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Introduction

C*-algebras

Definition

A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:

An involution a 7→ a∗, for a ∈ A.

The property that ‖aa∗‖ = ‖a‖2 for all a in A.

A is unital if it has a multiplicative identity 1A.

Let A,B be C*-algebras. A *-homomorphism ϕ : A→ B is a

linear and multiplicative map,

ϕ(a∗) = ϕ(a)∗ for all a in A

If A and B are unital and ϕ(1A) = 1B , then ϕ is called unital.

Figure: Sea Star
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Introduction

C*-algebras

Examples

1 C is a C*-algebra where

the involution is given by the complex conjugation and the norm is the
module of a complex number.

2 B(H) (the set of bounded linear operators on a Hilbert space H) is a
C*-algebra, where

the involution is given by the adjoint operator,
the norm is the operator norm, that is ‖T‖ = sup‖x‖≤1 ‖Tx‖.

3 Any *-closed and norm-closed subalgebra of B(H).
4 Mn := Mn(C) ∼= B(Cn) is also a C*-algebra where

the involution of a matrix is given by its transpose conjugate on C,
the norm is the operator norm.

5 Let C(X ) := {f : X → C | f is continuous }, where X be a compact
Hausdorff space. Then it is a C*-algebra:

With pointwise addition and multiplication.
the involution is induced by complex conjugation (f ∗(x) = f (x))
the norm is the supremum norm (i.e., ‖f ‖ = supx∈X |f (x)|).
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Introduction

C*-algebras

Theorem

1 Any unital commutative C*-algebra is isomorphic to C(X ) for some compact
space X .

2 Let A be a finite dimensional C*-algebra. Then there exist n1, . . . , nr ∈ N
such that

A ∼= Mn1 (C) ⊕ . . . ⊕ Mnr (C).

3 (Gelfand, Naimark) Every C*-algebra is isomorphic to a sub-C*-algebra of
B(H).

Property:The category of C*-algebras has inductive limits.

Example

AF-algebras is the class of C*-algebras built as inductive limits of
finite-dimensional C*-algebras. An important subclass of them are UHF-algebras.
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Dimension theory for C*-algebras

For C*-algebras there are two well-known notions of dimension called stable rank
(Rieffel,83) and real rank (Brown,Pedersen,91).

Definition

We say that a unital C*-algebra A has stable rank one, sr(A) = 1, if the set of
invertibles in A is dense in A. And A has real rank zero, RR(A) = 0, if the set of
self-adjoint (a = a∗) and invertible elements is dense in Asa.

Examples

If A = C(X ) for a compact zero-dimensional space X , it follows that
RR(A) = 0, and sr(A) = 1.

If A = Mn(C), then RR(A) = 0. And, furthermore, RR(B) = 0 for any
AF-algebra B since real rank zero is preserved by inductive limits.
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Classification of C*-algebras

Classification

We look for a functor F( ) from the category of C*-algebras to a suitable category
such that it is complete, i.e.,

if φ : F(A) ∼= F(B) for two C*-algebras A,B,

then there exists ϕ : A ∼= B such that F(ϕ) = φ .

Another important question is the range that this invariant has.

Examples
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Classification of C*-algebras

Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear
C*-algebras which is constructed from K-theory and the simplex of traces T(A).

Usual form of the invariant:

Ell(A) = ((K0(A),K0(A)+, [1A]),K1(A),T(A), rA),

where rA : T(A)×K0(A)→ R is the pairing between K0(A) and T(A) given by
evaluation of a trace on a K0-class.
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Introduction

Classification of C*-algebras

Some achievements of Elliott’s program

Classification (Stably finite)

(Elliott, 1997) Classification
of AT-algebras.

(Gong, 2002 and
Elliott-Gong-Li, 2007)
Classification of simple unital
AH-algebras with slow
dimension growth.

Classification (Non-stably finite)

(Kirchberg-Phillips, 2000)
Classification of Kirchberg
Algebras (UCT) by

((K0(A), [1A]),K1(A)).

Moreover, this invariant exhausts
all pairs of abelian groups.

stably finite : in Mn(A), if xy = 1, then yx = 1.

Kirchberg Algebras : unital, purely infinite, simple, separable and nuclear
C*-algebras.
unital, purely infinite, simple : ∀a 6= 0 ∈ A ∃x , y ∈ A such that xay = 1.

Non-stably finite and simple =⇒ T(A) = ∅, but
is non-stably finite=purely infinite? (simple case)
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Classification of C*-algebras

Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C*-algebra
which is neither stably finite nor
purely infinite. (Contains a finite
and an infinite projection.)

By the range result for Kirchberg
Algebras, Ell( ) does not
distinguish non-isomorphic
nuclear, unital, separable, simple
non-stably finite C*-algebras.

Example (Toms, 2008)

Two unital simple C*-algebras
that agree on : Elliott invariant,
real rank, stable rank and other
continuous isomorphism
invariants.
But they are non-isomorphic.

These algebras were distinguished
by their Cuntz semigroup W( ).
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Introduction

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von
Neumann semigroup V(A).

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C∗-algebra and denote by Pn(A) = {p a projection in Mn(A)}.

p is M.-v.N. equivalent to q in
Pn(A) (p ∼0 q) ←→

∃v ∈ Mn(A) such that p = vv∗

and q = v∗v .

Extending this relation to P∞(A) =
⋃∞

n=1 Pn(A), one defines the Murray-von
Neumann semigroup of A as

V(A) = P∞(A)/ ∼0 .

Denote the equivalence classes by [p]. The operation and order are given by

[p] + [q] = [

(
p 0
0 q

)
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Introduction

The Cuntz Semigroup

Definition (W(A)-The Cuntz semigroup)

Let A be a C∗-algebra and a, b ∈ A+.

a is Cuntz subequivalent to b
(a - b)

←→
∃ a sequence (xn) in A such
that ‖xnbx∗n − a‖ → 0

a and b are Cuntz equivalent if a - b and b - a (denoted a ∼ b).

Extending this relation to M∞(A)+ =
⋃∞

n=1 Mn(A)+, one defines the Cuntz
semigroup

W(A) = M∞(A)+/∼ .

Denote the equivalence classes by 〈a〉. The operation and order are given by

〈a〉+ 〈b〉 = 〈
(

a 0
0 b

)
〉, 〈a〉 ≤ 〈b〉 if a - b.

The order in W(A) is usually not the algebraic order.
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Introduction

The Cuntz Semigroup

Relation between V(A) and W(A)

Remark

There is a natural map V(A)→W(A) defined by [p] 7→ 〈p〉, which is
injective if A is stably finite.

When A is finite dimensional, it follows that W(A) = V(A).

Definition

If we consider the Grothendieck group construction, we have the following:

G(V(A)) = K0(A) (unital case) G(W(A)) = K∗0(A).
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Introduction

The Cuntz Semigroup

Ell(A) and W(A), are they related?

Theorem (Brown-Perera-Toms, ’08)

The Cuntz semigroup can be recovered from the Elliott invariant for a large class
of C*-algebras.

In fact, for simple, unital and finite C*-algebras A that are exact and Z-stable,
where Z is the Jiang-Su algebra, it was proved that

W(A) ∼= V(A) t LAff(T(A))++.

Theorem (Antoine-Dadarlat-Perera-Santiago, ’13, Tikuisis, ’12)

The Elliott invariant can be recovered from the Cuntz semigroup after tensoring
with the circle for the same class of C*-algebras as above.
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Introduction

The Cuntz Semigroup

Continuity of W(A)

If A is a C*-algebra of the form A = lim−→(Ai ), then in general
W(A) 6= lim−→W(Ai ).

Remark

The assignment A 7→W(A) does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C *-algebra, which
is a modified version of the Cuntz semigroup.
In fact, Cu(A) can be identified with W(A⊗K).

Properties

Cu(A) belongs to a category of semigroups called Cu that admits inductive
limits that are not algebraic.

The assignment A 7→ Cu(A) is sequentially continuous.
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Introduction

The Cuntz Semigroup

The category Cu

Definition

Let a, b be elements in a partially ordered set S . Then, we will say that a� b
(way-below) if for any increasing sequence {yn} with supremum in S such that
b ≤ sup(yn), there exists m such that a ≤ ym.

Definition (Cu)

An object of Cu is a partially ordered semigroup with zero element S such that:

The order, in S, is compatible with the addition, i.e., if xi ≤ yi , i ∈ {1, 2}
then x1 + x2 ≤ y1 + y2,

every increasing sequence in S has a supremum,

for all x ∈ S there exists a sequence {xn} such that x = sup(xn) where
xn � xn+1,

the relation � and suprema are compatible with addition.

The maps of Cu are those morphisms which preserve the order, the zero, the
suprema of increasing sequences and the relation �.
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The Cuntz Semigroup

Remark

In fact, 〈(a− ε)+〉 � 〈a〉 in Cu(A) for all ε > 0 and for all a ∈ A+.

Example

Let X be a compact metric space. Then, if O(X ) is the set of open sets in X
ordered by inclusion, it follows that O(X ) ∈ Cu. In this, we have that
U � V for U,V ∈ O(X ), if there exists a compact subset K ⊆ X such that
U ⊆ K ⊆ V .

Let X be a finite-dimensional compact metric space, then Lsc(X ,N) ∈ Cu,
where N = N ∪ {∞}.

Remark

The main difference between the classical and the stabilized Cuntz semigroup is
that W(A) is not necessarily closed with respect to suprema of increasing
sequences.
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The Cuntz Semigroup of Continuous Fields of C*-algebras

Continuous Fields

C(X)-algebras

Definition

Let X be a compact metric space.
A unital C(X )-algebra is a C∗-algebra A together with a unital ∗-homomorphism
θ : C(X )→ Z (A), where Z (A) is the center of A.

Remark

A C(X )-algebra has the structure of C(X )-module. In particular, we write fa
instead of θ(f )a where f ∈ C(X ) and a ∈ A.

Notation

If U ⊂ X is an open set, we denote A(U) = C0(U)A, which is a closed ideal
of A. (Cohen)

If Y ⊆ X is a closed set, A(Y ), is the quotient of A by the ideal A(X \ Y ),
which becomes a C(Y )-algebra. The quotient map is denoted by πY .

If Y reduces to a point x, we write Ax , denote by πx the quotient map. The
C∗-algebra Ax is called the fiber of A at x.
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Continuous Fields

Continuous Fields

Lemma (Blanchard)

Let A be a C(X )-algebra and a ∈ A. Then the following conditions are satisfied:

(i) ‖a‖ = supx∈X ‖ax‖.
(ii) The map x 7→ ‖ax‖ is upper semicontinuous.

Definition

A C(X )-algebra such that the map x 7→ ‖ax‖ is continuous for all a ∈ A is called
a continuous field of C*-algebras.

A continuous field is called trivial if there exists a C*-algebra D such that
A ∼= C(X ,D).
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Sheaves of semigroups

Sheaves of semigroups

Definition (Presheaves)

A presheaf over X is a contravariant functor S : VX → C
where VX is the category of closed sets of X with non-empty interior and C is a
subcategory of the category of sets which is closed under sequential inductive
limits.

Definition (Sheaves)

A presheaf is a sheaf if for all V ,V ′ ∈ VX such that V ∩ V ′ ∈ VX , the map

πV∪V ′

V × πV∪V ′

V ′ : S(V ∪ V ′)→ {(f , g) ∈ S(V )× S(V ′) | πV
V∩V ′(f ) = πV ′

V∩V (g)}

is bijective.
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Sheaves of semigroups

A presheaf (respectively a sheaf) is continuous if for any decreasing sequence
(Vi )

∞
i=1 in VX whose intersection ∩∞i=1Vi = V belongs to VX , the limit lim−→S(Vi ) is

isomorphic to S(V ).

Definition

Let S be a continuous presheaf over X . For any x ∈ X , we define the fiber of S
at x as

Sx := lim
x∈V̊n

S(Vn),

with respect to the restriction maps, where {Vn}n is any decreasing sequence in
VX such that ∩∞n=1Vn = {x}.

Examples

Let X be a compact metric space, and let A be a C(X )-algebra. Then:

CuA : VX → Cu
U 7→ CuA(U) = Cu(A(U))

VA : VX → Sg
U 7→ VA(U) = V(A(U))

are continuous presheaves.
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Sheaves of semigroups

Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define FS =
⊔

x∈X Sx

and r : FS → X be the natural projection taking elements in Sx to x .

We shall call section any map f : V ⊆ X → FS(V ) such that r ◦ f = 1V .

For each s ∈ S(V ), define the set function ŝ : V → FS(V )

by letting ŝ(x) = sx for each x ∈ V .

Note that r ◦ ŝ = 1V .

Taking {ŝ(U)}, where U is open in V and s ∈ S(V ), as a basis for the topology
of FS(V ), all the functions ŝ are continuous.

One can define Γ(V ,FS(V ))= {f : V → FS(V ) | f is a continuous section}.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The Cuntz Semigroup of Continuous Fields of C*-algebras

Sheaves of semigroups

Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define FS =
⊔

x∈X Sx

and r : FS → X be the natural projection taking elements in Sx to x .

We shall call section any map f : V ⊆ X → FS(V ) such that r ◦ f = 1V .

For each s ∈ S(V ), define the set function ŝ : V → FS(V )
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Sheaves of semigroups

Relation between a sheaf and the sheaf of sections

Theorem (Classical Result)

Let S be an algebraic sheaf over X . Then,

S and Γ( ,FS( )) are isomorphic sheaves.

algebraic sheaf = Inductive limits in the target category are algebraic limits.

Problem

The inductive limits in the category Cu are not algebraic.

Example

Let A = C([0, 1],C) and {Um = [ 1
2 −

1
m ,

1
2 + 1

m ]}m≥2, which is a sequence of
decreasing closed subsets of [0, 1] whose intersection is {1/2}.
It follows Cu(A) ∼= Lsc([0, 1],N), where N = N ∪ {∞}. So one has

lim−→Lsc(Un,N) = lim−→Cu(A(Un)) = Cu(lim−→A(Un)) = Cu(A(1/2)) = N.

However, the computation of the above direct limit in Sg is not N.
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S and Γ( ,FS( )) are isomorphic sheaves.

algebraic sheaf = Inductive limits in the target category are algebraic limits.

Problem

The inductive limits in the category Cu are not algebraic.

Example

Let A = C([0, 1],C) and {Um = [ 1
2 −

1
m ,

1
2 + 1

m ]}m≥2, which is a sequence of
decreasing closed subsets of [0, 1] whose intersection is {1/2}.
It follows Cu(A) ∼= Lsc([0, 1],N), where N = N ∪ {∞}. So one has

lim−→Lsc(Un,N) = lim−→Cu(A(Un)) = Cu(lim−→A(Un)) = Cu(A(1/2)) = N.

However, the computation of the above direct limit in Sg is not N.
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The sheaves on Cu

The sheaves of sections on Cu

Question

How do we recover S on Cu from the sheaf of sections FS → X ?

Let S : VX → Cu be a sheaf on Cu and X be a compact metric space.

We define a topology on FS generated by

U�s = {y ∈ FS | ŝ(x)� y for some x ∈ U}.

The induced sections are continuous with this topology.

We equip the set of sections with pointwise addition and order. Moreover,
the set of sections is closed under pointwise suprema of increasing sequences
(by properties of Cu).

Theorem

Let X be a one-dimensional compact metric space, and let S : VX → Cu be a
surjective sheaf. Then Γ(X ,FS) is a semigroup in Cu.
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U�s = {y ∈ FS | ŝ(x)� y for some x ∈ U}.

The induced sections are continuous with this topology.

We equip the set of sections with pointwise addition and order. Moreover,
the set of sections is closed under pointwise suprema of increasing sequences
(by properties of Cu).

Theorem

Let X be a one-dimensional compact metric space, and let S : VX → Cu be a
surjective sheaf. Then Γ(X ,FS) is a semigroup in Cu.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The Cuntz Semigroup of Continuous Fields of C*-algebras

The sheaves on Cu

The sheaves of sections on Cu

Question

How do we recover S on Cu from the sheaf of sections FS → X ?

Let S : VX → Cu be a sheaf on Cu and X be a compact metric space.

We define a topology on FS generated by
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The sheaves on Cu

When do we have a sheaf on Cu?

Theorem

For a continuous field A over a one-dimensional compact metric space X whose
fibers have no K1 obstructions, the presheaves

CuA( ) : VX → Cu VA : VX → Sg
U 7→ CuA(U) = Cu(A(U)) U 7→ VA(U) = V(A(U))

are sheaves.

Definition

A C*-algebra A is said to have no K1 obstructions, if sr(A) = 1 and K1(I ) = {0}
for any ideal I of A.

Examples

If sr(A) = 1, A is simple and K1(A) = {0}, then A has no K1 obstructions.

(Lin) If sr(A) = 1, RR(A) = 0 and K1(A) = {0}, then A has no K1

obstructions.
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The sheaf CuA( )

The sheaf CuA( )

Theorem

Let X be a one-dimensional compact metric space, and let A be a continuous field
over X whose fibers have no K1 obstructions. Consider the functors

CuA( ) : VX → Cu and Γ( ,FCuA( )
) : VX → Cu

V 7→ Cu(A(V )) V 7→ Γ(V ,FCuA(V )
) .

Then, CuA( ) and Γ( ,FCuA( )
) are isomorphic sheaves.
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The sheaf CuA( )

Relation between Cu(A) and the sheaves CuA( ), VA( )

Considering an induced action of Cu(C(X )) on Cu(A), we obtained that:

Theorem

Let X be a compact metric space, and let A and B be C(X )-algebras such that all
fibers have stable rank one. Consider the following conditions:

(i) Cu(A) ∼= Cu(B) preserving the action of Cu(C(X )),

(ii) CuA( ) ∼= CuB ( ),

(iii) VA( ) ∼= VB ( ).

Then (i) =⇒ (ii) =⇒ (iii). If X is one-dimensional, then also (ii) =⇒ (i). If,
furthermore, A and B are continuous fields such that for all x ∈ X the fibers Ax ,
Bx have real rank zero and K1(Ax ) = K1(Bx ) = {0}, then (iii) =⇒ (ii) and so
all three conditions are equivalent.
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The sheaf CuA( )

Classification result (Dadarlat-Elliott-Niu)

Theorem

Let A,B be separable unital continuous fields of AF-algebras over [0, 1]. Any
isomorphism φ̃ : Cu(A)→ Cu(B) that preserves the action by Cu(C(X )) and
such that φ̃(〈1A〉) = 〈1B〉 lifts to an isomorphism φ : A→ B of continuous fields
of C∗-algebras.

Question

Can the above result be extended when the fibers are simple AI-algebras?
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Stable rank of Continuous Fields of C*-algebras

Stable rank of Continuous Fields

In the case of trivial fields:

Theorem (Nagisa, Osaka, Phillips, 2001)

Let A be a C*-algebra.

1 If K1(A) = {0}, sr(A) = 1, RR(A) = 0, then sr(C([0, 1],A)) = 1.

2 If sr(C([0, 1],A)) = 1, then K1(A) = {0} and sr(A) = 1.

(Lin) =⇒ A has no K1 obstructions.

(N-O-P) shows that condition RR(A) = 0 is not always necessary.

Is no K1 obstructions the optimal hyphotesis to obtain ⇐⇒ ?
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Trivial fields

Theorem

Let A be any C∗-algebra and X be a compact metric space. Then

sr(C(X ,A)) = 1⇐⇒ A has no K1 obstructions and dim(X ) ≤ 1.

Corollary

Let A be a simple C∗-algebra with sr(A) = 1 and K1(A) = {0}. Then

sr(C(X ,A)) = 1 .

Corollary

Let A be a C∗-algebra with no K1 obstructions. Then the stable rank of A⊗Z is
one.

Is sr(A⊗Z) = 1 when sr(A) = 1?

M. Rørdam : A is simple. L. Santiago : A is commutative.
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Stable rank of Continuous Fields of C*-algebras

Non-trivial continuous fields

Theorem

Let X be a one-dimensional, compact metric space, and let A be a continuous
field over X such that each fiber Ax has no K1 obstructions. Then sr(A) = 1.

In this case, we provide an example which shows that the converse is not true.

Example

There is a continuous field A over [0, 1] such that sr(A) = 1 and K1(Ax ) 6= {0}
for x in a dense subset of [0, 1].
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The Blackadar-Handelman conjectures

The Blackadar-Handelman conjectures

What are the dimension functions?

Definition

The set of dimension functions is St(W(A), 〈1A〉) (normalized positive linear
functionals), denoted by DF(A).
We denote by LDF(A) the subset of DF(A) such that the dimension functions are
lower semicontinuous.
(If an → a in M∞(A)+, then d(〈a〉) ≤ lim inf d(〈an〉) for d ∈ LDF(A))

Remark

It follows by the construction of the Grothendieck group that
St(W(A), 〈1A〉) = St(K∗0(A), [1A]).

Theorem (Blackadar, Handelman, 1982)

There is an affine bijection between the set of traces of A and LDF(A), when A is
exact.
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Blackadar-Handelman conjectures (1982)

1 The set DF(A) of dimension functions is a simplex.

2 The set LDF(A) of lower semicontinuous dimension functions is dense in
DF(A).

History

I (1982): Blackadar-Handelman proved that 2nd conjecture holds for
commutative C*-algebras.

I (1997): Perera proved that 1rst conjecture holds for unital C*-algebras with
stable rank one and real rank zero.

I (2008): Brown-Perera-Toms proved both conjectures hold for all unital
simple exact and Z-stable C*-algebras.
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The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Proof 1st conjecture (Strategy)

We study when (K∗0(A), [1A]) is an interpolation group.

x1 y1

≤ =⇒ ∃ z | xi ≤ z ≤ yj for i , j = 1, 2
x2 y2

(Goodearl-Handelman-Lawrence) If (G , u) is an interpolation group with an
order-unit u, then St(G , u) is a Choquet simplex.

Question

When (K∗0(A), [1A]) is an interpolation group?
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The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1

Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth.

( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))

either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Theorem

Let X be a compact metric space, and let A be a unital continuous field over X .
Then, (K∗0(A), [1A]) is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for
all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero
or simple and Z-stable.

(ii) If X is finite dimensional and A = C(X ,B), where B is a unital, simple,
non-type I, ASH algebra with slow dimension growth. ( =⇒ Z-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

If W(A) has interpolation, then K∗0(A) does.

If Cu(A) has interpolation and W(A) ⊆ Cu(A) is hereditary, then W(A) has
interpolation.

sr(A) = 1 Cu(A) = Γ(X ,tx∈X Cu(Ax ))
either sr(Ax ) = 1 and RR(Ax ) = 0 or Ax is simple and Z-stable.



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions

The Blackadar-Handelman conjectures

Blackadar-Handelman conjectures

1 The set DF(A) of dimension functions is a simplex.

2 The set LDF(A) of lower semicontinuous dimension functions is dense in
DF(A).



Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions——————————————— Joan Bosa Puigredon

The geometry of Dimension Functions
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Theorem

Let X be a finite dimensional, compact metric space, and let A be a unital,
separable infinite dimensional and exact C∗-algebra of stable rank one such that
T(A) is a Bauer simplex. Then LDF(C(X ,A)) is dense in DF(C(X ,A)) in the
following cases:

1 dim X ≤ 1, A is simple with K1(A) = 0 and W(A) is almost unperforated.

2 A is a non-type I, simple, unital ASH algebra with slow dimension growth.
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Local triviality for Continuous Fields of C*-algebras

Nowhere locally trivial continuous fields

Nowhere locally trivial continuous fields

Definition

A point x ∈ X is called singular for A if A(U) is nontrivial for any open set U that
contains x (i.e. A(U) is not isomorphic to C0(U,D) for some C*-algebra D).

If all points of X are singular for A we say that A is nowhere locally trivial.

Recall that:

Kirchberg Algebras: purely infinite, simple, separable and nuclear C*-algebras.
Kirchberg Algebras (UCT) are classified by ((K0(A)),K1(A))

.

Cuntz Algebras On

If n ≥ 2. The Cuntz Algebras are defined as the universal C*-algebras generated
by isometries s1, . . . , sn with orthogonal ranges such that

∑n
i=1 si s

∗
i = 1.
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Kirchberg Algebras (UCT) are classified by ((K0(A)),K1(A)).

Cuntz Algebras On

If n ≥ 2. The Cuntz Algebras are defined as the universal C*-algebras generated
by isometries s1, . . . , sn with orthogonal ranges such that

∑n
i=1 si s

∗
i = 1.
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Example (Dadarlat, Elliott-’08)

A nowhere locally trivial
continuous field over [0, 1]
(finite-dimensional) such that its
fibers are the same Kirchberg
algebra (UCT) with infinitely
generated K-theory.

Example (Dadarlat-’09)

A nowhere locally trivial
continuous field over Hilbert cube
(infinite-dimensional) such that
its fibers are the same Kirchberg
algebra (UCT) with finitely
generated K-theory.

Theorem

Let X be a finite dimensional compact metric space, and let D be a stable
Kirchberg algebra that satisfies the UCT and such that Kj (D) is finitely
generated for j = 0, 1. Let A be a separable continuous field C*-algebra over X
such that A(x) ∼= D for all x ∈ X . Then there exists a dense open subset U of X
such that A(U) is locally trivial.
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Corollary

Fix n ∈ N ∪ {∞}. Let X be a finite dimensional compact metrizable space and A
be a continuous field over X such that A(x) ∼= On ⊗K for all x ∈ X . Then there
exists a closed subset V of X with nonempty interior such that
A(V ) ∼= C(V )⊗On ⊗K.

Example

If F ⊂ X is a closed nowhere dense set, we provide a continuous field C*-algebra
A with all fibers isomorphic to a fixed Cuntz algebra On ⊗K, 3 ≤ n ≤ ∞, and
such that the set of singular points of A coincides with F .

Our result is in a certain sense OPTIMAL!.
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