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Abstract. We study the relation (and differences) between stability and Property (S)
in the simple and stably finite framework. This leads us to characterize stable elements
in terms of its support, and study these concepts from different sides : hereditary
subalgebras, projections in the multiplier algebra and order properties in the Cuntz
semigroup. We use these approaches to show both that cancellation at infinity on
the Cuntz semigroup just holds when its Cuntz equivalence is given by isomorphism
at the level of Hilbert right-modules, and that different notions as Regularity, ω-
comparison, Corona Factorization Property, property R, etc.. are equivalent under
mild assumptions.

introduction

Characterizing and understanding the class of separable simple C*-algebras is an
important problem since the origins of operator algebra theory. Concerning structural
questions, one of the most natural (and old) problems wonders how to determine stability
for separable and simple C*-algebras. Recall that a separable C*-algebra A is said to
be stable if A ∼= A⊗K, where K is the C*-algebra of compact operators on a separable,
infinite dimensional Hilbert space. Furthermore, we say that a positive element a ∈ A
is stable if its associated hereditary subalgebra aAa is stable.

Related answers of the above fundamental question were given by Brown, Cuntz,
Hjelmborg, Rørdam, Winter and many others ([10, 7, 13, 14, 21, 24]). Indeed, in [14]
the authors shown that an AF -algebra is stable if and only if it admits no bounded
traces. Moreover, they wondered if a C*-algebra A is stable if and only if satisfies what
is known as property (S) (A admits no bounded 2-quasitrace and no quotient of A is
unital). Rørdam answers negatively the last question in [24], where he built the first
example of a C*-algebra B such that M2(B) is stable, but B is not stable. Hence,
stability is not an stable property.

In the literature, there exist several properties that relate property (S) and stability.
We say that a C*-algebra A is regular (asymptotically regular) if any full subalgebra
D of A⊗K satisfying property (S) is itself stable (there exists n ≥ 1 such that Mn(D)
is stable). The notion of regularity was coined by Rørdam in [25] to study stable C*-
algebras, and it is equivalent to both a pure algebraic condition known as ω-comparison
for the Cuntz semigroup of A (see [21]), and a more analytical property concerning
projections of M(A ⊗ K). Indeed, it is shown in Proposition 3.11 that a multiplier
projection P belongs to a non-regular ideal of M(A ⊗ K) if and only if the hereditary
C*-subalgebra P (A⊗K)P satisfies property (S).
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Another important property for C*-algebras linked to stability is the Corona Factor-
ization Property (CFP). This was introduced by Elliott-Kucerovsky in [12] in order to
study absorbing extensions, and it is one of the natural candidates to determine ”nice”
C*-algebras. The CFP was used by Zhang (and later by Ortega-Perera-Rørdam in [21])
to get a dichotomy result (simple C*-algebras with real rank zero and CFP are either
stably finite or purely infinite). There exist several equivalent definitions of CFP (see
for instances [5, 19, 20, 28]). We take as the definition the following property, which
is shown to be equivalent to the CFP in [17, Theorem 4.2] and [21, Theorem 5.13]. A
separable C*-algebra A satisfies the CFP if given a full, hereditary subalgebra D of
A⊗K such that Mn(D) is stable for some n ≥ 1, then D itself is stable.

Focusing on simple, stably finite and separable C*-algebras, we study all the above
mentioned properties looking at the Cuntz semigroup invariant associated to C*-algebras.
In this setting, the Cuntz semigroup has a unique properly infinite element, which we
usually denote by∞ (see [5] for further details in this direction). The∞ element, which
coincides with the largest element of the Cuntz semigroup, has different properly in-
finite representatives in (A ⊗ K)+ (a natural representative of ∞ is a strictly positive
element of A ⊗ K); however, one wonders whether all of the other representatives of
∞ are also stable elements. A deep study of (properly) infinite elements was run by
Kirchberg-Rørdam, and they explained the main differences between these elements in
[15]. Building up from there, in Lemma 2.3 of the current paper, stable elements are
characterized showing that this notion is equivalent to ask that any small portion at
the beginning of its spectrum is properly infinite. Using this description, we show in
Theorem 2.6 that asking for all properly infinite elements to be stable is equivalent to an
algebraic cancellation property of the Cuntz semigroup known as cancellation of small
elements at infinite. In particular, Theorem 2.6 shows that weak cancellation property
for the Cuntz semigroup just holds when the Cuntz equivalence of positive elements is
induced by isomorphism of the associated Hilbert right-modules. Furthermore, we use
Lemma 2.3 and Theorem 2.6 to study (ω, n)-decomposable elements as defined in [28].
It is important to point out that the relation between these elements and stability was
already stated in [28, Proposition 9.7]; however, the proof of the implication (i)⇒(ii)
shown in [28] is not correct. We are able to clarify this relationship in Lemma 2.12.

As a result of a more analytical approach, it was shown by Brown in [7] that an
element a in A ⊗ K is stable if and only if the multiplier projection associated to its
hereditary subalgebra is Murray-von Neumann equivalent to the unit of M(A ⊗ K).
Combining this result with our study of property (S) displayed in Proposition 3.11,
we show in Theorem 3.12 that asymptotic regularity is equivalent to property R (if a
projection is contained in a proper ideal of M(A⊗K), it is also contained in a regular
ideal). As application of Theorem 3.12, we show in Corollary 3.13 that both property
R and asymptotic regularity imply dichotomy between stably finite and purely infinite
C*-algebras in the simple setting.

We briefly outline the contents of this paper. In the first section we recall notation and
some background needed to understand the sequel. In order to ease reading this section,
it is divided in two parts: we first provide the necessary knowledge about Cu-semigroups,
and we subsequently recall the comparison properties such as ω-comparison and CFP
used in the current paper. Section 2 is dedicated to stable elements. In particular, we
state the characterization of stable elements explained along the introduction and some
of its implications. We finish this section studying the notion of (ω, n)-decomposable
elements previously introduced in [28]. In section 3 we develop all the machinery needed
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to get Theorem 3.12. This part was initiated some time ago as a collaboration with M.
Christensen, and some results in it already appeared in his PhD-thesis [9]; though, they
have never been published in an article before.

1. Notation and Preliminaries

1.1. Cuntz semigroup. In this part we recall the main facts about the Cuntz semi-
group that will be used along the sequel. This semigroup has been deeply studied in the
last years due to its relation to the classification programme of separable simple nuclear
C*-algebras. We encourage the reader to look at the overview article [1] for further
details on this semigroup. Let’s start by its definition.

Definition 1.1. Let A be an stable C∗-algebra, i.e. A ∼= A ⊗ K (where K denotes the
C*-algebra of compact operators in an infinite dimensional Hilbert space), and let a,
b ∈ A+. We say that a is Cuntz subequivalent to b, in symbols a - b, provided there is
a sequence (xn) in A such that xnbx

∗
n converges to a in norm, i.e. ‖a − xnbx∗n‖ → 0.

We say that a and b are Cuntz equivalent if a - b and b - a, and in this case we write
a ∼ b. Considering this equivalence relation in A⊗K, one obtains the abelian semigroup
Cu(A) := (A⊗K)+/∼. We denote the equivalence classes by 〈a〉.

This is a partially ordered abelian semigroup where the operation and order are given
by

〈a〉+ 〈b〉 = 〈
(
a 0
0 b

)
〉 = 〈a⊕ b〉, 〈a〉 ≤ 〈b〉 if a - b.

In particular, the semigroup Cu(A) is referred to as the Cuntz semigroup.

As explained in [6, 11, 22], among others, the Cuntz semigroup of a separable C*-
algebra A can be described via different frameworks, i.e. positive elements, hereditary
subalgebras, open projections in A∗∗ and projections in the multiplier algebraM(A⊗K).
We will use all these settings along the sequel, so let us shortly recall the main facts and
notation.

Any positive element in a C*-algebra A naturally defines: an hereditary subalgebra
Aa := aAa, an open projection pa := (strong) lim a1/n in A∗∗, and a Hilbert A-module
Ea := aA . One can define the Cuntz semigroup of a C*-algebra A looking at each of
these different pictures (see [22] for further details). In the Hilbert A-modules picture,
for two Hilbert A-modules E,F , we write E b F if there exists x ∈ K(F ), the compact
operators of L(F ), such that xe = e for all e ∈ E. We use it to define the Cuntz
subequivalence between E and F , written as E -Cu F , as if for every Hilbert A-
submodule E′ b E there exists F ′ b F with E′ ∼= F ′ (isometric isomorphism). It is
important to notice that, given positive element a, b ∈ A+, it follows that Ea ∼= Eb
if and only Aa ∼= Ab. However, the equivalence relation induced by isomorphism on
Hilbert A-modules is stronger than the Cuntz equivalence just defined (see [8] for a
concrete counterexample). It is known that under the extra assumption of stable rank
one, the Cuntz relation is equivalent to the equivalence relation induced by isomorphism
on Hilbert A-modules.

Moving to the algebraic framework, the Cuntz semigroup of a C*-algebra always
belongs to an algebraic category of ordered complete semigroups called Cu. The objects
of this category are called Cu-semigroups, and we usually denote them by S and T (see
[2] for further details).

Fixing S a Cu-semigroup, let us remind some of its main properties. Every increasing
sequence has a supremum in S, and S has an auxiliary relation usually denoted by �,
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and called way-below. In particular, one writes x� y if, whenever {xn} is an increasing
sequence satisfying y ≤ sup xn, then x ≤ xn for some n. An element x in S is called
compact, if x� x. We write y <s x if there exists k ∈ N such that (k+ 1)y ≤ kx, and
y ∝ x if there exists n ∈ N such that y ≤ nx. An element x in S is called full if for
any y′, y ∈ S with y′ � y, one has y′ ∝ x, denoted by y ∝̄x. A sequence {xn} in S is
said to be full if it is increasing and for any y′, y ∈ S with y′ � y, one has y′ ∝ xn for
some (hence all sufficiently large) n. Notice that if x ∈ S is an order unit, it is also a
full element, but the reverse is not true.

Using these notions, we say that S is simple if x ∝̄ y for all nonzero x, y ∈ S. In
other words, S is simple if every nonzero element is full.

Focusing on the behaviour of elements in S, let us recall that an element a ∈ S is
finite if for every element b ∈ S such that a + b ≤ a, one has b = 0. An element is
infinite if it is not finite. An infinite element a ∈ S is properly infinite if 2a ≤ a. We
say that S is stably finite if an element a ∈ S is finite whenever there exists ã ∈ S
with a � ã. In particular, if S contains a largest element (always happens when it is
countably based or simple), usually denoted by ∞, then the condition of being stably
finite is equivalent to a � ∞ ([2, Paragraph 5.2.2.]). Furthermore, if S is simple, then
S is purely infinite if S = {0,∞}, i.e. S only contains the zero and largest elements.

As shown in [2, Proposition 5.2.10], the∞ element in a simple Cu-semigroup S is not
compact if and only if S is stably finite. We will denote the elements way-below ∞ by

S�∞ := {s ∈ S | s�∞}.

In fact, to ease notation, we will often denote it without ∞, i.e. S�.
We finish this part about Cu-semigroups describing their functionals. By a functional

on a Cu-semigroup S we mean a map λ : S → [0,∞] that preserves addition, order,
the zero element, and suprema of increasing sequences. Note that if S is a simple Cu-
semigroup, then every functional is faithful (i.e. for nonzero λ ∈ F (S), λ(x) 6= 0 if x 6=
0). We denote the set of functionals on S by F (S). The differences and relations between
functionals and states that one can associate to a Cu-semigroup are deeply studied in
[5]. We also encourage the reader to look at [27] to know more about functionals in this
framework.

1.2. Comparison properties. Let us now recall the comparison conditions that form
the heart of this article. The majority of the results stated here were proved in [5], and
we encourage the reader to check it for further details.

We start this part studying ω-comparison property for Cu-semigroups. This property
has been studied in several articles such as [5, 19, 20, 21], and it is implied for the
majority of known regularity conditions of separable simple stably finite C*-algebras.
Indeed, Ng coined this property as regularity, and it was in [3, Corollary 4.2.5] where the
authors shown that regularity is equivalent to an algebraic condition on Cu(A) called
ω-comparison. The equivalence described in Definition 1.3 is shown in [5].

Definition 1.2. A C*-algebra A is said to be regular if every full hereditary subalgebra
of A, with no nonzero unital quotients and no nonzero bounded 2-quasitraces, is stable.

Definition 1.3. Let S be a simple Cu-semigroup. Then, we say S satisfies ω-comparison
if any of the following equivalent conditions (and then all) holds:

(1) Whenever (yn) is a sequence of nonzero elements in S�∞ such that yn <s yn+1

for all n, then
∑∞

n=1 yn =∞ (in S).
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(2) Whenever (yn) is a sequence of nonzero elements in S�∞ such that λ(
∑∞

n=1 yn) =
∞ for all functionals λ ∈ F (S), then

∑∞
n=1 yn =∞.

We continue this part with the Corona Factorization Property (CFP for short). As
stated in the introduction this was introduced by Elliott-Kucerovsky in order to study
when extensions of C*-algebras are absorbing ([12]). This property has many equivalent
definitions depending on the setting one works (see [19] for further study). We recall
below the characterization of this property found in [19, Theorem 4.2]. This determines
structural results about stable C*-algebras.

Definition 1.4. ([19, Theorem 4.2]) Let A be a separable stable C*-algebra. It satisfies
the Corona Factorization Property if given a full, hereditary subalgebra D of A such that
Mn(D) is stable for some integer n ≥ 1, then D itself is stable.

Moving to the simple Cu-semigroup setting, this property was characterized in [20]
as a certain comparison property associated to the Cuntz semigroup. Indeed, a σ-unital
C*-algebra A has the corona factorization property if and only if its Cuntz semigroup
Cu(A) has the CFP as defined below ([21]). Let’s us recall a couple of equivalent
definitions of CFP in this setting.

Definition 1.5. ([5, 28]) Let S be a simple Cu-semigroup. Then it satisfies CFP if any
of the following equivalent properties (and then all) hold:

• Given any full sequence (xn)n in S, any sequence (yn)n in S, an element x′ in S
such that x′ � x1, and a positive integer m satisfying xn ≤ myn for all n, then
there exists a positive integer k such that x′ ≤ y1 + . . .+ yk.
• Given a sequence (yn)n in S�∞ such that m ·

∑∞
n=k yn =∞ for some m and all

k ∈ N, then
∑∞

n=1 yn =∞.

The last condition we want to recall is property (QQ). This was originally introduced
in [21], and it is deeply related to both conditions just defined (see [5] for further details).
As stated before, the behaviour of the largest element in a simple Cu-semigroup is
complicated to characterize, and the following property just concerns about this element.

Definition 1.6. ([21]) A Cu-semigroup S satisfies the property (QQ) if every element
in S, for which a multiple is properly infinite, is itself properly infinite.

For simple Cu-semigroups there is a unique properly infinite element, usually denoted
by ∞. Hence, the above means that if mx =∞ for some m ∈ N, then x =∞.

2. stable elements

The notion of stable element can be found in [15], where the authors study finite,
infinite and properly infinite positive elements in a C*-algebra. They show in [15,
Proposition 3.7] that any stable element is properly infinite, but few is known about the
converse. We start recalling the definition of stable elements in A.

Definition 2.1. A positive element a in a C*-algebra A is called stable if aAa is a
stable C*-algebra.

Along this section we deeply study the above notion, and we relate it to the next:

Definition 2.2. Let A be a separable simple C*-algebra. We say that A is Cu-stable
whether for any representative a ∈ (A ⊗ K)+ of ∞ ∈ Cu(A), i.e. 〈a〉 = ∞ in Cu(A),

one has that a(A⊗K)a is a stable C*-algebra.
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Note that the above definition mainly concerns about the C*-algebra rather its Cuntz
semigroup. In Theorem 2.6 we show that this property can be characterized as a can-
cellation property for the Cuntz semigroup. Furthermore, A being Cu-stable implies
that A is stably finite (Theorem 2.6). Hence, we will often assume this fact whenever
Cu-stability is asked. It is worth to point out that, equivalently, the above definition
asks that any properly infinite element is stable.

In order to study stable elements, we will use the following two continuous fδ, gδ :
R+ → R+ functions. We thank J. Gabe for suggesting this direction.

fδ(x) =

 t, for t ∈ [0, δ/2]
δ − t, for t ∈ [δ/2, δ]
0 for t ≥ δ

gδ(x) =


0, for t ∈ [0, δ/2]

1−
√
δt−1 − 1, for t ∈ [δ/2, δ]

1 for t ≥ δ

Note that fδ(t) = (1−gδ(t))t(1−gδ(t)) and that fδ(t) ⊥ g2δ(t) for all δ > 0. Moreover,
{gδ(a)}δ>0 defines an approximate unit on Aa = aAa, for any positive element a ∈ A+.

Lemma 2.3. Let a ∈ A+ be a positive element. The following are equivalent:

(i) a is stable
(ii) fδ(a) is properly infinite and full in aAa for every δ > 0

(iii) fδ(a) Cuntz dominates every element in aAa for every δ > 0.

Proof. (i) ⇒ (ii) Let δ > 0 be given. Then, fδ(a) = (1 − gδ(a))a(1 − gδ(a)) is stable
(and thus properly infinite) by [14, Corollary 4.3] (notice separability is not needed in
the proof, only σ-unitality). Suppose for contradiction that fδ(a) is not full, and let I
be the two-sided closed ideal it generates. Then the spectrum of a + I is contained in
[δ, ‖a‖], so aAa/I is unital. This contradicts stability of a, indeed every quotient of an
stable C*-algebra is also stable, and thus fδ(a) must be full for all δ > 0.

(ii) ⇒ (iii) This follows from [15, Proposition 3.5].
(iii) ⇒ (i) Let x ∈ aAa and ε > 0. Since {gδ(a)} is an approximate identity for aAa,

pick δ > 0 such that ‖g2δ(a)xg2δ(a) − x‖ < ε/2, and define x0 := g2δ(a)xg2δ(a). By
assumptions, fδ(a) Cuntz-dominates x0; hence, there exists y such that

y∗y = (x0 − ε/2)+ and yy∗ ∈ fδ(a)Afδ(a).

Recall that by construction, one has fδ(a) ⊥ g2δ(a); therefore, yy∗ ⊥ y∗y with ‖y∗y −
x‖ < ε. By the criteria described in [14, Theorem 2.2], one obtains that aAa is stable
as desired. �

After settling the background of stable elements, let us show the relation between the
comparison properties exposed in Section 1 and stable elements. Let us start by the
following result.

Corollary 2.4. Let A be a simple separable stably finite C*-algebra such that Cu(A)
satisfies property (QQ). Then, A is Cu-stable.

Proof. Let a ∈ A ⊗ K be positive element such that 〈a〉 = ∞ in Cu(A); namely, a is a
properly infinite element in A ⊗ K. Since A is stably finite, it follows that ∞ 6� ∞ by
[2, Proposition 5.2.10]; therefore, fδ(a) 6= 0 for all δ > 0 (following notation of Lemma
2.3).

Using the fact that the Cuntz subequivalence is implemented by inclusion of supports
in commutative C*-algebras, it follows that a - fδ(a) + gδ(a) - fδ(a) ⊕ gδ(a) for all
δ > 0. We can use simplicity of Cu(A) to find n ∈ N such that 〈gδ(a)〉 ≤ (n− 1)〈fδ(a)〉;
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then, 〈a〉 ≤ n〈fδ(a)〉. Using property (QQ), one has that 〈fδ(a)〉 is equal to∞ in Cu(A),
and so fδ(a) is properly infinite for all δ. Therefore, a is stable by Lemma 2.3. �

Notice that Cu-stability of A is a natural property to ask for any stably finite C*-
algebra. Indeed, looking at Cu(A) from the Hilbert A-modules picture (see [11] for
further details about this approach), Cu-stability of A asks for all Hilbert A-modules
associated to different representatives of ∞ ∈ Cu(A) to be isomorphic to `2(A ⊗ K).
It is well-known that the Cuntz equivalence between Hilbert A-modules does not im-
ply isomorphism between them (see [8] for a concrete counterexample); however, that
property holds under stable rank one assumption. Another extra property arising from
stable rank one assumption is that Cu(A) becomes weak cancellative (as shown in [26,
Proposition 4.2]). Next lemma uses the approximation displayed by Rørdam-Winter to
show that Cu-stability of A also gives us cancellation for big elements on Cu(A).

Lemma 2.5. Let A be a separable stably finite C*-algebra and a, b, p ∈ (A ⊗ K)+ with
p a projection. Assume further that b⊕ p is an stable element in A⊗K. If

a⊕ p - b⊕ p,

then a - b.

Proof. Let us assume, without loss of generality, that a, b and p are orthogonal elements
in A ⊗ K. By [29, Corollary 2.56], the Cuntz comparison for stable C*-algebras is
unitarily implemented. Namely, there exists a unitary in the unitarization of A⊗K such
that

u((a− ε)+ + p)u∗ ∈ (b+ p)(A⊗K)(b+ p) =: B ⊗K.
Notice the latter equality holds due to the fact that (b + p) is an stable element by
assumptions.

Now, upu∗ and p are Murray-von Neumann equivalent in B⊗K; therefore they are also
Peligrad-Szidó equivalent (see [22]). Using [6, Corollary 1.11], we extend the isometry
defining the Peligrad-Szidó equivalence between p and upu∗ to a unitary v inM(B⊗K)
satisfying that vpv∗ = upu∗ in B ⊗K.

Now, we have that

v∗u(a− ε)+u∗v ∈ B ⊗K, v∗u(a− ε)+u∗v ⊥, v∗upu∗v = p,

which provides that v∗u(a−ε)+u∗v belongs to b(A⊗K)b. This shows that (a−ε)+ - b;
and as ε > 0 was arbitrary, we conclude a - b. �

A property of cancellation for big elements in Cu-semigroups was already introduced
in [5]. Indeed, in the simple case, we say that a Cu-semigroup S satisfies Cancellation of
Small elements at Infinity (CSE∞ for short) whether x + y = ∞ with x � ∞, implies
that y = ∞. Next result shows the equivalence between the two notions under study:
Cu-stability of A and CSE∞. In particular, it characterizes cancellation of big elements
in Cu(A). In order to show that, we need to ensure the existence of a projection in
A⊗K. That is the reason why we assume the algebra to be unital.

Theorem 2.6. Let A be a unital separable simple C*-algebra. Then A is Cu-stable if
and only if Cu(A) satisfies CSE∞. In particular, A is Cu-stable implies that it is stably
finite.

Proof. For the ”if” direction, let us consider a properly infinite element, denoted by
a, such that fδ(a) 6= 0 for all δ > 0. By construction it follows that ∞ = 〈a〉 ≤
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〈fδ(a)〉 ⊕ 〈gδ(a)〉, with 〈gδ(a)〉 � 〈a〉. By (CSE∞), one has that 〈fδ(a)〉 is properly
infinite for all δ > 0; hence, Lemma 2.3 implies that a is stable as desired.

For the converse direction, let us first check that Cu-stability of A implies it is stably
finite. Then, we will show the desired implication in this case.

If A was neither stably finite neither purely infinite, for any x ∈ Cu(A) there exists
nx ∈ N such that nxx = ∞ (see [5] for further details). Hence, considering the Cuntz
class of the unit on A, we have that n1〈1A〉 = ∞ for some n1 ∈ N. By Cu-stability of
A, one has that 1Mn1

⊗ 1A is a stable element. Hence, by Lemma 2.3, fδ(1Mn1
⊗ 1A) =

1Mn1
⊗fδ(1A) is properly infinite for all δ > 0. Since 1A is a projection, there exists δ′ > 0

such that fδ′(1A) = 0, what provides a contradiction since we requested fδ(1A) 6= 0 for
all δ > 0.

Now, assuming A is stably finite, let us show that Cu-stability of A implies (CSE∞).
To this end, let x+y =∞ with x�∞. As before, assuming A is unital, we may further
assume that x ≤ n〈1A〉 for some n; hence, x may be considered a compact element in
Cu(A). Let a projection p be one of its representatives ([8]). This, indeed, can be done
due x�∞ and Cu(A) is simple.

Since any representative of the above Cuntz class is stable, denoting x = 〈p〉 and
y = 〈b〉, one has that p⊕ b is an stable element in A⊗K. Applying functional calculus
to p ⊕ b, one has that fδ(p ⊕ b) = fδ(p) ⊕ fδ(b) for all δ > 0. Hence, by Lemma 2.3
fδ(p)⊕ fδ(b) is properly infinite for all δ > 0. Since p is a projection, there exists δ0 > 0
such that fδ0(p) = 0; therefore, fδ′(p)⊕ fδ′(b) = fδ′(b) is properly infinite for all δ′ < δ0.
That implies that b is an stable element by Lemma 2.3. �

As stated in [5], it is natural to wonder the following:

Question 2.7. Does any separable simple and stably finite C*-algebra A satisfy that it
is Cu-stable?

Remark 2.8. Using the equivalence of both properties described in Theorem 2.6, one
observes that Question 2.7 wonders about the uniqueness of orthogonal complement on
Hilbert A-modules. Indeed, looking at Cu(A) from the Hilbert A-modules picture de-
scribed in [11], Cu-stability of A says that whether x + y = ∞ in Cu(A) with x � ∞,
then y =∞. Namely, if x = 〈a〉 and y = 〈b〉, for a, b ∈ (A⊗K)+, stability gives us:

Ea ⊕ Eb ∼ `2(A⊗K)⇒ Ea ⊕ Eb ∼= `2(A⊗K) ⇐⇒ Eb ∼= `2(A⊗K).

The above fact holds in the stable rank one setting. Indeed, in this framework the Cuntz
equivalence is described by isomorphism of the associated Hilbert A-modules as shown in
[22], and we have a weak cancellation by [26]. Notice that Cu-stability of A asks for a
”weak” version of stable rank one since we just need the above properties on the largest
element of Cu(A). We express it in the next corollary.

Corollary 2.9. Let A be a unital separable simple stably finite C*-algebra, and a ∈
(A⊗K)+. Then, the following are equivalent:

• orthogonal complement of Ea on `2(A⊗K) is unique (up to isomorphism).
• Cuntz equivalence at ∞ ∈ Cu(A) is induced by isomorphism of Hilbert (A⊗K)-

modules.
• A is Cu-stable.

If Question 2.7 had an affirmative answer, it would answer [15, Question 3.4] in the
setting under study, as we next state.
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Corollary 2.10. Let A be a unital separable simple Cu-stable C*-algebra. Then,M(aAa)
is properly infinite for any properly infinite element a in A.

Proof. By assumptions any properly infinite element a ∈ A is automatically stable;
namely aAa is stable. The multiplier algebra of a stable C*-algebra contains the bounded
operators on an infinite-dimensional Hilbert space as a unital sub-C*-algebra; therefore,
it is properly infinite �

We finish this section relating properly infiniteness with the notion of (ω, n)-decompo-
sable as defined in [28]. Let us first recall this notion.

Definition 2.11. Let A be a C*-algebra, n ≥ 1 be an integer, and u be an element in
Cu(A). We say that u is (w, n)-decomposable if there exists x1, x2, . . ., different than
zero, in Cu(A) such that

∑∞
i=1 xi ≤ u and u ≤ nxi for all i.

In [28, Lemma 9.2], the authors give several equivalent conditions to determine
whether an element is (ω, n)-decomposable. These different notions are used in [28,
Proposition 9.7] to provide a result relating stable C*-algebras and (ω, n)-decomposability.
However, the proof of the implication (i)⇒(ii) in [28, Proposition 9.7] is wrong. Indeed,
they claim to find infinite mutually orthogonal positive elements in a non-stable C*-
algebra, and this can not be done in general. Note that if [28, Proposition 9.7] was
true, it would imply that properly infinite elements are always stable (answering [15,
Question 3.4] in the general setting). Assuming Cu-stability for A, one get the following
characterization of (ω, n)-decomposable elements.

Lemma 2.12. Let A be a simple separable Cu-stable C*-algebra, and x = 〈a〉 ∈ Cu(A).
Then,

(1) If x is (ω, n)-decomposable, then nx is properly infinite.
(2) If nx is properly infinite for some n ∈ N, then x is (ω, n)-decomposable.

Proof. The first part is trivial from the definition of (ω, n)-decomposable. Indeed, by
Definition 2.11 one has that n ·

∑∞
i=1 xi ≤ n · x and x ≤ n · xi; hence,

∞ · x ≤ n ·
∞∑
i=1

xi =
∞∑
i=1

n · xi ≤ n · x,

showing that nx is properly infinite.
For the second statement, let x ∈ Cu(A) such that nx is properly infinite for some

n ∈ N, and consider the representative of x given in the statement, i.e. a positive element
a ∈ A ⊗K such that 〈a〉 = x. By Cu-stability of A, it follows that a ⊗ 1n is an stable
element; therefore, Mn((A⊗K)a) is stable. Use [20, Lemma 5.3] to find a sequence {ak}
of pairwise elements in (A ⊗K)a such that 〈(a − 1/k)+〉 ≤ n〈(a − 1/k)+〉 ≤ n〈ak〉 for
all k in Cu((A⊗K)a). Then, considering u = 〈a〉, xk = 〈ak〉 and yk = 〈(a− 1/k)+〉, it
follows from [28, Lemma 9.2(iii)] that 〈a〉 is (ω, n)-decomposable as desired. �

Corollary 2.13. Let A be a simple separable Cu-stable C*-algebra. Then, A satisfies
the Corona Factorization property if and only if Cu(A) satisfies the property (QQ).

Proof. The ”only if” part is already proven in [5], so let us show the converse. Let
x ∈ Cu(A) such that nx =∞ for some n. Then, one has that x is (ω, n)-decomposable by
Lemma 2.12. Using the characterization of Corona Factorization Property described in
[28, Proposition 9.3], one has that any (ω, n)-decomposable element is properly infinite;
therefore, the desired result follows. �
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Focusing on the real rank zero setting, recall that ifA is simple and neither stably finite
nor purely infinite case, then we have that any element in Cu(A) is (ω, n)-decomposable
for some n by [20, Proposition 4.2]. Using this fact, following the lines of the above
proof, we obtain the well-known dichotomy between stably finite and purely infinite
under the assumptions of simplicity, real rank zero and Corona Factorization property
(Zhang’s Theorem).

3. Projections on M(A⊗K) and Asymptotic ω-comparison

In this section we seek to study asymptotic regularity for separable simple and stably
finite C*-algebras, as defined by Ng in [19]. The final goal is to show the equivalence
between this property and property R (Theorem 3.12). This section has been build on
from a collaboration effort started some years ago with M. Christensen. In particular,
some parts of this section already appeared in M. Christensen’s PhD-thesis.

As happened with both ω-comparison and the Corona Factorization property in [21],
we start rewriting asymptotic regularity condition in terms of an order property asso-
ciated to the Cuntz semigroup. The equivalence between these properties is exposed
in Lemma 3.6. After rephrasing this condition, we immerse into the M(A⊗K) frame-
work to show the desired equivalence between property R and asymptotic regularity
(Theorem 3.12).

Let’s start recalling that a C*-algebra D is said to have property (S) if it has no unital
quotients and admits no bounded 2-quasitraces. This property tries to characterize
stable C*-algebras as explained in the introduction, and it is the milestone of the current
section. An equivalent definition of property (S) is given in [21, Proposition 4.5]. This
states that D satisfies property (S) if and only if for all a ∈ F (D)+, there exists b ∈ D+

such that ab = 0 and 〈a〉 <s 〈b〉 in Cu(D), where F (D) := {a ∈ A+ | ae = e for some e ∈
A+}. We provide an equivalent condition in Proposition 3.11 using the projections of
M(A⊗K). With this in mind, we recall the next definition.

Definition 3.1 (Asymptotically regular). Given a separable C*-algebra A, we say that
A is asymptotically regular if, for any full hereditary C*-subalgebra D of A ⊗ K with
property (S), there exists an integer n ∈ N such that Mn(D) is stable.

In order to determine the above property, we will relate it to the following condition
in the Cuntz semigroup of A. Due to its relationship with ω-comparison, it is natural
to call it asymptotic ω-comparison.

Definition 3.2. Let S be a simple Cu-semigroup. We say that S satisfies asymptotic
ω-comparison if the following holds:

• whenever y1, y2, . . . is a sequence of non-zero elements in S�, such that yi <s
yi+1 for all i ≥ 1, there exists n ∈ N such that n

∑∞
i=m yi =∞ for all m ≥ 1.

In a similar fashion that it is shown an equivalent definition of ω-comparison via the
use of functionals of Cu(A) in [5], we are able to conclude the following proposition. We
omit the proof, and recommend to look at [5] for further details.

Proposition 3.3. Let S be a simple Cu-semigroup. Then the following are equivalent:

(1) S has asymptotic ω-comparison.
(2) Whenever y1, y2, . . . is a sequence of non-zero elements in S� satisfying the

condition that λ(
∑∞

i=1 yi) =∞ for all non-zero functionals λ on S, there exists
n ∈ N such that n

∑∞
i=m yi =∞, for all m ∈ N.
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Let us start with an easy lemma, which rewrites the first part of Proposition 1.5 (iv).

Lemma 3.4. Let S be a Cu-semigroup and y1, y2, . . . be any sequence of elements in S.
Then the next holds:

(1) If there is an n ∈ N such that n
∑∞

i=m yi = ∞ for all m ∈ N, then, for every

j ≥ 1, it holds that
∑j

k=1 yk ≤ n
∑∞

i=j+1 yi.

(2) If there is an n ∈ N such that n
∑∞

i=1 yi = ∞ and n
∑j

k=1 yk ≤ n
∑∞

l=j+1 yl for

all j ≥ 1, then 2n
∑∞

l=m yl =∞ for all m ≥ 1.

Proof. The first statement is obvious, so let’s show the second. To this end, let y1, y2, . . .
a sequence in S and n ∈ N as described in the statement. Then, for an arbitrary m ∈ N
it follows

2n
∞∑
l=m

yl = n

∞∑
l=m

yl + n

∞∑
l=m

yl ≥ n
∞∑
i=1

yi =∞,

getting the desired inequality. �

In order to conclude the desired equivalence we need the following lemmas. The first
is a mild elaboration of [21, Lemma 4.3] and needs the next definition.

Given a C*-algebra D, and a strictly positive contraction c ∈ D+, let

Lc(D) := {a ∈ D+ | gε(c)a = a for some ε > 0},
where gε is the continuous function defined before Lemma 2.3.

Note that, if a, b ∈ Lc(D), then a + b ∈ Lc(D) and gδ(c)dgδ(c) ∈ Lc(D), for every
δ > 0 and d ∈ D+.

Lemma 3.5. Let D be a σ-unital C*-algebra with property (S), and let c ∈ D be a
strictly positive contraction. Then, for every a ∈ Lc(D), there exists b ∈ D+ such that
ab = 0, 〈a〉 <s 〈b〉, and b ∈ Lc(D).

Proof. Choose ε′ > 0 such that gε′(c)a = a and denote by e := gε′(c). Note that
a - (e − 1/2)+. Since e ∈ Lc(D), and D has property (S), there exists b0 ∈ D+ such
that eb0 = 0 and 〈e〉 <s 〈b0〉 by [21, Proposition 4.5]. Moreover, there exists δ > 0 such
that 〈(e− 1/2)+〉 <s 〈(b0 − δ)+〉.

Since {g1/m(c)} is an approximate unit for D, we may choose m ∈ N such that ε :=
1/m < ε′/2 and ‖b0 − g1/m(c)b0g1/m(c)‖ < δ. Moreover, the element g1/m(c)b0g1/m(c)
belongs to Lc(D) and it is orthogonal to a. Hence, by [15, Lemma 2.5] one has

〈a〉 ≤ 〈(e− 1/2)+〉 <s 〈(b0 − δ)+〉 ≤ 〈g1/m(c)b0g1/m(c)〉,
as desired. �

We are now in the position of showing the equivalence between both notions.

Lemma 3.6. Let A be a simple and separable C*-algebra. Then the following are
equivalent:

(1) Cu(A) has asymptotic ω-comparison.
(2) A is asymptotically regular

Proof. Assume Cu(A) has asymptotic ω-comparison, and let D ⊆ A⊗K be a non-zero
hereditary sub-C*-algebra, with property (S). Let c be a strictly positive element in D.
Then, for every m ≥ 1, the element c ⊗ 1m ∈ D ⊗Mm

∼= Mm(D) is strictly positive.
Hence, proving the stability of Mm(D), it suffices to prove the existence of n ∈ N such
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that, for all ε > 0, there exists b ∈ (D ⊗Mm)+ satisfying that (c ⊗ 1m − ε)+ ⊥ b, and
(c⊗ 1m − ε)+ - b by [14, Theorem 2.1].

Let (εn)n≥1 be a decreasing sequence of positive real numbers such that ε → 0. We
prove, by induction, that there exists a sequence (bn) of pairwise orthogonal, positive
elements in D, such that 〈bi〉 <s 〈bi+1〉, bi ∈ Lc(D), 〈(c−εi)+〉 <s 〈bi〉, and (c−εi)+ ⊥ bi
for all i ≥ 1. The induction starts from Lemma 3.5. Now, let b1, . . . , bn satisfying the
desired properties. By the properties of Lc(D), we have that

(c− εn+1)+ + b1 + . . .+ bn ∈ Lc(D),

whence, applying Lemma 3.5, it follows that there exists bn+1 satisfying the desired
properties.

For i ≥ 1, let yi := 〈bi〉 ∈ Cu(A). Now, by asymptotic ω-comparison it follows that
there exists n ∈ N such that n

∑∞
i=m yi =∞ for all m ∈ N. Let ε > 0 be arbitrary and

choose m ∈ N such that εm < ε. Then, there exists N ∈ N such that

〈(c⊗ 1n − εm)+〉 ≤ n
N∑
i=m

〈bi〉 = 〈
N∑
i=m

bi ⊗ 1n〉.

Since (c⊗ 1n − ε) ≤ (c⊗ 1n − εm) ⊥
∑N

i=m bi ⊗ 1n, the desired result follows.
For the converse, let y1, y2, . . . a sequence of non-zero elements in Cu(A) such that

yi <s yi+1 for all i ≥ 1. Choose pairwise orthogonal positive elements bi ∈ A⊗K such
that ‖bi‖ ≤ 2−i and yi = 〈bi〉. Set b :=

∑∞
i=1 bi and let D ⊆ A⊗K denote the hereditary

sub-C*-algebra generated by b. We show that D has property (S). It is easy to see
that λ(〈b〉) =∞ for all functionals λ on Cu(A); hence, D does not admit any bounded
2-quasitrace. Similarly, assuming for a contradiction that D is unital, it follows that b is
invertible, and therefore

∑m
i=1 bi is invertible for some m ∈ N. Therefore, bk = 0 for all

k > m since these elements are orthogonal to an invertible element. This implies that
bi = 0 for all i due 〈bi〉 <s 〈bj〉 whenever i < j, a contradiction.

Therefore, D has property (S) and D ⊗Mn is stable for some n ∈ N by asymptotic
regularity of A. Now, by Lemma 3.4 one needs to show

j∑
k=1

〈(bk ⊗ 1n − ε)+〉 ≤
∞∑

i=j+1

〈bi ⊗ 1n〉 for every j ≥ 1 and ε > 0

to conclude the Corona Factorization Property.
To this end, fixing ε > 0, and denoting di := bi ⊗ 1n, for all i ≥ 1 build

(1) ejm :=
m∑
i

= jg1/m(di) and em := e1m for every j ≥ 1 m ≥ 1.

By functional calculus, it follows that (em)m≥1 is an approximate unit for D ⊗ Mn.

Moreover, ejm -
∑m

i=j di for all j,m ∈ N.
Let us now use that D ⊗Mn is stable. Then, there exists a ∈ D ⊗Mn such that∑j
k=1 dk ⊥ a and

∑j
k=1 dk - a. We may therefore choose δ > 0 such that

j∑
k=1

(dk − ε)+ - (a− δ)+.
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By construction, we can choose m ∈ N such that ‖a− emaem‖ < δ; therefore, the above
orthogonality implies

ema
1/2 = (

m∑
i=1

g1/m(di))a
1/2 = (

m∑
i=j+1

g1/m(di))a
1/2 = ej+1

m a1/2.

In particular, emaem ≤ ‖a‖(ej+1
m )2;hence,

j∑
k=1

(dk − ε)+ - (a− δ)+ - emaem - (ej+1
m )2 -

m∑
i=j+1

di,

as desired. �

The above equivalence shows that asymptotically regular implies dichotomy in our
setting.

Proposition 3.7. Let A be a simple and separable C*-algebra. Then it is either stably
finite or purely infinite if it is asymptotically regular.

Proof. Assuming A is neither stably finite nor purely infinite, then every z ∈ Cu(A)
satisfies nz = ∞ and there exists x ∈ Cu(A) such that x � ∞ and x 6= ∞. Using
Glimm’s halving property (i.e. for each y ∈ Cu(A) there exists z ∈ Cu(A) such that
2z ≤ y) we may find a sequence x0 := x, x1, x2, . . . ∈ Cu(A) such that 2i+1xi ≤ x0 for
all i ≥ 1. Moreover, by induction it follows that

∑∞
i=j xi ≤ 2xj for all j ≥ 1.

In particular, the latter implies that 2j
∑∞

i=j xi ≤ 2j+1xj ≤ x0 a finite element. Since

every element in Cu(A) is eventually infinite, it follows that xi <s xi+1 for all i, but
there exists no n ∈ N such that n

∑∞
i=m xi = ∞ for all m ∈ N. Namely, A cannot be

asymptotically regular. �

We finish this section showing the equivalence between asymptotic regularity and
property R, as defined in [19]. Let us first introduce some notation and background in
order to understand better the result.

As explained in section 1, the Cuntz semigroup of a separable C*-algebra A can
be described via different frameworks. A concrete characterization between hereditary
subalgebras of A⊗K and projections inM(A⊗K) was explicitly written by Kucerovsky
in [16, Lemma 10]:

Lemma 3.8. ([16]) Let A ⊗ K be a separable C*-algebra. Then, for every hereditary
subalgebra B ⊂ A ⊗ K, there exists a multiplier projection P ∈ M(A ⊗ K) such that
P (A⊗K)P ∼= B.

This approach is very useful to determine when a full hereditary subalgebra of A⊗K
is stable. Indeed, we have the next important result shown by Brown in [7, Theorem
4.23].

Theorem 3.9. ([7]) Let A⊗K be a separable C*-algebra, and P a multiplier projection
in M(A⊗K). Then P (A⊗K)P is a stable, full, hereditary subalgebra of A⊗K if and
only if P is Murray-von Neumann equivalent to the unit of M(A⊗K).

This analytical side provides us a new definition of property (S), as stated below. We
start recalling some definitions.

Definition 3.10. Let A be a unital C*-algebra. We say that A⊗ K has property R, if
whenever p is a projection contained inside a proper ideal of M(A⊗K), then p is also
contained inside a regular ideal.
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Recall that any unital trace on A extends canonically to a trace on the positive cone of
M(A⊗K). We use this extension to say that a proper ideal J ofM(A⊗K) is regular if J
is contained in an ideal of the form Jτ (norm-closure of {b ∈M(A⊗K) | τ(b∗b) <∞}),
for some unital τ on A. Otherwise, we say that J is non-regular.

Proposition 3.11. Let A be a unital separable simple exact C*-algebra, and P a mul-
tiplier projection in M(A ⊗ K) defining a full hereditary C*-subalgebra P (A ⊗ K)P of
A⊗K. Then, P (A⊗K)P satisfies property (S) if and only if P belongs to a non-regular
ideal of M(A⊗K).

Proof. Let P be a multiplier projection inM(A⊗K) as in the statement. Then, assume
that the hereditary C*-subalgebra P (A ⊗ K)P satisfies property (S). The definition of
property (S) asks for the lack of bounded 2-quasitraces; hence, P cannot be contained
in any regular ideal of A⊗K. Namely, P belongs to a non-regular ideal.

For the converse, let us assume that P belongs to a non-regular ideal of M(A⊗ K).
Then, the hereditary C*-subalgebra in A⊗K defined via P , i.e. P (A⊗K)P ⊆ A⊗K,
has no nonzero bounded 2-quasitraces and no quotient is unital due simplicity of A.
Therefore, P (A⊗K)P satisfies property (S) by definition. �

Using Brown’s result described in Theorem 3.9, we use the above Proposition to
see when property (S) implies stability (up to some matrix extension). Indeed, this
happens when there is no proper non-regular ideals in M(A ⊗ K). In other words,
when property R holds. Next result shows the equivalence between this property and
asymptotic regularity.

Theorem 3.12. Let A be a unital separable simple exact C*-algebra. Then A ⊗ K is
asymptotically regular if and only if A⊗K satisfies property R.

Proof. Let us first show the ”only-if” direction. Let P be a multiplier projection in
M(A⊗K) such that P is contained in a proper ideal ofM(A⊗K). If P ∈ A⊗K, then
automatically P is contained in a regular ideal of M(A⊗K); hence, we assume that P
is not in A⊗K.

In this case, suppose that P is not contained in any regular ideal ofM(A⊗K). This
implies that P (A⊗K)P must be a full hereditary subalgebra of A⊗K, with no unital
quotient and no nonzero bounded 2 quasitraces, i.e., it satisfies property (S). By the
assumption of asymptotic regularity, there exists n ∈ N such that Mn(P (A ⊗ K)P ) is
stable; namely, the sum of n-copies of P , i.e. ⊕nP , is Murray-von Neumann equivalent
to the unit of M(A ⊗ K) (see Theorem 3.9). This contradicts our assumption that P
is contained in a proper ideal of M(A ⊗ K); therefore, P belongs to a regular ideal of
M(A⊗K), and property R holds.

For the converse, let D be a nonzero hereditary subalgebra of A⊗K satisfying property
(S). Use Lemma 3.8 to find the multiplier projection P inM(A⊗K) such that P (A⊗K)P
is isomorphic to D. By the lack of nonzero bounded 2-quasitraces given by property
(S), the projection P cannot be contained in a regular ideal of M(A ⊗ K). Therefore,
P is a norm-full element in M(A⊗K) due to property R.

Since P is norm-full element, there exists n ∈ N such that ⊕nP is Murray-von Neu-
mann equivalent to the unit of M(A ⊗ K). Therefore, Mn(P (A ⊗ K)P ) ∼= Mn(D) is
stable by Theorem 3.9 as desired. �

A simple combination of Proposition 3.7 and Theorem 3.12 provides the following:

Corollary 3.13. Let A be a unital separable simple exact C*-algebra such that A ⊗ K
satisfies property R. Then A is either stably finite or purely infinite.
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Remark 3.14. One may wonder whether the converse of last corollary (or equivalently
Proposition 3.7) is true. The answer to that is negative, i.e. there exist a separable
simple stably finite C*-algebra that does not satisfy property R. The counterexample
satisfying that condition appeared in [23]. In there it is constructed a stably finite pro-
jection Q in the multiplier algebra of a separable stable simple C*-algebra A, which
satisfies that Q =

∑∞
j=1 pj , where pj are pairwise orthogonal projections in A satisfying

λ(pi) = λ(pj) <∞ for all i, j and all functionals λ.
Stably finiteness is not specified in [23], but it follows from the definition of projec-

tion Q. Indeed, if for the contrary ∞ ∈ Cu(A) was a compact element, then some
multiple of 〈

∑∞
i=1 pj〉 would be equal than ∞. Using compacity of ∞, that implies that

n
∑m

i=1 pi =∞ for some n,m ∈ N. Namely, λ(pi) =∞ for all functionals, contradicting
the finiteness of them.

This example shows that not all stably finite exact C*-algebras admits a bounded trace.

An equivalent formulation of Corona Factorization Property for separable simple C*-
algebras is that any norm-full multiplier projection P ∈ M(A ⊗ K) is Murray-von
Neumann equivalent to 1M(A⊗K) (see [17] for further details). Roughly speaking, CFP
allows us to pass from n-size of stability, to stability itself. Hence, Theorem 3.12 induces
the following:

Corollary 3.15. Let A be a unital separable simple exact C*-algebra. Then, the follow-
ing are equivalent:

(1) A is regular
(2) A is asymptotically regular and satisfies CFP
(3) A satisfies property R and CFP

Focusing on the real rank zero setting, Ng also described asymptotic regularity in [19,
Proposition 4.9]. In particular, he showed the following, which we recall (without proof)
by completeness.

Proposition 3.16. Let A be separable simple exact real rank zero C*-algebra. If there
exists a norm-full multiplier projection P ∈M(A⊗K) not Murray-von Neumann equiv-
alent to 1M(A⊗K), then there exists a full hereditary subalgebra D ⊆ A ⊗ K satisfying
property (S) such that Mn(D) is not stable for any n ∈ N.

Above proposition easily provides the argument that, in the real rank zero framework,
asymptotic regularity (or property R) implies Corona Factorization Property. Indeed,
if there was a norm-full projection different than the unit in M(A ⊗ K), then asymp-
totic regularity would not hold. Therefore, by Corollary 3.15 it follows that Regularity,
Asymptotic regularity and Property R are equivalent in this setting (as shown in [19,
Theorem 4.14]).

By Proposition 3.11, one has the latter condition exposed in Proposition 3.16 is equiv-
alent to the existence of a projection P in a proper non-regular ideal in M(A⊗K). In
this context, to build an example satisfying CFP and not being regular, one needs to
build an algebra A such that both M(A⊗K) has a projection in a proper non-regular
ideal and all norm-full multiplier projections are Murray-von Neumann equivalent to
1M(A⊗K). We recommend to look at [18] to learn more about non-regular ideals in the
multiplier algebra of an stable C*-algebra.
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