism from 〈T 0(v)〉 onto eJe. Therefore δ is an
isomorphism, as required.

Finally we check that the composition V(δ−1)◦η is the natural map M(E2,C2)→
V(QK (E2,C2)). Indeed, for w′ ∈ E0

2 , let w be the unique vertex in E0
1 \ T 0(v2) such

that φ0(w) = w′. Then we have

(V(δ−1) ◦ η)(aw′) = V(δ−1)([α(w)]) = [w′],
showing the result. ��

We can finally complete the proof of our main result.

Proof of TheoremA Let (E,C) be an adaptable separated graph. As we have already
remarked (see Remark 5.3), the proof of Theorem 3.3 enables us to build a
finite chain of adaptable separated graphs (Fi , Di ), for i = 0, . . . ,m, such that
(F0, D0) = (Ẽ, C̃) satisfies condition (F), and (Fm, Dm) = (E,C). Moreover, each
pair ((Fi , Di ), (Fi+1, Di+1)), i = 0, . . . ,m − 1, is a crowned pair in the sense of
Definition 5.1.

By Theorem 4.1, QK (F0, D0) is von Neumann regular and the natural map
M(F0, D0) → V(QK (F0, D0)) is a monoid isomorphism. Now using Theorem 5.7
m times, we get the same conclusion for QK (Em,Cm) = QK (E,C). This completes
the proof. ��
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