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ABSTRACT. Let X be a finite dimensional compact metrizable space. Let A be a separable continu-
ous field C*-algebra over X with all fibers isomorphic to the same stable Kirchberg algebra D. We
show that if D has finitely generated K-theory and it satisfies the Universal Coefficient Theorem in
KK-theory, then there exists a dense open subset U of X such that the ideal A(U) is locally trivial.
The assumptions that the space X is finite dimensional and that the K-theory of the fiber is finitely
generated are necessary.

1. INTRODUCTION

Continuous field C*-algebras play the role of bundles of C*-algebras (in the sense of topology) as
explained in [1]. Continuous field C*-algebras appear naturally since any separable C*-algebra A
with Hausdorff primitive spectrumX has a canonical continuous field structure overX with fibers
the primitive quotients ofA [5]. The bundle structure that underlines a continuous field C*-algebra
is typically not locally trivial.

A point x ∈ X is called singular for A if A(U) is nontrivial (i.e. A(U) is not isomorphic to
C0(U)⊗D for some C*-algebraD) for any open set U that contains x. The singular points ofA form
a closed subspace of X . If all points of X are singular for A we say that A is nowhere locally trivial.

An example of a unital continuous field C*-algebra A over the unit interval with mutually iso-
morphic fibers and such that A⊗K is nowhere locally trivial was constructed in [4]. In that exam-
ple, all the fibers A(x) of A are isomorphic to the same Kirchberg algebra D with K0(D) ∼= Z∞ and
K1(D) = 0. We will argue below that the complexity of the continuous field A ultimately reflects
the property of the K-theory of the fiber of not being finitely generated. On the other extreme,
even if the K-theory of the fiber vanishes, a field can be nowhere locally trivial if the base space
is infinite dimensional. Indeed, a unital separable continuous field C*-algebra A over the Hilbert
cube was constructed in [3] with the property that all fibers are isomorphic to the Cuntz algebra
O2, but nevertheless A⊗K is nowhere locally trivial. The structure of continuous field C*-algebras
with Kirchberg algebras as fibers over a finite dimensional space was studied by the second named
author in [2] and [3]. In the present paper we use results from those articles to prove the following
result on local triviality.

Theorem 1.1. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg
algebra that satisfies the UCT and such that K∗(D) is finitely generated. Let A be a separable continuous
field C*-algebra over X such that A(x) ∼= D for all x ∈ X . Then there exists a dense open subset U of X
such that A(U) is locally trivial.

Recall that a C*-algebra satisfies the Universal Coefficient Theorem in KK-theory (abbreviated
UCT) if and only if it is KK-equivalent to a commutative C*-algebra [11]. The two examples that
we reviewed earlier show that both assumptions, that the space X is finite dimensional and that
the K-theory of the fiber is finitely generated, are necessary.
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2. PRELIMINARIES

In this section, we recall a number of concepts and results that we use in the proof of the main
theorem.

2.1. C(X)-algebras and Continuous Fields. Let X be a locally compact Hausdorff space. A C(X)-
algebra is a C*-algebra A endowed with a ∗-homomorphism θ from C0(X) to the center Z(M(A))
of the multiplier algebra M(A) of A such that C0(X)A is dense in A; see [6]. If U ⊂ X is an open
set, A(U) = C0(U)A is a closed ideal of A. If Y ⊆ X is a closed set, the restriction of A = A(X)
to Y , denoted A(Y ), is the quotient of A by the ideal A(X \ Y ). The quotient map is denoted by
πY : A(X) → A(Y ). If Y reduces to a point x, we write A(x) for A({x}) and πx for π{x}. The
C*-algebra A(x) is called the fiber of A at x. The image πx(a) ∈ A(x) of a ∈ A is denoted by a(x).
The following lemma collects some basic properties of C(X)-algebras, see [2].

Lemma 2.1. Let A be a C(X)-algebra and let B ⊂ A be a C(X)-subalgebra. Let a ∈ A and let Y be a
closed subset of X . Then:

(1) The map x 7→ ‖a(x)‖ is upper semicontinuous.
(2) ‖πY (a)‖ = sup{‖πx(a)‖ | x ∈ Y }.
(3) If a(x) ∈ πx(B) for all x ∈ X , then a ∈ B.
(4) The restriction of πx : A→ A(x) to B induces an isomorphism B(x) ∼= πx(B) for all x ∈ X .

A C(X)-algebra such that the map x 7→ ‖a(x)‖ is continuous for all a ∈ A is called a continuous
C(X)-algebra or a continuous field C*-algebra. A C*-algebra A is a continuous C(X)-algebra if and
only if A is the C*-algebra of continuous sections of a continuous fields of C*-algebras over X in
the sense of [5].

2.2. Semiprojectivity. A separable C*-algebra D is semiprojective if for any C*-algebra A and any
increasing sequence of two-sided closed ideals (Jn) of A with J =

⋃
n Jn, the natural map

lim−→Hom(D,A/Jn) → Hom(D,A/J) induced by πn : A/Jn → A/J is surjective. If we weaken
this condition and require only that the above map has dense range, where Hom(D,A/J) is given
the point-norm topology, then D is called weakly semiprojective.

The following is a generalization of a result of Loring [7]; it is proved along the same general
lines.

Proposition 2.2. Let D be a separable weakly semiprojective C*-algebra. For any finite set F ⊂ D and
any ε > 0 there exists a finite set G ⊂ D and δ > 0 such that for any C*-algebra B ⊂ A and any
∗-homomorphism ϕ : D → A with ϕ(G) ⊂δ B, there is a ∗-homomorphism ψ : D → B such that
‖ϕ(c) − ψ(c)‖ < ε for all c ∈ F . If in addition K∗(D) is finitely generated, then we can choose G and δ
such that we also have K∗(ψ) = K∗(ϕ).

Remark 2.3. By work of Neubuser [9], H.Lin [8] and Spielberg [13], a Kirchberg algebraD satisfying
the UCT and having finitely generated K-theory groups is weakly semiprojective. It is shown in
[2, Prop. 3.11] that if a Kirchberg algebra D is weakly semiprojective, then so is its stabilization
D = D ⊗K.

The following result gives necessary and sufficient K-theory conditions for triviality of continu-
ous fields whose fibers are Kirchberg algebras. See also [3] for other generalizations.

Theorem 2.4 ([2]). LetX be a finite dimensional compact metrizable space. LetA be a separable continuous
field overX whose fibers are stable Kirchberg algebras satisfying the UCT. LetD be a stable Kirchberg algebra
that satisfies the UCT and such that K∗(D) is finitely generated. Then A is isomorphic to C(X)⊗D if and
only if there is σ : K∗(D)→ K∗(A) such that σx : K∗(D)→ K∗(A(x)) is bijective for all x ∈ X .



LOCAL TRIVIALITY FOR CONTINUOUS FIELD C∗-ALGEBRAS 3

2.3. Approximation of Continuous Fields. In this subsection, we state a corollary of a result on the
structure of continuous fields proved in [2, Thm. 4.6]. In this, the property of weak semiprojectivity
is used to approximate a continuous field A by continuous fields Ak given by n-pullbacks of trivial
continuous fields. We shall use this construction several times in the sequel.

First, we recall the notion of pullback for C*-algebras. The pullback of a diagram

A
π // C oo

γ
B

is the C*-algebra
E = {(a, b) ∈ A⊕B | π(a) = γ(b)}.

We are going to use pullbacks in the context of continuous field C*-algebras.

Definition 2.5. Let X be a metrizable compact space, and let D be a C*-algebra. Suppose that X = Z0 ∪
Z1 ∪ . . . ∪ Zn, where {Zj}nj=0 are closed subsets, and write Yi = Z0 ∪ Z1 ∪ . . . ∪ Zi. The notion of an
n-pullback of trivial continuous fields with fiber D over X is defined inductively by the following data.
We are given continuous fields Ei over Yi with fibers isomorphic to D and fiberwise injective morphisms of
fields γi+1 : C(Yi ∩ Zi+1)⊗D → Ei(Yi ∩ Zi+1), i ∈ {1, . . . , n− 1}, with the following properties:

(i) E0 = C(Y0)⊗D = C(Z0)⊗D.
(ii) E1 is the field over Y1 = Y0 ∪ Z1 defined by the pullback of the diagram ( where π = πY0∩Z1)

E0(Y0)
π // E0(Y0 ∩ Z1) oo

γ1◦π
C(Z1)⊗D.

(iii) In general, Ei+1 is the field over Yi+1 = Yi ∪ Zi+1 defined as the pullback of the diagram

Ei(Yi)
π // Ei(Yi ∩ Zi+1) oo

γi+1◦π
C(Zi+1)⊗D.

We call the continuous field E = En(Yn) = En(X) an n-pullback (of trivial fields). Observe that all its
fibers are isomorphic to D.

Remark 2.6. (a) If E is an n-pullback of trivial continuous fields with fiber D over X , then Ei is an
i-pullback and Ei(Zi) ∼= C(Zi)⊗D for all i = 0, 1, ..., n.

(b) If V ⊂ X is a closed set such that V ∩ (Zi+1 ∪ . . . ∪ Zn) = ∅, then E(V ) ∼= Ei(V ). Moreover, if
V ⊂ Zi, then it follows that E(V ) ∼= Ei(V ) ∼= C(V )⊗D.

Notation. We denote by Dn(X) the class of continuous fields with fibers isomorphic to D which are n-
pullbacks of trivial fields in the sense of Definition 2.5 and which have the additional property that the spaces
Zi that appear in their representation as n-pullbacks are finite unions of closed subsets of X of the form
U(x, r), where U(x, r) = {y ∈ X : d(y, x) < r} is the open ball of center x and radius r for a fixed metric
d for the topology of X .

Definition 2.7. Let A be a C*-algebra. We say that a sequence of C*-subalgebras {An} is exhaustive if for
any finite subset F ⊂ A, any ε > 0 and any n0, there exists n ≥ n0 such that F ⊂ε An. In the case of
continuous fields we will require that An are C(X)-subalgebras of A.

The condition F ⊂ε B means that for each a ∈ F there is b ∈ B such that ‖a − b‖ < ε. The
following is a corollary of result from [2]. We shall use it to approximate a continuous field A by
exhaustive sequences consisting of n-pullbacks of trivial continuous fields.

Theorem 2.8. [2, Thm. 4.6] LetD be a stable Kirchberg algebra that satisfies the UCT. Suppose thatK∗(D)
is finitely generated. Let X a be finite dimensional compact metrizable space and let A be a separable contin-
uous field over X such that all its fibers are isomorphic to D. For any finite set F ⊂ A and any ε > 0, there
exists B ∈ Dn(X) with n ≤ dim(X) and an injective C(X)-linear ∗-homomorphism η : B → A such that
F ⊂ε η(B).
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Theorem 4.6 of [2] does not state that the sets Zi that give the n-pullback structure of B are finite
unions of closures of open balls. However, this additional condition will be satisfied if in the proof
of [2, Theorem 4.6] on page 1866 one chooses the closed sets Uik to be finite unions of sets of the
form U(x, r).

2.4. A simple algebraic lemma. The following elementary lemma collects some useful properties
of finitely generated abelian groups. It is singled out in this subsection because it will be used re-
peatedly in the sequel, sometimes without further reference. A proof is included for completeness.

Lemma 2.9. Let G be a finitely generated abelian group.
(i) IfG is finite, then a map α : G→ G is bijective if and only if α is injective if and only if α is surjective.

(ii) Any surjective homomorphism η : G→ G is bijective.
(iii) In a commutative diagram of group homomorphisms

G
γ

//

α
  

G>>

β

G,

if α is not bijective, then γ is not bijective.

Proof. (i) This is obvious. (ii) Since G is a finitely generated group abelian, G ∼= Zk ⊕ T where
k ≥ 0 and T is a finite torsion group. To prove the statement, consider the following commutative
diagram

0 // T //

β

��

G //

η

��

Zk //

α
��

0

0 // T // G // Zk // 0.

One can represent η as
(
α 0
γ β

)
, where γ : Zk → T . Note that α is surjective (and hence

bijective) since η is surjective. By the five lemma, β is surjective and so it must be bijective by (i).
Applying the five lemma again, we see that η is bijective.

(ii) If γ were bijective, β would be surjective and hence bijective by (i). Since α is not bijective,
this is a contradiction. �

3. LOCAL TRIVIALITY

In this section we prove our main result, Theorem 1.1. The main technical result of the paper is
the following.

Theorem 3.1. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg
algebra that satisfies UCT and such that K∗(D) is finitely generated. Let A be a separable continuous field
C*-algebra over X such that A(x) ∼= D for all x ∈ X . Then there exists a closed subset V of X with
non-empty interior such that A(V ) ∼= C(V )⊗D.

To prove this, we need several lemmas.

Lemma 3.2. Let φ : A → B be a ∗-homomorphism of trivial fields over a space X with all the fibers
isomorphic to D. Suppose that there is x ∈ X such that K∗(φx) : K∗(A(x)) → K∗(B(x)) is not bijective.
If K∗(D) is finitely generated, then there exists a neighborhood V of x such that K∗(φv) : K∗(A(v)) →
K∗(B(v)) is not bijective for any v ∈ V .
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Proof. We can view φ as being given by a continuous mapX → Hom(D,D), v → φv. SinceK∗(D) is
finitely generated, the map Hom(D,D)→ Hom(K∗(D),K∗(D)) is locally constant. This concludes
the proof. �

Lemma 3.3. Let X be a metrizable compact space. Suppose that A is a continuous field in Dn(X). Then for
any open set U ⊂ X and x ∈ U, there is an open set V such that x ∈ V ⊂ U and A(V ) ∼= C(V )⊗D.

Proof. We use the notation from Definition 2.5 with A in place of E. Let i ∈ {0, 1, ..., n} be the
largest number with the property that x ∈ Zi. Set Xi =

⋃n
i=i+1 Zi if i < n and Xn = ∅. Then

dist(x,Xi) > 0 since Xi is a closed set. Let W be an open ball centered at x such that W ⊂ U and
W ∩ Xi = ∅. By the definition of Dn(X), there exist z ∈ Zi and r > 0 such that x ∈ U(z, r) ⊂ Zi.
Since x ∈W ∩U(z, r) andW is open, there must be a sequence zn ∈W ∩U(z, r) which converges to
x. Setting V =W∩U(z, r), we have that x ∈ V ⊂W ⊂ U and V ∩Xi = ∅. Because V ⊂ U(z, r) ⊂ Zi,
it follows that A(V ) is trivial by Remark 2.6(b). �

Lemma 3.4. Let D be a stable Kirchberg algebra such that K∗(D) is finitely generated. Let {Dn} be an
exhaustive sequence for D with inclusion maps φn : Dn ↪→ D. Suppose that K∗(Dn) ∼= K∗(D) for all
n ≥ 1. Then, there exists n1 < n2 < . . . < nk < . . . such that K∗(φnk

) is bijective for all k.

Proof. For the sake of simplicity, we give the proof only for K0. Let K0(D) be generated by classes
of projections ei ∈ D, i = 1, . . . , r. Since {Dn} is exhaustive, there exist n1 < n2 < . . . < nk < . . .
such that dist(ei,Dnk

) < 1 for i = 1, . . . , r and k ≥ 1. By functional calculus, it follows immediately
that the maps K0(φnk

) : K0(Dnk
) → K0(D) are surjective. Then they must be bijective by Lemma

2.9. �

Let us recall that a continuous field A over X is nowhere trivial if there is no open subset V 6= ∅
of X such that A(V ) ∼= C0(V )⊗D for some C*-algebra D.

Lemma 3.5. Let X be a finite dimensional metrizable compact space, and letD be a stable Kirchberg algebra
that satisfies the UCT and such that K∗(D) is finitely generated. Let A be a separable continuous field
C*-algebra over X with all fibers isomorphic to D. Let B ∈ Dn(X) (n < ∞) be such that there exists a
C(X)-linear ∗-monomorphism φ : B → A. If A is nowhere trivial, then for any nonempty set U ⊂ X

there exists an open nonempty set W such that W ⊂ U, B(W ) is trivial and for all v ∈ W, K∗(φv) is not
bijective.

Proof. By Lemma 3.3 there is an open set V 6= ∅ such that V ⊂ U and B(V ) ∼= C(V ) ⊗ D. After
replacing U by V and restricting both B and A to V we may assume without any loss of generality
that B = C(X) ⊗ D. By Theorem 2.8, there is an exhaustive sequence {φk : Ak → A} such
that Ak ∈ Dlk(X) with lk ≤ dim(X). Let us regard D as the subalgebra of constant functions
of B = C(X)⊗D and denote by j the corresponding inclusion map. Applying Proposition 2.2 for
the weakly semiprojective C*-algebra D and the map φ ◦ j, after passing to a subsequence of (Ak)k,
if necessary, we construct a sequence of ∗-homomorphisms ψ0

k : D → Ak such that their canonical
C(X)-linear extension ψk : B → Ak form a sequence of diagrams

B
φ

//

ψk   

A>>

φk

Ak ,

satisfying that ‖φkψk(b) − φ(b)‖ → 0 for all b ∈ B. Since K∗(D) is finitely generated, we can
moreover arrange that [φ0k◦ψk◦j] = [φ◦j] ∈ KK(D, A) for all k ≥ 1. This follows from [2, Prop. 3.14
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and Thm. 3.12]. In additition, since there is an isomorphism KKX(C(X,D), A) ∼= KK(D, A), it
follows that [φk ◦ ψk] = [φ] ∈ KKX(B,A) and hence

(1) [(φk)v ◦ (ψk)v] = [φv] ∈ KK(B(v), A(v))

for all points v ∈ X and k ≥ 1, see [10].
SinceA is nowhere trivial, it follows from Theorem 2.4 that there exists x ∈ U such thatK∗(φx) is

not bijective. By applying Lemma 3.4 to the exhaustive sequence {(φk)x : Ak(x) → A(x)} we find
a k, which we now fix, such that K∗((φk)x) is bijective. It follows that K∗((ψk)x) is not bijective for
this fixed k.

Let V be the open set given by Lemma 3.3 applied to Ak, U and x. Then x ∈ V ⊂ U and
Ak(V ) ∼= C(V )⊗D. Restricting the diagram above to V , we obtain a diagram

B(V )
φ

//

ψk ##

A(V )
;;

φk

Ak(V )

where both B(V ) and Ak(V ) are trivial and K∗((φk)v) ◦ K∗((ψk)v) = K∗(φv) for all v ∈ V as
a consequence of (1). Since K∗((ψk)x) is not bijective, by Lemma 3.2 there is r > 0 such that
K∗((ψk)v) is not bijective for all v ∈ V ∩U(X, r). Let W be an open ball whose closure is contained
in V ∩ U(X, r) ⊂ U . It follows by Lemma 2.9 (iii) that K∗(φv) is not bijective for any v ∈W . �

Proof of Theorem 3.1. By Theorem 2.8, there is an exhaustive sequence {Ak}k, such that Ak ∈ Dlk(X),
lk ≤ dim(X) and that the maps φk : Ak → A are C(X)-linear ∗-monomorphisms for all k. Seeking
a contradiction suppose for each open set V 6= ∅, A(V ) � C(V )⊗D.

Apply Lemma 3.5 to φ1 : A1 → A to find an open set V1 6= ∅ such thatK∗((φ1)v) is not bijective for
all v ∈ V 1. Next, apply Lemma 3.5 again for φ2 : A2(V 1)→ A(V 1) and V1 to find a nonempty open
set V2 such that V 2 ⊂ V1 and K∗((φ2)v) is not bijective for all v ∈ V 2. Using the same procedure
inductively, one finds a sequence of open sets {Vk}k with Vk ⊃ V k+1, such that K∗((φk)v) is not
bijective for all v ∈ V k and k ≥ 1.

Choose x ∈
⋂∞
k=1 V k and note that {Ak(x)}k is an exhaustive sequence for A(x) such that none

of the maps K∗((φk)x) : K∗(Ak(x)) → K∗(A(x)) are bijective. By Lemma 3.4 this implies that
K∗(A(x)) � K∗(D), and this is a contradiction. �

Proof of Theorem 1.1. Let U be the family of all open subsets U of X such that A(U) is trivial. Since
X is compact metrizable, we can find a sequence {Un}n in U whose union is equal to the union of
all elements of U . If we set U∞ =

⋃
n Un, then U∞ is dense in X by Theorem 3.1. Since A(U∞) =

lim−→n
{A(U1 ∪ · · · ∪ Un)} = lim−→n

{A(U1) + · · · + A(Un)}, we see immediately that A(U∞) is locally
trivial. Indeed the ideal A(U∞)(Un) of A(U∞) determined by the open set Un is equal to A(Un) ∼=
C0(Un)⊗D.

�

Corollary 3.6. Fix n ∈ N ∪ {∞}. Let X be a finite dimensional compact metrizable space and A be a
continuous field over X such that A(x) ∼= On ⊗ K for all x ∈ X . Then there exists a closed subset V of X
with nonempty interior such that A(V ) ∼= C(V )⊗On ⊗K.

The following example shows that the conclusion of Theorem 1.1 is in a certain sense optimal.
Indeed, given a nowhere closed set F ⊂ [0, 1], we construct a continuous field C*-algebra A with
all fibers isomorphic to a fixed Cuntz algebra On ⊗K, 3 ≤ n ≤ ∞, and such that the set of singular
points of A coincides to F . It is worth mentioning that the Lebesgue measure of a nowhere dense
closed subset of [0, 1] can be any nonnegative number < 1.
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Example 3.7. Let U be an open dense subset of the unit interval with nonempty complement F .
Let D be a Kirchberg algebra with K0(D) 6= 0 and K1(D) = 0. Fix an injective ∗-homomorphism
γ : D → D such that K∗(γ) = 0. Define a continuous field C*-algebra over [0, 1] by

A = {f ∈ C[0, 1]⊗D | f(x) ∈ γ(D), ∀x ∈ F}.
It is clear that A(U) ∼= C0(U)⊗D. We will show that if I is any closed subinterval of [0, 1] such that
I ∩ F 6= ∅, then A(I) is not trivial. This will show that F is the set of singular points of A. Let us
observe that

A(I) = {f ∈ C(I)⊗D | f(x) ∈ γ(D), ∀x ∈ I ∩ F}
is isomorphic to the pullback of the diagram

C(I)⊗D π // C(I ∩ F )⊗D oo
id⊗γ

C(I ∩ F )⊗D.

We see that K1(C(I ∩ F ) ⊗ D) = 0 by the Künneth formula. Therefore, the Mayer-Vietoris exact
sequence [12, Thm. 4.5] gives that K0(A(I)) is the pullback of the following diagram of groups.

K0(C(I)⊗D)
π∗ // K0(C(I ∩ F )⊗D) oo

(id⊗γ)∗
K0(C(I ∩ F )⊗D).

Let e ∈ D be a projection such that [e] 6= 0 in K0(D). Let γ̃(e) be the constant function on I equal
to γ(e), and let ẽ be the constant function on I ∩ F equal to e. The pair (γ̃(e), ẽ) is a projection
p ∈ A(I). Since F has empty interior, there is a point y0 ∈ I \F . Choose a point z0 ∈ I ∩F . To show
that A(I) is not trivial we observe that K0(πy0)(p) = [γ(e)] = 0 in K0(A(y0)) = K0(D), whereas
K0(πz0)(p) = [e] 6= 0 in K0(A(z0)) = K0(D).
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