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The main aim of this appendix is to prove a uniqueness theorem for certain
order zero maps into sequence algebras, Theorem A.3. We begin with some
definitions required to state the theorem.

Definition A.1. Let A,B be C*-algebras and let φ : A → B be a c.p.c.
order zero map. Then we say that φ is tracially factorizable if there is a
contractive tracial functional σ ∈ T≤1(C0((0, 1])) and a continuous affine
map ρ : T (B)→ T (A) such that

τ ◦
(
f(φ)

)
= σ(f)ρ(τ), f ∈ C0((0, 1]), τ ∈ T (B).

Recall that a c.p.c. order zero map φ : A → B (between C*-algebras)
induces a ∗-homomorphism πφ : C0((0, 1]) ⊗ A → B, which we call the
associated ∗-homomorphism. We say that a ∗-homomorphism ψ : A → B
(between C*-algebras) is totally full if ψ(a) is full in B, for every nonzero
a ∈ A.

Let A be a separable unital C*-algebra with T (A) 6= ∅, and let ω be a
free filter on A. Set Tω(A) equal to the set of all traces σ on Aω of the
form σ((an)∞n=1) = limn→ω τn(an), for some sequence (τn)∞n=1 in T (A). The
trace-kernel ideal of A is

JAω := {a ∈ Aω : τ(|a|2) = 0 for all τ ∈ Tω(A)},
a closed ideal of Aω, and allow ourselves to view Tω(A) ⊆ T (Aω/JAω).

Definition A.2 ([? , Definition 2.1]). Let A be a separable unital C*-
algebra with T (A) 6= ∅, and let ω be a free ultrafilter on A. We say that A
has complemented orthogonal partitions of unity (CPoU) if given a1, . . . , ak ∈
(Aω/JAω)+, a separable subset S ⊆ (Aω/JAω), and δ > 0 such that

sup
τ∈Tω(A)

min{τ(a1), . . . , τ(ak)} < δ,

there exist p1, . . . , pk ∈ (Aω/JAω)+ ∩ S′ summing to 1Aω/JAω
such that

τ(piai) ≤ δτ(pi), τ ∈ Tω(A), i = 1, . . . , k.

It should be noted that unital, nuclear, Z-stable, stably finite C*-algebras
have automatically CPoU ([? , Theorem I]).

Here is the main uniqueness theorem of this appendix.
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Theorem A.3. Let (Bn)∞n=1 be a sequence of separable, simple, unital, Z-
stable C*-algebras with T (Bn) 6= ∅ and with CPoU. Let ω be a free filter and
set Bω :=

∏
ω Bn. Let A be a separable, unital C*-algebra, and let φ, ψ :

A → Bω be tracially factorizable c.p.c. order zero maps whose associated
∗-homomorphisms πφ, πψ : C0((0, 1])⊗A→ Bω are totally full. Then φ and
ψ are unitarily equivalent if and only if

τ ◦
(
f(φ)

)
= τ ◦

(
f(ψ)

)
, f ∈ C0((0, 1]), τ ∈ T (Bω).

In fact, we will prove the following uniqueness result with more technical
hypotheses. To establish the above theorem, we will demonstrate that its
hypotheses imply the more technical hypotheses in the following.

Lemma A.4. Let (Bn)∞n=1 be a sequence of separable, simple, unital, Z-
stable C*-algebras with QT (Bn) = T (Bn) 6= ∅ and with CPoU. Let ω be a
free filter and set Bω :=

∏
ω Bn. Let A be a separable, unital C*-algebra,

and let φ1, φ2 : A→ Bω be c.p.c. order zero maps such that φ1(x) is full in
Bω, for every non-zero x ∈ A, and such that the maps T (Bω) → R defined
by τ → dτ (φi(1A)) are continuous. Suppose that

τ ◦ f(φ1) = τ ◦ f(φ2) τ ∈ T (Bω), f ∈ C0((0, 1])+. (A.1)

Assume moreover that for all non-zero f ∈ C0((0, 1])+, there exists γf > 0
such that

τ(f(φ1)(x)) ≥ γfτ(φ
1/m
1 (x)), x ∈ A+, m ∈ N, τ ∈ T (Bω). (A.2)

Then φ1 and φ2 are unitarily equivalent.

For an order zero map φ : A → B, a supporting order zero map for φ is
another c.p.c. order zero map φ̂ : A→ B satisfying

φ(ab) = φ̂(a)φ(b) = φ(a)φ̂(b), a, b ∈ A. (A.3)

By [? , Lemma 1.14], for any sequence (Bn)∞n=1 of C*-algebras and free filter
ω, every c.p.c. order zero map φ : A →

∏
ω Bn has a supporting order zero

maps (though it need not be unique).1 Further, note that any supporting

order zero map φ̂ : A→ Bω for φ satisfies

τ(φ̂(a)) ≥ lim
m→∞

τ(φ1/m(a)), a ∈ A+, τ ∈ T (Bω). (A.4)

If A is unital and the map τ 7→ dτ (φ(1A)) from T (Bω) (equipped with the
natural weak∗-topology) to R is continuous, then [? , Lemma 1.14] says

that a supporting order zero map φ̂ can be found such that equality holds
in (A.4). Following the notational convention of [? ], supporting order zero
maps will be adorned with hats throughout.

We now fix some standing notation to be used along this appendix.

1Actually, the statement of [? , Lemma 1.14] assumes ω is an ultrafilter, but the proof
only needs ω to be a free filter.
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Notation A.5. The sequence (Bn)∞n=1 consists of separable, simple, unital,
Z-stable C*-algebras with QT (Bn) = T (Bn) 6= ∅ and with CPoU. The
symbol ω denotes a free filter, and we set Bω :=

∏
ω Bn. Moreover, A is a

separable unital C*-algebra, and φ1, φ2 : A→ Bω are c.p.c. order zero maps
such that φ1(x) is full in Bω for every non-zero x ∈ A, and such that the
maps T (Bω)→ R defined by τ → dτ (φi(1A)) are continuous. Assume that

τ ◦ f(φ1) = τ ◦ f(φ2), τ ∈ T (Bω), f ∈ C0((0, 1])+. (A.5)

Let φ̂, φ̂2 : A → Bω be supporting c.p.c. order zero maps for φ1, φ2 respec-
tively, satisfying

τ(φ̂i(x)) = lim
m→∞

τ(φ
1/m
i (x)), x ∈ A, i = 1, 2. (A.6)

Define a c.p.c. order zero map π : A→M2(Bω) by

π(x) :=

(
φ1(x) 0

0 φ2(x)

)
, x ∈ A. (A.7)

and let π̂ : A→M2(Bω) be given by

π̂(x) :=

(
φ̂1(x) 0

0 φ̂2(x)

)
, x ∈ A. (A.8)

so that π̂ is a supporting order zero map for π.
Finally, set

C : = M2(Bω) ∩ π̂(A)′ ∩ {1M2(Bω) − π̂(1A)}⊥

= {x ∈M2(Bω) : π̂(1A)x = x, xπ̂(a) = π̂(a)x, for all a ∈ A}, (A.9)

and define positive contractions

a :=

(
φ1(1A) 0

0 0

)
, b :=

(
0 0
0 φ2(1A)

)
∈ C+. (A.10)

We prove Lemma A.4 via a 2 × 2 matrix trick. Originated in [? ], these
convert problems of classifying maps upto (approximate) unitary equiva-
lence into problems of classifying projections or positive elements in relative
commutants of ultrapowers. In particular, the version of this trick contained
in [? , Lemma 2.3] shows that to prove φ1 and φ2 are unitarily equivalent,
it suffices to prove that a and b are unitarily equivalent in C. This will be
done using tracial information, as in particular the hypotheses ensure that
C has strict comparison of positive elements by traces. We collect together
this fact

Lemma A.6. Assume the standing conventions of Notation A.5. Then:

(i) π̂ induces a ∗-homomorphism modulo the trace-kernel ideal M2(JBω);
(ii) C has strict comparison of positive elements with respect to traces,

as defined in [? , Definition 1.5];
(iii) T (C) is the closed convex hull of traces of the form τ(π̂(x)·), where

τ ∈ T (M2(Bω)) and x ∈ A+ satisfy τ(π̂(x)) = 1;
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(iv) there exists a positive contraction e ∈ C with e(a+ b) = (a+ b); any
such e satisfies

(τM2 ⊗ τ)(f(π̂(x)e)) = (τM2 ⊗ τ)(f(π̂(x))) = lim
m→∞

τ(φ
1/m
i (f(x))), (A.11)

for all τ ∈ T (Bω), f ∈ C0((0, 1]), and i = 1, 2.
(v) a positive element h ∈ C is full in C if and only if there exists a

constant γ > 0 such that

τ(π̂(x)h) ≥ γτ(π̂(x)), (A.12)

for all x ∈ A+ and all τ ∈ T (M2(Bω)).

Proof. By construction τ(π̂(x)) = limm→∞ τ(π1/m(x)) for all x ∈ A, so that
by the last sentence of [? , Lemma 1.14], π̂ is a ∗-homomorphism modulo
the trace-kernel ideal M2(JBω), proving (i).

Parts (ii) and (iii) are obtained from the corresponding parts of [? ,
Lemma 4.7] (applied to π̂). Note that in [? ], ω is assumed to be a free
ultrafilter; however the arguments go through using a free filter instead,
and letting Tω(B) consist of all traces σ on Bω of the form σ((bn)∞n=1) =
limn→ω′ τn(bn), where (τn)∞n=1 is a sequence of traces on B and ω′ ⊇ ω is an
ultrafilter. The conditions in Notation A.5, together with (i), verify most
hypotheses of this lemma. The only thing remaining to check is that π̂(x) is
full in M2(Bω) for every non-zero x ∈ A. For a positive contraction x ∈ A+,

π̂(x) ≥ π(x) ≥
(
φ1(x) 0

0 0

)
(A.13)

which is full in M2(Bω) by the hypothesis in Notation A.5. Thus π̂(x) is
full in M2(Bω). Since π is positive, it follows that for every non-zero x ∈ A,
π(x) is full in M2(Bω). This verifies all the hypotheses of [? , Lemma 4.7];
hence, both (ii) and (iii) follow.

The existence of e as in (iv) follows from [? , Lemma 1.16]. It suffices to
prove the second claim for positive f ∈ C0((0, 1]). Using part (i), and the
fact that all traces on M2(Bω) vanish on M2(JBω), we have

(τM2 ⊗ τ)(f(π̂(x))) = (τM2 ⊗ τ)(π̂(f(x)))

=
1

2
τ(φ̂1(f(x)) + φ̂2(f(x)))

(A.6)
=

1

2
lim
n→∞

τ(φ
1/n
1 (f(x)) + φ

1/n
2 (f(x)))

(A.5)
= lim

n→∞
τ(φ

1/n
i (f(x)). (A.14)
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Note that π̂(·)e is also a supporting order zero map for π and for all
x ∈ A+,

τ(π̂(x)e) ≤ τ(π̂(x))

= lim
m→∞

τ(π1/m(x))

(A.4)

≤ τ(π̂(x)e). (A.15)

Thus the above argument also applies to π̂(·)e in place of π, and the con-
clusion follows.

Versions of (v) are repeatedly used implicitly in [? ]. For completeness, if
such a constant γ exists, let k ∈ C+ be a positive contraction. Then given
τ ∈ T (M2(Bω)), x ∈ A+ with τ(π̂(x)) = 1 and n ∈ N, we have

dτ(π̂(x)·)(h) ≥ τ(π̂(x)h) ≥ γτ(π̂(x)) ≥ γτ(π̂(x)k1/n), (A.16)

so that

dτ(π̂(x)·)(h) ≥ γdτ(π̂(x)·)(k). (A.17)

Taking m ∈ N such that m > γ−1, it follows that (working in Mn(C))

dτ(π̂(x)·)(h
⊕m) > dτ(π̂(x)·)(k). (A.18)

By (iii), this holds for all traces on C, so by strict comparison as obtained
in (ii), k is in the ideal of C generated by h.

For the converse, suppose that h ∈ C+ is full in C and let e be as in (iv).
As e lies in the ideal of C generated by h, there exist y1, . . . , ym ∈ C such
that

‖e−
m∑
i=1

y∗i hyi‖ <
1

2
. (A.19)

Then by [? , Proposition 2.2], there exists z ∈ C such that

(e− 1/2)+ ≤ z∗(
m∑
i=1

y∗i hyi)z. (A.20)

By parts (iii) and (iv), for any ρ ∈ T (C), we have ρ(e) = ρ(e2), so that e is
a projection modulo the ideal {x ∈ C : ρ(x∗x) = 0}, giving ρ((e− 1/2)+) =
1
2ρ(e). Hence,

1

2
ρ(e) ≤ ρ

(
h1/2(

m∑
i=1

yizz
∗y∗i )h

1/2
)
≤ ‖

m∑
i=1

yizz
∗y∗i ‖ρ(h).

Thus (iv) enables us to take γ = (2‖
∑m

i=1 yizz
∗y∗i ‖)−1. �

Lemma A.7. Assume the standing conventions of Notation A.5. If f(a)
is full in C for every nonzero f ∈ C0((0, 1])+, then φ1 and φ2 are unitarily
equivalent (by unitaries in Bω).
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Proof. For a trace ρ ∈ T (C) of the form ρ = τ(π̂(x)·), where τ ∈ T (M2(Bω))
and x ∈ A+ with τ(π̂(x)) = 1, we have

ρ(f(a)) = τ

((
φ̂1(x)f(φ1(1A)) 0

0 0

))
= τ

((
f(φ1)(x)) 0

0 0

))
(A.5)
= τ

((
0 0
0 f(φ2)(x))

))
= τ

((
0 0

0 φ̂2(x)f(φ2(1A))

))
= ρ(f(b)). (A.21)

Notice that the second and fourth equality holds since supporting order zero
maps induce functional calculus (see paragraph after [? , Lemma 1.14] for
further details). Now, via Lemma A.6 (v), it follows that b is also totally full
in C, and by Lemma A.6 (iii), we have σ(f(a)) = σ(f(b)) for all σ ∈ T (C)
and f ∈ C0((0, 1]).

We now apply Theorem 5.1 of [? ], much in the same way as in the
proof of both [? , Theorem 5.5] and [? , Lemma 4.8]. The two remaining
hypotheses of [? , Theorem 5.1] are that C has strict comparison of positive
elements by traces, which is Lemma A.6 (ii) and that C is full in M2(Bω),
which follows as for each non-zero x ∈ A, φ1(x) is full in Bω, so in particular
a (and b) are full in M2(Bω). Therefore, the totally full elements a and b
are unitarily equivalent by unitaries in the unitization of C.

Since each Bn is finite, simple, and Z-stable, it has stable rank one, and
consequently so does Bω (see [? , Lemma 1.22 (iii)]). Our setup then
matches the hypotheses of the 2×2 matrix trick in [? , Lemma 2.3], and so
φ1 and φ2 are unitarily equivalent. �

To apply the above lemma, we need to give conditions in which the image
of the unit under an order zero map is totally full in the relevant relative
commutant. That is our next aim.

Lemma A.8. Assume the standing conventions of Notation A.5. Let f ∈
C0((0, 1])+. Then f(a) is full in C if and only if there exists γ > 0 such that

τ(f(φ1)(x)) ≥ γ lim
m→∞

τ(φ
1/m
1 (x)) (A.22)

for all x ∈ A+ and all τ ∈ T (Bω).

Proof. (⇒): Let e ∈ C+ be an element that acts as a unit on a + b. By
hypothesis, e is in the ideal generated by f(a), so there exist x1, . . . , xn ∈ C
such that

(e− 1/2)+ =
n∑
i=1

x∗i f(a)xi. (A.23)
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Since e is a projection modulo the trace-kernel ideal, we have for every trace
ρ ∈ T (C),

1

2
ρ(e) = ρ ((e− 1/2)+) = ρ

(
n∑
i=1

x∗i f(a)xi

)
≤ Kρ(f(a)), (A.24)

where K :=
∑n

i=1 ‖xi‖2; by linearity, this holds equally for bounded tracial
functionals. In particular, for any x ∈ A+ and τ ∈ T (Bω), we may set
ρ := (τM2 ⊗ τ(π̂(x)·), to get

(τM2 ⊗ τ)(π̂(x)e) ≤ 2K(τM2 ⊗ τ)(π̂(x)f(a)). (A.25)

Using (A.5) and Lemma A.6 (iv), the left-hand side becomes

(τM2 ⊗ τ)(π̂(x)e) = lim
m→∞

τ(φ
1/m
1 (x)). (A.26)

Thus we have

1

2
τ(φ̂1(x)) ≤ 2K(τM2 ⊗ τ)(π̂(x)f(a))

= 2K(τM2 ⊗ τ)

(
π̂(x)

(
f(φ1(1)) 0

0 0

))
= 2K(τM2 ⊗ τ)

((
f(φ1)(x) 0

0 0

))
= Kτ (f(φ1)(x)) , (A.27)

where the second-last equality uses functional calculus via supporting order
zero maps (as noted after Lemma 1.14 in [? ]).

(⇐): Consider a trace σ = (τM2 ⊗ τ)(π(x)·) where τ ∈ T (Bω), x ∈ A+,
and (τM2 ⊗ τ)(π(x)) = 1. We have

σ(f(a)) = (τM2 ⊗ τ)(π(x)f(a))

=
1

2
τ(f(φ1)(x)) (as in (A.27))

≥ 1

2
γτ(φ̂1(x))

(A.5)
=

1

2
γ(τM2 ⊗ τ)(π(x))

=
1

2
γ. (A.28)

By Lemma A.6 (iii), it follows that

σ(f(a)) ≥ 1

2
γ (A.29)

for all σ ∈ T (C). By strict comparison (Lemma A.6 (ii)), it follows that
f(a) is full. �

We now have the pieces in place to prove Lemma A.4.
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Proof of Lemma A.4. Let (Bn)∞n=1, ω, A, and φ1, φ2 be as in the statement
of Lemma A.4. Then these satisfy the standing conventions of Notation
A.5. Moreover, the last part of the hypothesis of Lemma A.4 together with
Lemma A.8 shows that f(a) is full in C for every nonzero f ∈ C0((0, 1])+.
Hence by Lemma A.7, it follows that φ1 and φ2 are unitarily equivalent. �

We now check that tracially factorizable maps satisfy the hypotheses of
Lemma A.4.

Lemma A.9. Let B be a unital C*-algebra with T (B) 6= ∅. Let A be a
unital C*-algebra and let φ : A → B be a tracially factorizable c.p.c. order
zero map whose associated ∗-homomorphisms πφ : C0((0, 1]) ⊗ A → B is
totally full. Then:

(i) the map τ 7→ dτ (φ(1A)) from T (B) to R is continuous; and
(ii) for every non-zero f ∈ C0((0, 1])+, there exists γf > 0 such that

τ(f(φ1)(x)) ≥ γfτ(φ
1/m
1 (x)), x ∈ A+, m ∈ N, τ ∈ T (B). (A.30)

Proof. By the definition of tracially factorizable, let σ ∈ T≤1(C0((0, 1])))
and let ρ : T (B)→ T (A) be a continuous affine map such that

τ ◦ f(φ) = σ(f)ρ(τ), f ∈ C0((0, 1]), τ ∈ T (B). (A.31)

(i): Compute

dτ (φ(1A)) = lim
k→∞

τ(φ(1A)1/k)

= lim
k→∞

τ(φ1/k(1A))

(A.31)
= lim

k→∞
σ(id

1/k
(0,1])ρ(τ)(1A)

= dσ(id(0,1])ρ(τ)(1A). (A.32)

This is continuous in τ , since ρ is continuous.

(ii): Given a non-zero function f ∈ C0((0, 1])+, define γf := σ(f)
‖σ‖ ≥ 0.

Since πφ is totally full, f(φ)(1A) = πφ(f ⊗ 1A) is full in B, so that

γf = γfρ(τ)(1A) = ‖σ‖−1τ(f(φ)(1A)) > 0 (A.33)

(using any τ ∈ T (B)).
Now, for a ∈ A+, m ∈ N, and τ ∈ T (B),

τ(f(φ)(a)) = σ(f)ρ(τ)(a))

= γf‖σ‖ρ(τ)(a))

≥ γfσ(id
1/m
(0,1])ρ(τ)(a)

= γfτ(φ1/m(a)). (A.34)

�
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Proof of Theorem A.3. Setting φ1 := φ and φ2 := ψ, the previous lemma
shows that the hypotheses of Theorem A.3 imply those of Lemma A.4. Hence
it follows from Lemma A.4 that φ and ψ are unitarily equivalent. �

We finish this appendix by showing by an example a situation where the
assumptions on Lemma A.4 don’t hold, even though the ∗-homomorphisms
associated to the order zero maps are totally full.

Example A.10. Let A be a unital simple AF algebra, such that ∂eT (A) ∼=
[0, 1], and let Bn = B = Q for all n. We will show how to use Robert’s
classification theorem [? ] to obtain a c.p.c. map φ1 : A → B ⊂ Bω such
that

τQω(f(φ1)(x)) =
1

10

∫ 1

0
τs(x)

(
s2
∫ 1

0
f(t) dt+

∫ s

0
f(t) dt

)
ds, (A.35)

where we parametrize ∂eT (A) as (τs)s∈[0,1]. We can rewrite this as

τQω(f(φ1)(x)) =

∫
[0,1]×(0,1]

τs(x)f(t) dµ(s, t), (A.36)

for a particular measure µ on [0, 1]× (0, 1].
We can see that f(φ1)(x) is full in Qω, for all non-zero f ∈ C((0, 1]), x ∈

A, and therefore the associated ∗-homomorphism πφ1 of φ1 is totally full.
However, φ1 does not satisfy the hypothesis of Lemma A.4, as we now show.

For x ∈ A+,

τQω(φ̂1(x)) = lim
m→∞

τQω(φ
1/m
1 (x))

= lim
m→∞

1

10

∫ 1

0
τs(x)

(
s2
∫ 1

0
t1/m dt+

∫ s

0
t1/m dt

)
ds

=
1

10

∫ 1

0
τs(x)

(
s2
∫ 1

0
1 dt+

∫ s

0
1 dt

)
ds

=
1

10

∫ 1

0
τs(x)(s2 + s) ds (A.37)

by the Dominated Convergence Theorem. Also,

τQω(φ1(x)) =
1

10

∫ 1

0
τs(x)

(
s2
∫ 1

0
t dt+

∫ s

0
t dt

)
ds

=
1

10

∫ 1

0
τs(x)

(
s2/2 + s2/2

)
ds

=
1

10

∫ 1

0
τs(x)s2 ds. (A.38)

Now, for k ∈ N, using [? , Theorem 9.3] (essentially, [? , Corollary
6.4]) we may find a positive contraction yk ∈ A+ such that τs(yk) = 1 for
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s ∈ [0, 1/k] and τs(yk) < 1/k3 for s ≥ 2/k. With this yk, we have

τQω(φ̂1(yk)) =
1

10

∫ 1

0
τs(yk)(s

2 + s) ds

≥ 1

10

∫ 1/k

0
s ds

=
1

10
· (1/k)2

2

=
1

20k2
(A.39)

and

τQω(φ1(yk)) =
1

10

∫ 1

0
τs(yk)s

2 ds

≤ 1

10

(∫ 2/k

0
s2 ds+

1

k3

∫ 1

0
s2 ds

)

=
3

10k3
. (A.40)

From this, we see that there does not exist γ > 0 such that

τQω(φ1(x)) ≥ γτQω(φ̂1(x)), x ∈ A+, (A.41)

i.e., the hypothesis of Lemma A.4 fails for f = id(0,1]. (In other words, φ1(1)

is not full in Qω ∩ φ̂1(A)′ ∩ {1Qω − φ̂1(1A)}.)
Now to explain how to get the map φ1, write

Cu(Q) = V (Q)q {xt | t ∈ (0,∞]}. (A.42)

Define α : Cu(C0((0, 1], A))∼ → Cu(Q) by

α([f ]) :=

{
x, if ∃ x ∈ V (C) s.t. [f(t)] = x ∀t ∈ [0, 1];

xβ(f), otherwise,
(A.43)

where

β(f) :=

∫
[0,1]×(0,1]

dτs(f(t)) dµ(s, t), (A.44)

with µ the measure from (A.36). One can easily see that α preserves addition
in the Cuntz semigroup. If [f ] ≤ [g] in Cu(C0((0, 1], A)∼)) then [f(t)] ≤
[g(t)] for each t ∈ [0, 1], and from this it is not hard to see that α preserves ≤.
To see that α preserves�, it suffices to show that if g ∈ (C0((0, 1], A)∼⊗K)+
and ε > 0 then

α([(g − ε)+])� α([g]). (A.45)

If there exists x ∈ V (C) such that [g(t)] = x for all t ∈ [0, 1], then α([g]) = x
and since x� x, this is automatic. Otherwise, by Lemma A.11 below, there
exists a non-empty interval U and x, y ∈ Cu(A) such that x � y, x 6= y,
and

[(g − ε)+(t)] < x, y ≤ [g(t)], for all t ∈ U. (A.46)
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In particular, using compactness of T (A), there exists γ > 0 such that
dτ (x) + γ ≤ dτ (y) for all traces τ ∈ T (A). Therefore,

β([g])− β([(g − ε)+] =

∫
[0,1]×(0,1]

dτs(g(t))− dτs((g(t)− ε)+) dµ(s, t)

≥
∫
[0,1]×U

dτs(y)− dτs(x) dµ(s, t)

≥
∫
[0,1]×U

γ dµ(s, t)

> 0, (A.47)

and from this it follows that α([(g − ε)+])� α([g]).
All conditions have been checked for the fact that α is a Cu-map. There-

fore by the existence part of [? , Theorems 1.0.1 and 3.2.2(i)], α comes from
some ∗-homomorphism π : C0((0, 1], A)∼ → B. Define φ1 : A→ B by

φ1(a) := π(id(0,1]⊗a). (A.48)

Then for positive contractions f ∈ C0((0, 1])+ and x ∈ A+,

τQω(f(φ1)(x)) = τQω(π(f ⊗ x)

=

∫ 1

0
dτQω

(((f ⊗ x)− ε)+) dε

=

∫ 1

0

∫
[0,1]×(0,1]

dτs(((f ⊗ x)− ε)+(t)) dµ(s, t) dε

=

∫
[0,1]×(0,1]

∫ 1

0
dτs(((f ⊗ x)− ε)+(t)) dε dµ(s, t)

=

∫
[0,1]×(0,1]

τs((f ⊗ x)(t)) dµ(s, t)

=

∫
[0,1]×(0,1]

τs(x)f(t) dµ(s, t), (A.49)

as required.

Lemma A.11. Let A be a C*-algebra, X be a connected compact Hausdorff
space, f ∈ C(X,A), and ε > 0. Then either:

(i) There exists x ∈ Cu(A) such that x� x and [f(t)] = x for all t ∈ X;
or

(ii) There exists x, y ∈ Cu(A) and a non-empty open set U of X such
that x� y, x 6= y, and for all t ∈ U ,

[(f(t)− ε)+] ≤ x, y ≤ [f(t)]. (A.50)

Proof. We shall assume that (i) does not hold, and endeavor to prove (ii).
To this end, let us firstly claim the existence of t0 ∈ X such that [(f(t0)−

ε/2)+] 6= [f(t0)]. For this, consider two cases :
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Case 1: There exists t0 ∈ X such that [f(t0)] 6� [f(t0)]. In this case,
[(f(t0)− ε/2)+] 6= [f(t0)] follows.

Case 2: [f(t)]� [f(t)] for all t ∈ X. In this case, there exists y ∈ Cu(A)
such that

Y := {t ∈ X : y � [f(t)]} (A.51)

is a non-empty, proper subset of X, and therefore it has a boundary point
t1. If t0 ∈ Y is sufficiently close to t1, then f(t0) ≈ε/2 f(t1), and therefore

[(f(t0)− ε/2)+] ≤ [f(t1)]. (A.52)

Since t1 is a boundary point of the open set Y , y 6� [f(t1)]; however, y �
[f(t0)] since t0 ∈ Y . Therefore, [f(t0)] 6= [(f(t0) − ε/2)+]. This concludes
the proof of the claim.

Now, since [f(t0)] = supδ>0[(f(t0) − δ)+], there exists δ ∈ (0, ε/2) such
that [(f(t0)− ε/2)+] < [(f(t0)− δ)+]. By continuity of (f − ε/2)+ and of f ,
there exists a neighbourhood U of t0 such that, for all t ∈ U ,

[(f(t)− ε)+] ≤ [(f(t0)− ε/2)+] and [(f(t0)− δ)+] ≤ [f(t)]. (A.53)

Setting x := [(f(t0)− ε/2)+] and y := [(f(t0)− δ)+], we are done. �
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