LOCAL TRIVIALITY FOR CONTINUOUS FIELD C*-ALGEBRAS

JOAN BOSA AND MARIUS DADARLAT

ABSTRACT. Let X be a finite dimensional compact metrizable space. Let A be a separable continu-
ous field C*-algebra over X with all fibers isomorphic to the same stable Kirchberg algebra D. We
show that if D has finitely generated K-theory and it satisfies the Universal Coefficient Theorem in
KK-theory, then there exists a dense open subset U of X such that the ideal A(U) is locally trivial.
The assumptions that the space X is finite dimensional and that the K-theory of the fiber is finitely
generated are necessary.

1. INTRODUCTION

Continuous field C*-algebras play the role of bundles of C*-algebras (in the sense of topology) as
explained in [1]. Continuous field C*-algebras appear naturally since any separable C*-algebra A
with Hausdorff primitive spectrum X has a canonical continuous field structure over X with fibers
the primitive quotients of A [5]. The bundle structure that underlines a continuous field C*-algebra
is typically not locally trivial.

A point z € X is called singular for A if A(U) is nontrivial (i.e. A(U) is not isomorphic to
Co(U) ® D for some C*-algebra D) for any open set U that contains x. The singular points of A form
a closed subspace of X. If all points of X are singular for A we say that A is nowhere locally trivial.

An example of a unital continuous field C*-algebra A over the unit interval with mutually iso-
morphic fibers and such that A ® K is nowhere locally trivial was constructed in [4]. In that exam-
ple, all the fibers A(x) of A are isomorphic to the same Kirchberg algebra D with K (D) = Z* and
K1(D) = 0. We will argue below that the complexity of the continuous field A ultimately reflects
the property of the K-theory of the fiber of not being finitely generated. On the other extreme,
even if the K-theory of the fiber vanishes, a field can be nowhere locally trivial if the base space
is infinite dimensional. Indeed, a unital separable continuous field C*-algebra A over the Hilbert
cube was constructed in [3] with the property that all fibers are isomorphic to the Cuntz algebra
Oo, but nevertheless A ® K is nowhere locally trivial. The structure of continuous field C*-algebras
with Kirchberg algebras as fibers over a finite dimensional space was studied by the second named
author in [2] and [3]. In the present paper we use results from those articles to prove the following
result on local triviality.

Theorem 1.1. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg
algebra that satisfies the UCT and such that K, (D) is finitely generated. Let A be a separable continuous
field C*-algebra over X such that A(z) = D for all x € X. Then there exists a dense open subset U of X
such that A(U) is locally trivial.

Recall that a C*-algebra satisfies the Universal Coefficient Theorem in KK-theory (abbreviated
UCT) if and only if it is KK-equivalent to a commutative C*-algebra [11]. The two examples that
we reviewed earlier show that both assumptions, that the space X is finite dimensional and that
the K-theory of the fiber is finitely generated, are necessary.
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2. PRELIMINARIES

In this section, we recall a number of concepts and results that we use in the proof of the main
theorem.

2.1. C(X)-algebras and Continuous Fields. Let X be a locally compact Hausdorff space. A C(X)-
algebra is a C*-algebra A endowed with a *-homomorphism 6 from Cy(X) to the center Z(M(A))
of the multiplier algebra M (A) of A such that Cp(X)A is dense in A4; see [6]. If U C X is an open
set, A(U) = Cy(U)A is a closed ideal of A. If Y C X is a closed set, the restriction of A = A(X)
to Y, denoted A(Y'), is the quotient of A by the ideal A(X \ Y'). The quotient map is denoted by
my : A(X) — A(Y). If Y reduces to a point z, we write A(z) for A({z}) and m, for m(,,. The
C*-algebra A(z) is called the fiber of A at z. The image 7,(a) € A(z) of a € A is denoted by a(z).
The following lemma collects some basic properties of C'(X)-algebras, see [2].

Lemma 2.1. Let A be a C(X)-algebra and let B C A be a C(X)-subalgebra. Let a € A and let' Y be a
closed subset of X. Then:

(1) The map x — ||a(z)|| is upper semicontinuous.

(2) ||y (a)|| = sup{||ms(a)|| [ z € Y}

(3) Ifa(x) € my(B) forall x € X, then a € B.

(4) The restriction of m, : A — A(x) to B induces an isomorphism B(x) = 7, (B) forall x € X.

A C(X)-algebra such that the map = — ||a(z)|| is continuous for all a € A is called a continuous
C(X)-algebra or a continuous field C*-algebra. A C*-algebra A is a continuous C'(X)-algebra if and
only if A is the C*-algebra of continuous sections of a continuous fields of C*-algebras over X in
the sense of [5].

2.2. Semiprojectivity. A separable C*-algebra D is semiprojective if for any C*-algebra A and any
increasing sequence of two-sided closed ideals (.J,,) of A with J = |J,, J,,, the natural map

lim Hom(D, A/J,) — Hom(D,A/J) induced by 7, : A/J, — A/J is surjective. If we weaken
this condition and require only that the above map has dense range, where Hom(D, A/J) is given
the point-norm topology, then D is called weakly semiprojective.

The following is a generalization of a result of Loring [7]; it is proved along the same general
lines.

Proposition 2.2. Let D be a separable weakly semiprojective C*-algebra. For any finite set 7 C D and
any € > 0 there exists a finite set G C D and § > 0 such that for any C*-algebra B C A and any
s-homomorphism ¢ : D — A with ¢(G) Cs B, there is a x-homomorphism ¢ : D — B such that
lo(c) = ¢Y(o)|| < eforall c € F. If in addition K.(D) is finitely generated, then we can choose G and §
such that we also have K. () = K.(p).

Remark 2.3. By work of Neubuser [9], H.Lin [8] and Spielberg [13], a Kirchberg algebra D satisfying
the UCT and having finitely generated K-theory groups is weakly semiprojective. It is shown in
[2, Prop. 3.11] that if a Kirchberg algebra D is weakly semiprojective, then so is its stabilization
D=D®K.

The following result gives necessary and sufficient K-theory conditions for triviality of continu-
ous fields whose fibers are Kirchberg algebras. See also [3] for other generalizations.

Theorem 2.4 ([2]). Let X be a finite dimensional compact metrizable space. Let A be a separable continuous
field over X whose fibers are stable Kirchberg algebras satisfying the UCT. Let D be a stable Kirchberg algebra
that satisfies the UCT and such that K, (D) is finitely generated. Then A is isomorphic to C'(X) ® D if and
only if there is o : K, (D) — K, (A) such that o, : K.(D) — K,(A(z)) is bijective for all z € X.
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2.3. Approximation of Continuous Fields. In this subsection, we state a corollary of a result on the
structure of continuous fields proved in [2, Thm. 4.6]. In this, the property of weak semiprojectivity
is used to approximate a continuous field A by continuous fields A, given by n-pullbacks of trivial
continuous fields. We shall use this construction several times in the sequel.

First, we recall the notion of pullback for C*-algebras. The pullback of a diagram

A—"sCc+ B
is the C*-algebra
E={(a,b) € A® B|m(a) =~(0)}.
We are going to use pullbacks in the context of continuous field C*-algebras.

Definition 2.5. Let X be a metrizable compact space, and let D be a C*-algebra. Suppose that X = Zy U
Z1 U ... U Z,, where {Zj}?zo are closed subsets, and write Y; = Zy U Z1 U ... U Z;. The notion of an
n-pullback of trivial continuous fields with fiber D over X is defined inductively by the following data.
We are given continuous fields E; over Y; with fibers isomorphic to D and fiberwise injective morphisms of
fields viy1 : C(YiNZip1) @ D — Ei(YiN Zigq), 1 € {1,...,n — 1}, with the following properties:

(i) By =C(Yo) ® D = C(Zy) ®D.

(ii) E\ is the field over Y1 = Yy U Z defined by the pullback of the diagram ( where m = wy,nz,)

Eo(Yo) —" Eo(Yo N Z1) « 7 C(Z1) @ D.
(iii) In general, E; 1 is the field over Y11 = Y; U Z; 41 defined as the pullback of the diagram

Ei(Y;) —= Ei(Y; N Zis1) ¢2"C(Zigr) @ D.
We call the continuous field E = E,(Y,) = E,(X) an n-pullback (of trivial fields). Observe that all its
fibers are isomorphic to D.

Remark 2.6. (a) If E is an n-pullback of trivial continuous fields with fiber D over X, then FE; is an
i-pullback and E;(Z;) = C(Z;) @ D foralli = 0,1, ...,n.

(b) If V C X is a closed set such that V N (Z;41 U...U Z,) = ), then E(V) = E;(V). Moreover, if
V C Z;, then it follows that E(V) = E;(V) = C(V) ® D.

Notation. We denote by D,,(X) the class of continuous fields with fibers isomorphic to D which are n-
pullbacks of trivial fields in the sense of Definition 2.5 and which have the additional property that the spaces
Z; that appear in their representation as n-pullbacks are finite unions of closed subsets of X of the form
U(x,r), where U(x,r) = {y € X: d(y,z) < r} is the open ball of center x and radius r for a fixed metric
d for the topology of X.

Definition 2.7. Let A be a C*-algebra. We say that a sequence of C*-subalgebras { A} is exhaustive if for
any finite subset F C A, any € > 0 and any no, there exists n > ng such that F C. A,. In the case of
continuous fields we will require that A,, are C'(X )-subalgebras of A.

The condition F C. B means that for each a € F there is b € B such that ||a — b|| < e. The
following is a corollary of result from [2]. We shall use it to approximate a continuous field A by
exhaustive sequences consisting of n-pullbacks of trivial continuous fields.

Theorem 2.8. [2, Thm. 4.6] Let D be a stable Kirchberg algebra that satisfies the UCT. Suppose that K, (D)
is finitely generated. Let X a be finite dimensional compact metrizable space and let A be a separable contin-
uous field over X such that all its fibers are isomorphic to D. For any finite set F C A and any € > 0, there
exists B € D, (X) withn < dim(X) and an injective C(X )-linear x-homomorphism n : B — A such that
F Cen(B).
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Theorem 4.6 of [2] does not state that the sets Z; that give the n-pullback structure of B are finite
unions of closures of open balls. However, this additional condition will be satisfied if in the proof
of [2, Theorem 4.6] on page 1866 one chooses the closed sets U;, to be finite unions of sets of the
form U(x,r).

2.4. A simple algebraic lemma. The following elementary lemma collects some useful properties
of finitely generated abelian groups. It is singled out in this subsection because it will be used re-
peatedly in the sequel, sometimes without further reference. A proof is included for completeness.

Lemma 2.9. Let G be a finitely generated abelian group.
(i) If Gis finite, then a map o : G — G is bijective if and only if « is injective if and only if « is surjective.
(ii) Any surjective homomorphism n : G — G is bijective.

(iii) In a commutative diagram of group homomorphisms

G\‘—/>G

if ov is not bijective, then +y is not bijective.

Proof. (i) This is obvious. (ii) Since G is a finitely generated group abelian, G = Z* @ T where
k > 0 and T is a finite torsion group. To prove the statement, consider the following commutative
diagram

0 T G 7k 0
Pl
0 T G 7k 0.

One can represent 71 as < ?; g >, where v : Z¥ — T. Note that «a is surjective (and hence

bijective) since 7 is surjective. By the five lemma, 3 is surjective and so it must be bijective by (i).
Applying the five lemma again, we see that 7 is bijective.

(ii) If v were bijective, 5 would be surjective and hence bijective by (i). Since « is not bijective,
this is a contradiction. O

3. LOCAL TRIVIALITY

In this section we prove our main result, Theorem 1.1. The main technical result of the paper is
the following.

Theorem 3.1. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg
algebra that satisfies UCT and such that K. (D) is finitely generated. Let A be a separable continuous field
C*-algebra over X such that A(z) = D for all x € X. Then there exists a closed subset V of X with
non-empty interior such that A(V) = C(V) ® D.

To prove this, we need several lemmas.

Lemma 3.2. Let ¢ : A — B be a x-homomorphism of trivial fields over a space X with all the fibers
isomorphic to D. Suppose that there is x € X such that K,(¢,) : K.(A(z)) — K.(B(z)) is not bijective.
If K.(D) is finitely generated, then there exists a neighborhood V' of x such that K.(¢,) : K.(A(v)) —
K, (B(v)) is not bijective for any v € V.
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Proof. We can view ¢ as being given by a continuous map X — Hom(D, D), v — ¢,. Since K, (D) is
finitely generated, the map Hom(D,D) — Hom(K.(D), K.(D)) is locally constant. This concludes
the proof. 0

Lemma 3.3. Let X be a metrizable compact space. Suppose that A is a continuous field in D,,(X). Then for
any open set U C X and x € U, there is an open set V such that x € V C U and A(V) 2 C(V) @ D.

Proof. We use the notation from Definition 2.5 with A in place of E. Let ¢ € {0,1,...,n} be the
largest number with the property that z € Z;. Set X; = |J;; i Ziiti <nand X, = (. Then
dist(x, X;) > 0 since X; is a closed set. Let W be an open ball centered at = such that W C U and
W N X; = (. By the definition of D,,(X), there exist z € Z; and r > 0 such that z € U(z,r) C Z;.
Since x € WNU(z,r) and W is open, there must be a sequence z,, € WNU(z,r) which converges to
z. Setting V = WNU(z,r), wehavethatx € V C W C Uand VNX; = (). Because V C U(z,7) C Z;,
it follows that A(V) is trivial by Remark 2.6(b). O

Lemma 3.4. Let D be a stable Kirchberg algebra such that K. (D) is finitely generated. Let {D,,} be an
exhaustive sequence for D with inclusion maps ¢, : D, — D. Suppose that K.(D,) = K.(D) for all
n > 1. Then, there exists ny < ng < ... < ny < ...such that K.(¢y,) is bijective for all k.

Proof. For the sake of simplicity, we give the proof only for K. Let K((D) be generated by classes
of projections ¢; € D, i = 1,...,r. Since {D,,} is exhaustive, there exist n; < ny < ... < ng < ...
such that dist(e;, Dy, ) < 1fori=1,...,rand k > 1. By functional calculus, it follows immediately
that the maps Ko(¢n, ) : Ko(Dp,) — Ko(D) are surjective. Then they must be bijective by Lemma
2.9. O

Let us recall that a continuous field A over X is nowhere trivial if there is no open subset V' # {)
of X such that A(V') = Cy(V) ® D for some C*-algebra D.

Lemma 3.5. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg algebra
that satisfies the UCT and such that K. (D) is finitely generated. Let A be a separable continuous field
C*-algebra over X with all fibers isomorphic to D. Let B € D, (X) (n < oo) be such that there exists a
C(X)-linear x-monomorphism ¢ : B — A. If A is nowhere trivial, then for any nonempty set U C X
there exists an open nonempty set W such that W C U, B(W) is trivial and for all v € W, K, (¢y) is not
bijective.

Proof. By Lemma 3.3 there is an open set V # () such that V C U and B(V) = C(V) @ D. After
replacing U by V and restricting both B and A to V we may assume without any loss of generality
that B = C(X) ® D. By Theorem 2.8, there is an exhaustive sequence {¢; : Ar — A} such
that A, € D;, (X) with [, < dim(X). Let us regard D as the subalgebra of constant functions
of B = C(X) ® D and denote by j the corresponding inclusion map. Applying Proposition 2.2 for
the weakly semiprojective C*-algebra D and the map ¢ o j, after passing to a subsequence of (A )y,
if necessary, we construct a sequence of *-homomorphisms ¢ : D — Ay, such that their canonical
C(X)-linear extension ¢, : B — Ay, form a sequence of diagrams

B— % .4

N

satisfying that ||¢xyr(b) — ¢(b)|| — 0 for all b € B. Since K,(D) is finitely generated, we can
moreover arrange that [¢) ot 0j] = [¢poj] € KK (D, A) forall k > 1. This follows from [2, Prop. 3.14
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and Thm. 3.12]. In additition, since there is an isomorphism K Kx(C(X,D),A) = KK(D, A), it
follows that [¢y o ¥i] = [¢p] € KK x(B, A) and hence

1) [(Qbk)v © (ka)v] = [¢v] € KK(B(U)’ A(U))

for all points v € X and k > 1, see [10].

Since A is nowhere trivial, it follows from Theorem 2.4 that there exists € U such that K, (¢,) is
not bijective. By applying Lemma 3.4 to the exhaustive sequence {(¢y), : Ax(x) — A(x)} we find
a k, which we now fix, such that K. ((¢x).) is bijective. It follows that K. ((tr):) is not bijective for
this fixed k.

Let V be the open set given by Lemma 3.3 applied to Ay, U and z. Thenz € V C U and
Ar(V) =2 C(V) ® D. Restricting the diagram above to V, we obtain a diagram

B(V) ¢ A(V)
N A
Ap(V)

where both B(V) and A (V) are trivial and K. ((¢r)y) © Ki((¥r)y) = Ki(dy) for allv € V as
a consequence of (1). Since K.((¢x).) is not bijective, by Lemma 3.2 there is » > 0 such that
K.((¢r)y) is not bijective for all v € VN U (X, 7). Let W be an open ball whose closure is contained
inVNU(X,r)CU. It follows by Lemma 2.9 (iii) that K, (¢,) is not bijective for any v € W'. O

Proof of Theorem 3.1. By Theorem 2.8, there is an exhaustive sequence { 4; }«, such that A, € D;, (X),
l < dim(X) and that the maps ¢, : A, — A are C'(X)-linear *-monomorphisms for all k. Seeking
a contradiction suppose for each openset V £ (), A(V) 22 C(V) @ D.

Apply Lemma 3.5to ¢; : A; — Atofind anopenset V; # () such that K, ((¢1),) is not bijective for
all v € V1. Next, apply Lemma 3.5 again for ¢5 : A2(V1) — A(V1) and V; to find a nonempty open
set V5 such that Vi C Vi and K. ((¢2),) is not bijective for all v € V5. Using the same procedure
inductively, one finds a sequence of open sets {Vj}x with Vi D V.1, such that K.((¢x),) is not
bijective for allv € Vi and k > 1.

Choose z € ;2 Vi, and note that {Ay(z)}; is an exhaustive sequence for A(z) such that none
of the maps K. ((¢r)z) : Ki(Ag(xr)) — K.(A(z)) are bijective. By Lemma 3.4 this implies that
K.(A(x)) 22 K«(D), and this is a contradiction. O

Proof of Theorem 1.1. Let U be the family of all open subsets U of X such that A(U) is trivial. Since
X is compact metrizable, we can find a sequence {U,, },, in &/ whose union is equal to the union of
all elements of U. If we set Uy, = |J,, Un, then Uy is dense in X by Theorem 3.1. Since A(U) =
lign{A(Ul U---Uly)} = lign{A(Ul) + -+ A(U,)}, we see immediately that A(Uy) is locally
trivial. Indeed the ideal A(Ux)(U,,) of A(Ux) determined by the open set U, is equal to A(U,,) =
Co(Un) ® D.

g

Corollary 3.6. Fix n € N U {oo}. Let X be a finite dimensional compact metrizable space and A be a
continuous field over X such that A(x) = O, ® K for all x € X. Then there exists a closed subset V of X
with nonempty interior such that A(V) = C(V) ® O, ® K.

The following example shows that the conclusion of Theorem 1.1 is in a certain sense optimal.
Indeed, given a nowhere closed set F' C [0, 1], we construct a continuous field C*-algebra A with
all fibers isomorphic to a fixed Cuntz algebra O,, ® K, 3 < n < oo, and such that the set of singular
points of A coincides to F'. It is worth mentioning that the Lebesgue measure of a nowhere dense
closed subset of [0, 1] can be any nonnegative number < 1.
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Example 3.7. Let U be an open dense subset of the unit interval with nonempty complement F.
Let D be a Kirchberg algebra with K((D) # 0 and K;(D) = 0. Fix an injective *-homomorphism
v : D — D such that K, (v) = 0. Define a continuous field C*-algebra over [0, 1] by

A={feC[0,1]®D | f(z) e v(D), Ve F}.

It is clear that A(U) = Cy(U) ® D. We will show that if I is any closed subinterval of [0, 1] such that
INF # 0, then A(I) is not trivial. This will show that F is the set of singular points of A. Let us
observe that

A ={feC(I)®D | f(x) ey(D), VeelINF}
is isomorphic to the pullback of the diagram

C)®D "5 C(INF) oD o(InF) @ D.

We see that K1(C(I N F') ® D) = 0 by the Kiinneth formula. Therefore, the Mayer-Vietoris exact
sequence [12, Thm. 4.5] gives that K(A([)) is the pullback of the following diagram of groups.

Ko(C(I) @ D)~ Ko(C(I N F) @ D) 22 Ko(C(I n F) @ D).

Let e € D be a projection such that [e] # 0 in K((D). Let §(e) be the constant function on I equal
to y(e), and let é be the constant function on I N F' equal to e. The pair (J(e), €) is a projection
p € A(I). Since F' has empty interior, there is a point yy € I\ F'. Choose a point zg € I N F. To show
that A(I) is not trivial we observe that Ko(my,)(p) = [v(e)] = 0in Ko(A(yo)) = Ko(D), whereas
Ko(7m)(p) = [¢] # 0in Ko(A(20)) = Ko(D).
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