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Introduction

Without a doubt the most important result in chemistry in the 19th century was the classifica-
tion of the simple chemical elements into Mendeleev’s periodic table. If we move forward to the
20th century, the theoretical explanation of this classification, which was made by Schrödinger’s
equation and Pauli’s exclusion principle, is a crucial achievement of physics, and more con-
cretely, of quantum mechanics. One could look at this theory from different angles, but all of
them converge to the point of view stated by Heisenberg “physical quantities are governed by non-
commutative algebra”.

In the 19th century, a number of experiments determined with precision the lines of the emis-
sion spectra of the atoms that make up the elements. In particular, if one has a Geissler tube filed
with a gas such as hydrogen, the light emitted by the tube may be analyzed with a spectrometer
and one would obtain a certain number of lines, indexed by their wavelengths. This configura-
tion is the most direct source of information of the atomic structure and constitutes an accurate
description of the element under consideration. Defining the frequency as η = c/λ, where λ is
the wavelength and c is the phase speed of the wave, one deduces that there exists a set I of
frequencies such that the spectrum ot the elements may be defined by the set of differences of
frequencies of I . Further, this property shows that one can combine two frequencies to get a
third, this fact is known as the Ritz-Rydberg combination principle.

We point out that these experiments could not be explained within the framework of theore-
tical physics of the 19th century since comparing these experiments to classical mechanics (based
on Newton’s mechanics and Maxwell’s laws) would yield a contradiction. More concretely, the
range of the set of frequencies obtained from an atom is a subgroup of R, which contradicts
experimental physics. In the 20th century Heisenberg, based on the experimental groundwork,
showed that the set described by the emitted frequencies is an algebra of matrices (which is
noncommutative) instead of a group as classical physics predicted. Concretely, he replaced the
algebra of functions on the phase space by the algebra of matrices. This was the beginning of
noncommutative topology and may be understood as the birth of quantum mechanics.

Based on the need to replace ordinary measure theory (Lebesgue measure) when dealing
with noncommutative spaces and to study the lattices of projections in an algebra, Murray and
von Neumann defined von Neumann algebras in the 1920’s. In a certain sense, this theory is like
linear algebra in infinite dimensions, i.e. over an infinite-dimensional separable Hilbert spaceH.
Roughly speaking, we can distinguish between a von Neumann algebra, which is a *-subalgebra
of B(H) closed for the weak topology, where B(H) is the set of bounded linear operators on H,
and a C*-algebra, which may be regarded as the norm-closed subalgebras of B(H). Of course
every von Neumann algebra is, in particular, a C*-algebra.
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The noncommutative topological spaces we mainly speak of in this memoir are C*-algebras.
This theory gave birth in 1943, when Gelfand and Naimark showed that, among all the Banach
algebras, C*-algebras could be characterized by a small number of axioms. In addition, they
showed that a commutative C*-algebra is isomorphic to the algebra C0(X) of complex-valued
continuous functions on X that vanish at infinity, for some locally compact, Hausdorff space X ;
more concretely, X is its spectrum.

During the last seventy years, C*-algebra theory has been an extremely active and rapidly
expanding area of mathematics. In particular, some of its main achievements have had great
impact in other areas such as dynamical systems and complex analysis as well as applications to
theoretical physics. For instance, moving back to quantum mechanics, one may describe a phy-
sical system by a unital C*-algebra A. Indeed, the self-adjoint elements of A might be thought
of as the observables, i.e. the measurable quantities of the system, and any positive normalized
functional ϕ on A (a linear map ϕ : A → C with ϕ(a∗a) ≥ 0 for all a ∈ A such that ϕ(1) = 1)
might be understood as a state of the system. Precisely, the expected value of the observable x,
if the system is in state ϕ, is then ϕ(x). This C*-algebra approach is used in the Haag-Kastler
axiomatization of local quantum field theory, where every open set of the Minkowski spacetime
is associated with a C*-algebra. (See [Con94] for further details.)

From the beginning, the main topics on C*-algebra theory have been the study of the struc-
ture of different classes of C*-algebras and the quest for classifying invariants. In this work
we will mainly focus on the structure of a class of C*-algebras called continuous fields of C*-
algebras, and the study of one of its invariants, the Cuntz semigroup.

Classification of C*-algebras

The classification of C*-algebras is based on the search of a complete invariant, i.e. an object
that completely captures on its own and functorially the nature of isomorphism of C*-algebras.
Another important question is the range that this invariant has. In particular, we seek a functor
Inv( ) from the category of C*-algebras to a suitable category such that if φ : Inv(A) ∼= Inv(B) for
two C*-algebras A,B, then there exists ϕ : A ∼= B such that Inv(ϕ) = φ.

If one looks for a starting point on the classification of C*-algebras, this could be traced
back to Glimm and his study of UHF-algebras carried out in the late 50s ([Gli60]). Specifically,
he classified UHF-algebras using the set of projections under a certain equivalence relation.
Later, in 1976, the above classification was generalized by Elliott ([Ell76]) who showed that
(K0(A),K0(A)+, [1A]) is a complete invariant for the class of approximately finite dimensional
C*-algebras (AF-algebras), i.e., inductive limits of finite dimensional C*-algebras. It is important
to remark that the work of Effros, Handelman and Shen ([EHS80]) determined abstractly the K0

groups of separable AF-algebras; these are exactly the dimension groups, that is, the countable,
unperforated groups that have the Riesz interpolation property. This completely determines the
range of the invariant.

In 1989, based on the existing results for some special classes of C*-algebras, Elliott conjec-
tured that all separable, simple and nuclear C*-algebras could be classified using an invariant
consisting of K-theory and traces. In the most general form, Elliott conjecture was the following:

Conjecture. (Elliott, 1989) There is a K-theoretic functor F from the category of separable and nuclear
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C*-algebras such that if A and B are separable and nuclear, and there is an isomorphism φ : F (A) →
F (B), then there is a *-isomorphism Φ : A→ B such that F (Φ) = φ.

The concrete form of the invariant is:

Ell(A) = ((K0(A),K0(A)+, [1A]),K1(A),T(A), rA),

where rA : T(A) × K0(A) → R is the pairing between K0(A) and T(A) given by evaluation of a
trace on a K0-class.

This program has been quite sucessful and has given spectacular results. One of its main
achievements was the classification of purely infinite, simple, separable and nuclear C*-algebras
(known as Kirchberg algebras) obtained by Kirchberg and Phillips in [KP00b] and [KP00a] tak-
ing as invariant ((K0(A), [1A]),K1(A)) (as T(A) = ∅ and K0(A)+ = K0(A) in this case). Recall
that a simple C*-algebra A is purely infinite if for all a 6= 0 ∈ A there exist x, y 6= 0 such that
xay = 1. Moreover, it was also shown that for any triple (G0, g0, G1) of countable abelian groups
G0, G1 with distinguished element g0 ∈ G0, there exists a unital Kirchberg algebra A such that
(K0(A), [1]0,K1(A)) ∼= (G0, g0, G1). Thus, also in this case the range of the invariant is deter-
mined.

If we turn our attention to the stably finite case and consider the algebras that admit an in-
ductive limit decomposition, the first results towards classification, though not phrased in this
way, were the above mentioned classification results obtained by Glimm and Elliott. After other
significant results obtained in the 90’ such of the classification of AT-algebras (see [Ell97]), a
crucial achievement was the classification of simple unital AH-algebras with slow dimension
growth obtained by Gong ([Gon02]) and by Elliott, Gong, Li ([EGL07]). An AH-algebra is an in-
ductive limit of a sequence (Ai, ϕi) where Ai is a direct sum of algebras which are finite matrices
over C(Xnk) for some compact metric spaces. Roughly speaking, the condition of having slow
dimension growth means that the dimension of the spaces compared to the sizes of the matrices
tend to zero as we go along the limit decomposition.

Despite the good results obtained on the way to confirm Elliott’s conjecture, in the last decade
there have appeared two dramatic counterexamples built out by M. Rørdam ([Rør03]) and A.
Toms ([Tom08a]). We remark that the construction of both examples is based on work by Vil-
ladsen ([Vil98]), where he exhibited examples of simple nuclear C*-algebras that fail to satisfy
strict comparison of projections. Concretely, in [Tom08a] two non-isomorphic unital simple AH-
algebras that agreed on their Elliott invariant and other continuous and stable isomorphism
invariants were produced. However, these algebras were distinguished using their Cuntz semi-
group W(A). This semigroup was introduced by Cuntz in 1978 ([Cun78]) modelling the con-
struction of the Murray-von Neumann semigroup V(A), but taking into account positive ele-
ments in arbitrary matrices over the algebra modulo an equivalence relation. In particular, the
Cuntz semigroup construction generalizes the construction of V(A) in the stably finite case.

The appearance of the above examples opened the door to two possible directions in the clas-
sification program of C*-algebras; one can either restrict the class of separable simple nuclear
C*-algebras to be classified by Ell(A) or else search for finer invariants. In the latter direction,
the Cuntz semigroup has been intensively studied in recent years, as can be seen in [BPT08],
[ERS11], [CEI08], [Rob13] among others. Further, some classifying results have been obtained
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using the Cuntz semigroup as an invariant ([CE08],[Rob12] in the non-simple case). It is ap-
propriate to note that one of the main properties of the Cuntz semigroup is that its structure
contains a large amount of information coming from the Elliott invariant, and, in particular, it
can be recovered from the Elliott invariant in a functorial manner in some cases (see [BPT08],
[PT07]). In the converse direction, it is also posible to recover the Elliott invariant from the Cuntz
semigroup for a large class of C*-algebras, as have been shown in [Tik11], [ADPS13].

The Cuntz semigroup has gained relevance in the classification program, but to work with
it is usually difficult due to the complexity of its definition. On the one hand, the computa-
tion of the Cuntz semigroup of a C*-algebra is very complicated as, already in the commutative
case, at least this amounts to classifying vector bundles over a topological space. On the other
hand, it does not preserve inductive limits of C*-algebras. Note that the latter difficulty is a
crucial drawback since, as seen before, a lot of C*-algebras are built as inductive limits. Never-
theless, the latter difficulty was solved by Coward, Elliott and Ivanescu in [CEI08] considering
a modified version of the Cuntz semigroup, denoted by Cu(A). Particularly, they used suitable
equivalence classes of countably generated Hilbert modules to obtain a semigroup strongly re-
lated to the classical Cuntz semigroup which, in fact, is isomorphic to W(A ⊗ K), where K is
the algebra of compact operators over a separable infinite-dimensional Hilbert space. One of
the main advantages of their construction is that they further provide a category Cu for this
new semigroup, whose objects are positively ordered abelian semigroups with some additional
properties of a topological nature. Moreover, the assignment A→ Cu(A) defines a functor from
the category of C*-algebras to Cu, which preserves inductive limits. It is opportune to note that
Cu(A) is more tractable than W(A) thanks to its topological properties.

Continuous Field C*-algebras

A vector bundle is a topological construction that comes from the idea of a family of vector
spaces parameterized by another space X . In particular, to every point x of the space X we
associate (or “attach”) a vector space Vx in such a way that these vector spaces fit together to
form another space which is related with X . For instance, if X = [0, 1] and one attaches R to
each x ∈ X , then one obtains the trivial vector bundle [0, 1]× R.

The Gelfand-Naimark characterization of commutative C*-algebras explained before sug-
gested the problem of representing noncommutative C*-algebras as continuous sections of C*-
algebra bundles. In that direction, a first approach to define operator fields over a space X
was made in [Fel61], where it was also shown that a separable C*-algebra A with Hausdorff
primitive spectrum X is isomorphic to a C*-algebra of operator fields over X .

Continuing the studies started by Fell, in order to study deformations in the C*-algebraic
framework, Dixmier introduced the notion of continuous field of C*-algebras over a locally
compact space in [Dix77]. A separable C(X)-algebra over a compact space X may be thought of
as a C*-algebra A which has the structure of a C(X)-module. These algebras may be analysed
via their fibers, i.e. the quotient algebras Ax = A/C0(X \ {x})A, and it is known that for all
a ∈ A, the map x 7→ ‖a(x)‖ is upper semicontinuous. If the above map is continuous for all
a ∈ A, we say that A is a continuous field of C*-algebras or a C*-bundle.

Adopting the spirit of the notion of trivial bundle, we say that a continuous field A is trivial
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if A ∼= C(X)⊗D for some C*-algebra D, so all fibers are isomorphic to D. On the other hand, a
point x ∈ X is called singular for A if the restriction A(U) = C0(U)A is nontrivial for any open
set U that contains x (i.e. A(U) is not isomorphic to C0(U) ⊗ D for some C*-algebra D). The
above definition is relevant because only a very small fraction of continous fields of C*-algebras
correspond to locally trivial bundles.

Clearly, to study continuous fields of C*-algebras, one can focus either on the structure of
some specific continuous field of C*-algebras (i.e. try to determine whether a continuous field
C*-algebra is locally trivial or not) or on the classification of some classes of continuous fields
not bothering about locally triviality.

Along the way of studying the structure of these objects there have been a lot of relevant
achievements obtained, for instance, by E. Blanchard [Bla96], M. Dadarlat [Dad09a] [Dad09b]
and E. Kirchberg and S. Wasserman [KW95], among others. One of the most valuable results
which should be mentioned was shown by Blanchard and Kirchberg in [Bla97]. They proved
that a continuous field C*-algebraA is exact if and only if there exists a monomorphism of C(X)-
algebrasA ↪→ C(X)⊗O2, whereO2 is the universal C*-algebra generated by two isometries with
orthogonal ranges that add up to 1. Notice that the above result gives an idea of the complexity
of continuous fields, as there exist nowhere trivial exact continuous field C*-algebras yet they are
embedded in a trivial continuous field. Another important result regarding structural properties
was given by M. Dadarlat in [Dad09a], where he proved automatic and conditional local/ global
trivialization results for continuous fields of Kirchberg algebras. In fact, he showed that the only
obstruction to local or global triviality for such algebras is encoded in the K-theory of the fibers.

Continuous field C*-algebras have also been analysed within the framework of the classifi-
cation program of C*-algebras. We wish to emphasize important results proved by Dadarlat,
Elliott in [DE07] and Dadarlat, Elliott, Niu in [DEN11]. They used the classification of Kirchberg
algebras to classify continuous fields over [0, 1] whose fibers are either Kirchberg algebras (with
certain torsion freeness assumptions on their K-theory) or AF-algebras, by means of a K-theory
sheaf. For example, in [DE07], they showed that if the fibers have torsion free K0-group and
trivial K1-group, the K0-sheaf is a complete invariant for separable stable continuous fields of
Kirchberg algebras. Roughly speaking, the K0-sheaf consists of the collection of the K0-groups
of the restrictions of the continuous field, together with suitable connecting morphisms. In their
work, one of the key ideas is the approximation of continuous fields by the so-called elementary
fields, i.e., fields that are locally trivial at all but finitely many points.

Our aims

We will be concerned with the study of the structure of continuous field C*-algebras, and the
computation of their Cuntz semigroup, with classification in view. We next summarize the main
topics discussed in this memoir.

(1)-Structure of Continuous Fields of C*-algebras : In the literature there are two examples
which clearly give an idea about the complexity of continuous field C*-algebras. The first one
was constructed by M. Dadarlat and G. A. Elliott in [DE07], and it is a continuous field C*-
algebra A over the unit interval with mutually isomorphic fibers and such that it is nowhere
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locally trivial. We remark that, in this example, all the fibers Ax of A are isomorphic to the same
Kirchberg algebra D with K0(D) ∼= Z∞ and K1(D) = 0, so all fibers have non-finitely generated
K-theory, and the base space is finite-dimensional. The second example that we would like to
emphasize shows that, even if the K-theory of the fibers vanish, the field can be nowhere locally
trivial if the base space is infinite-dimensional. This example was constructed in [Dad09b] as a
separable continuous field C*-algebra A over the Hilbert cube with the property that all fibers
are isomorphic to O2, but nevertheless A is nowhere locally trivial.

From the above examples, it is natural to ask which is the structure of continuous fields of
Kirchberg algebras over a finite-dimensional space with mutually isomorphic fibers and finitely
generated K-theory. This question has been adressed in [BD13].

(2)-The Cuntz semigroup of continuous field C*-algebras : For commutative C*-algebras
of lower dimension where there are no cohomological obstructions, a description of their Cuntz
semigroup via point evaluation has been obtained in terms of (extended) integer valued lower
semicontinuous functions on their spectrum. Next, a natural class to consider consists of those
algebras that have the form C0(X,A) for a locally compact Hausdorff space X . As a first in-
stance, the case whenA is a unital, simple, non type I ASH-algebra with slow dimension growth
was studied by A. Tikuisis in [Tik11]. Another important case was studied in [APS11], where X
is compact, metric and of dimension at most one and A has stable rank one and vanishing K1

for every closed, two sided ideal.
In the latter situation, and for more general C(X)-algebras, the key was to describe the Cuntz

semigroup classes by the corresponding classes in the fibers, i.e., the aim was to recover global
information from local data. This was done in [APS11] by analysing the map

α : Cu(A)→
∏
x∈X

Cu(Ax) given by α〈a〉 = (〈a(x)〉)x∈X .

Focusing on this analysis, it was shown that for the above mentioned class of C*-algebras
C(X,A), the range of the previous map can be completely identified as a semigroup of lower
semicontinuous Cu-valued functions. En route to this result, it was also shown that the Cuntz
semigroup functor behaves well on some pullbacks of C*-algebras and that for any S ∈ Cu
the semigroup Lsc(X,S) also belongs to Cu, where X is any finite-dimensional compact, metric
space.

In [ABP] the map α was studied in the case when X has low dimensions and all the fibers
of the C(X)-algebra A are not necessarily mutually isomorphic. Explicitely, in [ABP] we take
into account continuity properties of the objects in the category Cu to study sheaves where the
target values are semigroups in Cu. This may be regarded as a version of continuous fields of
semigroups in Cu.

(3)-Dimension Functions on a C*-algebra : Roughly speaking, a dimension function on a
ring is a real-valued function whose values measure the size of the ”support projections” of
the elements. In the concrete case of operator theory, these functions appeared when Murray
and von Neumann used them (defined only on projections) in their classification of factors. In
particular, they are a crucial tool in the study of von Neumann algebras. The study of dimension
functions on C∗-algebras was developed in [Cun78]. Mainly, Cuntz proved that if A is a simple
C*-algebra, then A is stably finite if and only if it has a dimension function.
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This idea was further developed by B. Blackadar and D. Handelman in [BH82], who intro-
duced a general theory for dimension functions on non necessarily simple C∗-algebras. They
clarified which is the relation between dimension functions and quasi-traces, which are roughly
tracial maps defined on the algebra that are linear on commuting elements and that extend to
matrices with the same properties. Specifically, it was shown that there is an affine bijection
between the set of quasitraces and those dimension functions that are lower semicontinous in
a suitable sense. Further, it was shown that the set of quasi-traces for unital C*-algebras is a
simplex. It is pertinent to mention that, when A is a unital C∗-algebra, dimension functions can
be thought of as states on the Cuntz semigroup W(A). Thus, the study of dimension functions
on the algebra can be translated into studying states on a semigroup.

In relation to the study of dimension functions on C*-algebras, two natural questions arised
from [BH82], that are referred to as the Blackadar and Handelman conjectures:

(i) The affine space of dimension functions is a simplex.

(ii) The set of lower semicontinuous dimension functions is dense in the space of all dimension
functions.

We remark that that the relevance of the latter conjecture falls on that the set of lower semi-
continuous dimension functions is more tractable than the set of all dimension functions since,
as mentioned, it is in correspondence with the quasitraces in A.

It is relevant at this point to mention that Blackadar and Handelman made the first progress
of their conjectures confirming that (i) holds for commutative C*-algebras in [BH82]. Further
progress was made in [Per97], confirming (ii) for the class of unital C*-algebras with real rank
zero and stable rank one, and in [BPT08], confirming both conjectures for the class of simple
unital finite C*-algebras which are exact and Z-stable (where Z is the Jiang-Su algebra, [JS99]).

(4)- Dimension theory on C*-algebras : While it has been known for a long time that if
X, Y are compact Hausdorff spaces the covering dimension satisfies dim(X × Y ) ≤ dim(X) +
dim(Y ), there is little knowledge about the analogous situation for non-commutative versions
of dimension for C*-algebras. More precisely, it is not totally clear what the behaviour of the
real rank and the stable rank of tensor products of C*-algebras is. An important contribution to
clarify the situation were made in [NOP01] where the real and the stable rank of some trivial
continuous fields was studied. Some of their main results are the following:

(i) If X is a locally σ-compact Hausdorff and A any C*-algebra, then RR(C0(X) ⊗ A) ≤
dim(X) + RR(A).

(ii) IfA is unital C*-algebra and RR(A) = 0, sr(A) = 1, and K1(A) = 0, then sr(C([0, 1])⊗A) = 1.

Note that the first inequality is a generalization of the situation that we had for X, Y com-
pact Hausdorff spaces and covering dimension because RR(C(X) ⊗ C(Y )) = RR(C(X × Y )) =
dim(X × Y ) ≤ dimX + dim(Y ) = RR(C(X)) + RR(C(Y )).

In our work, we have made a remarkable contribution to the computation to the stable rank
for some continuous fields. These achievements and their applications to the Blackadar and
Handelman conjectures can be found in [ABPP13].
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The contents of the memoir

This memoir is organized in four chapters. Chapter 1 is the place where we provide some basic
background on C*-algebras, K-theory and the Cuntz semigroup. Our main aim in this first
chapter is to provide some basic notation, definitions and the main results so that they may be
referenced in the following chapters.

Following the line of research explained before, in the second chapter we detail how we fill
the gap left by the two examples in [DE07] and [Dad09b]. In pursuance of doing this, we focus
our study on continuous field C*-algebras A over X such that Ax are mutually isomorphic to a
stable Kirchberg algebra D satifying the UCT with finitely generated K-theory and where X is
a finite-dimensional compact metrizable space. Our main result in Chapter 2 states that under
the mentioned assumptions, there exists a dense open set U of X such that A(U) is locally triv-
ial. Note that by the two examples reviewed before, the assumptions that the space X is finite
dimensional and that the K-theory of the fiber is finitely generated are necessary, i.e., they are
optimal.

Coming back to the study of the Cuntz semigroup, as said before, the information contained
in Cu(A) of a continuous field C*-algebra should be obtained by the analysis of the map

α : Cu(A)→
∏
x∈X

Cu(Ax) given by α〈a〉 = (〈a(x)〉)x∈X .

This is exactly what we do in Chapter 3 considering the continous fields A over a compact
metrizable and one-dimensional space X such that Ax has stable rank one and vanishing K1 for
every closed, two sided ideal. The above analysis leads us to study the natural map FCu(A) :=
tx∈XCu(Ax) → X and its sections. This is motivated by the fact that the Cu( ) functor induces
a presheaf CuA on X given by V 7→ Cu(A(V )) to each closed set V of X . This is a sheaf under
the above hyphoteses. Hence, we may expect to relate the Cuntz semigroup of a continuous
field with the semigroup of continuous sections of an étalé bundle. We remark that this was
the case of the K-theory presheaf used by Dadarlat and Elliott in [DE07] when the C*-algebra
under study was a separable continuous field over [0, 1] of Kirchberg algebras satisfying the
UCT and having finitely generated K-theory group. In our case, and in order to recover CuA
from the sheaf of continuous sections of the map FCu(A) → X , we need to break away from the
standard approach of étalé bundles (see [Wel73]) and consider a topological structure on FCu(A)

taking into account continuity properties of the objects in the category Cu. We finish our deep
analysis of Cu-valued sheaves with the result that allows us to recover the Cuntz semigroup of
the continuous field as the semigroup of global sections on FCu(A). Our approach extends some
of the results in [APS11].

In the second part of Chapter 3, using the description above, we are able to answer the natu-
ral question about whether the Cuntz semigroup of continuous fields C*-algebras captures, on
its own, all the information of the K-theory sheaf. In fact, we prove that for continuous fields
A over X such that Ax has stable rank one, vanishing K1 and real rank zero for all x ∈ X , the
Cuntz semigroup and the K-theory sheaf defined by the Murray-von Neumann semigroup carry
the same information. We remark that this result allows us to rephrase the classification result
explained before in [DEN11] by a single invariant, the Cuntz semigroup. The confirmation of
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this fact is a good contribution to the starting line of reasearch based on the use of the Cuntz
semigroup as a complete invariant for some classes of C*-algebras.

Although we have briefly mentioned this in passing, it is natural to ask which is the rela-
tion between W(A) and Cu(A). Related to this, a first approach was given in [ABP11], where a
new category of ordered abelian semigroups, PreCu, was built, and to which the classical Cuntz
semigroup belongs for a large class of C*-algebras. We note that this category contains the cate-
gory Cu as a full subcategory. Precisely, PreCu differs from Cu in that semigroups need not be
closed under suprema of ascending sequences (which is one of the main features of semigroups
in the category Cu). Following this, the completion of a semigroup in PreCu was defined in
[ABP11] in terms of universal properties. This completion gives us a functor from the category
PreCu to Cu. In particular, this construction yields that Cu(A) is the completion of W(A) in good
cases (for example, if sr(A) = 1).

We start Chapter 4 by computing the stable rank of some class of continuous fields C*-
algebras, which is a result of independent interest. Specifically, we show that any continuous
field A over one-dimensional compact metric space X such that Ax has stable rank one and van-
ishing K1 for every closed, two sided ideal for all x ∈ X satisfies that sr(A) = 1. Note that this
fact improves the results obtained in [NOP01] since we do not restrict just to the case of trivial
continuous fields.

We move on to show that, if Cu(A) is the completion of W(A), then W(A) is a Riesz interpola-
tion semigroup if and only if so is Cu(A). This is relevant since it shows that the structure of the
Grothendieck group of W(A) mainly depends on the description of Cu(A). We use this, in the
particular case of continuous fields A over one-dimensional spaces and with mild assumptions
on their fibers, to conclude that the set of dimension functions is a simplex when sr(A) = 1,
thus confirming the first Blackadar and Handelman conjecture for this class of algebras. Fur-
ther, we represent the Grothendieck group of W(A) sufficiently well into the group of affine and
bounded functions on T(A) to give an affirmative answer to the second conjecture of Blackadar
and Handelman for certain continuous fields.
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Agraı̈ments

Com que aquesta és l’única part de la tesi que espero que sigui llegida detingudament per la
gent que m’ha ajudat a poder-la realitzar, espero no fer cap falta i entretenir-vos una mica!

Tal i com he fet a la introducció, m’agradaria començar explicant les sensacions que vaig
tenir quan només era un petit embrió a la panxa de la meva mare. Jo, en ”aquellos entonces“, ja
pensava que algun dia arribaria a ser doctor, i mira... després de molts anys sembla que estic a
prop d’aconseguir-ho... no està malament, no? Podria haver sigut pitjor!

Passant per alt la majoria de les històries d’infantesa, vull recordar una boda a la qual vaig
anar de petit on una dona grassoneta em va preguntar ”Què vols ser de gran?” I jo, tot i que
tenia menys de deu anys, ja vaig contestar: “Matemàtic!!”. Aquella resposta em va portar força
problemes, ja que, si no recordo malament, aquella dona es va passar mitja boda fent-me calcular
mentalment certes operacions matemàtiques i sempre anava dient: “ Ohh!! Ets molt bo. Algun
dia arribaràs a ser matemàtic!”. Tot i que els anys han anat passant, i les matemàtiques s’han
tornat més complicades que sumar i multiplicar, a vegades penso que aquella dona era una mica
visionària!

Però bé, el camı́ fins aquı́, tot i que no ha estat terrible, tampoc ha sigut bufar i fer ampolles,
i és per això que primer de tot vull agrair a la meva famı́lia tot el suport que m’ha donat durant
aquests anys. Des de mons pares, que em van arribar a oferir un cotxe si canviava de carrera i no
estudiava matemàtiques quan tenia divuit anys, però sense els quals no seria la persona que sóc,
fins als meus germans, l’Andreu i l’Enric, que sempre hi han estat quan ha calgut. Evidentment,
també me’n recordo del padrı́ jove, la Tere, el Jaume, la Carme i els meus padrins!

Dintre del món matemàtic, sempre recordaré aquests últims anys a la universitat, on fi-
nalment he trobat companys de professió amb els quals comparteixo alguna cosa més que les
matemàtiques. Aixı́, fent una petita llista, vull agrair al Dani certes discussions de vida i de fı́sica
molt interessants, al Pere l’ajuda constant per fer que les idees esbojarrades, com fer un penjador
al despatx, es facin realitat, al Joan per ensenyar-me que hi ha matemàtiques no teòriques que
són atractives, a l’Albert per mostrar-me que el primer que s’ha de fer quan s’arriba al despatx
és un cafè mentre llegeixes el diari, a l’Anna per tots aquests anys de cabòries, al Yago per ser
tan útil al principi, i al David per aguantar totes les meves neures sense ni despentinar-se. No
voldria descuidar-me ni de l’Antonio ni de l’Alberto ni dels altres Danis ni de la Isa!

Dins de la faràndula, em veig obligat a recordar-me dels meus companys de festa, d’excur-
sions, de viatge, de cerveses, d’alegria. Aquests són l’Ana, la Neus, el Josep, la Montse, l’Aurora,
l’Alba, el Mario, l’Albert, el Javi, el Jose i el Jordi entre altres. Continuant dintre d’aquest món,
vull recordar-me del cor Desacord, el qual m’ha fet passar molt bons moments en els últims dos
anys!

xi
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I de tu, companya de plors i alegries, amiga que mai em defraudes, persona que no et canses de
regalar-me abraçades cada dia, també me’n recordo.

No voldria acabar sense agrair al Grup de Teoria d’Anells de la UAB l’oportunitat d’estudiar
un doctorat amb ells. En especial, vull donar les gràcies al Ramon Antoine per tota l’ajuda
rebuda a l’hora de resoldre certes preguntes que sense ell encara estarien obertes.

I ara sı́, l’últim paràgraf és pel meu company, amic i tutor. Com ja saps, sense tu jo no hauria
estat capaç d’escriure aquesta tesi, aixı́ que ... gràcies per la paciència, Francesc!

I would also like to thank Marius, Hannes and Taylor for their useful help and kind friend-
ship.

Joan Bosa Puigredon

Bellaterra, Juliol 2013
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Chapter 1

Preliminaries

In this first chapter we provide some basic background on C*-algebras, K-theory and the Cuntz
semigroup. Our aim is not to repeat material easily found in textbooks on the subject, but to
establish some basic notation, definitions and the main results so that they may be referenced
along the following chapters. Some standard references for this material are [Mur90], [LLR00],
[Dix77], [APT11], [WO93], [Bla98], [Bla06].

1.1 C*-algebras

In this section we state some basic facts about C*-algebras that the reader is assumed to be
familiar with.

Definition 1.1.1. A C*-algebra A is an algebra over C with a norm a 7→ ‖a‖ and an involution a 7→ a∗,
for a ∈ A, such that A is complete with respect to the norm, and such that ‖ab‖ ≤ ‖a‖‖b‖ and ‖aa∗‖ =
‖a‖2 for every a, b in A.

A C*-algebra A is called unital if it has a multiplicative identity, denoted by 1A. A *-
homomorphism ϕ : A → B between C*-algebras A and B is a linear and multiplicative map
which satisfies ϕ(a∗) = ϕ(a)∗ for all a in A. If A and B are unital and ϕ(1A) = 1B, then ϕ is called
unital. Recall that *-homomorphisms are automatically continuous and of norm 1.

A C*-algebra is said to be separable if it contains a countable dense subset. A sub-C*-algebra
of A is a non-empty subset of A which is a C*-algebra with respect to the operations given on
A. Let F be a subset of A. The sub-C*-algebra of A generated by F , denoted by C∗(F ), is the
smallest sub-C*-algebra of A that contains F . In other words, C∗(F ) is the intersection of all sub-
C*-algebras of A that contain F . We write C∗(a1, a2 . . . , an) instead of C∗({a1, a2, . . . an}), when
a1, a2, . . . , an are elements in A.

We next provide a list of examples of C*-algebras.

Examples 1.1.2. (i) Let H be any Hilbert space and B(H) be the set of bounded linear opera-
tors onH. Then, B(H) is a C*-algebra, where the involution is given by the adjoint operator
and the norm is the operator norm, that is ‖T‖ = sup‖x‖≤1 ‖Tx‖.

1
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(ii) C is a C*-algebra considering the involution as the complex conjugation, and the norm as
the module of a complex number. In fact, C ∼= B(C).

(iii) The algebra Mn := Mn(C) ∼= B(Cn) is also a C*-algebra where the involution of a matrix is
its traspose conjugate on C and the norm is the operator norm.

(iv) Let X be a compact Hausdorff space. We define

C(X) := {f : X → C | f is continuous }.

With pointwise addition and multiplication, the involution induced by complex conjuga-
tion (f ∗(x) = f(x)) and the norm as the supremum norm (i.e., ‖f‖ = supx∈X |f(x)|), C(X)
is a unital commutative C*-algebra.

(v) Let X be a locally compact Hausdorff space. We will denote by C0(X) the algebra of con-
tinuous functions over X with values in C that vanish at infinity, i.e., continuous functions
such that, for all n ∈ N, the set {x ∈ X | f(x) ≥ 1/n} is a compact subset of X . As before,
with the pointwise addition and multiplication, the involution as the complex conjugation
and the norm as the supremum norm, it becomes a commutative C*-algebra. Note that
C0(X) is unital if and only if X is compact.

(vi) Given a set I and {Ai}i∈I a family of C*-algebras,∏
i∈I

Ai := {(ai)i∈I | sup
i∈I
‖ai‖i <∞}

is a C*-algebra with the involution defined in each component and the norm as the supre-
mum norm.

Moreover,⊕
i∈I Ai = {(ai)i∈I | ∀ε > 0 ∃ F ⊆ I finite subset for which ‖ai‖ < ε ∀i ∈ I \ F}

= {(ai)i∈I | limi ‖ai‖ = 0}

is also a C*-algebra with the same involution and norm. In fact,⊕i∈IAi is an ideal of
∏

i∈I Ai
(see below).

(vii) If I = {1, 2, . . . , n}, thenA1×A2×. . .×An is a C*-algebra. In particular, given n1, n2, . . . , nk ∈
N, one has that Mn1(C)×Mn2(C)× . . .×Mnk(C) is a C*-algebra.

(viii) Any *-closed and norm-closed subalgebra of B(H) is a C*-algebra.

A C*-subalgebra B of A is called hereditary if 0 ≤ a ≤ b, with a ∈ A and b ∈ B, implies that
a ∈ B. We will denote by Ab = bAb = Her(b) the hereditary C*-subalgebra of A generated by b.
Further, if A is separable, any separable hereditary C*-subalgebra B of A is of the form aAa for
some element a ∈ B ([Mur90, Theorem 3.2.5])
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Theorem 1.1.3. Let B be a C*-subalgebra of a C*-algebra A. Then B is hereditary in A if and only if
bab′ ∈ B for all b, b′ ∈ B and a ∈ A.

An important class of hereditay subalgebras of a C*-algebra A is that consisting of the ideals.
By an ideal in a C*-algebra we shall always understand a closed, two-sided ideal. Every ideal
is automatically self-adjoint, and thereby a sub-C*-algebra. Assume that I is an ideal in a C*-
algebra A. The quotient of A by I is

A/I = {a+ I | a ∈ A}, ‖a+ I‖ = inf{‖a+ x‖ | x ∈ I}, π(a) = a+ I.

In this way A/I becomes a C*-algebra, π : A → A/I is a *-homomorphism, called the quotient
mapping, and I = Ker(π).

In order to associate a unital C*-algebra to any C*-algebraA there are two standard ways, the
maximal and the minimal unitization of A. The first one uses the multiplier algebra, denoted by
M(A). Let A be a C*-algebra, and let f, g : A → A be two maps (not necessarily morphisms).
We shall say that (f, g) is a double centraliser for A if the conditions

(i) f(xy) = f(x)y, (ii) g(xy) = xg(y), (iii) xf(y) = g(x)y

are satisfied for all x, y ∈ A. We define the multiplier algebra of A as

M(A) = {(f, g) | (f, g) is a double centraliser for A}.

It turns out that M(A) is a unital C*-algebra with componentwise addition, the multipli-
cation defined by (f1, g1)(f2, g2) = (f1f2, g2g1) and unit as (idA, idA), with the norm defined
as ‖(f, g)‖ = ‖f‖ = ‖g‖ and with the involution defined as (f, g)∗ = (g∗, f ∗), where f ∗(a) =
(f(a∗))∗. Moreover, A is an essential ideal insideM(A) and there exists an injective morphism
τ : A → M(A), where τ(a) = (La, Ra) and (La(x), Ra(x)) = (ax, xa) for a, x ∈ A. Another
important property ofM(A) is its universality, i.e., for every unital C*-algebra B, and any in-
jective morphism τ ′ : A → B such that τ ′(A) is an ideal of B there exists a unique morphism
τ : B →M(A) such that the following diagram

A
τ //

τ ′
""FFFFFFFFF M(A)

B

τ

OO

commutes. Note thatM(A) = A if and only if A is unital.

Remark 1.1.4. LetK(H) be the C*-algebra of all compact operators over a Hilbert spaceH. It can
be checked thatM(K(H)) = B(H), the set of all bounded linear operators overH. In general the
multiplier algebra of any C*-algebra A is much bigger than A. In fact, it is non-separable even
when A is separable and infinite dimensional

In pursuance to define the minimal unitization of a C*-algebra A, let B(A) be the Banach
algebra of all bounded operators on A, and consider ι : A → B(A) defined by ι(a) := [a′ 7→ aa′].
If we hence build

Ã := ι(A) + CI,
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where I is the identity operator, Ã is a normed algebra with the operations intherited from B(A)
and the operator norm. We define the involution operation on Ã by (ι(a) + λI)∗ := ι(a∗) + λI ,
so Ã is a unital C*-algebra. Clearly A is an ideal of Ã, and Ã/A is isomorphic to C when A is
non-unital. When A is unital, it follows thatM(A) ∼= Ã ∼= A.

Definition 1.1.5. Let A be a C*-algebra. An element a in A is called self-adjoint if a = a∗, and the
set of self-adjoint elements is denoted by Asa. Moreover, a is a projection if a = a∗ = a2. The set of all
projections is denoted by P(A). If a∗a = 1 it is called isometry, and if it, furthermore, satisfies aa∗ = 1,
then a is a unitary. The set of all unitaries is denoted by U(A). We will say that d ∈ A is a contraction
if ‖d‖ ≤ 1.

Note that any element a ∈ A can be written uniquely as a sum of two self-adjoint elements.
Indeed,

a =
1

2
(a+ a∗) +

1

2i
(a− a∗).

The following describes the structure of finite dimensional C*-algebras.

Theorem 1.1.6. Let A be a finite dimensional C*-algebra. Then there exist n1, . . . , nr ∈ N such that

A ∼= Mn1(C) ⊕ . . . ⊕ Mnr(C).

In the sequel we will often consider an important class of C*-algebras called AF-algebras.
These are the C*-algebras built as inductive limits of finite dimensional C*-algebras. An impor-
tant subclass of it is the class known as UHF-algebras. These are the inductive limit of sequences
{An = Mkn(C)} with kn|kn+1. A specific class of UHF-algebras consists of the algebras such that
kn = pn for a prime integer p, these are usually denoted by Mp∞ . When p = 2, this is called the
CAR-algebra and denoted by M2∞ .

Let A be a unital C*-algebra and let a be an element in A. The spectrum of a is the set of
complex numbers λ such that a − λ1A is not invertible, and it is denoted either by sp(a) or
by σ(a). The spectrum sp(a) is a closed subset of C, and in fact sp(a) is a compact subset of the
complex plane. IfA is non-unital, then embedA in its unitization Ã and let sp(a) be the spectrum
of a viewed as an element in Ã. If A is non-unital, then 0 ∈ sp(a) for all a in A.

Using the above definition, an element a in A is called positive, denoted by a ≥ 0, if it is
self-adjoint and sp(a) ⊆ R+ (with the convention that 0 ∈ R+). We will denote the set of positive
elements by A+. It was shown by Kaplansky that a ∈ A+ if and only if there exists y ∈ A such
that a = yy∗. We say that a in A is normal if aa∗ = a∗a.

Another important class of C*-algebras we want to emphasize consists of the so-called nu-
clear C*-algebras. These class is large enough to include most C*-algebras which arise ”nat-
urally“. For instance, all the finite dimensional and all commutative C*-algebras are nuclear.
And, in addition, the nuclearity condition is closed under the formation of inductive limits, so
AF-algebras are also nuclear.

Definition 1.1.7. Let A and B be C*-algebras, and let ϕ : A → B be a linear function. ϕ is called
positive if a ∈ A+ implies ϕ(a) ∈ B+. It is n-positive if ϕn : Mn(A) → Mn(B) is positive (ϕn(ai,j) =
(ϕ(ai,j))), and ϕ is completely positive if it is n-positive for all n.
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Theorem 1.1.8. (see [Bla98, Theorem 15.8.1]) Let A be a C*-algebra. The following are equivalent:

(i) For every C*-algebra B, the algebraic tensor product A�B has a unique C*-norm.

(ii) The identity map A to A, as a completely positive map, approximately factors through matrix alge-
bras, i.e., for any x1, . . . xk ∈ A and ε > 0, there is an n and completely positive maps α, β

A
id //

α

  BBBBBBBB A

Mn

β
>>||||||||

such that ‖xj − β ◦ α(xj)‖ < ε for 1 ≤ j ≤ k.

A C*-algebra satisfying these conditions is called nuclear.

The result below introduces what is meant by functional calculus for C*-algebras. It allows
us to think of normal elements of a C*-algebra as “functions” over their spectra. The functional
calculus is based on the following two results.

Theorem 1.1.9 (Gelfand). Let A be a commutative C*-algebra different from zero. Then, there exists a
locally compact space X such that A is *-isomorphic to C0(X).

Theorem 1.1.10. Let A be a unital C*-algebra, and let a ∈ A be a normal element. Denote by z the
inclusion of sp(a) to C. Then, there exists a unique unital *-morphism ϕ : C(sp(a)) → A such that
ϕ(z) = a. Moreover, ϕ is an isometry and Im(ϕ) = C∗(a, 1).

A supplementary property of C*-algebras is their connection with Hilbert spaces, which is
made via the notion of a state. We now recall the relevant concepts and make this connection
explicit.

Definition 1.1.11. Let A be a C*-algebra. A linear functional ϕ on A is positive, written ϕ ≥ 0, if
ϕ(x) ≥ 0 whenever x ≥ 0. A state on A is a positive linear functional of norm 1. Denote by St(A) the
set of all states on A, called the state space of A. Moreover, say that a state ϕ is pure if it is an extreme
point of St(A)

Note that the abundance of states is guaranteed by the following result:

Theorem 1.1.12. Let A be a C*-algebra, x ∈ Asa. Then there is a pure state ϕ on A which |ϕ(x)| = ‖x‖.

Definition 1.1.13. Let A be a C*-algebra. We will define a representation of A as a pair (H, π), where
H is a Hilbert space and π : A → B(H) is a *-homomorphism. We say that (H, π) is faithful if π is
injective. Moreover, (π,H) is an irreducible representation of A if π(A)′ = C, where π(A)′ denotes the
commutant of π(A)

If (Hλ, πλ)λ∈Λ is a family of representations of A, their direct sum is the representation (H, π)
obtained by settingH = ⊕λHλ, and π(a)((xλ)λ) = (πλ(a)(xλ))λ for all a ∈ A and all (xλ)λ ∈ H.
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Suppose now that τ is a positive linear functional on a C*-algebra A. Setting

Nτ = {a ∈ A | τ(a∗a) = 0},

it follows that it is a closed left ideal of A and that the map

(A/Nτ )× (A/Nτ )→ C

(a+Nτ , b+Nτ ) 7→ τ(b∗a) = 〈a+Nτ , b+Nτ 〉,

is a well-defined inner product on A/Nτ . We denote by Hτ the Hilbert completion of A/Nτ in
which ‖a‖2 = 〈a, a〉 = τ(a∗a).

If a ∈ A, define an operator π(a) ∈ B(A/Nτ ) by setting π(a)(b+Nτ ) = ab+Nτ . Note that the
inequality ‖π(a)‖ ≤ ‖a‖ holds. The operator π(a) has a unique extension to a bounded operator
πτ (a) on Hτ . The map πτ : A → B(Hτ ) is a *-homomorphism, so (Hτ , πτ ) is a representation of
A. The representation (Hτ , πτ ) of A is called the Gelfand-Naimark-Segal representation (or GNS-
representation) associated to τ .

If A is non-zero, we define its universal representation as
⊕

τ∈St(A)(Hτ , πτ ).

Theorem 1.1.14 (Gelfand, Naimark). If A is a C*-algebra, then it has a faithful representation. Speci-
fically, its universal representation is faithful.

Theorem 1.1.15 (Gelfand, Naimark). For each C*-algebra A there exist a Hilbert space H and an
isometric *-homomorphism ϕ from A into B(H), the algebra of all bounded linear operators on H. In
other words, every C*-algebra is isomorphic to a sub-C*-algebra of B(H). If A is separable, thenH can be
chosen to be a separable Hilbert space.

We next introduce two important classes of maps for C*-algebras known as quasitraces and
traces.

Definition 1.1.16. A 1-quasitrace on a C*-algebra A is a function τ : A→ C such that

1. τ(xx∗) = τ(x∗x) ≥ 0 for any x ∈ A.

2. τ is linear on commutative *-subalgebras of A.

3. If x = a+ ib, where a, b are self-adjoint, then τ(x) = τ(a) + iτ(b).

If, in addition, τ extends to a map onM2(A) with the same properties, we shall say that τ is a 2-quasitrace.
We will denote the space of normalized 2-quasitraces on A by QT(A).

Related to the last definition, we define a trace on A just as a linear quasitrace, and we denote
the set of normalized traces on A as T(A). Recall that a trace or a quasitrace τ is normalized
whenever its norm, ‖τ‖ = sup{τ(a) | 0 ≤ a ≤ 1, ‖a‖ ≤ 1}, equals one. In the case that A is unital,
then this amounts to the requirement that τ(1) = 1. We note that T(A) ⊆ QT(A), and equality
holds when A is exact [Haa91].
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The theory of C*-algebras is often considered as non-commutative topology, which is justi-
fied by the natural duality between unital, commutative C*-algebras and the category of com-
pact, Hausdorff spaces (see for instance part 1.11 of [WO93]). Given this fact, one tries to transfer
concepts from commutative topology to C*-algebras. Along the following lines we will focus on
some aspects of the theory of dimension for C*-algebras.

We say that a unital C*-algebra A is finite, if for any x, y ∈ A with xy = 1 we also have yx = 1.
A unital C*-algebra A is called stably finite, if A ⊗Mk is finite for every k ≥ 1. A C*-algebra is
called residually stably finite if each of its quotients is stably finite.

Given U ,V two open covers of X , we say that V is an open refinement of U if for all V ∈ V
there exists U ∈ U such that V ⊆ U . A cover U = {Uλ}λ∈Λ has order k if every x ∈ X belongs
to at most k subsets in U . Recall that, in a topological space X , the covering dimension, denoted
by dim(X), is defined as the least n such that any open cover has an open refinement of order
≤ n+ 1, or infinity in case this n does not exist.

The first generalization of classical dimension theory to non-commutative spaces was the
stable rank as introduced by Rieffel [Rie83]. Later, Brown and Pedersen defined the real rank in
a similar way in [BP91].

Let A be a unital C*-algebra and define

1. Lgn(A) := {(a1, . . . , an) ∈ An |
∑n

i=1 a
∗
i ai ∈ GL(A)},

2. Lgn(A)sa := Lgn(A) ∩ (Asa)
n = {(a1, . . . , an) ∈ (Asa)

n |
∑n

i=1 a
2
i ∈ GL(A)},

where GL(A) denotes the set of invertible elements of A. The abbreviation Lg stands for left ge-
nerators, and the reason is that a tuple (a1, . . . , an) ∈ An lies in Lgn(A) if and only if {a1, . . . , an}
generate A as a (not necessarily closed) left ideal.

Definition 1.1.17 (Rieffel [Rie83], Brown, Pedersen [BP91]). LetA be a unital C*-algebra. The stable
rank of A, denoted by sr(A), is the least integer n ≥ 1 (or∞) such that Lgn(A) is dense in An. The real
rank of A, denoted by RR(A), is the least integer n ≥ 0 (or∞) such that Lgn+1(A)sa is dense in An+1

sa .
If A is not unital, define sr(A) := sr(Ã) and RR(A) := RR(Ã).

Remark 1.1.18. We have:

1. sr(A) ≤ n ⇐⇒ Lgn(Ã) ⊂ (Ã)n is dense,

2. RR(A) ≤ n ⇐⇒ Lgn+1(Ã)sa ⊂ (Ãsa)
n+1 is dense.

Observe that the smallest possible value of the stable rank is one. If A is unital, then Lg1(A)
consists precisely of the left invertible elements of A. Thus, A has stable rank one if and only if
the left-invertible elements of A are dense in A. It was shown in Proposition 3.1 of [Rie83] that
this is also equivalent to the condition that the invertible elements of A are dense in A.

Concerning the real rank, the smallest possible value of that is zero, which happens precisely
if the self-adjoint invertible elements in A are dense in Asa.

We next detail a collection of C*-algebras whose real rank is zero.
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Examples 1.1.19. 1. Let A be a commutative C*-algebra; hence, A = C0(X) for some locally
compact Hausdorff space. It follows that RR(A) = RR(Ã) = dim(αX), where αX is the
one point compactification of X . So RR(A) = 0 if and only if dim(X) = 0. In this situation,
as proved by Vaserstein, sr(A) = [dim(X)/2] + 1 (see e.g. [Bla06]).

2. The C*-algebra of bounded linear operators of a Hilbert space, B(H), has real rank zero.
Concretely, when H has finite dimension n, one has B(H) = Mn(C), so RR(Mn(C)) = 0.
Furthermore, sr(B(H)) =∞ ifH is an infinite dimensional Hilbert space.

3. Let p ∈ A be a projection. We shall say that p is a finite projection if p 6= 0 and p ∼M.−v.N.
q ≤ p implies that q = p (see Definition 1.3.1). A projection p is called infinite if it is not
finite. A C*-algebra A is called purely infinite if every non zero hereditary C*-subalgebra of
A has an infinite projection. It follows that ifA is purely infinite and simple, it has real rank
zero [Zha90, Theorem 1]. A standard example of purely infinite and simple C*-algebras
are the Cuntz algebras. If n ≥ 2, these are defined as the universal C*-algebras generated by
isometries s1, . . . , sn such that

∑n
i=1 sis

∗
i = 1, and they are denoted by On ([Cun81]).

4. Clearly, if A1, . . . , An are C*-algebras with real rank zero, then A1 ⊕ . . . ⊕ An, with the
maximum norm, is a C*-algebra with real rank zero. Therefore, the finite dimensional C*-
algebras have real rank zero since their form is Mn1(C)⊕ . . .⊕Mnk(C), for positive integers
n1, . . . , nk. In addition, AF-algebras have real rank zero since real rank zero is preserved
under inductive limits ([BP91]).

5. A simple C*-algebra A has slow dimension growth if it can be written as A = lim−→n
An, where

An = ⊕1≤k≤LnMnk(C(Xnk)) for some lenght Ln and for some compact Hausdorff spaces
{Xnk}1≤k≤Ln , and it satisfies

lim
n

max
1≤k≤Ln

(
dim(Xnk)

nk
) = 0. (1.1)

Recall that whenXnk = {∗} for all n, k, then this is the definition of an AF-algebra. Further,
when the condition 1.1 is not satisfied, but Xnk = [0, 1] for all n, k, these algebras are
called AI-algebras. It is proved in [BDR91] that if A is a C*-algebra with slow dimension
growth, it has stable rank one. Moreover, A has real rank zero if and only if the projections
set separate quasitraces (i.e., if τ 6= τ ′ in QT(A), then there exists p projection such that
τ(p) 6= τ ′(p)).

6. A specific class of the algebras explained above consists of the so-called Goodearl algebras.
Let X be a compact Hausdorff space. Consider (kn)∞n=1 and (ln)∞n=1 positive integers such
that kn divides kn+1 for each n and ln < kn+1/kn, and take points xn,i inX for i = 1, 2, . . . , ln.
Put Fn = {xn,1, . . . , xn,ln}. Associate to this the sequence:

Mk1(C(X))
ϕ1−→Mk2(C(X))

ϕ2−→,Mk3(C(X))
ϕ3−→ . . . ,

where ϕn is the unital *-homomorphism defined by

ϕn(f)(x) = diag(f(xn,1), f(xn,2), . . . , f(xn,ln), f(x), f(x), . . . , f(x)),
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for x ∈ X and f ∈ Mkn(C(X)). Let A be the inductive limit of the above sequence. One
finds that A is simple if and only if

⋃∞
n=k Fk is dense in X for each k. A simple C*-algebra

arising as the inductive limit of the above sequence is called Goodearl algebra. (See e.g.
[Rør02, Example 3.1.7].)

Theorem 1.1.20. Let A be a Goodearl algebra. Then:

(i) sr(A) = 1;

(ii) if X is connected, then X has a unique trace if and only if

∞∏
n=1

kn+1 − knln
kn+1

= 0,

and in this case, A has real rank zero.

1.1.1 C(X)-algebras

Let X be a compact Hausdorff space. A C(X)-algebra is a C∗-algebra A together with a unital
∗-homomorphism θ : C(X) → Z(M(A)), where Z(M(A)) is the center of the multiplier algebra
of A. It is pertinent to mention in this point that by a result of Cohen [Coh59] it follows that
θ(C(X))A is dense in A. The map θ is usually referred to as the structure map. We write fa
instead of θ(f)a where f ∈ C(X) and a ∈ A. Note that if X is compact, then θ(1) = 1M(A).

If U ⊂ X is an open set, then A(U) = C0(U)A is a closed ideal of A. If Y ⊆ X is a closed
set, the restriction of A = A(X) to Y , denoted by A(Y ), is the quotient of A by the ideal A(X \
Y ), which also becomes a C(X)-algebra with the structure map θ : C(Y ) → Z(M(A(Y ))). The
quotient map is denoted by πY : A → A(Y ), and if Z is a closed subset of Y we have a natural
restriction map πYZ : A(Y )→ A(Z). Notice that πZ = πYZ ◦ πY . If Y reduces to a point x, we write
either Ax or A(x) instead of A({x}), and we denote by πx the quotient map. The C∗-algebra Ax
is called the fiber of A at x, and the image of πx(a) ∈ Ax will be denoted by either a(x) or ax.

A morphism of C(X)-algebras η : A → B is defined as a *-morphism η such that η(fa) =
fη(a) for all f ∈ C(X), and it induces a morphism ηY : A(Y ) → B(Y ) whenever Y ⊂ X is a
closed set.

Notation. Let a ∈ A and F ,G ⊆ A, we write a ∈ε F for ε > 0 if there is b ∈ F such that ‖a− b‖ < ε.
Similarly, we write F ⊂ε G if a ∈ε G for every a ∈ F .

The following Lemma collects some basic properties of C(X)-algebras.

Lemma 1.1.21 ([Bla96], [Dad09a]). Let A be a C(X)-algebra and let B ⊂ A be a C(X)-subalgebra. Let
a ∈ A and let Y be a closed subset of X . Then the following conditions are satisfied:

(i) ‖a‖ = supx∈X ‖ax‖, so ‖πY (a)‖ = sup{‖πx(a)‖ | x ∈ Y }.

(ii) The map x 7→ ‖a(x)‖ is upper semicontinuous.

(iii) If a(x) ∈ πx(B) for all x ∈ X , then a ∈ B.
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(iv) If δ > 0 and a(x) ∈δ πx(B) for all x ∈ X , then a ∈δ B.

(v) The restriction of πx : A→ A(x) to B induces an isomorphism Bx ' πx(B) for all x ∈ X .

Proof. (i) : Let a be a nonzero element of A. By Theorem 1.1.12, there exists a pure state ϕ
of A such that ϕ(a∗a) = ‖a‖2. If πϕ is the canonical irreducible representation of M(A) into
Hϕ associated to ϕ by the Gelfand-Naimark-Segal representation ([Bla06, Proposition 6.4.8]),
it follows that πϕ(C(X)) ⊂ C. This means there exists x ∈ X such that πϕ(f) = f(x) for all
f ∈ C(X). The representation πϕ factorizes through Ax, so ϕ(a∗a) ≤ ‖ax‖2 implying the desired
result.

(ii) : Let a ∈ A, x ∈ X and ε > 0. By the definition of the quotient norm, there exists
t =

∑n
i=1 fiai where fi ∈ C0(X \ x) and ai ∈ A such that

‖πx(a)‖ ≥ ‖a− t‖ − ε.

Let g ∈ C0(X) with ‖g‖ = 1 such that g = 1 in a neighborhood Ux of x, but such that all gfi are
small enough so that ‖gt‖ < ε. Then

‖πx(a)‖ ≥ ‖a− t‖ − ε ≥ ‖g(a− t)‖ − ε ≥ ‖ga‖ − 2ε = ‖a− (1− g)a‖ − 2ε.

Since 1− g is in C0(X \ y) for all y ∈ Ux, it follows that

‖πx(a)‖ ≥ ‖πy(a)‖ − 2ε.

(iii) : This follows from (iv).
(iv) : By assumption, for each x ∈ X , there is bx ∈ B such that ‖πx(a − bx)‖ < δ. Using (i)

and (ii), we find a closed neighborhood Ux of x such that ‖πUx(a− bx)‖ < δ. Since X is compact,
there is a finite subcover (Uxi). Let (αi) be a partition of unity subordinated to this cover. Setting
b =

∑
αibxi ∈ B, one checks immediately that ‖πx(a − b)‖ ≤

∑
αi(x)‖πx(a − bxi)‖ < δ, for all

x ∈ X . Thus, ‖a− b‖ < δ by (i).
(v) : If ι : B → A is the inclusion map, then πx(B) coincides with the image of

ιx : B/C0(X \ x)B → A/C0(X \ x)A.

Thus, it suffices to check that ιx is injective. If ιx(b + C0(X \ x)B) = πx(b) = 0 for some b ∈ B,
then b = fa for some f ∈ C0(X \ x) and some a ∈ A. If (fλ) is an approximate unit of C0(X \ x),
then b = limλ fλfa = limλ fλb and hence b ∈ C0(X \ x)B.

A C(X)-algebra such that the map x 7→ ‖a(x)‖ is continuous for all a ∈ A is called either
a continuous C(X)-algebra or a C∗-bundle or a continuous field C*-algebras, see [Dix77, Bla96].
Further, a C(X)-algebra A is called trivial if there exists a C*-algebra D such that A ∼= C(X)⊗D.
We will see examples of non-trivial continuous fields in Chapter 2.

A remarkable characterization of separable exact continuous field C*-algebras is given by E.
Blanchard and E. Kirchberg in [Bla97] where they proved the following.

Theorem 1.1.22. Let X be a metrizable, compact Hausdorff space, and let A be a separable continuous
field of C*-algebras. Then, A is exact if and only there exists a monomorphism of C(X)-algebras A ↪→
C(X)⊗O2
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Remark 1.1.23. For a continuous field A, a useful criterion to determine when an element (ax) ∈∏
x∈X Ax comes from an element of A is the following: given ε > 0 and x ∈ X , if there is b ∈ A

and a neighborhood V of x such that ‖b(y) − ay‖ < ε for y ∈ V , then there is a ∈ A such that
a(x) = ax for all x (see [Dix77, Proposition 10.2.2]).

1.2 Partially ordered semigroups

The main purpose of this section is to provide a quick review of those basic concepts from the
general theory of partially ordered semigroups with neutral element that will be needed in the
sequel. Throughout, all the semigroups will be abelian. We will use the additive notation, and
so we will denote by 0 the neutral element.

Definition 1.2.1. A partial order on a semigroup S is any reflexive, antisymmetric, transitive relation
≤ on S. A partially ordered semigroup is an abelian semigroup equipped with a specified translation-
invariant partial order.

Let S,R be partially ordered semigroups. We shall assume that a morphism between semi-
groups, f : S → R, always preserves the order, i.e., if x ≤ y in S, then f(x) ≤ f(y) in R.

Definition 1.2.2. Let S be a partially ordered semigroup. We say that an element u in S is an order-unit
if u 6= 0 and for any x ∈ S there exists n ∈ N such that x ≤ nu. We denote a partially ordered semigroup
with an order-unit u as (S, u).

Definition 1.2.3. Let (S, u) and (R, v) be partially ordered semigroups with order-units u and v, and
f : S → R be a morphism of semigroups. We say f is normalized if f(u) = v.

Let (S, u) be a partially ordered semigroup with order-unit. We will say that the order is
cancellative if given x, y, z ∈ S such that x + z ≤ y + z, then x ≤ y. Furthermore, S is cancellative
if given x, y, z ∈ S such that x+ z = y + z, then x = y.

Definition 1.2.4. Let (S,≤) be a partially ordered semigroup. We say that S is an interpolation semi-
group provided that S satisfies the Riesz Interpolation Property, that is, whenever x1, x2, y1, y2 ∈ S
such that xi ≤ yj for i, j = 1, 2, there exists z ∈ S such that xi ≤ z ≤ yj for i, j = 1, 2.

We next show a natural relation between semigroups and abelian groups. Let (S,≤) be a
partially ordered semigroup. Define an equivalence relation on S by x ∼ y if an only if there
exists z ∈ S such that x + z = y + z. Set Sc = S/ ∼ and denote the equivalence classes of
the elements of S by [x]. Define an addition by [x] + [y] = [x + y] for x, y ∈ S, and take [x] ≤
[y] ⇐⇒ x + z ≤ y + z for some z ∈ S, as an ordering. Notice that, with this structure, Sc is
order-cancellative. It is called the cancellative monoid associated to S. If u is an order-unit for
S, then [u] will be an order-unit for Sc. Observe that as S is partially ordered, then so is Sc.

Now, by adjoining formal inverses to the elements of Sc we can define an abelian group,
called the Grothendieck group of S and denoted by G(S). It is clear that G(S) = {[x] − [y] |
[x], [y] ∈ Sc}. Order G(S) by taking as positive cone:

G(S)+ = {[x]− [y] | x, y ∈ S and y ≤ x}.
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Notice that G(S) is partially ordered if S is, and that for x, y, v, w ∈ S,

[x]− [v] ≤ [y]− [w] in G(S) ⇐⇒

⇐⇒ x+ w + e ≤ y + v + e in S for some e ∈ S.

One has a natural ordered map γ : S → G(S) defined by γ(x) = [x], called the Grothendieck
map.

An important fact about the Grothendieck group is the universal property that it satisfies;
it says that if there exists an ordered group H and an order preserving morphism ϕ : S → H ,
then there exists a unique order-preserving morphism ϕ : G(S) → H such that the following
diagram

S
γ
//

ϕ
!!DDDDDDDDD G(S)

ϕ

��

H

is commutative.
We would like to remark that the notions already stated for semigroups have analogous

versions for abelian groups. Therefore, we will speak of interpolation groups and states on
groups without further discussion. Recall that an order-unit on a partially ordered group G is
an element u ∈ G \ {0} such that for all x ∈ G there exists n ∈ Nwith −nu ≤ x ≤ nu.

Define a convex set as any subset of a real vector space E which is closed under convex
combinations (linear combinations of the form α1x1 + α2x2 + . . . + αnxn such that αi ≥ 0 for all
i and α1 + . . . + αn = 1). The convex hull of a subset X ⊂ E is the smallest convex subset of E
that contains X . We will denote by ∂e(K) the extreme boundary of any convex set K.

Definition 1.2.5. Let (S, u) be a partially ordered semigroup with order-unit. A normalized state on S
is an order preserving morphism s : S → R such that s(u) = 1. We denote the set of states by St(S, u),
which is a compact convex set (see [Goo86, Proposition 6.2]).

In the sequel we will be interested in a specific type of convex sets, called Choquet simplices.
This is motivated by the generalization of the classical notion of simplex to infinite dimension.
Recall that a classical simplex in a vector space E is a convex subset of E built as the convex hull
of a finite number of affinely independent points of E.

Definition 1.2.6. Let E be a real vector space, and let C ⊆ E be a convex subset of E. We say that C is
a convex cone if 0 ∈ C and also α1x1 + α2x2 ∈ C for any α1, α2 ∈ R+ and any x1, x2 ∈ C. A strict
convex cone satisfies that the only point x ∈ E for which x,−x ∈ C is the point x = 0. In addition,
we define a base for C as any convex subset K of C such that every nonzero point of C may be uniquely
expressed in the form αx for α ∈ R+ and x ∈ K.

Definition 1.2.7. A lattice cone in a real vector space E is any strict convex cone C in E such that
(C,≤C) is a lattice. Moreover, a simplex in E is any convex subset K of E that is affinely isomorphic to
a base for a lattice cone in some real vector space.
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Definition 1.2.8. Let E be locally convex Hausdorff vector space. If K ⊆ E is a compact simplex, then
we say that K is Choquet simplex.

The result below relates some notions stated before, and it will be an important tool in Chap-
ter four.

Theorem 1.2.9. (see [Goo96, Theorem 10.17]) If (G, u) is an interpolation group with order-unit, then
St(G, u) is a Choquet simplex.

Remark 1.2.10. (i) If (S, u) is a partially ordered semigroup with the Riesz interpolation prop-
erty, then (G(S), [u]) is an interpolation group ([Per97]).

(ii) By the universal property of the Grothendieck group it follows that

St(S, u) = St(G(S), [u]).

1.3 Invariants for C*-algebras

In this section we give a brief exposition on the more commonly used invariants for C*-algebras.
This section is divided in two parts, where the first is about K-theory, and the second is about
the Cuntz Semigroup. We have deeply used [LLR00], [WO93] for K-theory and [APT11] for the
Cuntz semigroup.

1.3.1 The Murray-von Neuman Semigroup. K-theory.

LetA be a C*-algebra and consider p, q ∈ P(A). We say that p is Murray-von Neuman equivalent
to q, denoted by p ∼M−v.N q, if there exists v ∈ A such that p = v∗v and q = vv∗. An element v
in A for which v∗v is a projection is called partial isometry. It follows that this is an equivalence
relation.

Write Pn(A) = P(Mn(A)) and P∞(A) =
⋃∞
n=1Pn(A), where n is a positive integer. We view

the sets Pn(A), n ∈ N, as being pairwise disjoint.
In order to define the Murray-von Neumann semigroup, we consider the equivalence rela-

tion ∼0 on P∞(A) given as follows. Suppose that p is a projection in Pn(A) and q is a projection
in Pm(A). Then p ∼0 q if there is an element v ∈Mm,n(A) with p = vv∗ and q = vv∗.

Define a binary operation ⊕ on P∞(A) by p ⊕ q = diag(p, q) =
(
p 0
0 q

)
, so that p ⊕ q belongs

to Pn+m(A) when p is in Pn(A) and q is in Pm(A). The relation ∼0 is an equivalence relation on
P∞(A)

Definition 1.3.1. With P∞(A) and ∼0 we define the Murray-von Neumann semigroup of A as

V(A) = P∞(A)/ ∼0 .

For each p ∈ P∞(A), let [p] in V(A) denote the equivalence class containing p. Defining the addition
as [p] + [q] = [p ⊕ q], it follows that (V(A),+) is an Abelian semigroup. We will say p is Murray-von
Neumann subequivalent to q if p is equivalent to p′ ≤ q (i.e. p′q = q), that is, p = vv∗, with v∗v ≤ q.
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Note that the above equivalence relation defines an order in V(A). Moreover, it is algebraic
since [p] ≤ [q] in V(A) if and only if there exists [r] ∈ V(A) such that [p] + [r] = [q]. Indeed, if
p ∼M−v.N p′ ≤ q, considering r = q − p′, it follows that [p] + [r] = [q].

We now proceed to define K0 and K1.

Definition 1.3.2. Let A be a unital C*-algebra. Define K0(A) to be the Grothendieck group of V(A), i.e.,

K0(A) = G(V(A)).

Denote by γ : V(A)→ K0(A) the Grothendieck map.

Proposition 1.3.3. Let A be a unital C*-algebra, then

K0(A) = {[p]0 − [q]0 | p, q ∈ P∞(A)} = {[p]0 − [q]0 | p, q ∈ Pn(A), n ∈ N}.

When A is not unital the definition of K0(A) is a bit more elaborated. Let A be a non-unital
C*-algebra, and consider the split exact sequence

0→ A
ι // Ã

π // C→ 0.
λ
oo

Applying the functor K0, one has

K0(Ã)
π∗ // K0(C).

Define K0(A) to be the kernel of the homomorphism π∗ : K0(Ã)→ K0(C).
We remark that in ([Gli60]) was classified the UHF-algebras using the set of projections, and

that this result was generalized to the AF-algebra case in [Ell76] in 1976. In fact, there was shown
that (K0(A),K0(A)+, [1A]) is a complete invariant for this class of C*-algebras.

Let A be a unital C*-algebra and set Un(A) = U(Mn(A)), U∞(A) =
⋃∞
n=1 Un(A). Consider a

binary operation ⊕ on U∞(A) by

u⊕ v = diag(u, v) = ( u 0
0 v ) ∈ Un+m(A), u ∈ Un(A), v ∈ Um(A).

Define a relation ∼1 on U∞(A) as follows. For u ∈ Un(A) and v ∈ Um(A), write u ∼1 v if there
exists a natural number k ≥ max{m,n} such that u⊕ 1k−n ∼h v ⊕ 1k−m in Uk(A), where 1r is the
unit in Mr(A) and ∼h means homotopy. Let U0(A) be the set of all u ∈ U(A) such that u ∼h 1 in
U(A). (Recall that a ∼h b in X if there is a continuous function v : [0, 1] → X such that v(0) = a
and v(1) = b.)

Definition 1.3.4. For each C*-algebra A define

K1(A) = U∞(Ã)/ ∼1 .

Let [u]1 in K1(A) denote the equivalence class containing u ∈ U∞(Ã). Define a binary operation + on
K1(A) by [u]1 + [v]1 = [u ⊕ v]1, where u, v ∈ U∞(Ã). It follows that + is well-defined, commutative,
associative, has zero element 0 = [1]1(= [1n]1 for each n ∈ N), and that 0 = [1n]1 = [uu∗]1 = [u]1 + [u∗]1
for each u ∈ Un(Ã). This shows that (K1(A),+) is an Abelian group. Concretely, −[u]1 = [u∗]1 for all
u ∈ U∞(Ã).
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The following result states the universal property satisfied by K1(A).

Proposition 1.3.5. Let A be a C*-algebra, let G be an Abelian group, and let ν : U∞(Ã) → G be a map
with the following properties:

(i) ν(u⊕ v) = ν(u) + ν(v),

(ii) ν(1) = 0,

(iii) if u, v belong to Un(Ã) and u ∼h v, then ν(u) = ν(v).

Then there exists a unique group homomorphism α : K1(A)→ G making the diagram

U∞(Ã)

[ ]1
��

ν
""FFFFFFFFF

K1(A) α // G

commutative.

At the end of the 80s, G. A. Elliott conjectured that all simple separable nuclear C*-algebras
would be classified by K-theory invariants. More precisely, the invariant that should be used is

Ell(A) = ((K0(A),K0(A)+, [1A]),K1(A),T(A), rA),

where rA : T(A) × K0(A) → R is the pairing between K0(A) and T(A) given by evaluation
of a trace at a K0-class. Along the 90s, Elliott’s programme had a lot of good results such as
the classification of the purely infinite simple C*-algebras carried out by Kirchberg and Phillips
([KP00b, KP00a]). But in the last decade some examples given by M. Rørdam and A. S. Toms
([Rør03, Tom08a]) have appeared and they show the conjecture is not true in general. As a
consequence of the example described by A. S. Toms, the Cuntz semigroup defined by J. Cuntz
in 1978 ([Cun78]) has obtained more relevance. Concretely, [Tom08a] provides an example of a
simple, separable, unital, nuclear C*-algebraA such thatA andA⊗U , where U is a UHF-algebra,
agree, not only on the Elliott invariant, but also on many more topological invariants, but they
are differentiated by their Cuntz semigroup.

We next state some importants results on K-theory that relate K0 and K1. These will be used
a number of times in the sequel.

Given an exact sequence

0 // J
ι // A

π // A/J // 0,

there are induced sequences

K0(J)
ι∗ // K0(A)

π∗ // K0(A/J)

K1(J)
ι∗ // K1(A)

π∗ // K1(A/J)
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which are exact in the middle (see e.g. [WO93]). Although these sequences cannot be made
exact at the ends by adding 0’s in general, there exists a connecting map δ : K1(A/J) → K0(A)
which makes the following long exact sequence:

K1(J)
ι∗ // K1(A)

π∗ // K1(A/J) δ // K0(J)
ι∗ // K0(A)

π∗ // K0(A/J).

Theorem 1.3.6. Let A be a C*-algebra, and let SA = C0(R) ⊗ A (called the suspension of A). Then,
there exists isomorphisms θ1 : K1(A)→ K0(SA) and θ0 : K0(A)→ K1(SA).

Using the above Theorem and the defined connecting map δ, one has the following map

β : K0(A/J) ∼= K1(S(A/J))
δ−→ K0(SJ) ∼= K1(J),

which allows us to obtain the cyclic 6-term exact sequence:

K0(J)
ι∗ // K0(A)

π∗ // K0(A/J)

β
��

K1(A/J)

δ

OO

K1(A)π∗
oo K1(J).ι∗

oo

(see [WO93] for further details).
Considering the following diagram of C*-algebras

A
π // C oo

γ
B,

the pullback of the above diagram is the C*-algebra

P = {(a, b) ∈ A⊕B | π(a) = γ(b)}.

The next result we want to provide is the computation of K-theory of a pullback of C*-algebras.
This can be achieved thanks to the Mayer-Vietoris sequence in K-theory. Consider a pullback
diagram of C*-algebras

P
π1 //

π2
��

A1

α1

��

A2
α2 // B

.

Then, one obtains the following long exact sequence where Kn(A) = K0(SnA).

. . . // K2(B) δ // K1(P )
(π1)∗⊕(π2)∗

// K1(A1)⊕K1(A2)
(α2)∗−(α1)∗

// K1(B) δ //

δ // K0(P )
(π1)∗⊕(π2)∗

// K0(A1)⊕K0(A2)
(α2)∗−(α1)∗

// K0(B).

which can be turned into a cyclic sequence by the inductive definition of Kn( )
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K1(P )
(π1)∗⊕(π2)∗

// K1(A1)⊕K1(A2)
(α2)∗−(α1)∗

// K1(B)

δ
��

K0(B) ∼= K2(B)

δ

OO

K0(A1)⊕K0(A2)
(α2)∗−(α1)∗
oo K0(P ).

(π1)∗⊕(π2)∗
oo

The last result on K-theory we want to emphasize relates the tensor product of C*-algebras
and K0,K1. Let us denote K∗(A) = K0(A) ⊕ K1(A) and next define the (large) bootstrap class of
C*-algebras, denoted by N .

Definition 1.3.7. N is the smallest class of separable nuclear C*-algebras satisfying:

(i) N contains C,

(ii) N is closed under inductive limits,

(iii) If 0→ J → A→ A/J → 0 is an exact sequence, and two of J,A,A/J are in N , so is the third.

Theorem 1.3.8 (Künneth Theorem). Let A and B be C*-algebras, with A ∈ N . Then there is a short
exact sequence natural in each variable

0→ K∗(A)⊗K∗(B) α // K∗(A⊗B) σ // TorZ1 (K∗(A),K∗(B))→ 0.

So, if K∗(A) or K∗(B) is torsion-free, α is an isomorphism. Without entering on the defintion
of TorZ1 (K∗(A),K∗(B)), we say it measures the deviation from exactness of the tensor product
functor on groups.

We end this section with the next important example of K-theory.

Example 1.3.9. Let CP 1 be the complex projective plane. Note that writing ∞ as the point
[(0, 1)] ∈ CP 1, it follows that CP 1 \ {∞} is homeomorphic to R2, whereas CP 1 is homeomorphic
to S2. On the other hand, it can be seen that there exists an isomorphism between CP 1 \ {∞}
and P(M2(C)) \ ( 0 0

0 1 ) given by

[(1, z)] 7→ 1/(1 + |z|2)

(
1 z
z |z|2

)
.

Clearly, composing the above isomorphism with the homemorphism, it follows that S2 is iso-
morphic to P(M2). The function Bott ∈ C(R2,M2) defined by above map is called the Bott
projection for R2 and is extremely important in K-theory as it shown below.

Let A = C(T), where T can be thought of as the one point compatification of R. It can be
seen that K0(C(T)) = Z, so the equality K0(Ã) = K0(A)⊕Z, which comes from the natural exact
sequence, tells us that K0(C0(R)) = 0. In this situation, we can see that all the projections of A
come from the trivial projections arising from adjoining a unit to C0(R).

However, when we move to two dimensions, the Bott projection plays an important role. Let
A = C(S2). It can be checked that K0(A) = Z ⊕ Z. Thus, this K0-group contains elements that
are non-trivial, in the sense they do not come from the adjoined unit of C0(R2), but rather from
K0(C0(R2)) ∼= Z. The importance of the Bott projection falls on the fact that it can be used to
built one of these non-zero element of K0(C0(R2)) (see e.g. [WO93] for further details).
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The above example shows the necessity of considering projections in matrix algebras over A
since unexpected projections sometimes appear, which have nothing to do with projections in
A.

1.3.2 The Cuntz Semigroup

Cuntz comparison

Let A be a C*-algebra, and let Mn(A) denote the n× n matrices whose entries are elements of A.
Let M∞(A) denote the algebraic limit of the directed system (Mn(A), φn), where φn : Mn(A) →
Mn+1(A) is given by a 7→ ( a 0

0 0 ).

Definition 1.3.10. Let A be a C∗-algebra, and let a, b ∈ A+. We say that a is Cuntz subequivalent
to b, in symbols a - b, provided there is a sequence (xn) in A such that xnbx∗n converges to a in norm.
We say that a and b are Cuntz equivalent if a - b and b - a, and in this case we write a ∼ b. Upon
extending this relation to M∞(A)+, one obtains an abelian semigroup W(A) = M∞(A)+/∼. Denote the
equivalence classes by 〈a〉. The operation and order are given by

〈a〉+ 〈b〉 = 〈
(
a 0
0 b

)
〉 = 〈a⊕ b〉, 〈a〉 ≤ 〈b〉 if a - b.

The semigroup W(A) is referred to as the Cuntz semigroup.

Proposition 1.3.11. Let X be a compact Hausdorff space, and let f, g ∈ C(X)+. Then f - g if and only
if supp(f) ⊆ supp(g).

Proof. Assume that supp(f) ⊆ supp(g). Given ε > 0, set K = {x ∈ X | f(x) ≥ ε}. Necessarily
then K ⊂ supp(g). Since g is continuous on K and K is compact, there is a positive δ < ε such
that g > δ on K. Put U = {x ∈ X | g(x) > δ}, which is open and contains K. Use Urysohn’s
Lemma to find a funcion h such that h|K = 1 and h|X\U = 0, and then consider the function e

defined e|U = (h
g
)|U and e|X\U = 0. Then one may check that e is continous and ‖f−egf‖ < ε.

Corollary 1.3.12. For any C*-algebra A and any a ∈ A+, we have a ∼ an (n ∈ N). For any a ∈ A, we
have aa∗ ∼ a∗a.

Proof. Notice that a ∈ C∗(a) ∼= C∗(σ(A)), so the first part of the statement follows from Propo-
sition 1.3.11 since a and an have the same support. Next, for any a one has aa∗ ∼ (aa∗)2 =
aa∗aa∗ - a∗a, and by symmetry, aa∗ ∼ a∗a.

As it follows from the example below, in general, the natural order on W(A) does not agree
with the algebraic order.

Example 1.3.13. Let A = C([0, 1]). Take f, g ∈ A such that f is defined as linear increasing in
[1/3, 1/2], linear (decreasing) in [1/2, 2/3], and zero elsewhere; g is linear (increasing) in [0, 1/3],
linear (decreasing) in [1/3, 2/3], and zero elsewhere. By Proposition 1.3.11 f - g. Seeking a
contradiction, suppose there exists y = 〈h〉 ∈ W(A), with h ∈ Mn(A)+, such that 〈f〉 + y = 〈g〉.
Therefore,
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f 0 · · · 0
0 h1,1 · · · h1,n
...

... . . . ...
0 hn,1 · · · hn,n

 ∼
(
g 0
0 0

)
.

By the Cuntz equivalence, there exist functions αk0, αk1, . . . , αkn for k ∈ Nwith

α
k
0 0 · · · 0
...

... . . . ...
αkn 0 · · · 0

(g 0
0 0

)αk0 · · · αkn
... . . . ...
0 · · · 0

 −→k


f 0 · · · 0
0 h1,1 · · · h1,n
...

... . . . ...
0 hn,1 · · · hn,n

 .

Hence, αk0αki → 0, |αk0|2g → f , αki αkj g → hi,j when k →∞. This means that

f = lim−→|α
k
0|2g and that |hi,j| = lim−→|α

k
i α

k
j |g.

It follows that f |hi,j| = 0 for all i, j and that supp(f)t(∪i,jsupp(hi,j)) ⊆ supp(g) since supp(hi,j) =
supp(|hi,j|).

On the other hand, by our hyphoteses, there exist functions aki,j for 0 ≤ i, j ≤ n such that

(aki,j)

(
f 0
0 h

)
(aki,j)→

(
g 0
0 0

)
.

Concretely, |ak0,0|2f + (|ak0,1|2h1,1 + . . .+ ak0,1a
k
0,nhn,1) + . . .+ (ak0,na

k
0,1h1,n + . . .+ |ak0,n|2hn,n)→ g.

So supp(g) ⊆ supp(f) t (∪i,jsupp(hi,j)). Now, as supp(g) is connected and supp(f) 6= ∅, we see
that supp(g) = supp(f), but this is a contradiction by construction of g and f .

Given a ∈M∞(A)+ and ε > 0, we denote by (a−ε)+ the element of C∗(a) corresponding (via
functional calculus) to the function

f(t) = max{0, t− ε}, t ∈ σ(a).

We quote below some results which will be used frequently in the sequel; however, we will
not prove all of them.

Theorem 1.3.14. ([KR02, Lemma 2.2]) Let A be a C*-algebra, and a, b ∈ A+. Let ε > 0, and suppose
that ‖a− b‖ < ε. Then there is a contraction d in A with (a− ε)+ = dbd∗.

Theorem 1.3.15. ([Ped87, Corollary 8]) Let A be a C*-algebra and a ∈ A with dist(a,GL(Ã)) = 0. If
a has polar decomposition a = v|a|, then given f ∈ C(σ(|a|))+ that vanishes on a neighbourhood of zero,
there is a unitary u ∈ U(Ã) such that vf(|a|) = uf(|a|), and therefore uf(|a|)u∗ = vf(|a|)v∗ = f(|a∗|).

Lemma 1.3.16. Let A be a C*-algebra. Given b ∈ A+, the set {a ∈ A+ | a - b} is norm-closed.
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Proof. Suppose a = lim−→ an with an - b for all n. Given n ∈ N, choose am ∈ A with m depending
on n such that ‖a− am‖ < 1

2n
and xn ∈ A such that ‖am − xnbx∗n‖ < 1

2n
. Therefore

‖a− xnbx∗n‖ ≤ ‖a− am‖+ ‖am − xnbx∗n‖ ≤ 1/n.

Making an abuse of notation, we will denote by K the C*-algebra of compact operators on a
separable, infinite-dimensional Hilbert space. We will say that a C*-algebra A is stable if A⊗K ∼=
A.

The following summarizes some technical properties of Cuntz subequivalence.

Proposition 1.3.17 ([Rør92],[KR02]). Let A be a C*-algebra, and a, b ∈ A+. The following conditions
are equivalent:

(i) a - b.

(ii) For every ε > 0, (a− ε)+ - b.

(iii) For every ε > 0, there exists δ > 0 such that (a− ε)+ - (b− δ)+.

Furthermore, if A is stable, these conditions are equivalent to

(iv) For every ε > 0 there is a unitary u ∈ U(Ã) such that u(a− ε)+u
∗ ∈ Her(b).

Proof. (i)⇒(ii): There is by assumption a sequence (xn) such that a = lim−→n
x∗nbxn. Given ε > 0,

we find n such that ‖a − x∗nbxn‖ < ε. Thus, Theorem 1.3.14 implies that (a − ε)+ = dx∗nbxnd, for
some d. Therefore, (a− ε)+ - b.

(ii)⇒(iii): Given ε > 0, there is by (ii) an element x such that ‖(a− ε/2)+ − xbx∗‖ = ε1 < ε/2.
Since (b − δ)+ is monotone increasing and converges to b as δ → 0, we may choose δ < ε/2−ε1

‖x‖2 .
Therefore,

‖(a− ε/2)− x(b− δ)+x
∗‖ ≤ ‖(a− ε/2)+ − xbx∗‖+ ‖xbx∗ − x(b− δ)+x

∗‖ ≤ ε1 + ‖x‖2δ < ε/2,

so by Theorem 1.3.14 (a− ε)+ = y(b− δ)+y
∗ - (b− δ)+.

(iii)⇒(i): By assumption we have that (a − ε)+ - b for all ε > 0, so Lemma 1.3.16 implies
a - b. The “if” direction in the last part of our statement holds without any stability conditions.
Namely, assume that ε > 0 is given, and that we can find a unitary u such that u∗(a−ε)+u ∈ bAb.
This implies that u∗(a− ε)+u - b, and so (a− ε)+ - b and condition (ii) is verified.

For the converse, assume that A is stable and that a - b. Given ε > 0, find an element x
such that (a− ε/2)+ = xbx∗ = zz∗, where z = xb1/2 and z∗z = b1/2x∗xb1/2 ∈ Her(b). By [BRT+12,
Lemma 4.8], we know that A ⊂ GL(Ã). Since then dist(z∗,GL(Ã)) = 0, one applies Theorem
1.3.15 to find u ∈ U(Ã) with

u(a− ε)+u
∗ = v(a− ε)+v

∗ = (z∗z − ε/2)+,

where v is the partial isometry in the polar decomposition of z∗, and (z∗z − ε/2)+ ∈ Her(b).
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For a unital C*-algebra A given τ ∈ T(A) and a ∈M∞(A)+, we may define

dτ (a) = lim
n→∞

τ(a1/n).

It turns out that dτ : M∞(A)+ → R+ is lower semicontinuous, that dτ (1) = 1 and that it does not
depend on the Cuntz class of a; thus, it defines a state on W(A). Using this, we say that A has
strict comparison if for a, b ∈M∞(A)+ with dτ (a) < dτ (b) for all τ ∈ QT(A), then a - b. Related to
this, we say that W(A) is almost unperforated provided that whether (n+1)x ≤ ny for x, y ∈W(A)
and n ∈ N, this implies that x ≤ y. In particular, a simple C*-algebra A has strict comparison if
and only if W(A) is almost unperforated ([Rør92]).

The states on W(A) are called dimension functions on A, and the set of them is denoted by
DF(A) = St(W(A), 〈1〉). We will denote G(W(A)) by K∗0(A) ([Cun78]). Recall that, by Remark
1.2.10, DF(A) = St(K∗0(A), [1]A). A dimension function d is lower semicontinuous if d(〈a〉) ≤
lim infn→∞ s(〈an〉) whenever an → a in norm. We shall denote the set of them as LDF(A).

Theorem 1.3.18 ([BH82]). There is an affine bijection QT(A) → LDF(A), defined by τ 7→ dτ , whose
inverse is continuous.

It is pertinent at this stage to mention that Blackadar and Handelman posed in [BH82] two
conjectures related with the structure of dimension functions of a C*-algebra A. As explained in
the introduction, they conjectured that DF(A) is a Choquet simplex and that LDF(A) is dense in
DF(A). We will deeply work on these conjectures in chapter 4, where we study them for some
classes of C(X)-algebras, where X is a compact Hausdorff space of dimension less or equal to
one.

We remark that these questions are known to have positive answers for algebras that have a
good representations of their Cuntz semigroup (see [BH82], [Per97], [APT11] for further details).

Cuntz comparison and projections

In this part we will explain the important role of the projections inside the Cuntz semigroup
W(A). We will mainly relate V(A) with W(A) (see Definition 1.3.10). Recall that given projec-
tions p, q, we have p ≤ q (as positive elements) if and only if p = pq, and that p is Murray-von
Neumann (M-v.N) subequivalent to q if p is equivalent to p′ ≤ q, that is, p = vv∗, with v∗v ≤ q.

Lemma 1.3.19. For projections p and q, we have that p is M-v.N subequivalent to q if and only if p - q.

Proof. It is clear that, if p is M-v.N subequivalent to q, then p - q. For the converse, if p - q, then
given 0 < ε < 1, we have (p − ε)+ = xqx∗, and (p − ε)+ = λp for some positive λ by functorial
calculus. Therefore, changing notation we have p = xqx∗, which implies that qx∗xq ≤ q is a
projection equivalent to p

Let ε > 0. We define fε(t) as the real function such that it is zero in (−∞, ε/2], it is linear in
[ε/2, ε] and it is 1 in [ε,∞).

Lemma 1.3.20. If p is a projection, a is a positive element, and p - a, then there is δ > 0 and a projection
q ≤ λa (λ ∈ R+) with p ∼M−v.N q and fδ(a)q = q.
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Proof. Let ε > 0, so (p− ε)+ = λ′p for a positive number λ′. Then, by Proposition 1.3.17, there is
a δ′ > 0 and an element x ∈ pA with λ′p = x(a − δ′)+x

∗. Making an abuse of notation, we have
p = x(a− δ′)+x

∗. Thus q := (a− δ′)1/2
+ x∗x(a− δ′)1/2

+ is a projection equivalent to p and q ≤ ‖x‖2a.
On the other hand, it is clear by the definition of q that we can choose δ < δ′ (e.g. δ = δ′/2) such
that fδ(a)q = q.

Lemma 1.3.21. If A is stably finite (and, in particular, if it has stable rank one), then the natural map
V(A)→W(A) is injective.

Proof. Suppose that we are given projections p, q inM∞(A)+ such that p ∼ q, i.e., p - q and q - p.
Since the order in V(A) is algebraic, by Lemma 1.3.19 one concludes that there are projections p′

and q′ such that p⊕ p′ ∼M−v.N q and q ⊕ q′ ∼M−v.N p. Thus p⊕ p′ ⊕ q′ ∼M−v.N q ⊕ q′ ∼M−v.N p. It
follows from stable finiteness that p′ ⊕ q′ = 0, i.e. p′ = q′ = 0, so that p ∼M−v.N q.

From now on, we identify V(A) with its image inside W(A) whenever A is stably finite with-
out further comment. Note that W(A) has algebraic order if we restrict to projections since this
is the Murray-von Neumann subequivalence. The next result states that projections behave well
with respect to any other positive element.

Proposition 1.3.22. ([PT07, Proposition 2.2]) Let A be a C*-algebra, and let a, p be positive elements
in M∞(A) with p a projection. If p - a, then there is b in M∞(A)+ such that p⊕ b ∼ a.

Proof. By Lemma 1.3.20, p ∼ q with q ≤ λa for a positive number λ. Assuming that p ≤ a,
Lemma 2.21 of [APT11] states that a - pap ⊕ (1 − p)a(1 − p) for any a ∈ A+ and p projection,
so a - p ⊕ (1 − p)a(1 − p) because pap ≤ ‖a‖2p ∼ p. For the converse, we just have to note that
p, (1− p)a(1− p) ∈ Aa

The following result is also satisfied in the case that A is a unital C*-algebra with sr(A) = 1
([APT11]).

Proposition 1.3.23. ([BC09]) Let A be a stable and finite C*-algebra. Then, for a ∈ M∞(A)+ the
following are equivalent:

(i) 〈a〉 = 〈p〉, for a projection p,

(ii) 0 is an isolated point of σ(a), or 0 /∈ σ(a).

Proof. (ii)⇒(i) is clear.
(i)⇒(ii) Suppose a ∼ p, and that 0 is a non-isolated point of σ(a). Using Lemma 1.3.20, find a

projection q ∼ p and δ > 0 with fδ(a)q = q. Since 0 is not isolated in σ(a), we know fδ(a) is not a
projection, so in particular fδ(a) 6= q. This tells us that

q = fδ(a)1/2qfδ(a)1/2 < fδ(a).

Choose 0 < δ′ < δ/2, so that fδ(a) ≤ (a − δ′)+. Next, use that a - q, so there is by Proposition
1.3.17 a unitary u with u(a − δ′)+u

∗ ∈ qAq, and so ufδ(a)u∗ ∈ qAq. In particular, we have
ufδ(a)u∗ ≤ uu∗ ≤ 1, so ufδ(a)u∗ = qufδ(a)u∗q ≤ q. But now

uqu∗ + u(fδ(a)− q)u∗ ≤ q

and u(fδ(a)− q)u∗ > 0, whence uqu∗ < q. But this contradicts the fact that A is stably finite.
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The previous result motivates the definition of W(A)+ which denotes the subset of W(A)
consisting of those classes which are not the classes of projections. In fact, as can be seen in the
next Lemma, it also denotes the classes of the elements whose spectra are infinite. We remark
that it can be seen that a C*-algebra A is infinite dimensional if and only if there exists a ∈ A
such that its spectrum is infinite. If a ∈ A+ and 〈a〉 ∈W(A)+, then we say that a is purely positive
and denote the set of such elements by A++.

Lemma 1.3.24 ([APT11]). Let A be a C*-algebra which is either stable and finite or unital with sr(A) =
1. Then, A is infinite dimensional if and only if there exists a ∈ A purely positive.

Proof. If a ∈ A++, it follows that sp(a) is infinite since otherwise it would be equivalent to some
projection (in matrices over A). Conversely, if sp(a) is infinite, choose an accumulation point
x ∈ sp(a). Let f be a continuous function on sp(a) such that f(t) is nonzero if and only if t 6= x.
Then, f(a) is positive and has zero an an accumulation point of its spectrum, so by Proposition
1.3.23 it is purely positive.

As with Proposition 1.3.23, the result below is also valid of in the unital, stable rank one case.

Corollary 1.3.25. LetA be a stable and finite C*-algebra. Then W(A)+ is a semigroup, and it is absorbing
in the sense that if one has a ∈W(A) and b ∈W(A)+, then a+ b ∈W(A)+.

Proof. Take 〈a〉, 〈b〉 ∈ W(A)+ and notice that the spectrum of a ⊕ b contains the union of the
spectra of a and b. By Proposition 1.3.23 the result follows.

We end this first chapter showing the computation of the Cuntz semigroup for some different
classes of C*-algebras.

Examples 1.3.26. 1. Let A be a finite dimensional C*-algebra. Under these hypotheses it is
automatically stably finite, so one has that W(A) = V(A)tW(A)+ by Lemma 1.3.21. More-
over, by the finite dimension of A (see Lemma 1.3.24), it follows that W(A)+ = ∅; therefore
W(A) = V(A).

2. We say that A is a Kirchberg algebra if it is a separable, nuclear, simple and purely infinite
C*-algebra. In order to compute W(A) for Kirchberg algebras, we will use a result of Lin
and Zhang [LZ91] which states that A is as above if and only if a - b for any non-zero
a, b ∈ A+. Clearly, it follows that W(A) = {0,∞}with∞+∞ =∞.

3. One of the most important examples as a separable nuclear simple and infinite dimen-
sional C*-algebra is the Jiang-Su algebra, denoted by Z . It was discovered by X. Jiang and
H. Su in [JS99] and can be described as a limit of a sequence of prime dimension drop
C*-algebras. Given p, q two coprime positive integers, those are defined as

Zp,q := {f ∈ C([0, 1],Mp ⊗Mq) | f(0) ∈Mp ⊗ Iq, f(1) ∈ Ip ⊗Mq}.

In fact, they proved the following:

Theorem 1.3.27 ([JS99]). Any sequential inductive limit of simple prime dimension drop C*-
algebras with unital morphisms and only one trace is isomorphic to the Jiang-su algebra Z .
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As a first approach relating the Cuntz semigroup and the Jiang-Su algebra, the computa-
tion of the Cuntz semigroup for Z was carried out in [PT07]. It turns out that

W(Z) ∼= N0 t R++,

with a natural addition defined in each component and x + y ∈ R++ when x ∈ N0 and
y ∈ R++. The order is defined by ≤Z which is the natural in each component and if x ∈ N0

and y ∈ R++ then x ≤Z y iff x < y with the natural order, whereas x ≥Z y iff x ≥ y with
the natural order.

In the same article of the definition of Z ([JS99]), it was also proved that Z ⊗ Z ∼= Z , so
this property induced the notion of Z-stability. We will say that a C*-algebra A is Z-stable
if A⊗Z ∼= A.

To the amount of computing the Cuntz semigroup of theZ-stable C*-algebras, N. Brown, F.
Perera and A. Toms described the Cuntz semigroup for some class ofZ-stable C*-algebras.

Theorem 1.3.28 ([BPT08]). Let A be a separable simple nuclear unital and Z-stable C*-algebra
with sr(A) = 1. Then,

α : W(A)→ V(A) t LAffb(T(A))++

〈p〉 7→ [p] if p is a projection

〈a〉 7→ â : τ 7→ dτ (a) otherwise

defines an order-isomorphism.

Here LAffb( ) denotes the set of lower semicontinuous and affine bounded functions. The
addition of W(A) is defined naturally in each component and when x ∈ V(A) and y ∈
LAffb(T(A))++, then x + y = x̂ + y ∈ LAffb(T(A))++, where x̂(τ) = τ(x). The order, as
before, is the standard in each component and if x ∈ V(A) and y ∈ LAffb(T(A))++, then
x ≤ y iff x̂(τ) < y(τ) for all τ ∈ T(A) and y ≤ x iff y(τ) ≤ x̂(τ) for all τ ∈ T(A).



Chapter 2

Local triviality for continuous field
C*-algebras

As mentioned in the introduction and shown in [Bla97], continuous field C*-algebras play the
role of bundles of C*-algebras (in the sense of topology). In particular, continuous field C*-
algebras appear naturally since any separable C*-algebra A with Hausdorff primitive spectrum
X has a canonical continuous field structure over X with fibers the primitive quotients of A
[Dix77].

In this chapter we will work on the fact that the bundle structure that underlines a continuous
field C*-algebra is typically not locally trivial. Concretely, in Theorem 2.5.9 we give the optimal
assumptions on the space and the fibers of a continuous field of C*-algebras with all the fibers
mutually isomorphic to the same stable Kirchberg algebra D to obtain a complete picture of
when it is trivial. It is pertinent to mention that the structure of continuous field C*-algebras
with Kirchberg algebras as fibers over a finite dimensional space was deeply studied by Marius
Dadarlat in [Dad09a] and [Dad09b] and by Dadarlat and Elliott in [DE07]. The results in this
chapter are contained in [BD13].

2.1 Non-locally trivial Continuous Fields

In this section we provide two examples, which show that the complexity of continuous fields
of C*-algebras is related both with the fact that the K-theory of the fibers is not finitely generated
and also to the dimension of the base space. The following definition is crucial.

Definition 2.1.1. A point x ∈ X is called singular for A if A(U) is nontrivial for any open set U that
contains x (i.e. A(U) is not isomorphic to C0(U) ⊗ D for some C*-algebra D). The singular points of
A form a closed subspace of X . If all points of X are singular for A we say that A is nowhere locally
trivial.

We start showing that the complexity of the continuous field A ultimately reflects the pro-
perty of the K-theory of the fiber of not being finitely generated. In order to illustrate it in the
case of continuous fields of C*-algebras with all the fibers mutually isomorphic to a Kirchberg

25
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algebra, we reproduce an example constructed by M. Dadarlat and G. Elliott in [DE07, Example
8.4] which shows the existence of a unital continuous field C*-algebra A over the unit interval
with mutually isomorphic fibers and such that it is nowhere locally trivial.

Notation. If ϕ : A → B is a *-homomorphism, we will denote by ϕ∗ the induced map on K-theory
ϕ∗ : K0(A)→ K0(B).

Example 2.1.2. Let D be a unital Kirchberg algebra satisfying the UCT such that K0(D) = Z⊕Z,
[1D] = (1, 0) and K1(D) = 0, and let γ : D → D be a unital *-monomorphism such that γ∗(0, 1) =
(0, 0). The existence of D and γ follows from classification (see e.g. [Rør02, Section 4.3],[Phi00],
[Dad09a, Theorem 3.1]) Consider (xn) a dense sequence in [0, 1], and define, for each n, the
continuous field over [0, 1],

Dn = {f ∈ C([0, 1], D) | f(xn) ∈ γ(D)}.

Let us define inductively A1 = D1 and An+1 = An ⊗C[0,1] Dn+1, which is the tensor product
over [0, 1] of C([0, 1])-algebras (see [Kas88] or [Bla96] for a further discussion). Denote by A =
lim−→(An, θn), where θn : An → An+1 is defined by θn(a) = a ⊗ 1. This means that A is the infinite
tensor product over C([0, 1]) of continuous fields, i.e. A = ⊗∞n=1Dn. Note that A is a continuous
field of Kirchberg algebras over [0, 1] such that its fibers are isomorphic to ⊗∞1 D. Nevertheless,
the remarkable fact about A is that it is nowhere locally trivial. This is checked by showing that
for any closed nondegenerate subinterval I of [0, 1] and any x ∈ I , the evaluation map A(I) →
A(x) induces a non-injective map K0(A(I)) → K0(A(x)) since such a situation cannot occur for
trivial continuous fields. Indeed, if A is a trivial field over the interval, i.e., A ∼= C([0, 1])⊗D for
some C*-algebra D, then the induced K-theory exact sequence obtained from

0→ C0([0, 1] \ {x})→ A
πx−→ D → 0

gives that Kj(A) ∼= Kj(D) for j = 0, 1 because the K-theory of a cone is zero (i.e. Kj(C0((a, b], A)) =
0 for a, b ∈ R+ and A any C*-algebra for j = 0, 1). Focusing on our example, fix I as above. Ob-
serve that Dn(I) = C(I,D) if xn 6∈ I and that the map ϕn : Dn(I) → D, defined by ϕn(f) =
f(xn) ∈ γ(D), induces an isomorphism K0(Dn(I)) → K0(D) if xn ∈ I given by (γ−1 ◦ ϕn)∗ (by
the argument above).

On the other hand, if xn ∈ I and x ∈ I \ {xn}, then the projection πx : Dn(I) → Dn(x) ∼= D
induces a map (πx)∗ which can be identified with γ∗; hence, it is not injective. To see this, one
considers the following diagram

K0(Dn(I))
(πx)∗

//

(ϕn)∗
��

K0(Dn(x))

K0(γ(D))

(γ−1)∗
��

K0(D),

s∗

99

ψx

??�
�

�
�

�
�

�
�

�
�
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where s : D → Dn(I) is given by s(d) = (γ(d), d) considering Dn(I) as the pullback of

Dn(I) //

��

D

γ

��

C(I,D)
πxn // D,

and ψx := (πx)∗ ◦ s∗. Note that γ−1 ◦ ϕn ◦ s = id and that s∗ is bijective because (γ−1 ◦ ϕn)∗ is an
isomorphism. So the claim follows since ψx := (πx)∗ ◦ s∗ = γ∗, and this implies that (πx)∗ is not
injective because neither is γ∗.

Now, we note that identifyingAn+1
∼= An⊗C[0,1]Dn+1, one verifies that the inclusion θn : An →

An+1
∼= An⊗C[0,1]Dn+1, given by θn(a) = a⊗1, induces an injective map K0(An(I))→ K0(An+1(I))

for any I containing xn+1. Indeed, using the 6-term exact sequence of K-theory on Dn+1(I), one
has

K0(Dn+1(I \ {x})) = 0 // K0(Dn+1(I))
∼= // K0(D))

��

K1(D) = 0

OO

K1(Dn+1(I))oo K1(Dn+1(I \ {x})) = 0,oo

so K1(Dn+1(I)) = 0. From this, we have that

K0(An+1(I)) ∼= K0(An(I))⊗K0(Dn+1(I)) ∼= K0(An(I))⊗ (Z⊕Z) ∼= K0(An(I))⊕K0(An(I)) (2.1)

by the Künneth Theorem. Note that the desired injectivity follows from checking how the in-
duced maps are built. In particular, if [p] ∈ K0(An(I)), one has [p] 7→ [p ⊗ 1] 7→ [p] ⊗ [1] 7→
[p]⊗ (1, 0) 7→ ([p], 0) following the isomorphisms described in (2.1).

Using this, it follows that the limit map η : K0(An(I))→ K0(A(I)) is injective. Let x ∈ I \{xn}
and consider the commutative diagram induced by evaluating at x:

K0(An(I))
η
//

(πnx )∗
��

K0(A(I))

(π∞x )∗
��

K0(An(x)) // K0(A(x)).

Because the sequence (xn) is dense in [0, 1], one can consider that xn ∈ I without loss of gene-
rality. Using the Künneth Theorem as before, one verifies that the map (πnx)∗ is not injective if
x ∈ I \ {xn}. Indeed, it can be identified with

(πn−1
x )∗ ⊗ (πx)∗ : K0(An−1(I))⊗K0(Dn(I))→ K0(An−1(x))⊗K0(Dn(x))

and as seen before K0(πx) is not injective. On the other hand, since η is injective, it follows that
(π∞x )∗ is not injective; hence, A(I) cannot be isomorphic to C(I,⊗∞1 D).

The following example, based on an example given by Hirshberg, Rørdam and Winter in
[HRW07] and built out by M. Dadarlat in [Dad09b], shows that even if the K-theory of the fiber
vanishes, a field can be nowhere locally trivial if the base space is infinite-dimensional.
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Example 2.1.3. Let e be the Bott projection in M2(C(S2)), see Example 1.3.9. Denoting p =(
1 0
0 e

)
∈M3(C(S2)), consider B = ⊗∞1 pM3(C(S2))p.

In [HRW07, Example 4.7] it is shown that B is a continuous field over X =
∏∞

1 S2 such that
B(x) ∼= M2∞ for all x ∈ X , but that B 6∼= C(X)⊗M2∞ . Using this, in order to describe the above
singularity type to more general spaces in the fibers, in [Dad09b] is computed K0(B) which is
C(K,Z), where K is the Cantor set. In particular, in [Dad09b] is noticed that for any n ∈ N\{1, 2}
A := B ⊗On is a nowhere trivial continuous field. Indeed, for n = 3, one has

A(x) ∼= B(x)⊗O3
∼= M2∞ ⊗O3

∼= O2

since Kj(M2∞ ⊗O3) = Kj(O2) = 0 for j = {0, 1}, i.e. Kj(A(x)) = 0. However,

K0(A) = K0(B ⊗O3) = K0(B)⊗K0(O3) 6= 0,

implying that A 6∼= C(X)⊗O2.

2.2 KK-theory

In this section we review some basic facts about KK-theory which will be used in the sequel.
We will not enter in the original definition of KK-theory made by Kasparov ([Kas88]) because
it is very technical; however, we will outline the standard way of viewing the elements of
KK(A,B) as quasihomomorphisms given by J. Cuntz. For this we follow [Rør02]. A quasiho-
momorphism from A to B is a pair (φ, φ) of *-homomorphisms from A to M(B ⊗ K) satisfying
that φ(a) − φ(a) ∈ B ⊗ K for all a ∈ A, where M(B ⊗ K) is the multiplier algebra of B ⊗ K.
Two quasihomomorphisms (φ, φ) and (ϕ, ϕ) are said to be homotopic if they are connected by
a path of quasihomomorphisms (αt, αt) such that for a given a ∈ A, t 7→ αt(a) − αt(a) is norm
continuous in B ⊗ K and the map t 7→ (αt(a), αt(a)) is strictly continuous inM(B ⊗ K) in each
component (i.e., if tn → t, then, for a fixed a ∈ A, αtn(a)b′ → αt(a)b′ and b′αtn(a) → b′αt(a)′ in
norm for all b′ ∈ B ⊗ K). We define KK(A,B) as the set of homotopy classes of quasihomo-
morphisms from A to B, and the class of (φ, φ) is denoted by [(φ, φ)]. The set KK(A,B) becomes
a group with addition defined as follows. Take two isometries s1, s2 in M(B ⊗ K) satisfying
s1s
∗
1 + s2s

∗
2 = 1 and let (φ, φ), (ϕ, ϕ) be two quasihomomorphisms. Then :

[(φ, φ)] + [(ϕ, ϕ)] = [(s1φ(a)s∗1 + s2ϕ(a)s∗2, s1φ(a)s∗1 + s2ϕ(a)s∗2)].

With this opperation KK(A,B) is an abelian group with [(ϕ, ϕ)] = 0 and −[(φ, φ)] = [(φ, φ)].
Moreover, it follows that KK( , ) is a homotopy-invariant bifunctor from pairs of C*-algebras
to abelian groups, contravariant in the first variable and covariant in the second.

Each *-homomorphism ϕ : A → B ⊗ K defines a quasihomomorphism (ϕ, 0), and we set
KK(ϕ) = [(ϕ, 0)] ∈ KK(A,B). Also, if ϕ, φ : A → B ⊗ K are homotopic *-homomorphism, then
KK(ϕ) = KK(φ). Note that any C*-algebra B, and any matrix algebra over B, can be viewed as
sub-C*-algebra of B ⊗ K, so every *-homomorphism ϕ : A → B, or from A → Mn(B), can be
thought of as a *-homomorphism from A to B ⊗ K. Hence, ϕ : A → B represents an element
KK(ϕ) in KK(A,B).
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An important property of KK-theory is the Kasparov product, which, although we won’t
enter in to the definition because we will not use it in the sequel, we mention here some of its
properties. This product associates to every triple of C*-algebras A,B,C a bi-additive map

KK(A,B)×KK(B,C)→ KK(A,C), (x, y) 7→ x · y,

which is associative and extends composition of *-homomorphisms, i.e.

KK(ϕ).KK(φ) = KK(φ ◦ ϕ),

whenever ϕ : A→ B and φ : B → C are *-homomorphisms. Moreover, KK(A,A) is a ring with
unit KK(idA) denoted, making an abuse of notation, by 1A. With this, we define the additive
category KK whose objects are separable C*-algebras and whose morphisms from A to B are
the elements in KK(A,B) using the Kasparov product to compose two morphisms.

Definition 2.2.1. An element x ∈ KK(A,B) is called invertible if there exists y ∈ KK(B,A) such that
xy = 1A and yx = 1B. Two C*-algebras A and B are said to be KK-equivalent if KK(A,B) contains an
invertible element.

Note that an element x ∈ KK(A,B) is invertible if it is an invertible morphism in the category
KK, and two C*-algebras are KK-equivalent if they are isomorphic in the category KK.

Another important feature of KK-theory consists of its connections with K-theory. We next
state some important results which show this relation (see [Bla06] for further details):

KK(C, B) ∼= K0(B)

KK(SA,B) ∼= KK(A, SB)

KK(C0(R), B) ∼= K1(B).

Using the Kasparov product and the above equivalences, we may define the following group
homomorphisms

γ0 : KK(A,B)→ Hom(K0(A),K0(B)),

γ1 : KK(A,B)→ Hom(K1(A),K1(B)),

by γ0(x)(z0) = z0.x and γ1(x)(z1) = z1.x for z0 ∈ KK(C, A) and z1 ∈ KK(C0(R), A). If ϕ : A → B
is a *-homomorphism, then γj(KK(ϕ)) = Kj(ϕ) for j = 0, 1. Note that the maps γ0 and γ1 are
compatible with the Kasparov product in the sense of γj(x.y) = γj(y) ◦ γj(x) for x ∈ KK(A,B),
y ∈ KK(B,C) and j = 0, 1. In particular, if x is invertible, then so are γ0(x), γ1(x). The converse
of this fact is crucial and known as the Universal Coefficient Theorem (UCT), stated in Theorem
2.2.2 below. This defines the class of C*-algebras that satisfy this Theorem, the so-called UCT
class. Recall that we denote by N the large bootstrap class (Definition 1.3.7).
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Theorem 2.2.2. (UCT)([RS87])

(i) The homomorphism

γ0 ⊕ γ1 : KK(A,B)→ Hom(K0(A),K0(B))⊕ Hom(K1(A),K1(B))

is surjective for each A ∈ N and for each separable C*-algebra B.

(ii) If both A and B belong to N , then an element x ∈ KK(A,B) is invertible if and only if γ0(x) :
K0(A)→ K0(B) and γ1(x) : K1(A)→ K1(B) are invertible mappings.

(iii) Two C*-algebras A and B in N are KK-equivalent if and only if K0(A) ∼= K0(B) and K1(A) ∼=
K1(B).

It is known that for any pair of countable abelian groups (G0, G1) there exists an abelian C*-
algebra B such that K0(B) ∼= G0 and K1(B) ∼= G1. Therefore, a C*-algebra A satisfies the UCT if
and only if it is KK-equivalent to an abelian C*-algebra.

Studying the KK-theory for C(X)-algebras, Kasparov introduced parametrized KK-theory
groups KKX(A,B) for C(X)-algebras A and B ([Kas88]). Concretely, this is a sort of fibration
over X of KK-groups. Moreover, these groups admit a natural product structure KKX(A,B) ×
KKX(B,C)→ KKX(A,C), and, as before, KKX(A,B)−1 denotes the set of invertible elements in
KKX(A,B). If KKX(A,B)−1 6= ∅we say that A is KKX-equivalent to B.

One of the achievements of this theory, and the only one used in the sequel, states that if A
is a trivial C(X)-algebra, i.e. A ∼= C(X)⊗D for some C*-algebra D, it follows that KKX(A,B) ∼=
KK(D,B) (see e.g. [Dad09b, proof of Corollary 2.8]).

2.3 Semiprojectivity

A separable C*-algebra D is semiprojective if, for any C*-algebra A, any increasing sequence of
two-sided closed ideals (Jn) of A with J =

⋃
n Jn and for every *-homomorphism ϕ : D → A/J ,

there exist n and ϕn so that the diagram:

A/Jn

πn
��

D
ϕ
//

ϕn
=={{{{{{{{
A/J

commutes.
If we weaken this condition appropriately, then D is called weakly semiprojective. That is, D

is weakly semiprojective if for any finite subset F ⊂ D, any ε > 0 and A, J =
⋃
n Jn, ϕ as above,

there exists n and ϕn a *-homomorphism such that ‖πnϕn(c)− ϕ(c)‖ < ε for all c ∈ F .

Definition 2.3.1. ([Dad09a, Definition 3.5]) A separable C*-algebra D is KK-stable if there is a finite
set G ⊂ D and there is δ > 0 with the property that for any two *-homomorphisms ϕ, ψ : D → A such
that ‖ϕ(a)− ψ(a)‖ < δ for all a ∈ G, one has KK(ϕ) = KK(ψ).
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The following is a generalization of a result of [EL99]; it is proved along the same general
lines. We include a proof for completeness.

Proposition 2.3.2. Let D be a separable weakly semiprojective C*-algebra. For any finite set F ⊂ D
and any ε > 0 there exists a finite set G ⊂ D and δ > 0 such that for any C*-algebra B ⊂ A and any
∗-homomorphism ϕ : D → A with ϕ(G) ⊂δ B, there is a ∗-homomorphism ψ : D → B such that
‖ϕ(c) − ψ(c)‖ < ε for all c ∈ F . If, in addition, Kj(D) is finitely generated for j = 0, 1, then we can
choose G and δ such that we also have Kj(ψ) = Kj(ϕ) for j = 0, 1.

Proof. Fix F and ε, and take (Gn) be an increasing sequence of finite subsets of D whose union is
dense inD. Seeking a contradiction, assume that there are sequences of C*-algebras Cn ⊂ An and
*-homomorphisms ϕn : D → An satisfying ϕn(Gn) ⊂1/n Cn with the property that for any n ≥ 1
there is no *-homomorphism ψn : D → Cn such that ‖ϕn(c)− ψn(c)‖ < ε for all c ∈ F . Consider
Bi =

∏
n≥iAn and Ei =

∏
n≥i Cn ⊂ Bi. If νi : Bi → Bi+1 is the natural projection, then νi(Ei) =

Ei+1. We remark that if we define Φi : D → Bi by Φi(d) = (ϕi(d), ϕi+1(d), . . .), then the image
of Φ = lim−→Φi : D → lim−→(Bi, νi) is contained in lim−→(Ei, νi). Because D is weakly semiprojective,
there is i and a *-homomorphism Ψi : D → Ei, of the form Ψi(d) = (ψi(d), ψi+1(d), . . .) such
that ‖Φi(c) − Ψi(c)‖ < ε for all c ∈ F . Hence, ‖ϕi(c) − ψi(c)‖ < ε for all c ∈ F which gives a
contradiction.

Remark 2.3.3. We note that if in Proposition 2.3.2 we add the extra assumption of D being KK-
stable, then it also follows that G and δ may be choosen to obtain KK(ψ) = KK(ϕ). This is done
in [Dad09a, Proposition 3.7].

Definition 2.3.4. ([Dad09a, Definition 3.9])

(i) A separable C*-algebraD is KK-semiprojective if for any separable C*-algebraA and any increasing
sequence of two-sided closed ideals (Jn) of A with J =

⋃
Jn, the natural map lim−→KK(D,A/Jn)→

KK(D,A/J) is surjective.

(ii) We say that the functor KK(D, ) is continuous if for any inductive system B1 → B2 → . . . of
separable C*-algebras, the induced map lim−→(KK(D,Bn))→ KK(D, lim−→(Bn)) is bijective.

The following result shows the equivalence of the notions above under mild assumptions.

Theorem 2.3.5. ([Dad09a, Theorem 3.12]) Let D be a separable C*-algebra and consider the following
properties :

(i) D is KK-semiprojective.

(ii) The functor KK(D, ) is continuous.

(iii) D is weakly semiprojective and KK-stable.

Then (i) ⇐⇒ (ii). Moreover, if D is a Kirchberg algebra, then (i) ⇐⇒ (ii) ⇐⇒ (iii).

Proposition 2.3.6. ([Dad09a, Proposition 3.10]) Let D be a separable C*-algebra. If D is KK-semipro-
jective, then D is KK-stable.
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Proof. Seeking a contradiction, let D be a separable KK-semiprojective C*-algeba and (Gn) be an
increasing sequence of finite subsets of D whose union is dense in D. If D is not KK-stable, then
there exist a sequence (An) and *-homomorphisms ϕn, ψn : D → An such that ‖ϕn(d)− ψ(d)‖ <
1/n for all d ∈ Gn, but KK(ϕn) 6= KK(ψn) for all n ≥ 1. Consider Bi =

∏
n≥iAi and let µi : Bi →

Bi+1 be the natural projection. Define Φi,Ψi : D → Bi by Φi(d) = (ϕi(d), ϕi+1(d), . . .) and Ψi(d) =
(ψi(d), ψi+1(d), . . .) for all d ∈ D. Let B′i be the separable C*-subalgebra of Bi generated by the
images of Φi and Ψi, then µi(B′i) = B′i+1 and one verifies that lim−→(Φi) = lim−→(Ψi) : D → lim−→(B′i, µi).
Because KK(D, ) is continuous by Theorem 2.3.5, we have KK(Φi) = mathrmKK(Ψi) for some
i; hence, KK(ϕn) = KK(ψn) for all n ≥ i. This is a contradiction.

Proposition 2.3.7. ([Dad09a, Proposition 3.14]) Let D be a separable C*-algebra satisfying the UCT.
Then D is KK-semiprojective if and only if Kj(D) is finitely generated for j = 0, 1.

Proof. It is proved in [RS87] that Kj(D) finitely generated for j = 0, 1 implies KK-semiprojective.
We prove the converse. For the sake of simplicity, we give the proof only for K0. Note that, since
D is KK-semiprojective, KK(D, ) is continuous by Theorem 2.3.5. Write G = K0(D), which is
a countable abelian group. Let H be a countable abelian group and find A a Kirchberg algebra
with K0(A) = H . Define an inductive system of finitely generated abelian groups H1 → H2 →
. . . such that its inductive limit is H . Then, by [Rør02, Theorem 8.4.13] one may associate an
inductive sequence of Kirchberg algebras A1 → A2 → . . . → A such that K0(An) = Hn. By
the continuity of KK(D, ), one has that the natural map lim−→KK(D,An) → KK(D, lim−→An) is
bijective. Using the condition (i) of Theorem 2.2.2, one gets that there exists a surjective map
from lim−→Hom(K0(D), Hn) to Hom(K0(D), H). Taking H = G, we see that the map idG lifts to
Hom(K0(D), Hn) for some n and finitely generated subgroup Hn ⊆ G. Hence, G is a quotient of
Hn, implying that G is finitely generated.

Remark 2.3.8. Notice that a Kirchberg algebra D satisfying the UCT such that Kj(D) is finitely
generated for j = 0, 1 is KK-projective and KK-stable by the combination of Proposition 2.3.7
and Theorem 2.3.5.

It is pertinent to say that by previous work of Neubuser [Neu00], H.Lin [Lin07] and Spielberg
[Spi07], D, under our assumptions, is weakly semiprojective. Further, in [Dad09a, Prop. 3.11] is
shown that D ⊗K is also weakly-semiprojective.

2.4 Approximation of Continuous Fields

In this section, we state a corollary of a result on the structure of continuous fields proved in
[Dad09a, Theorem 4.6]. In this, the property of weak semiprojectivity is used to approximate a
continuous field A by continuous fields Ak given by n-pullbacks of trivial continuous fields. We
shall use this construction several times in the sequel.

Recall that the pullback of a diagram

A
π // C oo

γ
B

is the C*-algebra
E = {(a, b) ∈ A⊕B | π(a) = γ(b)}.
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We are going to use pullbacks in the context of continuous field C*-algebras.

Definition 2.4.1. Let X be a metrizable compact space, and let D be a C*-algebra. Suppose that X =
Z0∪Z1∪ . . .∪Zn, where {Zj}nj=0 are closed subsets, and write Yi = Z0∪Z1∪ . . .∪Zi. The notion of an
n-pullback of trivial continuous fields with fiberD overX is defined inductively by the following data.
We are given continuous fields Ei over Yi with fibers isomorphic to D and fiberwise injective morphisms
of fields γi+1 : C(Yi ∩ Zi+1)⊗D → Ei(Yi ∩ Zi+1), i ∈ {1, . . . , n− 1}, with the following properties:

(i) E0 = C(Y0)⊗D = C(Z0)⊗D.

(ii) E1 is the field over Y1 = Y0 ∪ Z1 defined by the pullback of the diagram (where π = πY0∩Z1)

E0(Y0) π // E0(Y0 ∩ Z1) oo
γ1◦π

C(Z1)⊗D.

(iii) In general, Ei+1 is the field over Yi+1 = Yi ∪ Zi+1 defined as the pullback of the diagram

Ei(Yi)
π // Ei(Yi ∩ Zi+1) oo

γi+1◦π
C(Zi+1)⊗D.

We call the continuous field E = En(Yn) = En(X) an n-pullback (of trivial fields). Observe that all its
fibers are isomorphic to D.

Remark 2.4.2. (a) If E is an n-pullback of trivial continuous fields with fiber D over X , then Ei
is an i-pullback and Ei(Zi) ∼= C(Zi)⊗D for all i = 0, 1, ..., n.

(b) If V ⊂ X is a closed set such that V ∩ (Zi+1 ∪ . . . ∪ Zn) = ∅, then E(V ) ∼= Ei(V ). Moreover, if
V ⊂ Zi, then it follows that E(V ) ∼= Ei(V ) ∼= C(V )⊗D.

Notation. We denote by Dn(X) the class of continuous fields with fibers isomorphic to D which
are n-pullbacks of trivial fields in the sense of Definition 2.4.1 and which have the additional
property that the spaces Zi that appear in their representation as n-pullbacks are finite unions
of closed subsets of X of the form U(x, r), where U(x, r) = {y ∈ X : d(y, x) < r} is the open ball
of center x and radius r for a fixed metric d for the topology of X .

Recall that the conditionF ⊂ε B means that for each a ∈ F there is b ∈ B such that ‖a−b‖ < ε.

Definition 2.4.3. Let A be a C*-algebra. We say that a sequence of C*-subalgebras {An} is exhaustive if
for any finite subset F ⊂ A, any ε > 0 and any n0, there exists n ≥ n0 such that F ⊂ε An. In the case of
continuous fields we will require that the algebras An are C(X)-subalgebras of A.

Note that the existence of an exhaustive sequence is ultimately related to the separability
of the C*-algebra, but the important point is the structure of the C*-algebras belonging to this
exhaustive sequence. It is important to remark that in [Lor97, Lemma 15.2.2] is proved that if
A contains an exhaustive sequence (An) such that An is weakly semiprojective and finitely pre-
sented, then A ∼= lim(Ank , γk) for some subsequence, and some connecting maps γk : Ank →
Ank+1

. Furthermore, in [Rør02, Proposition 8.4.13] is proved that any Kirchberg algebra with
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finitely generated K-theory is isomorphic to an inductive limit of weakly semiprojective Kirch-
berg algebras.

The following is a result from [Dad09a] which has been rephrased checking that all con-
ditions in the original statement are satisfied by Remark 2.3.8 and [Rør02, Proposition 8.4.13].
We shall use it to approximate a continuous field A by exhaustive sequences consisting of n-
pullbacks of trivial continuous fields.

Theorem 2.4.4. ([Dad09a, Theorem 4.6]) Let D be a stable Kirchberg algebra that satisfies the UCT.
Suppose that Kj(D) is finitely generated for j = 0, 1. Let X be a finite dimensional compact metrizable
space and let A be a separable continuous field over X such that all its fibers are isomorphic to D. For
any finite set F ⊂ A and any ε > 0, there exists n and B ∈ Dn(X) with n ≤ dim(X) and an injective
C(X)-linear ∗-homomorphism η : B → A such that F ⊂ε η(B).

We remark that Theorem 2.4.4 does not state that the setsZi that give the n-pullback structure
of B are finite unions of closures of open balls. However, this additional condition will be easily
satisfied after making a few arrangements in its proof.

Note that if A is a continuous field of C*-algebras under the assumptions of the above Theo-
rem, by applying Theorem 2.4.4 we get an exhaustive sequence {φk : Ak → A}, where the φk are
injective C(X)-linear *-homomorphisms, such that Ak ∈ Dlk with lk ≤ dim(X).

2.5 Local triviality

We start this section by an elementary lemma which collects some useful properties of finitely
generated abelian groups. It is singled out in the beginning of this section because it will be
used repeatedly in this chapter, sometimes without further reference. A proof is included for
completeness.

Lemma 2.5.1. Let G be a finitely generated abelian group.

(i) If G is finite, then a map α : G → G is bijective if and only if α is injective, if and only if α is
surjective.

(ii) Any surjective homomorphism η : G→ G is bijective.

(iii) In a commutative diagram of group homomorphisms

G
γ

//

α
  

@@@@@@@ G>>

β~~~~~~~

G,

if α is not bijective, then γ is not bijective.

Proof. (i) This is obvious. (ii) SinceG is a finitely generated abelian group,G ∼= Zk⊕T where k ≥
0 and T is a finite torsion group. To prove the statement, consider the following commutative
diagram
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0 // T //

β

��

G //

η

��

Zk //

α

��

0

0 // T // G // Zk // 0.

One can represent η as
(
α 0
γ β

)
, where γ : Zk → T . Note that α is surjective (and hence bijective)

since η is surjective. By the Five lemma, β is surjective and so it must be bijective by (i). Applying
the Five lemma again, we see that η is bijective.

(iii) If γ were bijective, β would be surjective and hence bijective by (i). Since α is not bijective,
this is a contradiction.

The next result gives necessary and sufficient K-theory conditions for triviality of continuous
fields whose fibers are Kirchberg algebras. We remark that the original statement has been
rephrased in K-theoretical form. This can be done using that, under our assumptions, KK(D, )
is continuos and, moreover, the UCT condition is satisfied, i.e., Theorem 2.2.2.

Theorem 2.5.2. ([Dad09a, Theorem 1.2]) Let X be a finite dimensional compact metrizable space. Let
A be a separable continuous field over X whose fibers are stable Kirchberg algebras satisfying the UCT.
Let D be a stable Kirchberg algebra that satisfies the UCT and such that Kj(D) is finitely generated for
j = 0, 1. Then A is isomorphic to C(X) ⊗ D if and only if there is σ : Kj(D) → Kj(A) such that
σx : Kj(D)→ Kj(A(x)) is bijective for all x ∈ X for j = 0, 1.

On the way to obtain our main result of this chapter, Theorem 2.5.9, we prove an intermediate
technical result, Theorem 2.5.8. To prove this, we need several lemmas.

Remark 2.5.3. Let D be a C*-algebra. We denote the set of *-homomorphisms from D to D by
Hom(D,D) where the topology is given by ϕn → ϕ ∈ Hom(D,D) if ϕn(d) → ϕ(d) for all d ∈ D.
If A,B are two trivial continuous fields over a finite dimensional compact metric space X with
Ax, Bx isomorphic to D for all x ∈ X , then any C(X)-morphism φ : A→ B induces a continuous
morphism φ̃ : X → Hom(D,D). Specifically, φ̃(x) = (φx : d 7→ φ(1 ⊗ d)(x) = φx(d)). Moreover,
any continuous morphism ψ̃ : X → Hom(D,D) induces a C(X)-morphism between two trivial
fields ψ : C(X,D)→ C(X,D) defined by ψ(f)(x) = (ψ̃(x))(f(x)) for f ∈ C(X,D).

Lemma 2.5.4. Let φ : A→ B be a *-homomorphism of trivial fields over a compact metric space X with
all the fibers isomorphic to D. Suppose that there is x ∈ X such that Kj(φx) : KjA(x)) → Kj(B(x)) is
not bijective for j = 0, 1. If Kj(D) is finitely generated for j = 0, 1, then there exists a neighborhood V of
x such that Kj(φv) : Kj(A(v))→ Kj(B(v)) is not bijective for any v ∈ V for j = 0, 1.

Proof. For the sake of simplicity, we give the proof only for K0. By Remark 2.5.3, one can asso-
ciate to φ the morphism φ̃ : X → Hom(D,D). Therefore, passing to K-theory, one has the map
Hom(D,D) → Hom(K0(D),K0(D)). Note that the above map is locally constant because K0 is
finitely generated. Indeed, if ϕ, ϕ′ ∈ Hom(D,D) are close, i.e ‖ϕ(d) − ϕ′(d)‖ < ε for some ε < 1
and for all d ∈ D, it follows that [ϕ(e)]0 = [ϕ′(e)]0 for any projection in D. Hence, K0(ϕ) = K0(ϕ′)
since K0(D) is finitely generated. Because Kj(φx) is not bijective for j = 0, 1, there exists an open
neighborhood Ux of x such that Kj(φv) is not bijective for all v ∈ Ux for j = 0, 1.
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Lemma 2.5.5. LetX be a metrizable compact space. Suppose thatA is a continuous field inDn(X). Then
for any open set U ⊂ X and x ∈ U, there is an open set V such that x ∈ V ⊂ U and A(V ) ∼= C(V )⊗D.
Proof. We use the notation from Definition 2.4.1 with A in place of E. Let i ∈ {0, 1, ..., n} be the
largest number with the property that x ∈ Zi. Set Xi =

⋃n
i=i+1 Zi if i < n and Xn = ∅. Then,

dist(x,Xi) > 0 since Xi is a closed set and x 6∈ Xi. Let W be an open ball centered at x such
that W ⊂ U and W ∩Xi = ∅. By the definition of Dn(X), there exist z ∈ Zi and r > 0 such that
x ∈ U(z, r) ⊂ Zi. Since x ∈ W ∩U(z, r) andW is open, there must be a sequence zn ∈ W ∩U(z, r)
which converges to x. Setting V = W ∩ U(z, r), we have that x ∈ V ⊂ W ⊂ U and V ∩Xi = ∅.
Because V ⊂ U(z, r) ⊂ Zi, it follows that A(V ) is trivial by Remark 2.4.2 (b).

Lemma 2.5.6. Let D be a stable Kirchberg algebra such that Kj(D) is finitely generated for j = 0, 1.
Let {Dn} be an exhaustive sequence for D with inclusion maps φn : Dn ↪→ D. Suppose that Kj(Dn) ∼=
Kj(D) for j = 0, 1 and for all n ≥ 1. Then, there exists n1 < n2 < . . . < nk < . . . such that Kj(φnk) is
bijective for j = 0, 1 and for all k.

Proof. For the sake of simplicity, we give the proof only for K0. Let K0(D) be generated by classes
of projections ei ∈ D, i = 1, . . . , r. Since {Dn} is exhaustive, there exist n1 < n2 < . . . < nk < . . .
such that dist(ei, Dnk) < ε for i = 1, . . . , r and k ≥ 1. Let x ∈ Dnk such that ‖ei − x‖ < ε. Then
‖x‖ < 1 + ε and

‖x∗x− ei‖ ≤ ‖x∗x− x∗ei‖+ ‖x∗ei − ei‖ ≤ ‖x∗‖‖x− ei‖+ ‖(x∗ − ei)ei‖ ≤ ‖x‖ε+ ε < 2ε+ ε2.

So abusing notation, we may assume that x ≥ 0 and ‖x− ei‖ < ε (for sufficiently small ε). Now

‖x2 − x‖ ≤ ‖x2 − xei‖+ ‖xei − x‖ ≤ ‖x‖ε+ ε+ ε = 2ε+ ε‖x‖ < 3ε+ ε2.

If ‖x‖ > 1, then:∥∥∥ei − x

‖x‖

∥∥∥ =
∥∥∥ei · ‖x‖ − x‖x‖

∥∥∥ ≤ 1

‖x‖

∥∥∥ei · ‖x‖ − x∥∥∥ ≤ ∥∥∥ei · ‖x‖ − x · ‖x‖∥∥∥+
∥∥∥x · ‖x‖ − x∥∥∥

≤ ‖x‖‖ei − x‖+ ‖x‖(‖x‖ − 1) < 2‖x‖ε,
and∥∥∥( x

‖x‖

)2

− x

‖x‖

∥∥∥ ≤ ∥∥∥x2 − ‖x‖x
‖x‖2

∥∥∥ ≤ ∥∥∥x2 − x
∥∥∥+

∥∥∥x− ‖x‖ · x∥∥∥ < 3ε+ ε2 + ‖x‖ε < 4ε+ 2ε2.

Therefore, choosing ε > 0 appropriately, we may find x ∈ Dnk such that x ≥ 0, ‖x‖ ≤ 1,
‖x2 − x‖ < ε ≤ 1/4 and ‖x − ei‖ < 1/2. Using these assumptions on x, by functional calculus
it follows that x may be approximated by a projection fi ∈ Dnk (see e.g. [WO93, Lemma 5.1.6])
such that ‖x − fi‖ < 1/2. Thus, ‖ei − fi‖ < 1 and so [ei]0 = [fi]0 in K0(D). This shows that the
maps K0(φnk) are surjective. Then they must be bijective by Lemma 2.5.1.

Lemma 2.5.7. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg
algebra that satisfies the UCT and such that Kj(D) is finitely generated for j = 0, 1. Let A be a separable
continuous field C*-algebra over X with all fibers isomorphic to D. Let B ∈ Dn(X) (n < ∞) be such
that there exists a C(X)-linear ∗-monomorphism φ : B → A. If A is nowhere locally trivial, then for any
nonempty set U ⊂ X there exists an open nonempty set W such that W ⊂ U, B(W ) is trivial and for all
v ∈ W, Kj(φv) is not bijective for j = 0, 1.
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Proof. In this proof, we shall denote the KK-class of homomorphism by [ ]. By Lemma 2.5.5
there is an open set V 6= ∅ such that V ⊂ U and B(V ) ∼= C(V )⊗D. After replacing U by V and
restricting both B and A to V we may assume without any loss of generality that B = C(X)⊗D.
By the assumption on A, using Theorem 2.4.4, we get an exhaustive sequence {φk : Ak → A}
such thatAk ∈ Dlk(X) with lk ≤ dim(X). Let us regardD as the subalgebra of constant functions
of B = C(X)⊗D and denote by j the corresponding inclusion map.

LetF ⊂ D be a finite set and ε > 0. Considering the exhaustive sequence (Ak)k, and applying
Proposition 2.3.2 (and Remark 2.3.3) together with Remark 2.3.8 to D and the map φ ◦ j, we get
n and ψ0

n : D → An such that ‖φk ◦ ψ0
n(d)− φ ◦ j(d)‖ < ε for all d ∈ F and that [φk ◦ ψ0

n] = [φ ◦ j]
in KK(D,A). By separability of D, after passing to a subsequence of (Ak)k, if necessary, we
construct a sequence of ∗-homomorphisms ψ0

k : D → Ak such that ‖φk ◦ψ0
k(d)−φ ◦ j(d)‖ → 0 for

all d ∈ D. Their canonical C(X)-linear extension ψk : B → Ak form a sequence of diagrams

D
j
//

ψ0
n ''PPPPPPPPPPPPPPP B

φ
//

ψk

  
AAAAAAAA A>>

φk}}}}}}}

Ak ,

satisfying that ‖φkψk(b) − φ(b)‖ → 0 for all b ∈ B and [φk ◦ ψk ◦ j] = [φ ◦ j] ∈ KK(D,A) for all
k ≥ 1. In addition, since there is an isomorphism KKX(C(X) ⊗ D,A) ∼= KK(D,A) ([Dad09b,
proof of Corollary 2.8]), it follows that [φk ◦ ϕk] = [φ] ∈ KKX(C(X)⊗D,A), and so

[(φk)v ◦ (ψ)v] = [(φ)v] ∈ KK(B(v), A(v)) (2.2)

for all points v ∈ X and k ≥ 1 by [MN09, Proposition 3.4 (10)].
Since A is nowhere locally trivial, it follows from Theorem 2.5.2 that there exists x ∈ U such

that Kj(φx) is not bijective for j = 0, 1. By applying Lemma 2.5.6 to the exhaustive sequence
{(φk)x : Ak(x) → A(x)} we find a k, which we now fix, such that Kj((φk)x) is bijective for
j = 0, 1. It follows that Kj((ψk)x) is not bijective for this fixed k for j = 0, 1.

Let V be the open set given by Lemma 2.5.5 applied to Ak, U and x. Then x ∈ V ⊂ U and
Ak(V ) ∼= C(V )⊗D. Restricting the diagram above to V , we obtain a diagram

B(V )
φ

//

ψk ##HHHHHHHHH
A(V )
;;

φkvvvvvvvvv

Ak(V )

where both B(V ) and Ak(V ) are trivial and Kj((φk)v) ◦ Kj((ψk)v) = Kj(φv) for j = 0, 1 for all
v ∈ V as a consequence of (2.2). Since Kj((ψk)x) is not bijective for j = 0, 1, by Lemma 2.5.4 there
is r > 0 such that Kj((ψk)v) is not bijective for j = 0, 1 and for all v ∈ V ∩ U(X, r). Let W be
an open ball whose closure is contained in V ∩ U(X, r) ⊂ U . It follows by Lemma 2.5.1 (iii) that
Kj(φv) is not bijective for j = 0, 1 and for any v ∈ W .
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Theorem 2.5.8. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg
algebra that satisfies the UCT and such that Kj(D) is finitely generated for j = 0, 1. Let A be a separable
continuous field C*-algebra over X such that A(x) ∼= D for all x ∈ X . Then there exists a closed subset
V of X with non-empty interior such that A(V ) ∼= C(V )⊗D.

Proof. Arguing as in Lemma 2.5.7, that uses Theorem 2.4.4, there is an exhaustive sequence
{Ak}k, such that Ak ∈ Dlk(X), lk ≤ dim(X) and that the maps φk : Ak → A are C(X)-linear
*-monomorphisms for all k. Seeking a contradiction suppose that for each open set V 6= ∅,
A(V ) � C(V )⊗D.

Apply Lemma 2.5.7 to φ1 : A1 → A to find an open set V1 6= ∅ such that Kj((φ1)v) is not
bijective for j = 0, 1 and for all v ∈ V 1. Next, apply Lemma 2.5.7 again for φ2 : A2(V 1)→ A(V 1)
and V1 to find a nonempty open set V2 such that V 2 ⊂ V1 and Kj((φ2)v) is not bijective for
j = 0, 1 and for all v ∈ V 2. Using the same procedure inductively, one finds a sequence of open
sets {Vk}k with Vk ⊃ V k+1, such that Kj((φk)v) is not bijective for j = 0, 1 and for all v ∈ V k and
k ≥ 1.

Choose x ∈
⋂∞
k=1 V k and note that {Ak(x)}k is an exhaustive sequence for A(x) such that

none of the maps Kj((φk)x) : Kj(Ak(x)) → Kj(A(x)) are bijective for j = 0, 1. By Lemma 2.5.6
this implies that Kj(A(x)) � Kj(D) for j = 0, 1, and this is a contradiction.

Theorem 2.5.9. Let X be a finite dimensional compact metric space, and let D be a stable Kirchberg
algebra that satisfies the UCT and such that Kj(D) is finitely generated for j = 0, 1. Let A be a separable
continuous field C*-algebra over X such that A(x) ∼= D for all x ∈ X . Then there exists a dense open
subset U of X such that A(U) is locally trivial.

Proof. Let U be the family of all open subsets U ofX such thatA(U) is trivial. SinceX is compact
metrizable, we can find a sequence {Un}n in U whose union is equal to the union of all elements
of U . If we set U∞ =

⋃
n Un, then U∞ is dense in X . Indeed, if x ∈ X and Ux is any open

neighborhood of x in X , the restriction A(Ux) is a continuous field satisfying the requirements
of Theorem 2.5.8; thus, there exists a closed set W ⊆ Ux with W̊ 6= ∅ such that A(W ) is trivial.

Since A(U∞) = lim−→n
{A(U1 ∪ · · · ∪Un)} = lim−→n

{A(U1) + · · ·+A(Un)}, we see immediately that
A(U∞) is locally trivial. Indeed the ideal A(U∞)(Un) of A(U∞) determined by the open set Un is
equal to A(Un) ∼= C0(Un)⊗D.

Corollary 2.5.10. Fix n ∈ N∪ {∞}. Let X be a finite dimensional compact metrizable space and A be a
continuous field over X such that A(x) ∼= On ⊗ K for all x ∈ X . Then there exists a closed subset V of
X with nonempty interior such that A(V ) ∼= C(V )⊗On ⊗K.

The following example shows that the conclusion of Theorem 2.5.9 is in a certain sense opti-
mal. Indeed, given a nowhere dense set F ⊂ [0, 1], we construct a continuous field C*-algebra A
with all fibers isomorphic to a fixed Cuntz algebra On ⊗ K, 3 ≤ n ≤ ∞, and such that the set of
singular points of A coincides with F .

Example 2.5.11. Let U be an open dense subset of the unit interval with nonempty comple-
ment F . Let D be a Kirchberg algebra with K0(D) 6= 0 and K1(D) = 0. Fix an injective *-
homomorphism γ : D → D such that Kj(γ) = 0 for j = 0, 1. Define a continuous field C*-algebra
over [0, 1] by

A = {f ∈ C[0, 1]⊗D | f(x) ∈ γ(D), ∀x ∈ F}.
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It is clear that A(U) ∼= C0(U) ⊗D. We will show that if I is any closed subinterval of [0, 1] such
that I ∩ F 6= ∅, then A(I) is not trivial. This will show that F is the set of singular points of A.
Let us observe that

A(I) = {f ∈ C(I)⊗D | f(x) ∈ γ(D), ∀x ∈ I ∩ F}

is isomorphic to the pullback of the diagram

C(I)⊗D π // C(I ∩ F )⊗D oo id⊗γ C(I ∩ F )⊗D.

Indeed, if we denote by P the pullback of above diagram, there is a natural *-homomorphism
η : P → A(I) defined by η(f, g) = f . Since γ is injective, it follows that η is an isomorphism with
inverse defined by η−1(f) = (f, γ−1f).

We see that K1(C(I ∩ F ) ⊗ D) = 0 by the Künneth formula. Therefore, the Mayer-Vietoris
exact sequence on K-theory explained in the Preliminaries (see also [Sch84, Theorem 4.5], [Bla98,
Proposition 21.2.2]) gives that K0(A(I)) is the pullback of the following diagram of groups:

K0(C(I)⊗D)
π∗ // K0(C(I ∩ F )⊗D) oo

(id⊗γ)∗
K0(C(I ∩ F )⊗D).

Let e ∈ D be a projection such that [e] 6= 0 in K0(D). Let γ̃(e) be the constant function on I equal
to γ(e), and let ẽ be the constant function on I ∩ F equal to e. The pair (γ̃(e), ẽ) is a projection
p ∈ A(I). Since F has empty interior, there is a point y0 ∈ I \ F . Choose a point z0 ∈ I ∩ F .
To show that A(I) is not trivial we observe that K0(πy0)(p) = [γ(e)] = 0 in K0(A(y0)) = K0(D),
whereas K0(πz0)(p) = [e] 6= 0 in K0(A(z0)) = K0(D).
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Chapter 3

The Cuntz Semigroup of Continuous Fields

In this chapter, we describe the Cuntz semigroup of continuous fields of C*-algebras over one-
dimensional spaces whose fibers have stable rank one and trivial K1 for each closed, two sided
ideal. This is done in terms of the semigroups of global sections on a certain topological space
built out of the Cuntz semigroup of the fibers of the continuous field. We use this description to
show that when the fibers have furthermore real rank zero, and taking into account the action
of the space, the Cuntz semigroup is a classifying invariant if and only if so is the sheaf induced
by the Murray-von Neumann semigroup. The results in this chapter are contained in [ABP].

3.1 The Cuntz semigroup of a stable C*-algebra

We start this section summarizing the properties of the Cuntz semigroup of a stable C*-algebra.
Coward, Elliott and Ivanescu showed in 2008 that the Cuntz semigroup of a stable C*-algebra

is richer than just being an ordered semigroup, as it belongs to a category with certain continuity
properties ([CEI08]). We shall denote by Cu(A) the Cuntz semigroup of the stabilization of a C*-
algebra, i.e. Cu(A) := W(A⊗K) = (A⊗K)+/∼.

Before stating the main result of [CEI08], we recall that an element s in a semigroup S is
said to be compactly contained in t, denoted s � t, if whenever t ≤ supn zn for some increasing
sequence (zn) with supremum in the semigroup, there exists m such that s ≤ zm. An element
s in semigroup S is said to be compact if s � s, and a sequence (sn) such that sn � sn+1 is
termed rapidly increasing. For instance, if ε > 0, the elements 〈(a − ε)+〉, 〈a〉 ∈ Cu(A) satisfy
that 〈(a − ε)+〉 � 〈a〉 and for any projection p, the element 〈p〉 is compact. Concretely, when
A is a stably finite C*-algebra, the Murray-von Neumann semigroup can be identified with the
compact elements in Cu(A), i.e., V(A) = {x ∈ Cu(A) | x � x}. This follows from Proposition
1.3.23.

The following summarizes some structural properties of the Cuntz semigroup of a stable
C*-algebra.

Theorem 3.1.1. ([CEI08])

(i) Every increasing sequence in Cu(A) has a supremum in Cu(A).

41
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(ii) Every element in Cu(A) is the supremum of a rapidly increasing sequence.

(iii) The operation of taking suprema and� are compatible with addition.

This allows us to define a category Cu whose objects are ordered semigroups whose elements
satisfy conditions (i)-(iii) above and whose morphisms are those semigroup maps that preserve
the zero element, the order, the compact containment relation and suprema. In [CEI08] it was
also shown that the category Cu is closed under countable inductive limits. A useful description
of inductive limits in Cu is available below.

Proposition 3.1.2. ([CEI08], cf. [BRT+12]) Let (Si, αi,j)i,j∈N be an inductive system in the category
Cu. Then (S, αi,∞) is the inductive limit of this system if:

(i) The set
⋃
i αi,∞(Si) is dense in S, in the sense that any element s ∈ S satisfies that s = sup

n
(sn)

with sn ∈
⋃
i

αi,∞(Si) and sn � sn+1 for all n.

(ii) For any x, y ∈ Si such that αi,∞(x) ≤ αi,∞(y) and x′ � x there is j ≥ i such that αi,j(x′) ≤
αi,j(y).

Proof. We will check that S satisfies the universal property of inductive limits. Suppose that
T ∈ Cu and that we have a collection of morphisms (µi)

∞
i=1 in the category Cu such that the

following diagram

S1

µ1
**UUUUUUUUUUUUUUUUUUUUUUUU

α1,2
// S2

µ2

((PPPPPPPPPPPPPPP
α2,3
// . . . // S

β

��
�
�
�

T

commutes.
Let us prove that β : S → T exists and is unique. Since, without loss of generality, one can

write any s ∈ S as s = supαn,∞(sn) with sn ∈ Sn, define β as

β(s) = sup(µn(sn)).

To check β is well-defined, we prove that µn(sn) is an increasing sequence. Let αi,∞(s1) ≤
αj,∞(s2), and choose s � s1 in Si. By assumption (ii) αi,k(s) ≤ αj,k(s2) for some k, so µi(s) =
µk(αi,k(s)) ≤ µk(αj,k(s2)) = µj(s2) for all s� s1. Taking supremum on s, we get µi(s1) ≤ µj(s2).
Now, it is clear that β is well-defined, and further β(αi,∞(y)) = µi(y) for all y ∈ Si.

In order to check that β preserves the order, let s ≤ t in S, and write them as supremum of
rapidly increasing sequences (αn,∞(sn))n, (αn,∞(tn))n. By the compactly containment relation,
for all n there exists m such that αn,∞(sn) � αm,∞(tm). Now, by the above fact, there exists l
such that

µn(sn) = µl(αn,l(sn)) ≤ µl(αm,l(tm)) ≤ β(t),

so µn(sn) ≤ β(t) for all n. Therefore, one has β(s) = sup(µn(sn)) ≤ β(t) what implies that β is
well-defined and preserves the order.
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To check β preserves �, consider s � t in S and write t as a supremum of a rapidly in-
creasing sequence, i.e., t = sup(αn,∞(tn)). Then, there exists n such that s � αn,∞(tn) �
αn+1,∞(tn+1) � t. Let x � tn in Sn such that s ≤ αn,∞(x) � αn+1,∞(tn+1) � t and αn,k(x) �
αn+1,k(tn+1) for some k; therefore,

β(s) ≤ β(αn,∞(x)) = µk(αn,k(x))� µk(αn+1,k(tn+1)) ≤ µ(t),

implying that β preserves�.
Finally, uniqueness is clear from the commutativity of the diagram.

3.2 Sheaves of Semigroups

Here, we define what is meant by a presheaf of semigroups on a topological space and state
some important results. LetX be a compact and metrizable topological space. Denote by VX the
category of all closed subsets ofX with non-empty interior, with morphisms given by inclusion.

Definition 3.2.1. A presheaf over X is a contravariant functor

S : VX → C

where C is a subcategory of the category of sets which is closed under sequential inductive limits. Thus,
it consists of an assignment, for each V ∈ VX , of an object S(V ) in C and a collection of maps (referred to
as restriction homomorphisms) πV ′V : S(V ′) → S(V ) whenever V ⊆ V ′ in VX . We of course require
that these maps satisfy πVV = idV and πUW = πVWπ

U
V if W ⊆ V ⊆ U .

Let V, V ′ ∈ VX be such that V ∩ V ′ ∈ VX . A presheaf is called a sheaf if the map

πV ∪V
′

V × πV ∪V ′V ′ : S(V ∪ V ′)→ {(f, g) ∈ S(V )× S(V ′) | πV
V ∩V ′(f) = πV

′

V ∩V (g)}

is bijective.
A presheaf (respectively a sheaf) is continuous if for any decreasing sequence of closed subsets (Vi)

∞
i=1

whose intersection ∩∞i=1Vi = V belongs to VX , the limit lim−→S(Vi) is isomorphic to S(V ).

If F and G are presheaves over X , then a morphism (of presheaves)

α : F → G

is a collection of maps
αU : F(U)→ G(U)

for each U ∈ VX such that the following diagram commutes:

F(U) //

πUV
��

G(U)

πUV
��

F(V ) // G(V )
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for V ⊂ U ⊂ X . A presheaf F is said to be a subpresheaf of G if the maps αU above are inclusions.
Consider a presheaf S over X . For any x ∈ X , define the fiber of S at x as

Sx := lim
x∈V̊
S(V ) ,

with respect to the restriction maps.
We shall be exclusively concerned with continuous presheaves (or sheaves) S with target

values in the category Sg of semigroups, in which case we will say that S is a (pre)sheaf of
semigroups. As a general notation, we will use S to denote the semigroup S(X). We will also
denote πx : S → Sx the natural map from S to the fiber Sx, as well as πV : S → S(V ) rather than
πXV .

Note that a sheaf S on a space X is a carrier of localized information about the space X . To
obtain general information about X from S, we have to look for another model of a sheaf.

Definition 3.2.2. (i) An étalé space over a topological space X is a topological space Y together with
a continuous surjective mapping r : Y → X such that r is a local homeomorphism. We will often
denote an étalé space as the pair (Y, r)

(ii) A section of an étalé space Y r−→ X over a closed set V ⊂ X is a continuous map f : V → Y such
that r ◦ f = 1V . The set of continuous sections over V is denoted by Γ(V, Y ).

By the above definition, it is clear that the sections of an étalé space form a subsheaf of
C(X, Y ), the continuous functions from X to Y . Our next step is to associate, to any presheaf S
over X , an étalé space (FS, r) such that, if S is a sheaf, the sheaf of sections of FS gives another
model for S.

Let
FS =

⊔
x∈X

Sx

and r : FS → X be the natural projection taking elements in Sx to x. Since we want to make
(FS, r) into an étalé space, all that remains to do is to give FS a topology.

For each s ∈ S(V ), define the set function ŝ : V → FS by letting ŝ(x) = sx for each x ∈ V .
Note that r ◦ ŝ = 1V . Let {ŝ(U)}, where U is open in V and s ∈ S(V ), be a basis for the topology
of FS . Then all the functions ŝ are continuous.

With the above techniques we have associated an étalé space to each presheaf S over X . We
remark that as inductive limits in the category Sg are algebraic limits, the étalé space FS inherits
these properties when we compute the fibers of the sheaf. When inductive limits in Sg are given
by the algebraic limit, we will say that S is an algebraic sheaf.

Suppose that S is a presheaf of semigroups. For a closed set V ⊂ X , the set of continuous
sections of FS over V is denoted by Γ(V, FS(V )), and it is a semigroup under pointwise addition.
Note that, by the last construction, we have associated a presheaf Γ( , FS( )) to any presheaf S.

Looking more closely at the relation between both presheaves, consider

τ : S → Γ( , FS( )),

given by τV : S(V )→ Γ(V, FS(V )), where τV(s) = ŝ.
In the case that S is an algebraic sheaf, we have the following result (see section 2 of [Wel73]

for further details).
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Theorem 3.2.3. ([Wel73, Theorem 2.2]) Let S be an algebraic sheaf over X . Then,

τ : S → Γ( , FS( ))

is a sheaf isomorphism.

Proof. It suffices to show that τV is bijective for all V ∈ VX .

(i) (τV is injective) : Let s′, s′′ ∈ S(V ) such that τV(s′) = τV(s′′). Then

ŝ′(x) = ŝ′′(x) for all x ∈ V ;

i.e., πVx (s′) = πVx (s′′) for all x ∈ V . But when πVx (s′) = πVx (s′′) for x ∈ V , the definition of the
algebraic inductive limit implies that there exists a closed neighborhood W of x such that
πVW (s′) = πVW (s′′). Since this is true for all x ∈ V , and V is compact, we can cover V with
open sets W̊i such that

πVWi
(s′) = πVWi

(s′′) for all i.

Because S is a sheaf, we have s′ = s′′.

(ii) (τV is surjective) : Suppose σ ∈ Γ(X,FS). Then for x ∈ V there is a closed neighborhood
W of x and s ∈ S(W ) such that σ(x) = sx = τW (s)(x). Since sections of an étalé space are
local inverses for r, any two sections which agree at a point agree in some neighborhood
of that point. Hence we have a closed neighborhood W ′ of x such that

σ|W ′ = τW (s)|W ′ = τW ′(π
W
W ′(s)).

Since this is true for any x ∈ V , we can cover V with neighborhoods W̊i such that there
exists si ∈ S(Wi) and τWi

(si) = σ|Wi . Moreover, we have τWi
(si) = τWj

(sj) on Wi ∩ Wj ,
so πWi

Wi∩Wj
(si) = π

Wj

Wi∩Wj
(sj) by part (i). Because S is a sheaf and V =

⋃
iWi, there exists

s ∈ S(V ) such that πVWi
(s) = si. Thus, τV(s)|Wi

= τWi
(πVWi

(s)) = τWi
(si) = σ|Wi

, and finally
τV(s) = σ.

3.3 Cuntz semigroup and Pullbacks

We study in this section the behaviour of the Cuntz functor Cu( ) on pullbacks of C*-algebras.
This is used to define the sheaf induced by the Cuntz semigroup in the next section and to
compute the Cuntz semigroup for some class of trivial C(X)-algebras, where dim(X) ≤ 1. As
a blanket assumption, we shall assume that X is always compact and metrizable. The main
results of this section except for Theorem 3.3.6 come from [APS11].

Recall that if A,B and C are C*-algebras and π : A → C and φ : B → C are *-homomor-
phisms, we can form the pullback

B ⊕C A = {(b, a) ∈ B ⊕ A | φ(b) = π(a)}.
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By applying the Cuntz functor to the *-homomorphisms π and φ we obtain Cuntz semigroup
morphisms (in the category Cu)

Cu(π) : Cu(A)→ Cu(C), and Cu(φ) : Cu(B)→ Cu(C).

Let us consider the pullback (in the category of ordered semigroups)

Cu(B)⊕Cu(C) Cu(A) = {(〈b〉, 〈a〉) ∈ Cu(B)⊕ Cu(A) | Cu(φ)〈b〉 = Cu(π)〈a〉}.

Then, we have a natural order-preserving map

β : Cu(B ⊕C A)→ Cu(B)⊕Cu(C) Cu(A),

defined by β(〈(b, a)〉) = (〈b〉, 〈a〉). Note that the map β preserves suprema. This follows from
the fact that any *-homomorphism between C*-algebras induces a morphism in Cu (see Lemma
2.1.3 [San08]) and that the order is defined in each component. Hence, if 〈(b, a)〉 = sup(〈bn, an〉)
in Cu(B ⊕C A), one obtains 〈b〉 = sup(〈bn〉) because Cu(πB) : Cu(B ⊕C A) → Cu(B) pre-
serves suprema, and likewise for 〈a〉. Therefore, β(〈(b, a)〉) = (〈b〉, 〈a〉) = (sup(〈bn〉, 〈an〉)) =
sup(β(〈bn, an〉)).

Definition 3.3.1. Let A be a C*-algebra. We say thatA has no K1 obstructions provided that the stable
rank of A is one and K1(I) = 0 for any closed ideal I of A.

The next result states the equivalence of the property of no K1 obstructions under different
hypotheses on A.

Lemma 3.3.2. Let A be a C*-algebra.

(i) A has no K1 obstructions if and only if sr(A) = 1 and K1(B) = 0 for every hereditary subalgebra
B of A.

(ii) ([Lin95]) If RR(A) = 0, A has no K1 obstructions if and only if sr(A) = 1 and K1(A) = 0.

Proof. If A has no K1 obstructions and B is a hereditary subalgebra of A, then B⊗K ∼= ABA⊗K
by [Bro77, Theorem 2.8]. So K1(B) ∼= K1(ABA) = 0. The case (ii) was proved in [Lin95, Lemma
2.4].

The class just defined was already considered, although not quite with this terminology, in
[APS11]. The following results were proved in the same article, and they help us to understand
the behaviour of pullbacks in the category Cu. We just provide a sketch of their main proofs for
completeness.

Recall that, if S and R are partially ordered semigroups, we say that a morphism f : S → R
is an order-embedding if f(x) ≤ f(y) implies x ≤ y for x, y ∈ S.

Theorem 3.3.3. ([APS11, Theorem 3.1]) Let A, B and C be C*-algebras such that C is separable and
it does not have K1 obstructions. Let φ : B → C and π : A → C be *-homomorphisms such that π is
surjective. Then the map

β : Cu(B ⊕C A)→ Cu(B)⊕Cu(C) Cu(A),

given by β(〈(b, a)〉) = (〈b〉, 〈a〉) is an order-embedding.
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Proof. (Sketch) By [Ped99, Theorem 3.9] applied to Y = K we may assume that A,B and C are
stable. Let (b1, a1) and (b2, a2) be positive contractions of B ⊕C A such that a1 - a2 and b1 - b2,
and let ε > 0. Then, by definition there are x ∈ A and y ∈ B such that

‖a1 − x∗x‖ < ε xx∗ ∈ Her(a2) and ‖b1 − y∗y‖ < ε yy∗ ∈ Her(b2).

Since π(a1) = φ(b1) and π(a2) = φ(b2), these equations imply that

‖π(a1)− π(x)∗π(x)‖ < ε ‖π(a1)− φ(y)∗φ(y)‖ < ε π(x)π(x)∗, φ(y)φ(y)∗ ∈ Her(π(a2)).

By [APS11, Lemma 1.4], which allows to approximate x, y under the above hyphoteses, there
exists a unitary u ∈ Her(π(a2))∼ such that ‖uπ(x) − φ(y)‖ < 9ε. It follows from [Bro77, The-
orem 2.8] that Her(a2) is stably isomorphic to an ideal of C. Now, by [Rie83, Theorem 2.10],
U(Her(π(a2))∼) = U0(Her(π(a2))∼) since sr(A) = 1. By the surjectivity of π there exists a unitary
v ∈ Her(a2)∼ such that π̃(v) = u, where π̃ : Ã → C̃ is the natural extension of π. In addition,
there exists y′ ∈ Her(a2) such that π(y′) = φ(y).
Hence, we have ‖π(vx − y′)‖ = ‖uπ(x) − φ(y)‖ < 9ε. Since vx − y′ ∈ a2A there exists z′ ∈
a2A ∩Ker(π) such that ‖vx− y′ − z′‖ < 9ε.

Set y′ + z′ = z. Then, π(z) = π(y′) = φ(y), zz∗ ∈ Her(a2), ‖vx− z‖ < 9ε. It also follows that

‖a1 − z∗z‖ < 118ε.

Since π(z) = φ(y), the element (y, z) belongs to B ⊕C A, and ‖(b1, a1) − (y, z)∗(y, z)‖ < 118ε by
the above estimate. We also have

(y, z)(y, z)∗ = lim
n→∞

(b2, a2)
1
n (y, z)(y, z)∗(b2, a2)

1
n ∈ Her((b2, a2)).

By Theorem 1.3.14 we have ((b1, a1)− 118ε)+ - (b2, a2); therefore,

〈(b1, a1)〉 = sup
ε>0
〈((b1, a1)− 118ε)+〉 ≤ 〈(b2, a2)〉.

When working with C(X)-algebras, it useful to note that if A is a C(X)-algebra, then this is
also the case for A⊗K. In fact, for any closed set Y of X , there is a ∗-isomorphism

ϕY : (A⊗K)(Y )→ A(Y )⊗K

such that ϕY ◦ π′Y = πY ⊗ 1K, where πY : A → A(Y ) and π′Y : A ⊗ K → (A ⊗ K)(Y ). This yields,
in particular, that (A ⊗ K)(x) ∼= Ax ⊗ K for any x ∈ X , with (a ⊗ k)(x) 7→ a(x) ⊗ k (see [APS11,
Lemma 1.5]).

Using this observation, the map induced at the level of Cuntz semigroups Cu(A) → Cu(Ax)
can be viewed as 〈a〉 7→ 〈πx(a)〉. Similarly, if Y is closed in X , the map πY induces Cu(A) →
Cu(A(Y )), that can be thought of as 〈a〉 7→ 〈πY (a)〉. Thus, when computing the Cuntz semigroup
of a C(X)-algebra A, we will assume that A, Ax and A(Y ) are stable.
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Theorem 3.3.4. ([APS11, Theorem 3.2]) Let X be a one-dimensional compact Hausdorff space and let
Y be a closed subset of X . Let A be a C(X)-algebra and let πY : A→ A(Y ) be the quotient map. Let B be
a C*-algebra and let φ : B → A(Y ) be a *-homomorphism. Suppose that, for every x ∈ X , the C*-algebra
Ax is separable, and it has no K1 obstructions. Then, the map

β : Cu(B ⊕A(Y ) A)→ Cu(B)⊕Cu(A(Y )) Cu(A),

is an order-embedding.

Theorem 3.3.5. ([APS11, Theorem 3.3]) Let X be a compact Hausdorff space and let Y be a closed
subset of X . Let A be a C(X)-algebra, and let B be any C*-algebra. Suppose that the map

α : Cu(A)→
∏
x∈X

Cu(Ax)

given by α(〈a〉)(x) = 〈a(x)〉 is an order-embbeding. Then

(i) the map
β : Cu(B ⊕A(Y ) A)→ Cu(B)⊕Cu(A(Y )) Cu(A),

is surjective.

(ii) The pullback semigroup Cu(B)⊕Cu(A(Y )) Cu(A) is in the category Cu.

Proof. (Sketch) As in the proof of Theorem 3.3.3 we may assume that A,A(Y ) and B are stable.
Let a ∈ A and b ∈ B be positive elements such that πY (a) ∼ φ(b). Choose c ∈ A+ such that
πY (c) = φ(b), so that πY (a) ∼ πY (c).

Let ε > 0. By the definition of Cuntz equivalence, Proposition 1.3.17 and the surjectivity of
πY , there exists d ∈ A and 0 < δ < ε such that

‖πY (a− ε)+ − πY (d)∗πY (c− δ)+πY (d)‖ < ε.

We remark that the above inequality also holds in the fiber algebras Ax with x ∈ Y .
By upper semicontinuity of the norm and the normality of X since it is compact, there exists

an open neighborhood U of Y such that

‖(a− ε)+(x)− d(x)∗(c− δ)+(x)d(x)‖ < ε

holds for all x ∈ U . So ‖πU((a − ε)+ − d∗(c − δ)+d)‖ < ε. By Theorem 1.3.14 and since πU is
surjective, there exists f ∈ A such that πU((a− 2ε)+) = πU(f ∗(c− δ)+f). This implies that

πU((a− 2ε)+) - πU((c− δ)+) and πU((a− 3ε)+) = πU((f ∗(c− δ)+f − ε)+).

It follows by Proposition 1.3.17 that there exists a unitary u ∈ Ã such that u∗(f ∗(c−δ)+)f−ε)+u ∈
Her((c− δ)+). Let us consider a′ = u∗au. Then, passing to the fibers we have

(a′ − 3ε)+(x) ∈ Her((c− δ)+(x)) and (a′ − 2ε)+(x) - (c− δ)+(x)
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for all x ∈ U .
Now let us use that πY (c) - πY (a) ∼ πY (a′). Arguing as above, it can be checked that

(c− δ)+(x) - (a′ − 3ε′)+(x) for some ε′ < ε, and for all x ∈ U.

Let f1, f2 ∈ C(X) be a partition of unity associated to the open sets U and X \ Y . Consider
the element z = f1(c− δ)+ + f2(a′ − 3ε)+. Then,

z(x)


= (c(x)− δ)+ if x ∈ Y
= (a′(x)− 3ε)+ if x ∈ X \ U
% (c− δ)+(x) or z(x) % (a′ − 3ε)+(x) if x ∈ U
∈ Her((c(x)− δ)+) if x ∈ U.

(3.1)

By the choice of c and the first equation above we have z(x) = (c(x)− δ)+ = (φ(b)− δ)(x) for all
x ∈ Y . Hence, πY (z) = φ((b− δ)+), and so ((b− δ)+, z) is an element of the pullback. By equation
(3.1) we have (a′ − 3ε)+(x) - z(x) - (a′ − 3ε′)+(x) for all x ∈ X . Since α is order-embedding,
this yields

(a′ − 3ε)+ - z - (a′ − 3ε′)+.

Therefore, it is possible to choose δn < εn decreasing to zero and elements zn ∈ A+ such that
((b − δn)+, zn) ∈ B ⊕A(Y ) A, ((b − δn)+, zn) - ((b − δn+1)+, zn+1) for all n, supn〈(b − δn)+〉 = 〈b〉,
and supn〈zn〉 = 〈a′〉 = 〈a〉. Moreover, (〈(b− δn)+〉, 〈zn〉) is rapidly increasing by construction and

sup
n

((〈(b− δn)+〉, 〈zn〉)) = (〈b〉, 〈a〉).

It also follows that

β(sup
n

((〈(b− δn)+〉, 〈zn〉))) = sup
n

(β((〈(b− δn)+〉, 〈zn〉))) = sup
n

((〈(b− δn)+〉, 〈zn〉)) = (〈b〉, 〈a〉),

which proves that β is surjective.
Conclusion (ii) follows from (i) and the fact that Cu(πY ) and Cu(φ) are morphisms in the

category Cu.

The result below provides a situation where the hipotheses of Theorem 3.3.5 are satisfied.
Therefore, it shows that under mild assumptions the Cuntz functor and the pullback of C*-
algebras are well-behaved. This is explicitely stated in Corollary 3.3.7.

Theorem 3.3.6. Let X be a one-dimensional compact Hausdorff space and A be a C(X)-algebra such
that its fibers have no K1 obstructions. Then, the map

α : Cu(A)→
∏
x∈X

Cu(Ax),

given by α〈a〉 = (〈a(x)〉)x∈X is an order-embedding.
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Proof. By our assumptions on A and its fibers, we may assume that A is stable.
Let 0 < ε < 1 be fixed, and let us suppose that a, b ∈ A are positive contractions such that

a(x) - b(x) for all x ∈ X . Then, by the definition of the Cuntz order, since Ax is a quotient of A
for each x ∈ X , there exists dx ∈ A such that

‖a(x)− dx(x)b(x)d∗x(x)‖ < ε.

By upper semicontinuity of the norm, the above inequality also holds in a neighborhood of
x. Hence, since X is a compact set, there exists a finite cover of X , say {Ui}ni=1, and elements
(di)

n
i=1 ∈ A such that ‖a(x) − di(x)b(x)d∗i (x)‖ < ε, for all x ∈ Ui and 1 ≤ i ≤ n. As X is one-

dimensional, we may assume that {Ui} and {Ui} have order at most two (this is not restrictive,
see [Pea75, Lemma 8.1.1]).

Choose, by Urysohn’s Lemma, functions λi that are 1 in the closed sets Ui \ (
⋃
j 6=i Uj) and 0 in

U c
i . Using these functions we define d(x) =

∑n
i=1 λi(x)di(x). Set V = X \ (

⋃
i 6=j(Ui ∩ Uj)) which

is a closed set, and it is easy to check that d satisfies

‖a(x)− d(x)b(x)d∗(x)‖ < ε (3.2)

for all x ∈ V .
Again, choose for i < j functions αi,j such that αi,j is one on Ui ∩ Uj and zero on Uk ∩ Ul

whenever {k, l} 6= {i, j}. We define c(x) =
∑

i<j αi,j(x)di(x), put U =
⋃
i 6=j(Ui ∩ Uj) = V c and

notice that c satisfies
‖a(x)− c(x)b(x)c∗(x)‖ < ε (3.3)

for all x ∈ U .
Now, by Theorem 1.3.14, equations (3.2) and (3.3), and taking into account that the norm of

an element is computed fiberwise (Lemma 1.1.21), we have that

πV((a− ε)+) - πV(b) and πU((a− ε)+) - πU(b) .

Therefore
(〈πV(a− ε)+)〉, 〈πU(a− ε)+)〉) ≤ (〈πV(b)〉, 〈πU(b)〉)

in the pullback semigroup Cu(A(V )) ⊕Cu(A(U∩V ) Cu(A(U)). Since A can also be written as the
pullback A = A(V ) ⊕A(U∩V ) A(U) along the natural restriction maps (see [Dad09a, Lemma 2.4],
and also [Dix77, Proposition 10.1.13]), we can apply Theorem 3.3.4, to conclude that (a−ε)+ - b.
Thus a - b, and the result follows.

Corollary 3.3.7. Let X be a one-dimensional compact Hausdorff space and let Y be a closed subset of X .
Let A be a C(X)-algebra such that its fibers have no K1 obstructions, and let B be any C*-algebra. Then
Cu(B)⊕Cu(A(Y )) Cu(A) belongs to the category Cu and it is isomorphic to Cu(B ⊕A(Y ) A)

Proof. Combine Theorems 3.3.4, 3.3.5 and 3.3.6.

The above fact will be a basic tool in the next section, where we will define the sheaf given
by the Cuntz semigroup on a C(X)-algebra. In the particular case of trivial C(X)-algebras, i.e.
of the form C(X,A) for a C*-algebra A, the image of the map α in Theorem 3.3.6 can be viewed
as functions from X to Cu(A) that are lower semicontinuous in a certain topology.

Given a semigroup S ∈ Cu and a ∈ S the set a� = {b ∈ S | b � a} defines a basis of the
so-called Scott topology on S ([GHK+03]).
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Definition 3.3.8. Let X be a topological space, S a semigroup in Cu, and f : X → S a function. We say
that f is lower semicontinous if, for all a ∈ S, the set f−1(a�) = {t ∈ X | a� f(t)} is open in X . We
shall denote the set of all lower semicontinous functions from X to S by Lsc(X,S). If we equip S with
the Scott topology, lower semicontinuous functions are the Scott continuous functions.

Note that Lsc(X,S) is a partially ordered semigroup when we equip it with the pointwise
order and addition.

Proposition 3.3.9. ([Tik11, Proposition 3.1]) Let A be a C*-algebra, X a compact Hausdorff space and
f ∈ C(X,A). Then, for any b ∈ A, the set {x ∈ X | 〈b〉 � 〈f(x)〉} is open.

Proof. Let x ∈ X be such that 〈b〉 � 〈f(x)〉. Then, for some ε > 0 we have 〈b〉 � 〈(f(x) − ε)+〉.
Let U be a neighborhood of x such that any y ∈ U satisfies ‖f(y)−f(x)‖ < ε. Hence, by Theorem
1.3.14, we have that 〈(f(x) − ε)+〉 ≤ 〈f(y)〉 for all y ∈ U . Thus, U is an open neighborhood of x
contained in {x ∈ X | 〈b〉 � 〈f(x)〉}.

In order to compute the Cuntz Semigroup of some trivial C(X)-algebras, it was shown in
Section 5 of [APS11], that for any compact Hausdorff space X with finite covering dimension
and for any countably based semigroup S in Cu, the set Lsc(X,S) belongs to the category Cu.
We say that S is countably based if there is a countable subset N in S such that every element of S
is the supremum of a rapidly increasing sequence of elements coming from N . If S is countably
based, then S satisfies the second axiom of countability as a topological space equipped with
the Scott topology (see, e.g. [GHK+03, Theorem III-4.5]).

Lemma 3.3.10. ([APS11, Lemma 1.3]) If A is a separable C*-algebra, then Cu(A) is countably based.

Proof. (Sketch) Let F be a countable dense subset of A+, and consider the set

N = {〈(a− 1/n)+〉 | a ∈ F , n ∈ N}.

Now the result follows by the separability of A and the fact that Cu(A) is a semigroup in Cu.

We give a brief explanation of the main facts of [APS11, Section 5] without proving them
since the details are similar to the ones in the next section.

In [APS11] the set of so-called piecewise characteristic functions in Lsc(X,S) is defined. This
is used to show that any f ∈ Lsc(X,S) can be written as a supremum of a rapidly increasing se-
quence of piecewise characteristic functions. Although this set of functions can be defined over
any finite dimensional space X , we just state below the definition of the piecewise characteristic
functions over [0, 1] in order to clarify how they are built.

Definition 3.3.11. Let S be a semigroup in Cu. Given the following data

(i) A partition 0 = t0 < t1 < . . . < tn−1 < tn = 1 of [0, 1] with n = 2r + 1 for some r ≥ 1,

(ii) elements x0, . . . , xn−1 in S, with x2i, x2i+2 ≤ x2i+1 for 0 ≤ i ≤ r − 1,
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a piecewise characteristic function is a map g : [0, 1]→ S such that

g(s) =

{
x2i if s ∈ [t2i, t2i+1]
x2i+1 if s ∈ (t2i+1, t2i+2).

If moreover g � f for some f ∈ Lsc([0, 1], S), we then say that g is a piecewise characteristic function
for f . We denote the set of all such functions by χ(f).

Theorem 3.3.12. ([APS11, Theorem 5.15]) Let X be a compact metric finite dimensional topological
space, and let S be an object in Cu. If S is countably based, then Lsc(X,S) (with the pointwise order and
addition) is also a semigroup in Cu.

As a consequence of the above result (among others), in [APS11] the computation of the
Cuntz semigroup for some trivial C(X)-algebras is carried out. This result is generalized in
Theorem 3.4.19

Theorem 3.3.13. ([APS11, Theorem 3.4]) LetX be a one-dimensional compact metric space. Let A be a
separable C*-algebra with no K1 obstructions. Then, the map α : Cu(C(X,A))→ Lsc(X,Cu(A)) given
by α(〈a〉) = 〈a(x)〉, for all a ∈ C(X,A) and x ∈ X , is an isomorphism in the category Cu.

3.4 Sheaves of Cu and continuous sections

In this section, following the lines of research started in [APS11], we study the sheaf defined by
the Cuntz semigroup. We use this description in order to compute the Cuntz semigroup of some
C(X)-algebras and generalize Theorem 3.3.13 to some non-trivial C(X)-algebras. Moreover, we
prove a version of Theorem 3.2.3 for non-algebraic sheaves.

Let X be a compact metric space, and let A be a C(X)-algebra. Recall that VX is the category
of all closed subsets of X with non-empty interior. The assignments

CuA : VX → Cu
U 7→ Cu(A(U))

and VA : VX → Sg
U 7→ V(A(U))

define continuous presheaves of semigroups. If U ⊆ V in VX , the restriction maps πUV : A(U) →
A(V ) and the limit maps πx : A → Ax define, by functoriality, semigroup maps Cu(πUV ) and
Cu(πx) in the case of the Cuntz semigroup, and likewise in the case for the semigroup of projec-
tions. For ease of notation, and unless confusion may arise, we shall still denote these maps by
πUV and πx.

We will say that a (pre)sheaf is surjective provided all the restriction maps are surjective. This
is clearly the case for the presheaf CuA for a general C(X)-algebraA, and also forVA ifA has real
rank zero (which is a rather restrictive hypothesis since, as proved in [Pas05] and [Pas06], if A is
a continuous field over X with real rank zero and Ax 6= 0 for all x ∈ X , then dim(X) = 0). As
we shall see in Theorem 3.5.11, still CuA and VA determine each other under mild assumptions.

Most of the discussion in this section will consider surjective (pre)sheaves of semigroups
S : VX → Cu, and we will need to develop a somewhat abstract approach on how to recover the
information of the sheaf from the sheaf of sections of a bundle FS → X . As seen in Theorem
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3.2.3, this is classically done by endowing FS with a topological structure that glues together
the fibers (which are computed as inductive limits in the category of sets). One of the main
difficulties here resides in the fact that the inductive limit in Cu is not the algebraic limit, even
in the case of the fiber of a surjective presheaf. We illustrate this situation below with an easy
example.

Example 3.4.1. Let A = C([0, 1],Mn(C)), where n ≥ 2. By [Rob13, Theorem 1.1] (see also Theo-
rem 3.3.13) it follows that Cu(A) ∼= Lsc([0, 1],N), where N = N ∪ {∞}.

Now, let {Um = [1
2
− 1

m
, 1

2
+ 1

m
]}m≥2, which is a sequence of decreasing closed subsets of [0, 1]

whose intersection is {1/2}. Since the functor Cu( ) preserves limits, it follows that

lim−→Lsc(Un,N) = lim−→Cu(A(Un)) = Cu(lim−→A(Un)) = Cu(A(1/2)) = N.

However, the computation of the direct limit above in the category of semigroups yields
{(a, b, c) ∈ N3 | b ≤ a, c}. Indeed, this follows from the definition of lower semicontinuous
functions since, by definition, the value at any point is always smaller than the values of the
points it has at each side.

As defined before, if S : VX → Cu is a sheaf, we set FS := tx∈XSx, where Sx = lim−→x∈V̊ S(V ),
and we define π : FS → X by π(s) = x if s ∈ Sx. We call a function f : X → FS such that
f(x) ∈ Sx a section of FS . We equip the set of sections with pointwise addition and order, so this
set becomes an ordered semigroup. Notice also that the set of sections is closed under pointwise
suprema of increasing sequences. Also, any element s ∈ S induces a section ŝ, which is defined
by ŝ(x) = πx(s) ∈ Sx and will be referred to as the section induced by s.

Lemma 3.4.2. Let S : VX → Cu be a presheaf on X , and let s, r ∈ S.

(i) If ŝ(x) ≤ r̂(x) for some x ∈ X then, for each s′ � s in S there is a closed set V with x ∈ V̊ such
that πV (s′) ≤ πV(r). In particular, ŝ′(y) ≤ r̂(y) for all y ∈ V .

(ii) If, further, S is a sheaf, U is a closed subset of X , and ŝ(x) ≤ r̂(x) for all x ∈ U , then for each
s′ � s there is a closed set W of X with U ⊂ W̊ and πW (s′) ≤ πW (r).

Proof. (i): Recall that Sx = lim−→S(Vn), where (Vn) is a decreasing sequence of closed sets whose
intersection is x (we may take V1 = X , and x ∈ V̊n for all n). Then, by the properties of the
inductive limits in Cu described in Proposition 3.1.2, two elements s, r satisfy ŝ(x) = πx(s) ≤
πx(r) = r̂(x) in Sx if and only if for all s′ � s there exists j ≥ 1 such that πVj(s

′) ≤ πVj(r). In
particular ŝ′(y) ≤ r̂(y) for all y in Vj .

(ii): Assume now that S is a sheaf, and take s′ � s. Apply (i) to each x ∈ U , so that we can
find Ux with x ∈ Ůx such that πUx(s′) ≤ πUx(r). By compactness of U , there are a finite number
Ux1 , . . . , Uxn whose interiors cover U . Put W = ∪iUxi . As S is a sheaf and πUxi (s

′) ≤ πUxi (r) for
all i, it follows that πW (s′) ≤ πW (r).

We will use Lemma 3.4.2 to define a topology in FS for which the induced sections will
be continuous. Instead of abstractly considering the final topology generated by the induced
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sections, we define a particular topology which will satisfy our needs. Given U an open set in
X and s ∈ S, put

U�s = {ax ∈ FS | ŝ′(x)� ax for some x ∈ U and some s� s′} ,

and equip FS with the topology whose sub-basis consists of these sets (i.e. the union and finite
intersection of sets of the form U�s are open for all U ⊂ X open set and s ∈ S).

Now consider an induced section ŝ for some s ∈ S, and an open set of the form U�r for some
r ∈ S and U ⊆ X . Suppose x ∈ ŝ−1(U�r ). Note that x ∈ U and that ŝ(x) � ŝ′(x) for some
s′ � r. Using that s′ = sup(s′n) for a rapidly increasing sequence (s′n), there exists n0 such that
r � s′n0

� s′. Hence, by Lemma 3.4.2, there is a closed set V such that x ∈ V̊ and ŝ′n0
(y) � ŝ(y)

for all y in V . Thus, x ∈ U ∩ V̊ ⊆ ŝ−1(U�r ), proving that ŝ−1(U�r ) is open in X , from which it
easily follows that ŝ is continuous with this topology.

Remark 3.4.3. Notice that if S is a surjective presheaf, then any element a ∈ Sx can be written as
a = sup(ŝn(x)), where sn is a rapidly increasing sequence in S. This is possible because the map
S → Sx is surjective, i.e., a = πx(s) for some s ∈ S, and s = sup sn for such a sequence.

The following result gives another characterization of continuity that will prove useful in the
sequel.

Proposition 3.4.4. Let X be a compact Hausdorff space and S be a continuous surjective presheaf on
Cu. Then, for a section f : X → FS , the following conditions are equivalent:

(i) f is continuous.

(ii) For all x ∈ X and ax ∈ Sx such that ax � f(x), there exist a closed set V with x ∈ V̊ and s ∈ S
such that ŝ(x)� ax and ŝ(y)� f(y) for all y ∈ V .

Proof. Let f : X → FS be a section satisfying (ii) and consider an open set of the form U�r for
some open set U ⊆ X and r ∈ S. Then

f−1(U�r ) = {y ∈ X | f(y)� r̂′(y) for some y ∈ U and for some r′ � r}
= {y ∈ U | f(y)� r̂′(y) for some r′ � r}.

For each y in the above set there exists r′ � r such that r̂′(y) � f(y). Using property (ii)
there exists s ∈ S such that r̂′(y) � ŝ(y) � f(y) and ŝ(x) � f(x) for all x ∈ V̊ where V is a
closed set of X . Furthermore, we can find r′′ ∈ S such that r � r′′ � r′, and use Lemma 3.4.2 to
conclude that r̂′′(z) � ŝ(z) � f(z) for all z in an open set W ⊆ X . This proves that f−1(U�r ) is
open, so f is continuous.

Now, assume that f : X → FS is continuous, x ∈ X and ax � f(x). Using Remark 3.4.3, we
can write f(x) = sup(ŝn(x)) where (sn) is a rapidly increasing sequence in S. Hence, we can find
s� s′ ∈ S such that

ax � ŝ(x)� ŝ′(x)� f(x),

where s, s′ ∈ S.
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Let U be any open neighborhood of x, and consider the open set f−1(U�s ). Note that it
contains x and that for any z ∈ f−1(U�s ), we have f(z) � t̂(z) for some t � s. Thus, for any
closed set V contained in f−1(U�s ) such that x ∈ V̊ , we have f(z) � ŝ(z) for all z ∈ V . So
condition (ii) holds.

Let X be a compact Hausdorff space and let S be a continuous presheaf on Cu. We will
denote the set of continuous sections of the space FS by Γ(X,FS), which is equipped with the
pointwise order and addition. Notice that there is an order-embedding

Γ(X,FS)→
∏
x∈X

Sx

given by f 7→ (f(x))x∈X .

Remark 3.4.5. By Theorem 3.3.6 it is clear that the map

α : Cu(A)→ Γ(X,FCu(A))

〈a〉 7→ (〈a(x)〉)x∈X .
defines an order-embedding when A is a C(X)-algebra whose fibers have no K1 obstructions
and X is a one-dimensional compact Hausdorff space.

Corollary 3.4.6. Let X be a one-dimensional compact Hausdorff space, and let A be a C(X)-algebra
whose fibers have no K1 obstructions. Then, CuA : VX → Cu, U 7→ Cu(A(U)), is a surjective continuous
sheaf.

Proof. We know already that CuA is a surjective continuous presheaf. Let U and V ∈ VX be such
that U ∩ V ∈ VX . Let W = U ∪ V . We know then that A(W ) is isomorphic to the pullback
A(U) ⊕A(U∩V ) A(V ). Since A(W ) is a C(W )-algebra whose fibers have no K1 obstructions, we
may use Remark 3.4.5 to conclude that the map Cu(A(W )) →

∏
x∈W Cu(Ax) (given by 〈a〉 7→

(〈a(x)〉)) is an order-embedding. Then Corollary 3.3.7 implies that the natural map Cu(A(W ))→
Cu(A(U))⊕Cu(A(U∩V )) Cu(A(V )) is an isomorphism.

The main result in this section is Theorem 3.4.19 which shows that, under additional as-
sumptions, the map defined either in Theorem 3.3.6 or Remark 3.4.5 is also surjective, i.e., there
exists an isomorphism in the category Cu between Cu(A) and Γ(X,FCu(A)). We next prove some
necessary Lemmas.

Recall that, if s� r ∈ S, then πx(s) = ŝ(x)� r̂(x) = πx(r) for all x. This comes from the fact
that the induced maps belong to the category Cu, and so they preserve the compact containment
relation. We shall use below ∂(U) to denote the boundary of a set U , that is, ∂(U) = U \ Ů .

Lemma 3.4.7. Let S : VX → Cu be a surjective presheaf of semigroups on X .

(i) Let f , g ∈ Γ(X,FS), and V a closed subset of X such that f(y)� g(y) for all y ∈ V . Put

gV,f (x) =

{
g(x) if x /∈ V
f(x) if x ∈ V

Then gV,f ∈ Γ(X,FS).
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(ii) If g ∈ Γ(X,FS) and x ∈ X , there exist a decreasing sequence (Vn) of closed sets (with x ∈ V̊n for
all n) and a rapidly increasing sequence (sn) in S such that g = supn gVn,sn .

Proof. (i): Using the fact that both f and g are continuous, it is enough to check that condition (ii)
in Proposition 3.4.4 is verified for x ∈ ∂(V ). Thus, let ax be such that ax � gV,f (x) = f(x)� g(x).
By continuity of f , there is a closed subset U with x ∈ Ů and s ∈ S such that ax � ŝ(x) and
ŝ(y) � f(y) for all y ∈ U . As s is a supremum of a rapidly increasing sequence, we may find
s′ � s with ax � ŝ′(x).

Next, as g is also continuous, there are t ∈ S and a closed set U ′ with x ∈ Ů ′ such that
f(x) � t̂(x) and t̂(y) � g(y) for all y ∈ U ′. Since ŝ(x) � t̂(x) and s′ � s, we now use Lemma
3.4.2 to find W with ŝ′(y)� t̂(y) for all y ∈ W . Now condition (ii) in Proposition 3.4.4 is verified
using the induced section s′ and the closed set U ∩ U ′ ∩W .

(ii): Write g(x) = supn ŝn(x), where (sn) is a rapidly increasing sequence in S (see Remark
3.4.3).

Since s1 � s2 and g is continuous, condition (ii) of Proposition 3.4.4 applied to ŝ2(x) � g(x)
yields t ∈ S and a closed set U1 whose interior contains x such that ŝ2(x)� t̂(x) and t̂(y)� g(y)

for all y ∈ U1. We now apply Lemma 3.4.2, so that there is another closed set U ′1 (with x ∈ Ů ′1) so
that ŝ1(y) � t̂(y) for any y ∈ U ′1. Let V1 = U1 ∩ U ′1 and, for each y ∈ V1, we have ŝ1(y) � t̂(y) �
g(y). Continue in this way with the rest of the sn’s, and notice that we can choose the sequence
(Vn) in such a way that ∩Vn = {x} since X is metrizable.

Using the previous lemmas we can describe compact containment in Γ(X,FCu(A)).

Proposition 3.4.8. Let S : VX → Cu be a surjective presheaf of semigroups on X . If f, g belong to
Γ(X,FCu(A)), the following statements are equivalent:

(i) f � g.

(ii) For all x ∈ X there exists ax with f(x) � ax � g(x) and such that if s ∈ S satisfies ax � ŝ(x)
and ŝ(y) � g(y) for y in a closed set U whose interior contains x, then there exists a closed set
V ⊆ U with x ∈ V̊ and f(y) ≤ ŝ(y) ≤ g(y) for all y ∈ V .

Proof. (i) =⇒ (ii): Given x ∈ X , use Lemma 3.4.7 to write g = supn gVn,sn , where (sn) is rapidly
increasing in S and (Vn) is a decreasing sequence of closed sets whose interior contain x. Since
f � g, there is n such that

f ≤ gVn,sn ≤ gVn+1,sn+1 ≤ g .

Let ax = gVn+1,sn+1(x) = ŝn+1(x), which clearly satisfies

f(x) ≤ ŝn(x)� ŝn+1(x) = ax � g(x).

Assume now that s ∈ S and U is a closed set with x ∈ Ů such that ax � ŝ(x) and ŝ(y) � g(y)
for all y ∈ U . Since sn � sn+1 and ŝn+1(x) � ŝ(x), there is by Lemma 3.4.2 a closed set V
with x ∈ V̊ (and we may assume V ⊂ Vn+1 ∩ U ) such that ŝn(y) ≤ ŝ(y) for all y ∈ V . Thus
f(y) ≤ ŝn(y) ≤ ŝ(y) ≤ g(y) for all y ∈ V .

(ii) =⇒ (i): Suppose now that g ≤ sup(gn), where (gn) is an increasing sequence in Γ(X,FS).
Let x ∈ X , and write g = sup gVn,sn as in Lemma 3.4.7, where (sn) is a rapidly increasing sequence
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in S. Our assumption provides us first with ax such that f(x) � ax � g(x). In particular, there
is m such that ax � ŝm(x)� ŝm+1(x)� ŝm+2(x)� g(x), and hence there exists k depending on
x with ŝm+1(x)� gk(x).

As gk is continuous, condition (ii) in Proposition 3.4.4 implies that we may find s ∈ S and
a closed set U with x ∈ Ů such that ŝm+1(x) � ŝ(x) and ŝ(y) � gk(y) for all y ∈ U . Now, as
sm � sm+1, there exists a closed subset V with x ∈ V̊ and ŝm(y) ≤ ŝ(y) for all y ∈ V , whence
ŝm(y) ≤ g(y) for all y ∈ U ∩ V .

Since also ŝm(y) � g(y) for all y ∈ Vm, there is by assumption a closed set W ⊆ Vm ∩ V
(whose interior contains x) such that f(y) ≤ ŝm(y) ≤ gk(y) for all y ∈ W . Now, repeating the
same argument changing x, since X is compact we find a finite cover {Wl}nl=1 of X and indices
k1, . . . , kn such that f(y) ≤ gkl(y) for all y ∈ Wl. Therefore, if K = max{k1, . . . , kn}, one has
f ≤ gK .

Lemma 3.4.9. Let S : VX → Cu be a surjective presheaf of semigroups. Then, the morphism

α : S → Γ(X,FS)
s 7→ ŝ

preserves compact containment and suprema.

Proof. Using condition (ii) of Proposition 3.4.4, it follows that if (fn) is an increasing sequence
in Γ(X,FS), then its pointwise supremum is also a continuous section. Indeed, let f be the
pointwise supremum of (fn), and let x ∈ X and ax � f(x). Because f(x) ∈ Sx, it can be written
as a supremum of a rapidly increasing sequence, namely (fn). Therefore, ax � fm ≤ fk(x) for
some m, k. Now, since fk is continuous the claim follows.

Assume now that s � r in S. Write r = sup(rn), where (rn) is a rapidly increasing sequence
in S. We may find m such that

s� rm � rm+1 � r .

Take ax = r̂m+1(x). Suppose that t ∈ S satisfies ax � t̂(x) and t̂(y) � r̂(y) for y in a closed
subset U whose interior contains x. By Lemma 3.4.2, there is a closed set V such that x ∈ V̊ and
r̂m(y) ≤ t̂(y) for y ∈ V . Thus, for any y ∈ V ∩ U , we have ŝ(y) ≤ r̂m(y) ≤ t̂(y) ≤ r̂(y). This
verifies condition (ii) in Proposition 3.4.8, whence ŝ� r̂.

Corollary 3.4.10. Let S : VX → Cu be a surjective sheaf of semigroups on X , f ∈ Γ(X,FS), s ∈ S, and
let V be a closed subset of X . If ŝ(x) ≤ f(x) for all x ∈ V and s′ � s, then there is a closed subset W of
X with V ⊂ W̊ such that πW (s′)� f|W .

Proof. Let s′ � t′ � t � s in S. For each x ∈ V , there is by Proposition 3.4.4 a closed set Ux
whose interior contains x, and rx ∈ S such that t̂(x) � r̂x(x), and r̂x(y) ≤ f(y) for all y ∈ Ux.
Now apply condition (i) of Lemma 3.4.2 to t′ � t to find another closed set Vx such that x ∈ V̊x
and t̂′(y) ≤ r̂x(y) for y ∈ Vx. Letting Wx = Ux ∩ Vx, we have t̂′(y) � f(y) for all y ∈ Wx. Since
V ⊆

⋃
x W̊x, and V is closed, we may find a finite number of Wx’s that cover V , whose union

is the closed set W we are looking for. Since S is a sheaf, it follows that πW (t′) ≤ f|W , and by
Lemma 3.4.9 we see that πW (s′)� πW (t′) ≤ f|W , as desired.
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We now proceed to define a class of continuous sections that will play an important role.
This will be a version, for presheaves on spaces of dimension one, of the notion of piecewise
characteristic function explained in Definition 3.3.11. We show below that, for a surjective sheaf
of semigroups S : VX → Cu on a one-dimensional space X , every element in Γ(X,FS) can be
written as the supremum of a rapidly increasing sequence of piecewise characteristic sections.
From this, we can conclude that Γ(X,FS) is an object in Cu.

Definition 3.4.11. (Piecewise characteristic sections) Let X be a one-dimensional compact Hausdorff
space, and let {Ui}i=1...n be an open cover of X such that the order of {Ui} and {Ūi} is at most two.
Assume also that dim(∂(Ui)) = 0 for all i.

Let S : VX → Cu be a presheaf of semigroups on X , and let s1, . . . , sn and s{i,j} be elements in S such
that, whenever i 6= j,

ŝi(x) ≤ ŝ{i,j}(x) for all x in ∂(Ui ∩ Uj) ∩ Ui .

We define a piecewise characteristic section as

g(x) =

{
ŝi(x) if x ∈ Ui \ (

⋃
j 6=i Uj)

ŝ{i,j}(x) if x ∈ Ui ∩ Uj .

Recall that the requirement that an open cover {Ui}i=1...n of a one-dimensional space X satis-
fies that the order of {Ui} and {Ūi} is at most two is not restrictive (see [Pea75, Lemma 8.1.1]).

Lemma 3.4.12. LetX be a one-dimensional compact Hausdorff space, and let S : VX → Cu be a presheaf
of semigroups on X . Then the piecewise characteristic sections are continuous.

Proof. This is basically a repetition of the arguments in Lemma 3.4.7. Using that ŝi and ŝ{i,j} are
continuous for all i, j, it is enough to check that condition (ii) in Proposition 3.4.4 is verified for
x ∈ ∂(Ui ∩ Uj) ∩ Ui. Thus, let ax � ŝi(x) ≤ ŝ{i,j}(x) for the corresponding i, j. By continuity of
ŝi, there is a closed subset U with x ∈ Ů and s ∈ S such that ax � ŝ(x) and ŝ(y) � ŝi(y) for
all y ∈ U . Because s is a supremum of a rapidly increasing sequence, we may find s′ � s with
ax � ŝ′(x).

Now, as ŝ{i,j} is also continuous, there is t ∈ S and a closed set U ′ with x ∈ U ′ such that
ŝ(x) � t̂(x) and t̂(y) � ŝ{i,j}(y) for all y ∈ Ů ′. Because ŝ(x) � t̂(x) and s′ � s, we may use
Lemma 3.4.2 to find W with ŝ′(y) � t̂(y) for all y ∈ W . Now, condition (ii) of Proposition 3.4.4
is verified using the induced section s′ and the closed set U ∩ U ′ ∩W .

Remark 3.4.13. In the case of zero-dimensional spaces, piecewise characteristic sections are
much easier to define. Given an open cover {Ui}i=1,...,n consisting of pairwise disjoint clopen
sets, a presheaf of semigroups S on Cu and elements s1, . . . , sn ∈ S, a piecewise characteristic
section in this setting is an element g ∈ Γ(X,FS) such that g(x) = ŝi(x), whenever x ∈ Ui.

As in Definition 3.3.11, if f ∈ Γ(X,FS) and g is a piecewise characteristic section such that
g � f , then we say that g is a piecewise characteristic section of f and we will denote the set of
these sections by χ(f).



3.4. Sheaves of Cu and continuous sections 59

Lemma 3.4.14. Let X be a one-dimensional compact metric space, and S : VX → Cu be a surjective
presheaf of semigroups. If f ∈ Γ(X,FS), then

f = sup{g | g ∈ χ(f)} .

Proof. Let x ∈ X . By Lemma 3.4.7, we may write f = sup fVn,sn , where (Vn) is a decreas-
ing sequence of closed sets with x ∈ V̊n and (sn) is rapidly increasing in S. By construction,
fVn,sn(y) = ŝn(y)� f(y) for all y ∈ Vn.

Now define

hn(y) =

{
ŝn(y) if y ∈ V̊n+1

0 otherwise .

Let x ∈ V̊n+1 and consider ax = ŝn+1(x). By definition of hn, condition (ii) of Proposition 3.4.8
clearly holds since sn � sn+1, and so hn � f . In addition, note that each hn is a piecewise
characteristic section for f . Using this fact for all x ∈ X , we conclude that f = sup{g | g ∈
χ(f)}.

Proposition 3.4.15. Let X be a compact metric space with dim(X) ≤ 1, and let S : VX → Cu be a
surjective sheaf of semigroups. Suppose h1, h2, f ∈ Γ(X,FS) satisfy h1, h2 � f . Then, there exists
g ∈ χ(f) such that h1, h2 � g. In particular, χ(f) is an upwards directed set.

Proof. Assume first that X has dimension 0. Writing f as in condition (ii) of Lemma 3.4.7 we can
find, for each x ∈ X , an open set Vx that contains x, and elements s′x � sx � s′′x ∈ S such that

h1(y), h2(y)� ŝ′x(y)� ŝx(y)� ŝ′′x(y)� f(y) for all y ∈ Vx. (3.4)

Using compactness and the fact that X is zero-dimensional, there are x1, . . . , xn ∈ X and (pair-
wise disjoint) clopen sets {Vi}i=1,...,n with Vi ⊆ Vxi and such that X = ∪iVi. Put si = sxi , s

′
i = s′xi

and s′′i = s′′xi . Define, using this cover, a piecewise characteristic section g as g(x) = ŝi(x) if
x ∈ Vi. It now follows from (3.4) that h1, h2 � g � f (the elements s′i, s′′i are used here to obtain
compact containment).

We turn now to the case where X has dimension 1, and start as in the previous paragraph,
with some additional care. Choose, for each x, a δx-ball V ′′x (where δx > 0) centered at x and
elements s′x � sx � s′′x such that condition (3.4) is satisfied (for all y ∈ V ′′x ). Denote by V ′x ⊆ V ′′x
the cover consisting of δx/2-balls. By compactness we obtain a finite cover {V ′x1 , . . . , V

′
xn}. Using

[Pea75, Lemma 8.1.1] together with the fact that X has dimension 1, this cover has a refinement
{Vi}ni=1 such that {Vi} and {V i} have both order at most 2 and such that ∂(Vi) has dimension 0
for each i. As before, set si = sxi , s

′
i = s′xi and s′′i = s′′xi .

Let Y be the closed set ∪i∂(Vi), which also has dimension 0. Put δ = min{δxi/3}. By construc-
tion, there is a δ-neighborhood V δ

i such that V δ
i ⊆ V ′′i . As in the proof of Lemma 3.4.14, we see

that the sections

gi(y) =

{
ŝ′′i (y) if y ∈ V δ

i

0 otherwise

satisfy gi � f . We now restrict to Y and proceed as in the argument of the zero-dimensional case
above. In this way, we obtain piecewise characteristic sections gY , g′Y , g′′Y ∈ Γ(Y, FS), defined by
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some open cover {Wi}mi=1 (of pairwise disjoint clopen sets of Y ) and elements ti � t′i � t′′i ∈ S
in such a way that gY (y) = t̂i(y), g′Y (y) = t̂′i(y) and g′′Y (y) = t̂′′i (y) whenever y ∈ Wi, and such that

πY (gi)� gY � g′Y � g′′Y � πY (f) for all i = 1, . . . , n . (3.5)

Observe that we can choose theWi of arbitrarily small size, thus in particular we may assume
that each one is contained in a δ/6-ball. In this way, whenever W i ∩ V j 6= ∅, we have Wi ⊆ V δ

j .
Therefore, if x ∈ Wi, it follows from (3.5) that

ŝ′′j (x) = gj(x) ≤ gY (x) = t̂i(x) .

By condition (ii) in Lemma 3.4.2, applied to the previous inequality, there is ε > 0 such that
ŝj(x) ≤ t̂i(x) for all x ∈ W ε

i (where W ε
i is an ε-neighborhood of Wi). Since the Wi are pairwise

disjoint clopen sets, we can choose ε such that the sets W ε
i are still pairwise disjoint. Further,

since also t̂′′i (y) ≤ f(y) for y ∈ Wi and t′i � t′′i , we may apply Corollary 3.4.10 to obtain πW ε
i
(t′i)�

πW ε
i
(f) (further decreasing ε if necessary). As for each i, we can find Ui with W

ε/2
i ⊆ Ui ⊆ W ε

i

with zero-dimensional boundary by construction of our cover, after a slight abuse of notation
we shall assume that W ε

i itself has zero-dimensional boundary. Put Y ε = ∪mi=1W
ε
i . Notice now

that, for i, k < l, the closed sets Vi \ (Y ε ∪ ∪j 6=iVj) and (Vk ∩ Vl) \ (Y ε) are also pairwise disjoint,
whence they admit pairwise disjoint ε′-neighborhoods (for a sufficiently small ε′). As before, we
shall also assume that these neighborhoods have zero-dimensional boundaries.

Now consider the cover of X that consists of the sets
W ε
i if i = 1, . . . ,m,

(Vi \ (Y ε ∪ ∪j 6=iVj))ε
′ if i = 1, . . . , n,

(Vk ∩ Vl \ (Y ε))ε
′ if k < l ,

 .

and define a piecewise characteristic section g as follows

g(x) =


t̂i(x) if x ∈ W ε

i

ŝi(x) if x ∈ (Vi \ (Y ε ∪ ∪j 6=iVj))ε
′ \ Y ε

ŝk(x) if x ∈ (Vk ∩ Vl \ (Y ε))ε
′ \ Y ε for k < l .

That h1, h2 ≤ g follows by construction of g. It remains to show that g � f . This also follows
from our construction, using condition (ii) of Proposition 3.4.8. For example, given x ∈ W ε

i , we
have

g(x) = t̂i(x)� t̂′i(x)� f(x) .

If now s ∈ S satisfies that t̂′i(x)� ŝ(x) and ŝ(y)� f(y) for y in a closed set (whose interior con-
tains x) then, since ti � t′i, we may find (again by Lemma 3.4.2) a smaller closed set (contained
in W ε

i and with interior containing x) such that g(y) = t̂i(y) ≤ ŝ(y) ≤ f(y) for y in that set.
If for instance x ∈ (Vk ∩ Vl \ (Y ε))ε

′ \ Y ε for k < l, we have

g(x) = ŝk(x)� ŝ′′k(x)� f(x).

If now s ∈ S satisfies that ŝ′′k(x) � ŝ(x) and ŝ(y) � f(y) for y in a closed set (whose interior
contains x) then, since sk � s′′k, we may find by Lemma 3.4.2 a smaller closed set contained in
(Vk ∩ Vl \ (Y ε))ε

′ \ Y ε such that g(y) ≤ ŝ(y) ≤ f(y) for y in that set.
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We remark that a second countable topological space satisfies the Lindelöf property, i.e, every
open cover has a countable subcover (see e.g. [Rud74]). This will be used below.

Proposition 3.4.16. Let X be one-dimensional compact metric space, and let S : VX → Cu be a surjec-
tive sheaf of semigroups with S countably based. If f ∈ Γ(X,FS), then f is the supremum of a rapidly
increasing sequence of elements from χ(f).

Proof. Let us define a new topology on FS . Let s ∈ S and U an open set in X . Consider the
topology generated by the sets

U�s = {y ∈ FS | ŝ(x)� y for some x ∈ U} .

We claim that, under this topology, FS is second countable. Let {Un} be a basis ofX , and {sn}n∈N
be a dense subset of S. Therefore the collections of sets {(Un)�si }n,i∈N is a countable basis for FS .
Indeed, given an open set U of X and s ∈ S, find sequences (Uni) and (smj) such that U = ∪Uni
and s = sup smj . Then

U�s = ∪(Uni)
�
smj

.

To check this, let y ∈ U�s , and suppose ŝ(x) � y for some x ∈ U . Write s = sup(sn) where (sn)
is a rapidly increasing sequence in S; therefore, there exists sn in the given dense set such that
ŝn(x) ≥ ŝm(x) � y for some m. Since U = ∪Ui, one has x ∈ Ui for some i, so y ∈ (Ui)

�
sn . The

other containment is clear.
Now, for f ∈ Γ(X,FS), put Uf = {ax ∈ FS | ax � f(x) for x ∈ U}. This set is open in the

topology we just have defined. To see this, let ax ∈ Uf , and invoke Proposition 3.4.4 to find an
open set V and s ∈ S such that ax � ŝ(x) and ŝ(y) � f(y) for all y ∈ V . It then follows that
ax ∈ V �s ⊆ Uf .

Using Lemma 3.4.14, we see that Uf = ∪g∈χ(f)Ug. Since FS is second countable, it has the
Lindelöf property, whence we may find a sequence (gn) in χ(f) such that Uf = ∪nUgn . This
sequence may be taken to be increasing by Proposition 3.4.15. Translating this back to Γ(X,FS),
we get f = sup(gn).

Assembling our observations we obtain the following:

Theorem 3.4.17. Let X be a one-dimensional compact metric space, and let S : VX → Cu be a surjective
sheaf of semigroups such that S is countably based. Then, the semigroup Γ(X,FS) of continuous sections
belongs to the category Cu.

The next result shows the existence of an induced section between any two compactly con-
tained piecewise characteristic sections.

Proposition 3.4.18. Let X be a one-dimensional compact metric space and let A be a stable continuous
field over X whose fibers have no K1 obstructions. Let f � g be elements in Γ(X,FCu(A)) such that g is
a piecewise characteristic section. Then there exists an element h ∈ A which satisfies f(x) ≤ 〈πx(h)〉 ≤
g(x) for all x ∈ X .
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Proof. Since g is a piecewise characteristic section, there is a cover {Ui}ni=1 of X such that both
{Ui} and {U i} have order at most 2, and there are elements 〈ai〉, 〈a{i,j}〉 in Cu(A) which are the
values that g takes (according to Definition 3.4.11).

For ε > 0, let gε be the section defined on the same cover as g and that takes values 〈(ai−ε)+〉,
〈a{i,j}〉. As g = supε gε and f � g, we may choose ε > 0 such that f ≤ gε, and in particular

f(x) ≤ πx(〈(ai − ε)+〉)� πx(〈ai〉) for all x in Ui \ (∪j 6=iUj) .

Notice now that the closed sets ∂(Ui ∩ Uj) ∩ Ui and ∂(Uk ∩ Ul) ∩ Ul are pairwise disjoint when-
ever (i, j) 6= (k, l). Indeed, since the cover {U i} has order at most 2, this follows from the fact
that ∂(Ui ∩ Uj) ∩ Ui ⊆ Ui ∩ Uj for all i, j.

Furthermore, by definition of g we have πx(〈ai〉) ≤ πx(〈a{i,j}〉) for all x ∈ ∂(Ui ∩ Uj) ∩ Ui.
Therefore, there exists by Corollary 3.4.10 a neighborhood Wi,j of ∂(Ui ∩ Uj) ∩ Ui for which

πW i,j
(〈ai〉) ≤ πW i,j

(〈a{i,j}〉) .

We may assume without loss of generality that the closures W i,j are pairwise disjoint sets. Since
also ∂(Ui ∩ Uj) ∩ Ui ∩ Uk = ∅ whenever k 6= i, j, we may furthermore assume that Wi,j ∩ Uk = ∅
for k 6= i, j.

By Proposition 1.3.17 there exist unitaries ui,j ∈ U(A(W i,j)
∼) such that

ui,jπW i,j
((ai − ε)+)u∗i,j ∈ Her(πW i,j

(a{i,j})) .

Now, as A and A(W i,j) are stable, the unitary groups of their multiplier algebras are con-
nected in the norm topology (see, e.g. [WO93, Corollary 16.7]). Furthermore, since the natural
map πW i,j

: A → A(W i,j) induces a surjective morphismM(A) →M(A(W i,j)) (by, e.g. [WO93,
Theorem 2.3.9]), we can find, for each unitary ui,j , a unitary lift ũi,j inM(A).

We now have continuous paths of unitaries wi,j : [0, 1]→ U(M(A)) such that wi,j(0) = 1 and
wi,j(1) = ũi,j . Put γ = min{dist(W i,j,W k,l) | (i, j) 6= (k, l)}. Note that γ > 0 as the sets W i,j are
pairwise disjoint. For x ∈ X , define a unitary inM(A) by

wxi,j = wi,j

(
(γ − dist(x,Wi,j))+

γ

)
.

Observe that, if x ∈ Wk,l, then wxi,j = ũi,j if (k, l) = (i, j) and equals 1 otherwise. Now put

wxi =
∏
j

wxi,j .

Since each πx is norm decreasing and the wxi are defined by products and compositions of con-
tinuous functions, we obtain that, for each c ∈ A, the tuple (πx(w

x
i c))x∈X ∈

∏
x∈X Ax defines

fiberwise an element in A which we denote by wic. Indeed, using the condition of continuous
fields mentioned in Remark 1.1.23, given x ∈ X , consider the element b = wxi c. Then,

‖πy(b)− πy(wyi c)‖ = ‖πy((wxi − w
y
i )c)‖ ≤ ‖(wxi − w

y
i )c‖,
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which is small if x and y are sufficiently close.
Now let {λi}i be continuous positive real-valued functions on [0, 1] whose respective sup-

ports are {(Ui\(∪j 6=iUj))∪(∪jWi,j)}i and {λ{i,j}}i,j with supports {Ui∩Uj}i,j . Define the following
element in A

h =
∑
i

λiwi(ai − ε)+w
∗
i +

∑
i 6=j

λ{i,j}a{i,j}.

We now check that 〈πx(h)〉 = gε(x), and this will yield the desired conclusion.
If x ∈ Ui\(∪j 6=iUj), then πx(h) = λi(x)πx(wi(ai−ε)+w

∗
i ) where λi(x) 6= 0, and this is equivalent

to πx((ai − ε)+). Hence 〈πx(h)〉 = gε(x).
On the other hand, if x ∈ Ui ∩ Uj for some i, j then λ{i,j}(x) 6= 0, and

πx(h) =


λi(x)πx(ũi,j(ai − ε)+ũ

∗
i,j) + λ{i,j}(x)πx(a{i,j}) if x ∈ Ui ∩ Uj ∩Wi,j

λj(x)πx(ũj,i(aj − ε)+ũ
∗
j,i) + λ{i,j}(x)πx(a{i,j}) if x ∈ Ui ∩ Uj ∩Wj,i

λ{i,j}(x)πx(a{i,j}) if x ∈ Ui ∩ Uj \ (Wi,j ∪Wj,i) .

If, for example, x ∈ Ui ∩ Uj ∩Wi,j , then πx(ũi,j(ai − ε)+ũ
∗
i,j) ∈ Her(πx(a{i,j})), and we conclude

that 〈πx(h)〉 = 〈πx(a{i,j})〉 = gε(x).
To check another case, let x ∈ Ui ∩ Uj \ (Wi,j ∪Wj,i). Then, 〈πx(h)〉 = 〈λ{i,j}(x)πx(a{i,j})〉 =

〈πx(a{i,j})〉 = gε(x). The remaining case is similar.

This last result (together with Proposition 3.4.16) proves that, with some restrictions on X
and A, the set of induced sections is a dense subset of Γ(X,FCu(A)), that is, every element in
Γ(X,FCu(A)) is a supremum of a rapidly increasing sequence of induced sections. In fact, more
is true:

Theorem 3.4.19. Let X be a one-dimensional compact metric space and let A be a continuous field over
X whose fibers have no K1 obstructions. Then, the map

α : Cu(A) → Γ(X,FCu(A))
s 7→ ŝ

is an order isomorphism in Cu.

Proof. Let f be a continuous section in Γ(X,FCu(A)) and use Propositions 3.4.16 and 3.4.18 to
write f as the supremum of a rapidly increasing sequence of induced sections f = supn ŝn. Since
α is an order-embedding (by Theorem 3.3.6) and α(sn) = ŝn, the sequence sn is also increasing
in Cu(A) and thus we can define s = supn sn ∈ Cu(A). The result now follows using Lemma
3.4.9.

3.5 The sheaf CuA( )

For a compact metric space X , denote by CX the category whose objects are the C(X)-algebras,
and the morphisms between objects are those ∗-homomorphisms such that commute with the
(respective) structure maps.
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Denote by SCu the category which as objects has the presheaves CuA( ) on X , where A be-
longs to CX , and the maps are presheaf homomorphisms. The following holds by definition:

Lemma 3.5.1. The assignment
Cu( ) : CX → SCu

A 7→ CuA( )

is a covariant functor.

Proof. Let ϕ : A → B be a map in CX . Given U a closed subset of X , we have that ϕ induces a
map ϕU : A(U)→ B(U) since ϕ(C0(X \ U)A) ⊆ C0(X \ U)ϕ(A) ⊆ C0(X \ U)B. Also, if V ⊆ U is
a closed subset of X , we have that the following diagram is commutative:

A(V )
ϕV // B(V )

A(U)

OO

ϕU // B(U) .

OO

Because Cu is a functor, the conclusion follows.

Theorem 3.5.2. Let X be a one-dimensional compact metric space, and let A be a continuous field over
X whose fibers have no K1 obstructions. Consider the functors

CuA( ) : VX → Cu and Γ( , FCuA( )
) : VX → Cu

V 7→ Cu(A(V )) V 7→ Γ(V, FCuA(V )
) .

Then, CuA( ) and Γ( , FCuA( )
) are isomorphic sheaves.

Proof. That CuA( ) is a sheaf follows from Corollary 3.4.6. Let (hV )V ∈VX be the collection of
isomorphisms hV : Cu(A(V )) → Γ(V, FCuA(V )

) described in Theorem 3.4.19. Since, whenever
V ⊂ U , the following diagram

Cu(A(V )) // Γ(V, FCuA(V )
)

Cu(A(U))

(CuA( ))UV

OO

// Γ(U, FCuA(U)
)

(Γ( ,FCuA( )
))UV

OO

clearly commutes, (hV )V ∈VX defines an isomorphism of sheaves h : CuA( )→ Γ( , FCuA( )
).

In order to relate the Cuntz semigroup Cu(A) and the sheaf CuA( ), we now show that there
exists an action of Cu(C(X)) on Cu(A) when A is a C(X)-algebra, which is naturally induced
from the C(X)-module structure on A.

Definition 3.5.3. Let S, T , R be semigroups in Cu. A Cu-bimorphism is a map ϕ : S × T → R such
that the map ϕ(s, ) : T → R, s ∈ S (respectively, ϕ( , t) : S → R, t ∈ T ), preserves order, addition,
suprema of increasing sequences, and moreover ϕ(s′, t′) � ϕ(s, t) whenever s′ � s in S and t′ � t in
T .
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Remark 3.5.4. We remark that if A is a C∗-algebra and a, b are commuting elements, then for
ε > 0 we have (a − ε)+(b − ε)+ - (ab − ε2)+. Indeed, since the C∗-subalgebra generated by a
and b is commutative, Cuntz comparison is given by the support of the given elements, viewed
as continuous functions on the spectrum of the algebra. It is then a simple matter to check that
supp((a− ε)+(b− ε)+) ⊆ supp((ab− ε2)+) (see Proposition 1.3.11).

Proposition 3.5.5. Let A and B be stable and nuclear C∗-algebras. Then, the natural bilinear map
A×B → A⊗B given by (a, b) 7→ a⊗ b induces a Cu-bimorphism

Cu(A)× Cu(B) → Cu(A⊗B)
(〈a〉, 〈b〉) 7→ 〈a⊗ b〉

Proof. Since A is stable, we may think of Cu(A) as equivalence classes of positive elements from
A. We also have an isomorphism Θ: M2(A) → A given by isometries w1, w2 in M(A) with
orthogonal ranges, so that Θ(aij) =

∑
i,j wiaijw

∗
j . Thus, in the Cuntz semigroup, 〈a〉 + 〈b〉 =

〈Θ ( a 0
0 b )〉.

The map Cu(A) × Cu(B) → Cu(A ⊗ B) given by (〈a〉, 〈b〉) 7→ 〈a ⊗ b〉 is well-defined and
order-preserving in each argument, by virtue of [Rør04, Lemma 4.2]. Let a, a′ ∈ A+, b ∈ B+. As

〈(w1aw
∗
1 + w2a

′w∗2)⊗ b〉 = 〈w1aw
∗
1 ⊗ b〉+ 〈w2a

′w∗2 ⊗ b〉 = 〈a⊗ b〉+ 〈a′ ⊗ b〉 ,

we see that it is additive in the first entry (and analogously in the second entry).
Next, observe that if ‖a‖, ‖b‖ ≤ 1, ε > 0,

‖a⊗ b− (a− ε)+ ⊗ (b− ε)+‖ ≤ ‖a⊗ b− (a− ε)+ ⊗ b‖+ ‖(a− ε)+ ⊗ b− (a− ε)+ ⊗ (b− ε)+‖ ≤

ε‖b‖+ ‖(a− ε)+‖ε ≤ 2ε ,

and this implies 〈a ⊗ b〉 = sup(〈(a − ε)+ ⊗ (b − ε)+〉). If now 〈a〉 = supn〈an〉 for an increasing
sequence (〈an〉), then for any 〈b〉we have 〈an⊗ b〉 ≤ 〈a⊗ b〉. Given ε > 0, find n with 〈(a− ε)+〉 ≤
〈an〉, hence 〈(a− ε)+⊗ (b− ε)+〉 ≤ 〈an⊗ b〉 ≤ sup〈an⊗ b〉. Taking supremum as ε goes to zero we
obtain 〈a⊗ b〉 = sup〈an ⊗ b〉.

Finally, assume that 〈a′〉 � 〈a〉 in Cu(A), and 〈b′〉 � 〈b〉 in Cu(B). Find ε > 0 such that
〈a′〉 ≤ 〈(a− ε)+〉 and 〈b′〉 ≤ 〈(b− ε)+〉. Then 〈a′ ⊗ b′〉 ≤ 〈(a− ε)+ ⊗ (b− ε)+〉.

Note that (a − ε)+ ⊗ (b − ε)+ ∈ A ⊗ B ⊆ M(A) ⊗M(B) and, viewed in the tensor product
of the multiplier algebras, we have (a − ε)+ ⊗ (b − ε)+ = ((a − ε)+ ⊗ 1)(1 ⊗ (b − ε)+). Since the
mapM(A)→M(A)⊗M(B), given by c 7→ c⊗ 1 is a ∗-homomorphism, it induces a semigroup
homomorphism Cu(M(A)) → Cu(M(A) ⊗M(B)) in the category Cu and, in particular, since
〈(a − ε)+〉 � 〈a〉 in Cu(M(A)), it follows that 〈(a − ε)+ ⊗ 1〉 � 〈a ⊗ 1〉 in Cu(M(A) ⊗M(B)).
Likewise, 〈1⊗(b−ε)+〉 � 〈1⊗b〉, hence we may find ε′ > 0 such that 〈(a−ε)+⊗1〉 ≤ 〈(a⊗1−ε′)+〉
and 〈1⊗ (b− ε)+〉 ≤ 〈(1⊗ b− ε′)+〉. Since the elements (a− ε)+ otimes1, (a⊗ 1− ε′)+, 1⊗ (b− ε)+

and (1⊗ b− ε′)+ all commute (and using Remark 3.5.4), it follows that

〈(a− ε)+ ⊗ (b− ε)+〉 = 〈((a− ε)+ ⊗ 1)(1⊗ (b− ε)+)〉
≤ 〈(a⊗ 1− ε′)+(1⊗ b− ε′)+〉
≤ 〈(a⊗ b− ε′2)+〉 � 〈a⊗ b〉 ,

whence 〈a′ ⊗ b′〉 � 〈a⊗ b〉.
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Corollary 3.5.6. LetX be a compact Hausdorff space, and letA be a stable C(X)-algebra (with structure
map θ). Then the natural map C(X)× A→ A, given by (f, a)→ θ(f)a induces a Cu-bimorphism

γA : Cu(C(X))× Cu(A)→ Cu(A)

such that maps (〈f〉, 〈a〉) to 〈θ(f)a〉, for f ∈ C(X)+ and a ∈ A+.

Proof. Since Cu(C(X)) = Cu(C(X)⊗K), Proposition 3.5.5 tells us that the map

Cu(C(X)⊗K)× Cu(A) → Cu(C(X)⊗K ⊗ A)
(〈f〉, 〈a〉) 7→ 〈f ⊗ a〉

is a Cu-bimorphism. Now the result follows after composing this map with the isomorphism
Cu(C(X)⊗K ⊗ A) ∼= Cu(C(X)⊗ A), followed by the map Cu(θ) : Cu(C(X)⊗ A)→ Cu(A).

In what follows, we shall refer to the Cu-bimorphism γA above as the action of Cu(C(X)) on
Cu(A). If A and B are C(X)-algebras, we will say then that a morphism ϕ : Cu(A) → Cu(B)
preserves the action provided ϕ(γA(x, y)) = γB(x, ϕ(y)). Notice that this is always the case if ϕ
is induced by a ∗-homomorphism of C(X)-algebras. We will write γ instead of γA, and we will
moreover use the notation xy for γ(x, y).

We next exhibit how the action of Cu(C(X)) on Cu(A) works when dim(X) ≤ 1.

Remark 3.5.7. Here we apply Corollary 3.5.6, in the particular case whenX is a one-dimensional
compact Hausdorff space. Under this assumption, it follows by [Rob13, Theorem 1.1] that the
map α : Cu(C(X))→ Lsc(X,N) given by α(〈f〉)(x) = 〈f(x)〉 is an order-isomorphism.

Note that any g ∈ Lsc(X,N) may be written as:

g =
∞∑
i=1

1Ui = sup
n∑
i=1

1Ui where Ui = g−1((i,∞]).

Given z ∈ Cu(C(X)), write α(z) =
∑∞

i=1 1Ui as above, so that z = sup
∑n

i=1 zi with α(zi) = 1Ui .
Thus, for a ∈ A+, γA(z, 〈a〉) = sup

∑n
i=1 γA(zi, 〈a〉). Therefore, to describe the action we may

assume α(z) = 1U for some open set U . Let h ∈ C(X)+ such that supp(h) = U , and then
α(〈h〉) = 1U . Thus, z = 〈h〉 and

γA(z, 〈a〉) = 〈θ(h) · a〉.

As noticed above, VA( ) defines a continuous presheaf, and we show below that it becomes
a sheaf when the fibers of A have no K1 obstructions. For this we need the next result.

Lemma 3.5.8. Let X be a one-dimensional compact metric space, and let Y , Z ⊆ X be closed subsets of
X . Let A be a continuous field over X whose fibers have no K1 obstructions, and denote by πZY : A(Y )→
A(Y ∩ Z) and πYZ : A(Z)→ A(Y ∩ Z) the quotient maps (given by restriction). Then, the map

β : V(A(Y )⊕A(Y ∩Z) A(Z))→ V(A(Y ))⊕V(A(Y ∩Z)) V(A(Z))

defined by β([(a, b)]) = ([a], [b]) is an isomorphism.
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Proof. We know from Corollary 3.4.6 that CuA( ) is a sheaf in this case. Thus the map

Cu(A(Y )⊕A(Y ∩Z) A(Z))→ Cu(A(Y ))⊕Cu(A(Y ∩Z)) Cu(A(Z)) ,

given by 〈(a, b)〉 7→ (〈a〉, 〈b〉), is an isomorphism in Cu, whence it maps compact elements to
compact elements. Since A(Y )⊕A(Y ∩Z)A(Z) is isomorphic to A(Y ∪Z) and this algebra is stably
finite (because all of its fibers have stable rank one), we have that the compact elements of
Cu(A(Y )⊕A(Y ∩Z) A(Z)) can be identified with V(A(Y )⊕A(Y ∩Z) A(Z)). Using this identification,
we have that 〈(a, b)〉 in Cu(A(Y )⊕A(Y ∩Z) A(Z)) is compact if and only if 〈a〉 and 〈b〉 are compact.

On the other hand, if 〈a〉 and 〈b〉 are compact (in Cu(A(Y )) and Cu(A(Z)) respectively) and
〈a〉 = 〈b〉 in Cu(A(Y ∩ Z)), then the pair (〈a〉, 〈b〉) belongs to V(A(Y )) ⊕V(A(Y ∩Z)) V(A(Z)), and
every element of this pullback is obtained in this manner. The conclusion now follows easily.

Proposition 3.5.9. Let X be a one-dimensional compact metric space, and let A be a continuous field
over X whose fibers have K1 obstructions. Then,

VA( ) : VX → Sg
U 7→ V(A(U))

is a sheaf and the natural transformation VA( )→ Γ( , FV(A( ))) is an isomorphism of sheaves.

Proof. Note that VA( ) is a sheaf thanks to Lemma 3.5.8. On the other hand, the fact that VA( ) is
isomorphic to the sheaf of continuous sections Γ( , FV(A( ))) follows from Theorem 3.2.3.

In the proof of Theorem 3.5.11 below, we shall use the following lemma. Recall that if X is
a compact Hausdorff topological space, then the set O(X) consisting of open sets ordered by
inclusion is a continuous lattice. Moreover, in the case X is metric, we have that U � V if and
only if there exists a compact set K such that U ⊆ K ⊆ V ([GHK+03]). In particular, O(X) with
union as addition is a semigroup in Cu.

Lemma 3.5.10. ([ADPS13, Lemma 2.4, Lemma 2.5]) Let A be a continous field of C*-algebras over a
compact Hausdorff space X and a, b ∈ A+. Then:

(i) If πK(b) - πK(a) for some K such that supp(b) ⊆ K ⊆ supp(a), then a - b.

(ii) If b - a, then supp(b) ⊆ supp(a). Moreover, if 〈b〉 � 〈a〉, then there exists a compact set K such
that supp(b) ⊆ K ⊆ supp(a).

Proof. (i): By assumption, given ε > 0 there exists d ∈ A such that ‖b(x) − d(x)a(x)d∗(x)‖ < ε
for all x ∈ K, so this inequality is also satisfied in an open set K ⊆ U because A is a continuous
field.

Since K ∩ U c = ∅, by Urysohn’s Lemma there is a continuous function f : X → [0, 1] such
that fK = 1 and fUc = 0, and if x ∈ supp(g) ⊆ K ⊆ U , then

‖b(x)− (fd)a(fd)∗(x)‖ = ‖b(x)− d(x)a(x)d∗(x)‖ < ε.

Further, if x /∈ U , then ‖b(x)− (fd)a(fd)∗(x)‖ = 0. Finally, if x ∈ U \ supp(b), then b(x) = 0, and

‖b(x)− (fd)a(fd)∗(x)‖ = ‖f 2b(x)− (fd)a(fd)∗(x)‖ = |f 2(x)|‖b(x)− d(x)a(x)d∗(x)‖ < ε.
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Therefore, since ‖b− (fd)a(fd)∗‖ = supx∈X ‖b(x)− (fd)a(fd)∗(x)‖, we have b - a.
(ii): Let 〈b〉 � 〈a〉 for some a, b ∈ A+. Since O(X) is in Cu, let us write supp(a) = ∪i≥0Ui for

some Ui � Ui+1, i.e., Ui ⊆ U i ⊆ Ui+1. By Urysohn’s Lemma, we find a colletion of continuous
functions fn : X → [0, 1] such that fn(Un) = 1 and fn(U c

n+1) = 0. Because X is compact,
we have fna → a and fna ≤ fn+1a. Hence, 〈a〉 = supn〈fna〉. Using that 〈b〉 � 〈a〉, we get
〈b〉 ≤ 〈fNa〉 for some N > 0 and therefore supp(b) ⊆ supp(fNa) ⊆ UN+1 ⊆ UN+1 ⊆ supp(a), i.e.,
supp(b)� supp(a).

Theorem 3.5.11. Let X be a compact metric space, and let A and B be C(X)-algebras such that all fibers
have stable rank one. Consider the following conditions:

(i) Cu(A) ∼= Cu(B) preserving the action of Cu(C(X)),

(ii) CuA( ) ∼= CuB( ),

(iii) VA( ) ∼= VB( ).

Then (i) =⇒ (ii) =⇒ (iii). IfX is one-dimensional, then also (ii) =⇒ (i). If, furthermore, A andB are
continuous fields such that for all x ∈ X the fibersAx,Bx have real rank zero and K1(Ax) = K1(Bx) = 0,
then (iii) =⇒ (ii) and so all three conditions are equivalent.

Proof. We may assume that both A and B are stable.
(i) =⇒ (ii): Let ϕ : Cu(A) → Cu(B) be an isomorphism such that ϕ(xy) = xϕ(y), for any

x ∈ Cu(C(X)) and y ∈ Cu(A). We need to verify that ϕ(Cu(C0(X \ V )A)) ⊆ Cu(C0(X \ V )B),
whenever V is a closed subset of X . Let 〈fa〉 ∈ Cu(C0(X \V )A), for f ∈ C0(X \V )+ and a ∈ A+.
Then, if ϕ(〈a〉) = 〈b〉 for some b ∈ B+, we have that ϕ(〈fa〉) = 〈f〉ϕ(〈a〉) = 〈f〉〈b〉 = 〈fb〉, and
fb ∈ C0(X \ V )B.

The above fact entails that ϕ induces a semigroup map ϕV : Cu(A(V ))→ Cu(B(V )), which is
an isomorphism as ϕ is.

(ii) =⇒ (iii): Note that, as all fibers have stable rank one, A(U) (respectively, B(U)) is a
stably finite algebra for each closed subset U . In this case, V(A(U)) can be identified with the
subset of compact elements of Cu(A(U)). Therefore, the given isomorphism CuA(U) ∼= CuB(U)
maps VA(U) = V(A(U)) injectively onto VB(U) = V(B(U)).

Now assume that X is one-dimensional, and let us prove that (ii) =⇒ (i): The isomorphism
of sheaves gives, in particular, an isomorphism ϕ : Cu(A)→ Cu(B). We need to verify that ϕ res-
pects the action of Cu(C(X)). By Remark 3.5.7, we may reduce to the case of 1U〈a〉 = 〈ga〉where
g ∈ C(X)+ has supp(g) = U . Given 〈a〉 ∈ Cu(A) we denote by supp(〈a〉) = {x ∈ X | πx(〈a〉) 6= 0}
and note that suppϕ(〈a〉) = supp(〈a〉). Also supp(1Uϕ(〈a〉)) = U ∩ supp(〈a〉) = supp(ϕ(1U〈a〉)).
Let K ⊆ supp(1Uϕ(〈a〉)) = supp(ϕ(1U〈a〉)) be a closed set. Then πK(1Uϕ(〈a〉)) = πK(ϕ(1U〈a〉)),
where πK : A→ A(K) is the quotient map. Indeed, it follows from the commutative diagram

Cu(A)
ϕ

//

πK
��

Cu(B)

πK
��

Cu(A(K))
ϕK // Cu(B(K)) ,
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that πK(1U〈a〉) = πK(〈ga〉) = πK〈a〉, since g becomes invertible in A(K). Hence, πK(ϕ(1U〈a〉)) =
πK(ϕ(〈ga〉)) = ϕKπK(〈ga〉) = ϕKπK(〈a〉). On the other hand, πK(1Uϕ(〈a〉)) = πKϕ(〈a〉) =
ϕKπK(〈a〉).

Now write 〈a〉 = sup〈an〉, where (〈an〉) is a rapidly increasing sequence in Cu(A), and 1U =
sup1Vn , where (Vn) is a rapidly increasing sequence of open sets. Then (1Vn〈an〉) is a rapidly
increasing sequence with 1U〈a〉 = sup1Vn〈an〉 and 1Uϕ(〈a〉) = sup1Vnϕ(〈a〉). By Lemma 3.5.10
(i) choose, for each n, a compact set Kn such that

supp(1Vn〈an〉) ⊆ Kn ⊆ supp(1Vn+1〈an+1〉) .

Then Kn ⊆ Vn+1 ∩ supp(〈an+1〉) ⊆ Vn+1.
By the above, πKn(1Vn+1ϕ(〈an+1〉)) = πKnϕ(1Vn+1〈an+1〉), thus:

πKn(1Vnϕ(〈an〉)) ≤ πKn(1Vn+1ϕ(〈an+1〉)) = πKn(ϕ(1Vn+1〈an+1〉)) ≤ πKn(ϕ(1U〈a〉)),

and

πKn(ϕ(1Vn〈an〉)) ≤ πKn(ϕ(1Vn+1〈an+1〉)) = πKn(1Vn+1ϕ(〈an+1〉)) ≤ πKn(1Uϕ(〈a〉)).

Since supp(1Vk〈ak〉) = supp(ϕ(1Vk〈ak〉)) = supp(1Vkϕ(〈ak〉)), we may apply Lemma 3.5.10 (ii)
to obtain that 1Vnϕ(〈an〉) ≤ ϕ(1U〈a〉)) and ϕ(1Vn〈an〉) ≤ 1Uϕ(〈a〉)). Taking suprema in both
inequalities we obtain 1Uϕ(〈a〉) = ϕ(1U(〈a〉)).

(iii) =⇒ (ii): We assume now that both A and B are continuous fields such that the fibers
Ax, Bx have real rank zero and trivial K1 (see Lemma 3.3.2 (ii)). Let ϕ : VA( )→ VB( ) be a sheaf
isomorphism. This induces a semigroup isomorphism ϕx : V(Ax) → V(Bx) for each x ∈ X . As
A(U) is a stably finite algebra for any closed subset U of X , we will identify V(A(U)) with its
image in Cu(A(U)) whenever convenient.

Since Ax has real rank zero, V(Ax) forms a dense subset of Cu(Ax) so we can uniquely define
an isomorphism Cu(Ax) → Cu(Bx) in Cu which we will still denote by ϕx. This map is defined
by ϕx(z) = supn ϕx(zn) where z = sup zn and zn ∈ V(Ax) for all n ≥ 0 (see, e.g. [ABP11], [CEI08]
for further details). Let us prove that the induced bijective map ϕ̃ : FCu(A) → FCu(B) is continu-
ous, and hence a homeomorphism. This will define an isomorphism of sheaves Γ(−, FCuA(−)) ∼=
Γ(−, FCuB(−)) from which, using Theorem 3.5.2, it follows that CuA( ) and CuB( ) are isomorphic.
Denote by πA : FCu(A) → X and πB : FCu(B) → X the natural maps.

Let U be an open set of X and s ∈ Cu(B). We are to show that ϕ̃−1(U�s ) is open in FCu(A). Let
z ∈ ϕ̃−1(U�s ), and put x = πA(z), so that z ∈ Cu(Ax) for some x ∈ U . Since ϕ̃(z) = ϕx(z) ∈ U�s ,
there exists s′′ � s such that ŝ′′(x)� ϕx(z). Choose s′ such that s� s′ � s′′.

As ŝ′′(x) � ϕx(z) there exists z′ � z′ ∈ V(Ax) such that ŝ′′(x) � ϕx(z
′). Now we can find a

closed subset W ′ whose interior contains x, and an element v ∈ V(A(W ′)) such that πx(v) = z′.
Note that πxϕW ′(v) = ϕx(z

′). Also, since ŝ′(x) � ŝ′′(x) � ϕx(z
′) = ϕ̂W ′(v)(x), we may use

Lemma 3.4.2 to find W ⊆ W ′ such that x ∈ W̊ and

ŝ′(y)� ϕ̂W ′(v)(y) for all y ∈ W .
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Let t ∈ Cu(A) be such that πW (t) = πW
′

W (v). We now claim that W̊�
t ⊆ ϕ̃−1(U�s ). Let w ∈ W̊�

t ,
and put y = πA(w) ∈ W . There exists t′ � t such that t̂′(y) � w, whence, applying ϕ̃ it follows
that

ϕ̃(w)� ϕ̃(t̂′(y))� ϕ̃(t̂(y)) = ϕ̃(πW
′

W (v)(y)) = ϕ̃(πy(v)) = πy(ϕW (v)) = ϕ̂W ′(v)(y)� ŝ′(y) ,

and this shows that w ∈ ϕ̃−1(U�s ).

Remark 3.5.12. We remark that the implication (ii) =⇒ (i) in Theorem 3.5.11 above holds
whenever Cu(C(X)) ∼= Lsc(X,N). This is the case for spaces more general than being just one-
dimensional, see [Rob13].

We can now rephrase the classification result given by M. Dadarlat, G. A. Elliott and Z. Niu
in [DEN11], using the Cuntz Semigroup.

Theorem 3.5.13. ([DEN11]) Let A,B be separable unital continuous fields of AF-algebras over [0, 1].
Any isomorphism φ̃ : Cu(A)→ Cu(B) that preserves the action by Cu(C(X)) and such that φ̃(〈1A〉) =
〈1B〉 lifts to an isomorphism φ : A→ B of continuous fields of C∗-algebras.

Proof. This follows from Theorem 3.5.11 together with Theorem 3.7 in [DEN11].

From the above result, it is natural to ask the following:

Open Problem 3.5.14. Let C be the class of unital continuous fields of simple AI-algebras over [0, 1].
Is it possible to classify the objects of C by using the Cuntz semigroup together with the action by
Cu(C([0, 1]))?



Chapter 4

The Cuntz semigroup and Dimension
functions

As mentioned in the Introduction, in this chapter we study two conjectures posed by Blackadar
and Handelmann in [BH82] related with the structure of dimension functions of a C*-algebra A.
Recall that they conjectured, for a unital C*-algebra, that:

(i) The set of dimension functions, DF(A), is a simplex.

(ii) The set of lower semicontinuous dimension functions, LDF(A), is dense in DF(A).

In particular, along the way to solve the above conjectures, we will need a categorical des-
cription of W(A) and Cu(A) ([ABP11]). We focus on the hereditariness of the Cuntz semigroup
W(A), that is, the condition that W(A) can be viewed as an order-hereditary subsemigroup
of Cu(A). As this is related to the stable rank of A, en route of determining when W(A) is
hereditary, we obtain results of independent interest that compute the stable rank for some
continuous fields. The results of this chapter come from [ABPP13].

4.1 Continuous fields of stable rank one

LetX be a compact metric space of dimension one. We will prove in this section that the algebra
C(X,A) of continuous functions from X into a C∗-algebra A, has stable rank one, if A has no K1

obstructions. We also prove the converse direction in a setting of great generality and prove, as
an application, corresponding results for continuous fields.

Recall that a C∗-algebra A has no K1 obstructions provided that A has stable rank one and
K1(I) = 0 for every closed two-sided ideal I of A (equivalently, sr(A) = 1 and K1(B) = 0 for all
hereditary subalgebra B of A, see Lemma 3.3.2).

We first study the case whenX is the closed unit interval. In this setting, we will use [NOP01,
Proposition 5.2] to conclude that if sr(C([0, 1], A)) = 1, then A has no K1 obstructions.

Proposition 4.1.1. Let A be any C∗-algebra. If sr(C([0, 1], A)) = 1, then A has no K1 obstructions.

71
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Proof. In [NOP01, Proposition 5.2] it is shown that sr(A) = 1 and K1(A) = 0 are necessary
conditions to get sr(C([0, 1], A)) = 1. We sketch the proof for completeness. One has that sr(A) =
1 because A is a quotient of C([0, 1], A), so it just remains to check that K1(A) = 0. By [Rie83,
Theorem 6.1] it follows that Mn(A) also satisfies the assumptions, so it suffices to show that
U(Ã) is connected. Let u ∈ Ã be unitary and λ ∈ C be its image by the map π : Ã → C.
Let us verify that λ−1u ∈ U0(Ã), and this implies that u ∈ U0(Ã). We assume that π(u) = 1
to ease the proof. Define f ∈ (C([0, 1], A))∼ by f(t) = t.1 + (1 − t)u ∈ Ã for t ∈ [0, 1]. Using
sr(C([0, 1], A)) = 1, choose an invertible element g ∈ (C([0, 1], A))∼ such that ‖g − f‖ < 1/2.
Since ‖u − g(0)‖ = ‖f(0) − g(0)‖ < 1, there exists a continuous path in GL(Ã) from u to g(0),
and, similarly, there exists a continuous path from 1 to g(1). Combining both paths with the
continuous path g in GL(Ã), we see that u ∈ GL0(Ã), so u ∈ U0(Ã).

Using this, we now show that K1(B) = 0 for all B ⊂ A hereditary. Let B ⊆ A be a hereditary
subalgebra. Let I denote the ideal generated by B. Then C([0, 1], I) is an ideal of C([0, 1], A) and
therefore has stable rank one. Further, it follows from first part of the proof that K1(I) = 0. Since
B is a full hereditary subalgebra of I , we conclude that K1(B) = 0.

We next show that, conversely, for any C∗-algebra A with no K1 obstructions the stable rank
of C([0, 1], A) is one. It is pertinent to note that our proof follows the lines of [NOP01, Theorem
4.3], where the same result was proved under the additional assumption that RR(A) = 0. In fact,
the argument in [NOP01, Theorem 4.3] refers to Lemma 4.2 of this chapter, and our contribution
is to prove the corresponding lemma in a more general setting. Our result was inspired by the
next result:

Lemma 4.1.2. ([San12, Lemma 3.4]) Let A be a C*-algebra such that U(B̃) is connected for every
hereditary subalgebra B of A. Then, for every ε > 0 and M > 0, there is δ > 0 such that if a ∈ Ã is a
positive element with a− 1 ∈ A and ‖a‖ ≤M , and u ∈ A is a unitary with u− 1 ∈ A satisfying

‖ua− a‖ < δ,

there exists a path of unitaries (ut)t∈[0,1] in Ã with ut − 1 ∈ A, u0 = u and u1 = 1, such that

‖uta− a‖ < ε

for all t ∈ [0, 1].

Proof. (Sketch) First, it can be proved that the universal C*-algebra

C∗(a, u | u is unitary, 0 ≤ a ≤M.1, ua = a)

is weakly semiprojective. So, letting 0 < ε < 1 and ε′ = min( ε
2
, ( ε

4M+1
)2), there exists 0 < δ < ε′

such that if a ∈ Ã is a positive element with a − 1 ∈ A and u ∈ U0(Ã) with u − 1 ∈ A satisfy
‖ua− a‖ < δ, then there are a′ ∈ Ã, with 0 ≤ a′ ≤M.1, and u′ ∈ U0(Ã) such that

u′a′ = a′, ‖u− u′‖ < ε′, ‖a− a′‖ < ε′(see [Lor97, Chapter 19] for further details).

If π : Ã→ C is the quotient map, one obtains

π(u′)π(a′) = π(a′), |π(u′)− 1| < ε′ < 1/2, |π(a′)− 1| < ε′ < 1/2.



4.1. Continuous fields of stable rank one 73

Thus π(a′) 6= 0, and then it follows that π(u′) = 1 (i.e. u′−1 ∈ A), and also that |π(a′)| > 1−1/2 =
1/2. Further,

‖a− a′

π(a′)
‖ ≤ ‖a− a′‖+ ‖ a′

π(a′)
(π(a′)− 1)‖ < ε′ +

‖a′‖
|π(a′)|

|π(a′)− 1| < ε′ + 2Mε′ = (2M + 1)ε′.

Now, making an abuse of notation and denoting a′ by a′/π(a′), we have a′ ∈ Ã and a unitary
u′ ∈ U0(Ã) such that

a′ − 1, u′ − 1 ∈ A, u′a′ = a′, ‖u− u′‖ < ε′, ‖a− a′‖ < (2M + 1)ε′.

Write u′ = x + 1, with x ∈ A a normal element. Then xa′ = 0 since u′a = a. Also, x ∈ x∗Ax,
and, in particular, u′ is a unitary of (x∗Ax)∼. Therefore, by hypothesis, we can find a path
of unitaries (vt)t∈[0,1] such that v0 = 1 and v1 = u′, and, moreover, it may be taken such that
vt − 1 ∈ x∗Ax for all t. Notice that vta′ − a′ = 0 for all t. This yields

‖vta− a‖ ≤ ‖vt(a− a′)‖+ ‖a′ − a‖ < 2ε′ ≤ ε.

Let zt = tu + (1 − t)u′ with t ∈ [0, 1], and note that ‖u − zt‖ = ‖(1 − t)(u − u′)‖ < ε′ < 1/2,
so zt is invertible for all t satisfying ‖zt‖ ≤ ε′ + 1. Hence, it has polar decomposition zt = wt|zt|,
where wt ∈ U(Ã), and, moreover, one has that

‖u∗u− z∗t zt‖ ≤ ‖u∗u− u∗zt‖+ ‖u∗zt − z∗t zt‖ ≤

≤ ‖u− zt‖+ ‖zt‖‖u∗ − z∗t ‖ < ε′ + ε′ + (ε′)2 < 3ε′

Now, by [CES11, Lemma 2.3], one has ‖1 − |zt|‖ ≤
√

3ε′ < 3
√
ε′. Note that the path of unitaries

(wt)t∈[0,1] satisfies w0 = u′, w1 = u and wt − 1 ∈ A. Also, by the inequalites above, it follows that

‖u− wt‖ ≤ ‖u− wt|zt|‖+ ‖wt(|zt| − 1)‖ < 4
√
ε′

for all t. This implies that

‖wta− a‖ ≤ ‖(wt − u)a‖+ ‖ua− a‖ < 4M
√
ε′ + δ ≤ (4M + 1)

√
ε′ < ε.

Consider the path

ut :=

{
v2t, t ∈ [0, 1

2
]

w2t−1, t ∈ [1
2
, 1]

to conclude the proof.

Lemma 4.1.3. Let A be a unital C∗-algebra with no K1 obstructions. For any given ε > 0 there is some
δ > 0 such that whenever a and b are two invertible contractions in A with ‖a − b‖ < δ then there is a
continuous path (ct)t∈[0,1] in the invertible elements of A such that c0 = a, c1 = b, and ‖ct − a‖ < ε for
all t ∈ [0, 1].



74 CHAPTER 4. The Cuntz semigroup and Dimension functions

Proof. For given ε > 0 we choose δ0 > 0 satisfying the conclusion of Lemma 4.1.2 for ε
2

and
M = 1, i.e., for any positive contraction a and any unitary u with ‖ua− a‖ < δ0 there is a path of
unitaries (ut)t∈[0,1] in A such that u0 = u, u1 = 1A, and ‖uta − a‖ < ε

2
for all t ∈ [0, 1]. (It follows

from our assumptions and [Rie83, Theorem 2.10] that U(B̃) is connected for each hereditary
subalgebra B of A, which is needed for the application of Lemma 4.1.2.) Find 0 < δ ≤ δ0

2
such

that whenever ‖a− b‖ < δ, then ‖|a| − |b|‖ < δ0
2

. (This is possible by [Lin96, Lemma 2.8].)
Take two invertible contractions a, b in A with ‖a − b‖ < δ and write a = u|a| and b = v|b|

with unitaries u, v ∈ A. We first connect a and u|b| by a path of invertible elements. To do this,
define a continuous path (wt)t∈[0,1] by

wt := u(t|b|+ (1− t)|a|), t ∈ [0, 1].

Then w0 = a, w1 = u|b| and, for any t ∈ [0, 1], wt is invertible. Indeed, since |b|, |a| are invertible,
there are λb, λa ∈ (0, 1] for which |b| ≥ λb1A and |a| ≥ λa1A, so t|b| + (1 − t)|a| ≥ λ1A for some
λ 6= 0, and this implies that t|b|+ (1− t)|a| is invertible. Hence, wt is also invertible. Further,

‖wt − a‖ = ‖ut|b| − ut|a|‖ = t‖|b| − |a|‖ < δ0

2
< ε.

Next, we connect u|b| and b by a path of invertible elements. Since

‖v∗u|b| − |b|‖ = ‖u|b| − v|b|‖ ≤ ‖u|b| − u|a|‖+ ‖u|a| − v|b|‖ = ‖|a| − |b|‖+ ‖a− b‖ < δ0,

an application of Lemma 4.1.2 provides us with a path of unitaries (ut)t∈[0,1] in A such that
u0 = v∗u, u1 = 1, and ‖ut|b| − |b|‖ < ε

2
for all t ∈ [0, 1].

Define a continuous path (zt)t∈[0,1] by

zt := vut|b|, t ∈ [0, 1].

Then z0 = u|b|, z1 = b and, for each t ∈ [0, 1], zt is invertible and

‖zt − a‖ ≤ ‖vut|b| − v|b|‖+ ‖v|b| − a‖ = ‖ut|b| − |b|‖+ ‖b− a‖ < ε.

Hence

ct :=

{
w2t, t ∈ [0, 1

2
]

z2t−1, t ∈ [1
2
, 1]

is the continuous path with the desired properties.

Theorem 4.1.4. Let A be any C∗-algebra with sr(A) = 1. Then

sr(C([0, 1], A)) =

{
1, if A has no K1 obstructions
2, else.

Proof. It is known that sr(C([0, 1], A)) ≤ 1 + sr(A) ≤ 2 ([Sud02]), and from Proposition 4.1.1 we
know that for sr(C([0, 1], A)) = 1 it is a necessary condition that K1(B) = 0 for all hereditary
subalgebras B of A. To show that this condition is also sufficient we follow the lines of the proof
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of [NOP01, Theorem 4.3], applying Lemma 4.1.3 instead of [NOP01, Lemma 4.2]. We give the
argument for completeness.

Let a ∈ C([0, 1], A), and let ε > 0. Without loss of generality we may suppose ‖a‖ ≤ 1, and
let us approximate a by an invertible element of C([0, 1], A).

Use ε/3 in place of ε in Lemma 4.1.3 and choose δ accordingly. Choose 0 = t0 < t1 < . . . <
tn = 1 such that

‖a(tj)− a(tj−1)‖ < δ/3 and ‖a(t)− a(tj−1)‖ < ε/3

for 1 ≤ j ≤ n and t ∈ [tj−1, tj]. Using the fact that sr(A) = 1, there are c0, c1, . . . , cn ∈ GL(A)
(invertibles of A) such that

‖cj − a(tj)‖ < min{ε/3, δ/3}.

Then ‖cj − cj−1‖ < δ because ‖a(tj) − a(tj−1)‖ < δ/3 . For each j, use Lemma 4.1.3 to find a
continuous path t 7→ b(t) ∈ GL(A), defined for t ∈ [tj−1, tj], such that

b(tj−1) = cj−1, b(tj) = cj and ‖b(t)− cj−1‖ < ε/3.

The two definitions at tj agree, so t 7→ b(t) is a continuous invertible path defined for t ∈ [0, 1].
Moreover, for t ∈ [tj−1, tj] we have

‖b(t)− a(t)‖ ≤ ‖b(t)− cj−1‖+ ‖cj−1 − a(tj−1)‖+ ‖a(tj−1)− a(t)‖ < ε.

Corollary 4.1.5. Let A be a simple C∗-algebra with sr(A) = 1 and K1(A) = 0. Then

sr(C([0, 1], A)) = 1 .

The previous corollary answers positively a question raised in [NOP01, Question 5.9], which
asks whether a simple direct limit of direct sums of homogeneous C∗-algebras A with real rank
one and K1(A) = 0 satisfies that sr(C([0, 1], A)) = 1.

Corollary 4.1.6. Let A be a Goodearl algebra with K1(A) = 0. Then sr(C([0, 1], A)) = 1.

Proof. It is a direct application of Corollary 4.1.5 since A is simple and sr(A) = 1 by Theorem
1.1.20.

Before giving more applications of Theorem 4.1.4 we state a result of L. G. Brown and G. K.
Pedersen, which shows the behaviour of the stable rank and real rank of pullbacks, that will be
used several times in this chapter.

Theorem 4.1.7. ([BP09, Theorem 4.1]) Consider a pullback diagram of C*-algebras

A
η
//

φ
��

B

τ

��

C
π // D

in which π (hence also η) is surjective. Then:
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(i) sr(A) ≤ max{sr(B), sr(C)}.

(ii) If B and C have real rank zero, then A has real rank zero.

Another application of Theorem 4.1.4 is the computation of the stable rank of a tensor pro-
duct of the form A⊗Z where A has no K1 obstructions and Z is the Jiang-Su algebra. This was
proved by Sudo in [Sud09, Theorem 1.1] assuming that A has real rank zero, stable rank one,
and trivial K1.

Corollary 4.1.8. Let A be a C∗-algebra with no K1 obstructions. Then the stable rank of A⊗Z is one.

Proof. As mentioned in the Chapter one, we can write A⊗Z as an inductive limit

A⊗Z = lim
i→∞

A⊗ Zpi,qi ,

with pairs of co-prime numbers (pi, qi) and prime dimension drop algebras

Zpi,qi = {f ∈ C([0, 1],Mpi ⊗Mqi)| f(0) ∈ Ipi ⊗Mqi , f(1) ∈Mpi ⊗ Iqi}.

Since the stable rank of inductive limit algebras satisfies that sr(limi→∞(Ai)) ≤ lim inf sr(Ai)
([Rie83]) it suffices to show that the stable rank of each Zpi,qi ⊗ A is one.

Fix two co-prime numbers p and q and write Zp,q ⊗ A as a pullback

Zp,q ⊗ A //_____

��
�
�
�

Mp(A)⊕Mq(A)

φ

��

C([0, 1],Mpq(A))
(λ0,λ1)

// //Mpq(A)⊕Mpq(A)

with maps λi(f) = f(i) and φ(A,B) = (A⊗ Iq, Ip ⊗B).
Our assumptions together with Theorem 4.1.4 imply that sr(C([0, 1],Mpq(A))) = 1. Further,

sr(Mm(A)) = 1 for allm ∈ N, and the map from left to right in the pullback diagram is surjective.
An application of Theorem 4.1.7 implies that sr(Zp,q ⊗ A) = 1.

By the above result, it is natural to ask the following:

Open Problem 4.1.9. Is it always true that sr(A⊗Z) = 1 if A has stable rank one?

We now turn our attention to C(X,A) for compact metric spaces X with dim(X) = 1. In
particular, we first study the algebras C(X,A), where the space X is a finite graph. As a directed
graph, write X = (V,E, r, s), where V = {v1, . . . , vn} is the set of vertices, E = {e1, . . . , em} is
the set of edges, and r, s : E → V are the range and source maps. For 1 ≤ k < m, denote by
ιk : A → Am ⊕ Am the inclusion in the kth component of the first summand. Likewise, we may
define jk : A→ Am ⊕ Am for the second summand. Next, define

ϕ : C(V,A)→ Am ⊕ Am
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by

ϕ(g) =
n∑
l=1

(
∑

k∈s−1(vl)

ιk(g(vl)) +
∑

k∈r−1(vl)

jl(g(vl))).

Finally, let π{0,1} : C([0, 1], A)→ C({0, 1}, A) denote the quotient map. Then

C(X,A) ∼= C([0, 1], Am)⊕Am⊕Am C(V,A),

where Am ⊕ Am is identified with C({0, 1}, A) in the obvious manner. This means that we have
the following diagram:

C(X,A) //____

��
�
�
�

C([0, 1], Am)

��

An ∼= C(V,A) // Am ⊕ Am

On the way of computing sr(C(X,A) for any compact metric space X with dim(X) = 1,
we will use the result that any compact Hausdorff space X that is second countable and one-
dimensional can be written as a projective limit X = lim←−(Xi, µi,j)i,j∈N, where Xi are finite graphs
and µi,j : Xj → Xi, with i ≤ j, are surjective maps (see [Eng78] pp 153).

Corollary 4.1.10. Let A be a separable C∗-algebra A with no K1 obstructions, and let X be a compact
metric space of dimension one. Then sr(C(X,A)) = 1.

Proof. Since X is one-dimensional, we may write X as a (countable) inverse limit of finite
graphs, and so, if sr(C(Y,A)) = 1 when Y is a finite graph, we will have that the stable rank
of C(X,A) is also one.

Let us compute the stable rank sr(C(Y,A)) when Y is a finite graph. If Y is a finite graph
with m edges and V is its set of vertices, by the above constrution if follows that

C(Y,A) //____

��
�
�
�

C([0, 1], Am)

��

An ∼= C(V,A) // Am ⊕ Am

.

It is clear that the two algebras at the bottom of the diagram have stable rank one, and also by
Theorem 4.1.4 the algebra in the upper right corner has stable rank one. It then follows from
Theorem 4.1.7 that sr(C(Y,A)) = 1.

To prove the corresponding result to Theorem 4.1.4 for more general spaces of dimension
one, we need to generalize Proposition 4.1.1. This is done in the next Proposition, and its proof
is inspired by [NOP01, Proposition 5.2]. (See Proposition 4.1.1.)

Recall that, given a compact metric space X , a continuous map f : X → [0, 1] is essential if
whenever a continuous map g : X → [0, 1] agrees with f on f−1({0, 1}), then g must be surjective.
A classical result of Alexandroff shows that if X is one-dimensional space, then there is an
essential map from X to [0, 1]. (A suitable generalization of the above definition can be used to
characterize when a space has dimension ≥ n, see [Eng78].)
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Proposition 4.1.11. Let A be any C∗-algebra and X be a compact metric space with dim(X) = 1. If
sr(C(X,A)) = 1, then A has no K1 obstructions.

Proof. Since A is a quotient of C(X,A) it is clear that the stable rank of A must be one. Further,
arguing as in the proof of Proposition 4.1.1, it suffices to show that K1(A) = 0.

Suppose, to reach a contradiction, that there is a unitary u in A not connected to 1. Let d
be the metric that induces the topology on X . Since X is one-dimensional, there is an essential
map f : X → [0, 1]. Let S = f−1({0}) and T = f−1({1}), which are disjoint closed sets and hence
d(S, T ) > 0. We may assume that d(S, T ) = 1. Now define a continuous function v : X → A as
follows:

v(x) = (1− d(x, T ))+ · u+ (1− d(x, S))+ · 1 .
Notice that, by definition, v|S = 1 and v|T = u. As C(X,A) has stable rank one, there is a
map w : X → GL(A) such that ‖v − w‖ < 1. Denote by GL0(A) the connected component of
GL(A) containing the identity. We have that S ⊆ w−1(GL(A)) and T ⊆ w−1(GL(A) \GL0(A)) as
u /∈ GL0(A) by assumption. Note that GL0(A) is both open and closed in GL(A), so by continuity
of w we obtain that S ′ := w−1(GL0(A)) and T ′ := w−1(GL(A) \ GL0(A)) form a partition of X
consisting of clopen sets. Thus we can define a (non-surjective) continuous function h : X →
[0, 1] such that h(S ′) = 0 and h(T ′) = 1, and this contradicts the essentiality of f .

We collect everything for a repetition of the arguments of the proof of Theorem 4.1.4 in a
more general setting.

Theorem 4.1.12. Let A be any C∗-algebra with sr(A) = 1 and X be a compact metric space of dimension
one. Then

sr(C(X,A)) =

{
1, if A has no K1 obstructions
2, else.

Although we won’t need it in the following, we would like to point out that Theorem 4.1.12
determines the real rank of certain algebras by an application of the well-known inequality
stating that RR(A) ≤ 2sr(A) − 1 and [NOP01, Proposition 5.1], which states that RR(C([0, 1]) ⊗
A) ≥ 1 for any C*-algebra A.

Corollary 4.1.13. Let A be C∗-algebra with no K1 obstructions, and let X be a compact metric space of
dimension one. Then RR(C(X,A)) = 1.

In view of Theorem 4.1.12, it is natural to ask if given a continuous field of C∗-algebrasA over
a one-dimensional space X , all of whose fibers have no K1 obstructions, is necessarily of stable
rank one. And, conversely, if sr(A) = 1 for a continuous field A over a one-dimensional space X
implies K1(Ax) = 0 for all x ∈ X . We answer positively the first named question, but the second
question can be answered in the negative, even for X = [0, 1] as we show in Proposition 4.1.18.

Theorem 4.1.14. Let X be a one-dimensional, compact metric space, and let A be a continuous field over
X such that each fiber Ax has no K1 obstructions. Then sr(A) = 1.

Proof. AsX is metrizable and one-dimensional, we can apply [NS05, Theorem 1.2] to obtain that
sr(A) ≤ supx∈X sr(C([0, 1], Ax)). Now the result follows immediately from Theorem 4.1.12.
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Corollary 4.1.15. (cf. [DEN11, Lemma 3.3]) Let X be a one-dimensional, compact metric space, and
let A be a continuous field of AF algebras. Then sr(A) = 1.

Corollary 4.1.16. Let X be a one-dimensional, compact metric space, and let A be a continuous field of
simple AI algebras. Then sr(A) = 1.

We remark that if A is a locally trivial field of C∗-algebras with base space the unit interval
then it is clear by the methods above that sr(A) = 1 implies that K1(Ax) must be trivial for all x.
For general continuous fields, this implication is false.

Proposition 4.1.17. Let B ⊂ C be C∗-algebras with stable rank one such that C has no K1 obstructions.
Let

A = {f ∈ C([0, 1], C) | f(0) ∈ B} .

Then A is a continuous field over [0, 1] with stable rank one.

Proof. It is clear that A is a C([0, 1])-algebra, which is moreover a continuous field.
Observe that A can be obtained as the pullback of the diagram

A //_____

��
�
�
� B� _

i

��

C([0, 1], C)
ev0 // // C

where ev0 is the map given by evaluation at 0. Since the rows are surjective, we have by Theo-
rem 4.1.7 that sr(A) ≤ max{sr(B), sr(C([0, 1], C))}. Because C has no K1 obstructions, we have
sr(C([0, 1]), C) = 1. Since also sr(B) = 1, we obtain that sr(A) = 1 by Theorem 4.1.4.

Proposition 4.1.18. There exists a nowhere locally trivial continuous fieldA over [0, 1] such that sr(A) =
1 and K1(Ax) 6= 0 for a dense subset of [0, 1].

Proof. Let C = C(K) and B = C(T), where K denotes the cantor set and T the unit circle.
There exists a continuous surjective map π : K → T ([Hau57, p.226]), so there is an embedding
i : B → C. Choose a dense sequence {xn}n ⊂ [0, 1] and define

Cn := {f ∈ C([0, 1], C) | f(xn) ∈ i(B)} .

Since K is zero dimensional, C is an AF-algebra and hence it has no K1 obstructions. Therefore,
Cn is a continuous field over [0, 1] of stable rank one by Proposition 4.1.17. Note that Cn(xn) ∼= B
which satisfies that K1(B) = Z. We now proceed as in Example 2.1.2 to obtain a dense subset of
such singularities.

Let A1 = C1, An+1 = An ⊗C[0,1] Cn+1 and A = lim−→(An, θn) where θn(a) = a ⊗ 1 (see [Bla95]).
Note that An can be described as

An = {f ∈ C([0, 1], C⊗n) | f(xi) ∈ C⊗i−1 ⊗B ⊗ C⊗n−i, i = 1, . . . , n} ,
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and now θn(f)(x) = f(x) ⊗ 1. Thus, An is clearly a continuous field which can moreover be
described by the following pullback diagram

An //______

��
�
�
� (B ⊗ C⊗n−1)⊕ · · · ⊕ (C⊗n−1 ⊗B)� _

��

C([0, 1], C⊗n)
evx1,...,xn // // C⊗n⊕ n. . . ⊕C⊗n

Again, since C⊗n is an AF algebra it has no K1 obstructions. Then, a similar argument as that in
the proof of Proposition 4.1.17 applies to conclude that An has stable rank one. Moreover, A has
stable rank one since it is an inductive limit of stable rank one algebras.

Now, for any x ∈ [0, 1], the fiber A(x) can be computed as lim−→An(x). Hence, if x 6∈ {xn}n,
A(x) ∼= lim−→C⊗n ∼= lim−→C(Kn) ∼= C(lim←−K

n). Since lim←−K
n is also zero dimensional, A(x) is an

AF-algebra and thus has trivial K1.
On the other hand, assume x = xk ∈ {xn}n. Now for any n ≥ k, An(xk) ∼= C⊗k−1 ⊗ B ⊗

C⊗n−k ∼= C(Kk−1×T×Kn−k). An application of the Künneth formula shows that K1(An(xk)) ∼=
K1(C⊗n−1) ⊗ K0(B) ⊕ K0(C⊗n−1) ⊗ K1(B); therefore, as C⊗n−1 is an AF-algebra and Kn−1 is a
totally disconnected space, it follows from [Rør03, Exercise 3.4] that K0(C⊗n−1) ∼= C(Kn−1,Z),
so K1(An(xk)) ∼= C(Kn−1,Z). Furthermore, K1(A(xk)) ∼= lim−→C(Kn−1,Z) ∼= C(

∏∞
i=1K,Z) 6= 0.

4.2 Hereditariness

As mentioned in the beginning of this chapter, here we will provide the study of the classical
Cuntz semigroup in categorical terms, and we will show that the classical and stabilized Cuntz
semigroup carry the same information under mild assumptions.

In order to describe W(A), keeping in mind the description of the category Cu given in Chap-
ter 3, a new category called PreCu was introduced in [ABP11], where W(A) often belongs. More-
over, it was shown in [ABP11, Proposition 4.1] that there exists a functor from PreCu to Cu which
is left-adjoint to the identity functor. This functor is basically a completion of semigroups, and,
for a wide class of C*-algebras, it sends W(A) to Cu(A) ∼= W(A⊗K). We recall some of the main
facts below.

Definition 4.2.1 ([ABP11]). Let PreCu be the category defined as follows. Objects of PreCu will be
partially ordered abelian semigroups S satisfying the properties below:

(i) Every element in S is supremum of a rapidly increasing sequence.

(ii) The relation� and suprema are compatible with addition.

Maps of PreCu are semigroup maps preserving

(i) suprema of increasing sequences (when they exist), and

(ii) the relation�.
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From this point of view Cu is the full subcategory of PreCu whose objects are those partially
ordered abelian semigroups (in PreCu) for which every increasing sequence has a supremum.

Definition 4.2.2. Let S be an object of PreCu. We say that a pair (R, ι) is a completion of S if

(i) R is an object of Cu,

(ii) ι : S → R is an order-embedding in PreCu, and

(iii) for any x ∈ R, there is a rapidly increasing sequence (xn) in S such that x = sup ι(xn).

Theorem 4.2.3. ([ABP11]) Let S be an object of PreCu. Then there exists an object S of Cu and ι : S →
S, an order-embedding map in PreCu, satisfying that (S, ι) is the completion of S.

In [ABP11] it was shown that the category PreCu does not always admit sequential induc-
tive limits. To remedy this fact, we define C as the full subcategory of PreCu whose objects
admit suprema of bounded increasing sequences. It is shown in [ABP11] that C has sequential
inductive limits and that the functor from C to Cu, defined by S 7→ S, preserves them.

Examples 4.2.4. As illustrating examples, observe that Q+ is an object of PreCu but not of C, R+ is an
object of C but not of Cu, and finally R+ ∪ {∞} is an object of Cu.

Definition 4.2.5. Let S and R be partially ordered semigroups. An order-embedding f : S → R will be
called hereditary if, whenever x ∈ R and y ∈ f(S) satisfy x ≤ y, it follows that x ∈ f(S).

Proposition 4.2.6. ([ABP11]) Let S be in PreCu. Then the embedding ι : S → S is hereditary if and
only if S is an object of C.

For a C*-algebra A, we say that W(A) is hereditary if the embedding W(A) → W(A ⊗ K)
is hereditary. Note that in this case W(A) is an object of C and Cu(A) = W(A ⊗ K) is order-
isomorphic to W(A). We remark that there are no examples known of C∗-algebras A for which
W(A) is not hereditary.

We next focus on the hereditariness of the classical Cuntz semigroup. We first state some
known results about the hereditary character of certain C*-algebras so that study more con-
cretely the hereditariness of certain continuous fields afterwards.

Lemma 4.2.7. ([ABP11]) Let A be a C*-algebra with sr(A) = 1. Then W(A) is hereditary.

Proof. Let a ∈ A⊗K+ and b ∈M∞(A)+, and assume that a - b. We are to show that there exists
c ∈M∞(A)+ such that c ∼ a.

Since a can be approximated in norm by a sequence (an) of elements from M∞(A)+, there is
a sequence εn > 0 decreasing to zero such that (a− εn)+ ∼ bn, where bn ∈M∞(A)+. As (a− εn)+

is increasing and converges in norm to a, it follows that 〈a〉 = supW(A⊗K)〈bn〉.
Notice that the sequence (〈bn〉) is bounded above in W(A) by 〈b〉. Therefore, it also has a

supremum 〈c〉 in W(A), by [BPT08, Lemma 4.3]. The arguments in [BPT08] show that there
exists δn > 0 with δn → 0 such that (c− 1/n)+ - (bn − δn)+. This implies then that

(c− 1/n)+ - (bn − δn)+ - bn - a
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in A⊗K, whence c - a.
On the other hand, since clearly bn - c for all n, and 〈a〉 is the supremum in W(A ⊗ K) of

〈bn〉, we see that a - c. Thus c ∼ a.

Definition 4.2.8. (see e.g. [Tom08b]) A unital C*-algebra A has r-comparison if whenever a, b ∈
M∞(A)+ satisfy

s(〈a〉) + r < s(〈b〉) for every s ∈ LDF(A),

then 〈a〉 ≤ 〈b〉. The radius of comparison of A is rc(A) = inf{r ≥ 0 | A has r-comparison}, which is
understood to be∞ if the infimum does not exist.

Theorem 4.2.9. ([BRT+12, Theorem 4.4.1]) Let A be a unital C*-algebra with finite radius of compari-
son. Then W(A) is hereditary.

Moreover, ifA is a unital C∗-algebra, the radius of comparison of (Cu(A), [1A]), denoted by rA, is
defined as the infimum of r ≥ 0 satisfying that if x, y ∈ Cu(A) are such that (n+1)x+m[1A] ≤ ny
for some n,m with m

n
> r, then x ≤ y ([BRT+12]). We remark that, when Cu(A) is almost

unperforated, the radius of comparison is zero, and the converse holds ifA is simple ([BRT+12]).
In general, rA ≤ rc(A), where rc(A) is the radius of comparison of the algebra, and equality holds
if A is residually stably finite (see Proposition 3.2.3 in [BRT+12]).

Note that, in particular, if A is a continuous field over a one-dimensional, compact metric
space such that each fiber has no K1 obstructions, it follows by Theorem 4.1.14 and Lemma 4.2.7
that W(A) is hereditary.

The following is probably well known. We include a proof for completeness.

Lemma 4.2.10. LetX be a compact Hausdorff space, and letA be a C(X)-algebra such thatAx has stable
rank one for all x. Then A is residually stably finite.

Proof. Let I be an ideal of A, which is also a C(X)-algebra, as well as is the quotient A/I , with
fibers (A/I)x ∼= A/(C0(X \ {x})A + I). As these are quotients of Ax, they have stable rank one,
so in particular they are stably finite, and this clearly implies A/I is stably finite.

Proposition 4.2.11. Let X be a finite dimensional compact Hausdorff space, and let A be a continuous
field over X whose fibers are simple, finite, and Z-stable. Then W(A) is hereditary.

Proof. We know from Lemma 4.2.10 that A is residually stably finite, so rc(A) = rA. We also
know from [HRW07, Theorem 4.6] thatA itself isZ-stable, whence Cu(A) is almost unperforated
([Rør04, Theorem 4.5]). Thus rA = 0. This implies thatA has radius of comparison zero and then
Theorem 4.2.9 applies to conclude that W(A) is hereditary.

Remark 4.2.12. In the previous proposition, finite dimensionality is needed to ensureZ-stability
of the continuous field. Notice that in the case of a trivial continuous fieldA = C(X,D) whereD
is simple, finite, and Z-stable, the same argument can be applied for arbitrary (infinite dimen-
sional) compact Hausdorff spaces.

Definition 4.2.13. Let X be a topological space, let S be a semigroup in PreCu. We shall denote the
set of bounded lower semicontinuous functions by Lscb(X,S). Note that, if S ∈ Cu, then Lsc(X,S) =
Lscb(X,S). Furthermore, the set just defined becomes an ordered semigroup when equipped with point-
wise order and addition.
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Recall that in Theorem 3.3.12 it is proved that, if X is finite dimensional, compact, metric
space and S ∈ Cu is countably based, then Lsc(X,S) is also in Cu. As it turns out from the
proof of this fact ([APS11]), every function in Lsc(X,S) is a supremum of a rapidly increasing
sequence of functions, each of which takes finitely many values.

Recall that a compact metric space X is termed arc-like provided X can be written as the
inverse limit of intervals. Examples of such spaces include the pseudo-arc which is a one-
dimensional space that does not contain an arc (see e.g. [Nad92]).

Proposition 4.2.14. Let X be an arc-like compact metric space, and let A be a unital, simple C∗-algebra
with stable rank one, and finite radius of comparison. Then W(C(X,A)) is hereditary.

Proof. We will prove that C(X,A) has finite radius of comparison, and then appeal to Theorem
4.2.9. Since Cu is a continuous functor and X is an inverse limit of intervals (In), by [APS11,
Proposition 5.18] we obtain that Cu(C(X,A)) = lim−→Cu(C(In, A)). Further, by [ADPS13, Theorem
2.6], we get that Cu(C(In, A)) ∼= Lsc(In, A), so it follows that

Cu(C(X,A)) ∼= lim−→Cu(C(In, A)) ∼= lim−→Lsc(In, A) ∼= Lsc(X,Cu(A)).

Now, by Lemma 4.2.10, C(X,A) is residually stably finite, and hence by [BRT+12, Proposition
3.3] rc(C(X,A)) = rC(X,A). Since the order in Lsc(X,Cu(A)) is the pointwise order, it is easy to
verify that rC(X,A) ≤ rA. Note that this is in fact an equality as A is a quotient of C(X,A) (see
condition (i) in [BRT+12, Proposition 3.2.4]).

4.3 Lower semicontinuous functions and Riesz interpolation

In this section we prove that the Grothendiek group of the Cuntz semigroup of certain conti-
nuous fields has Riesz interpolation. In some cases we apply the results on hereditariness from
Section 4.2 together with results in either Chapter 2 or [ADPS13], and then if A is simple, unital,
ASH, with slow dimension growth, we apply the description of W(C(X,A)) given in [Tik11].

Recall that we denote the Grothendieck group of W(A) by K∗0(A), and that we say that a
partially ordered semigroup (S,≤) is an interpolation semigroup if it satisfies the Riesz interpolation
property, that is, whenever a1, a2, b1, b2 ∈ S are such that ai ≤ bj for i, j = 1, 2, there exists c ∈ S
such that ai ≤ c ≤ bj for i, j = 1, 2.

Lemma 4.3.1. Let S be a semigroup in C. Then S is an interpolation semigroup if and only if its
completion S is.

Proof. Assume that S satisfies the Riesz interpolation property and let ai ≤ bj be elements in
S for i, j ∈ {1, 2}. Denote by ι : S → S the corresponding order-embedding completion map.
We may write ai = sup(ι(ani )) and bj = sup(ι(bnj )) for i, j ∈ {1, 2}, where (ani ) and (bnj ) are
rapidly increasing sequences in S. Find m1 ≥ 1 such that ι(a1

i ) ≤ ι(bm1
j ). Then a1

i ≤ bm1
j and

by the Riesz interpolation property there is c1 ∈ S such that a1
i ≤ c1 ≤ bm1

j . Suppose we have
constructed c1 ≤ · · · ≤ cn in S and m1 < · · · < mn such that aki ≤ ck ≤ bmkj for each k. Find
mn+1 > mn such that an+1

i , cn ≤ b
mn+1

j , and by the interpolation property there exists cn+1 ∈ S

with an+1
i , cn ≤ cn+1 ≤ b

mn+1

j . Now let c̄ = sup ι(cn) ∈ S, and it is clear that ai ≤ c̄ ≤ bj for all i, j.
Since ι is a hereditary order-embedding, the converse implication is immediate.
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Proposition 4.3.2. Let S ∈ C be countably based, let (S, ι) be its completion, and let X be finite di-
mensional, compact metric space. Then Lscb(X,S) is an object of C and (Lsc(X,S), i) is its completion,
where i is induced by ι.

Proof. Notice that Lsc(X,S) ∈ Cu and that i(f) = ι ◦ f defines an order-embedding.
Given f ∈ Lsc(X,S), write f = sup fn, where (fn) is a rapidly increasing sequence of func-

tions taking finitely many values. Since fn � f and thus fn(x) � f(x) for every x ∈ X , the
range of fn is a (finite) subset of ι(S). Therefore each fn belongs to Lscb(X,S).

Lemma 4.3.3. Let S ∈ Cu satisfying the property that, whenever ai, bj (i, j = 1, 2) are elements in S
and ai � bj for all i and j, then, for every a′i � ai, there is c ∈ S such that a′i � c � bj . Then S is an
interpolation semigroup.

Proof. Suppose that ai ≤ bj in S (for i, j = 1, 2). Write ai = sup ani and bj = sup bmj , where (ani )
and (bmj ) are rapidly increasing sequences in S. Since a1

i � a2
i � bj , there is m1 ≥ 1 such that

a2
i � bm1

j . By assumption, there are elements c1 � c′1 in S such that a1
i � c1 � c′1 � bm1

j .
Now, there is m2 > m1 such that c′1, a3

i � bm2
j , so a second application of the hypothesis yields

elements c2 � c′2 with c1, a
2
i � c2 � c′2 � bm2

j . Continuing in this way we find an increasing
sequence (cn) in S whose supremum c satisfies ai ≤ c ≤ bj .

Proposition 4.3.4. Let S be a countably based, interpolation semigroup in Cu, and let X be finite di-
mensional, compact metric space. Then Lsc(X,S) is an interpolation semigroup.

Proof. We apply Lemma 4.3.3, so assume fi � gj and f ′i � fi for i, j = 1, 2. Now, given x ∈ X
and applying [APS11, Proposition 5.5] (which is a version of Proposition 3.4.8 for the case of
Lsc(X,S)), there exists a neighborhoodU ′x of x and ci,x ∈ S such that f ′i(y)� ci,x � fi(y)� gj(y)
for all y ∈ U ′x. In particular, this will hold for x. Since S is an interpolation semigroup, there is
dx ∈ S such that ci,x � dx � gj(x) and, by lower semicontinuity of gj , there is a neighborhood
U ′′x such that dx � gj(y) for every y ∈ U ′′x . Thus, if Ux = U ′x ∩ U ′′x , we have fi(y)� dx � gj(y) for
all y ∈ Ux.

We may now run the argument in [APS11, Proposition 5.13] to patch the values dx into a
function h ∈ Lsc(X,S) that takes finitely many values and fi � h� gj , as desired.

Corollary 4.3.5. Let S be a countably based semigroup in C with Riesz interpolation, and let X be finite
dimensional, compact metric space. Then Lscb(X,S) has Riesz interpolation.

Proof. By Lemma 4.3.1 followed by Proposition 4.3.4, the semigroup Lsc(X,S) satisfies the Riesz
interpolation property, where S is the completion of S. On the other hand, by Proposition 4.3.2,
Lsc(X,S) is the completion of Lscb(X,S) ∈ C, whence another application of Lemma 4.3.1 yields
the conclusion.

We now apply our results to C∗-algebras of the form C(X,A).

Theorem 4.3.6. Let X be a compact metric space, and let A be a separable, C∗-algebra of stable rank one.
Then K∗0(C(X,A)) is an interpolation group in the following cases:

(i) dimX ≤ 1, K1(A) = 0 and has either real rank zero or is simple and Z-stable.
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(ii) X is arc-like, A is simple and either has real rank zero and finite radius of comparison, or else is
Z-stable.

(iii) dimX ≤ 2 with vanishing second Čech cohomology group Ȟ2(X,Z), and A is an infinite dimen-
sional AF-algebra.

Proof. (i): If A has real rank zero, it was proved in [Per97, Theorem 2.13] that W(A) satisfies
the Riesz interpolation property, and then so does Cu(A) by Lemma 4.3.1. In the case that A is
simple and Z-stable, Cu(A) is an interpolation semigroup by [Tik11, Proposition 5.4]. Since by
Theorem 3.3.13 Cu(C(X,A) is order-isomorphic to Lsc(X,Cu(A)), we obtain, using Proposition
4.3.4, that Cu(C(X,A)) is an interpolation semigroup in both cases. By Corollary 4.1.10, C(X,A)
has stable rank one, and so W(C(X,A)) is hereditary, hence also an interpolation semigroup by
Lemma 4.3.1. Thus K∗0(C(X,A)) is an interpolation group (using Remark 1.2.10).

(ii): By Proposition 4.2.14 and its proof, it follows that W(C(X,A)) is hereditary and that
Cu(C(X,A)) is order-isomorphic to Lsc(X,Cu(A)). Now the proof follows the lines of the pre-
vious case.

(iii): This follows as above, using [APS11, Corollary 3.6], so that Cu(C(X,A)) is order-isomor-
phic to Lsc(X,Cu(A)), and the proof of Proposition 4.2.14, so that W(C(X,A)) is hereditary.

We now turn our consideration to algebras of the form C(X,A) where A is a unital, simple,
non-type I ASH-algebra with slow dimension growth. We say that a C*-algebra A is subhomo-
geneous if there is a finite bound on the dimension of its irreducible representations, and it is
approximately subhomogeneous (ASH) if it can be written as a direct limit of subhomogeneous
algebras. It is noted below that the condition that a simple, unital ASH algebra A is Z-stable is
equivalent to having slow dimension growth and being non-type I. Therefore, its Cuntz semi-
group has Riesz interpolation (see below).

Proposition 4.3.7. ([Tik11, Proposition 2.9]) Let A be a simple, unital, non-type I ASH algebra. Then
A has slow dimension growth if and only if A is Z-stable.

Proposition 4.3.8. ([Tik11, Proposition 5.4]) Let A be a simple Z-stable C*-algebra. Then Cu(A) has
Riesz interpolation.

In this setting we are able to obtain the same conclusion as above without the necessity to go
over proving interpolation of Cu(C(X,A)). We first need a preliminary result.

Proposition 4.3.9. Let N be a partially ordered abelian semigroup and let S be an ordered subsemigroup
of N such that S +N ⊆ S. Then G(S) and G(N) are isomorphic as partially ordered abelian groups.

Proof. Let us denote by γ : S → G(S) and η : N → G(N) the natural Grothendieck maps. Fix
c ∈ S, and define α : N → G(S) by α(a) := γ(a + c) − γ(c). Using that S + N ⊆ S, it is easy to
verify that the definition of α does not depend on c. Now, if a, b ∈ N , we have

α(a+ b) = γ(a+ b+ c)− γ(c) = γ(a+ b+ c) + γ(c)− 2γ(c)

= γ(a+ c+ b+ c)− 2γ(c) = (γ(a+ c)− γ(c)) + (γ(b+ c)− γ(c))

= α(a) + α(b) ,
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so that α is a homomorphism. It is clear that α(N) ⊆ G(S)+.
By the universal property of the Grothendieck group, there exists a group homomorphism

α′ : G(N) → G(S) such that α′(η(a) − η(b)) = α(a) − α(b). Note that α′ is injective. Indeed, if
α(a)− α(b) = 0, then γ(a + c) = γ(b + c) and so a + c + c′ = b + c + c′ for some c′ ∈ S, and thus
η(a) = η(b).

If η(a)−η(b) ∈ G(N)+ with b ≤ a inN , then b+c ≤ a+c in S and so γ(a+c)−γ(b+c) ∈ G(S)+.
Therefore

α′(η(a)− η(b)) = α(a)− α(b)

= γ(a+ c)− γ(c)− (γ(b+ c)− γ(c)) = γ(a+ c)− γ(b+ c) ,

which shows that α′(G(N)+) ⊆ G(S)+.
Observe that, if a ∈ S ⊆ N , then α(a) = γ(a+ c)− γ(c) = γ(a). This implies that any element

in G(S) has the form

γ(a)− γ(b) = γ(a+ c)− γ(b+ c) = α′(η(a+ c)− η(b+ c))

and so α′ is surjective and α′(G(N)+) = α(G(S)+).

Given semigroups S and N as above, we will say that S absorbs N .
Recall that given a C∗-algebra A, we denote by W(A)+ the classes of those elements in

M∞(A)+ which are not Cuntz equivalent to a projection. Moreover, if A is unital and has
sr(A) = 1, then W(A)+ absorbs W(A) (see Corollary 1.3.25). If now X is finite dimensional,
compact metric space, define

Lscb(X,W(A)+) = {f ∈ Lscb(X,W(A)) | f(X) ⊆W(A)+} .

We remark that it also becomes clear from Corollary 1.3.25 that the set Lscb(X,W(A)+) absorbs
Lscb(X,W(A)).

Theorem 4.3.10. Let X be finite dimensional, compact metric space, and let A be a unital, simple, non-
type I, ASH algebra with slow dimension growth. Then K∗0(C(X,A)) is an interpolation group.

Proof. A description of W(C(X,A)) for the algebras satisfying the hypothesis is given in [Tik11,
Corollary 7.1] by means of pairs (f, P ), which consists of a lower semicontinuous function
f ∈ Lscb(X,W(A)), and a collection P , indexed over [p] ∈ V (A), of projection valued func-
tions in C(f−1([p]), A ⊗ K) modulo a certain equivalence relation. If f ∈ Lscb(X,W(A)+),
then clearly f−1([p]) = ∅ for all [p] ∈ V (A) thus notably simplifying the description of these
elements. Namely, there is only one pair of the form (f, P0), where P0 does not depend on
f ∈ Lscb(X,W(A)+). In particular, the assignment f 7→ (f, P0) defines an order-embedding
Lscb(X,W(A)+)→W(C(X,A)) whose image absorbs W(C(X,A)). As we also have that the set
Lscb(X,W(A)+) absorbs Lscb(X,W(A)), we have by Proposition 4.3.9 that

K∗0(C(X,A)) ∼= G(Lscb(X,W(A)+)) ∼= G(Lscb(X,W(A))) ,

as partially ordered abelian groups. Since W(A) is an interpolation semigroup (Proposition
4.3.8), we conclude, using Corollary 4.3.5 and Remark 1.2.10, that K∗0(C(X,A)) is an interpolation
group.
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We now turn our attention to continuous fields over one-dimensional spaces. For such al-
gebras we use the representation of the Cuntz semigroup computed in terms of continuous
sections over a topological space in Chapter 3.

Proposition 4.3.11. Let X be a one-dimensional, compact metric space, and let S : VX → Cu be a
surjective sheaf such that Sx is an interpolation semigroup for each x ∈ X . Then Γ(X,FS) is also an
interpolation semigroup.

Proof. We apply Lemma 4.3.3, and so suppose that f ′i � fi � gj , for i, j = 1, 2. Given x ∈ X ,
there are elements ai,x ∈ Sx such that f ′i(x) � ai,x � fi(x) for each i, and that satisfy condition
(ii) in Proposition 3.4.8 . As ai,x � fi(x), there are by continuity a closed neighborhood Vx of x
with x ∈ V̊x and si � s′i ∈ S such that ai,x � ŝi(x) and ŝ′i(y) � fi(y) for all y ∈ Vx. Now, by
Proposition 3.4.8, there is a closed neighborhood Wx ⊆ Vx (whose interior contains x) such that
f ′i(y) ≤ ŝi(y)� ŝ′i(y)� fi(y) for all y ∈ Wx.

At x, we have that fi(x)� gj(x), so by the interpolation property assumed on Sx and Lemma
3.4.9 there are elements c� c′ in S depending on x such that

f ′i(x) ≤ ŝi(x)� ŝ′i(x)� ĉ(x)� ĉ′(x)� gj(x).

Since c� c′, we may apply Corollary 3.4.10 to find a closed subset W ′
x ⊆ W̊x such that πW ′x(c)�

gj |W ′x for all j. Since si � s′i for each i, another application of Corollary 3.4.10 yields a closed
subset W ′′

x ⊆ W̊x such that πW ′′x (s′i) � π|W ′′x (cx) for all i. We therefore conclude that f ′i(y) �
ĉx(y) � gj(y) for all y ∈ W ′

x ∩W ′′
x and for all i, j ∈ {1, 2}. By compactness we obtain a finite

cover W1, . . . ,Wn of X and elements c1, . . . , cn ∈ S such that f ′i(y)� ĉi(y)� gj(y) for all y ∈ Wi.
We now run the argument in Proposition 3.4.15 to patch the sections ĉi into a continuous section
h ∈ Γ(X,FS) such that f ′i � h� gj .

Theorem 4.3.12. Let X be a one-dimensional, compact metric space. Let A be a continuous field over X
such that, for all x ∈ X , Ax has stable rank one, trivial K1, and is either of real rank zero, or simple and
Z-stable. Then K∗0(A) is an interpolation group.

Proof. By Theorem 3.4.19 we have an order-isomorphism between Cu(A) and Γ(X,FCu(A)), and
the latter is an interpolation semigroup by Proposition 4.3.11. Furthermore, A has stable rank
one by Theorem 4.1.14, and so W(A) is hereditary by Lemma 4.2.7. Hence, W(A) will also
be an interpolation semigroup (Lemma 4.3.1) and K∗0(A) is an interpolation group by Remark
1.2.10.

4.4 Structure of dimension functions

In this section we apply the above results to confirm the conjectures of Blackadar and Handel-
man for certain continuous fields of C∗-algebras.

Recall that if A is unital the set of dimension functions is

DF(A) = St(W(A), 〈1A〉) = St(K∗0(A),K∗0(A)+, [1A]).
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Theorem 4.4.1. Let X be a finite dimensional, compact metric space, and let A be a separable, unital
C∗-algebra. Then DF(A) is a Choquet simplex in the following cases:

(i) dimX ≤ 1 and A is a continuous field such that, for all x ∈ X , Ax has stable rank one, trivial K1

and is either of real rank zero or else simple and Z-stable.

(ii) X is an arc-like space and A = C(X,B) where B is simple, with real rank zero, and has finite
radius of comparison, or else B is simple and Z-stable.

(iii) dimX ≤ 2, Ȟ2(X,Z) = 0, and A = C(X,B) with B an infinite dimensional AF-algebra.

(iv) A = C(X,B), where B is a non-type I, simple, ASH algebra with slow dimension growth.

Proof. By the results of Section 4.3, K∗0(A) is an interpolation group in all the cases. Then, by
Theorem 1.2.9, DF(A) is a Choquet simplex.

Proposition 4.4.2. Let X and Y be compact Hausdorff spaces. Put

Gb(X, Y ) = {f : X × Y → R | f = g − h with g, h ∈ Lscb(X × Y )++} .

Then

(i) Gb(X, Y ), equipped with the pointwise order, is a partially ordered abelian group.

(ii) For any f ∈ Lscb(X,Lscb(Y )++), the map f̃ : X × Y → R+, defined by f̃(x, y) = f(x)(y), is
lower semicontinuous.

(iii) The map β : G(Lscb(X,Lscb(Y )++))→ Gb(X, Y ) defined by

β([f ]− [g]) = f̃ − g̃

is an order-embedding.

Proof. (i): This is trivial.
(ii): We have to show that the set Uα = {(x, y) | f(x)(y) > α} is open for all α > 0.
Fix (x0, y0) ∈ Uα. Since f(x0)(y0) > α, we may consider f(x0)(y0) > α + ε′ > α + ε > α for

some ε, ε′ > 0. Since f(x0) is lower semicontinuous, there exists an open set V ′y0 ⊆ Y containing
y0 such that f(x0)(y) > α + ε for all y ∈ V ′y0 . Now, as Y is compact, f(x0) is bounded away from
zero and there is 0 < ε0 < α such that f(x0)(y) > ε0 for all y ∈ Y .

Let Vy0 be an open neighboorhood of y0 such that Vy0 ⊆ V y0 ⊆ V ′y0 . Define g ∈ Lscb(Y )++

by g(y) = α + ε when y ∈ Vy0 and g(y) = ε0 < α otherwise. Observe that, by the way we have
chosen Vy0 and the construction of g, for every y ∈ Y , there exists Uy containing y and λy ∈ R+

such that g(y′) ≤ λy < f(x0)(y′) whenever y′ ∈ Uy. This implies that g � f(x0) in Lscb(Y ).
Since f is lower semicontinuous, {x ∈ X | f(x) � g} is an open set containing x0. Thus, we

may find an open set Ux0 such that x0 ∈ Ux0 and f(x) � g for all x ∈ Ux0 . Now, for (x, y) in the
open set Ux0 × Vy0 ⊆ X × Y we have f̃(x, y) = f(x)(y) > g(y) = α + ε > α.

(iii): We first need to check that β is well-defined. Suppose that [f ] − [g] = [f ′] − [g′] in
G(Lscb(X,Lscb(Y )++)). Then there is h such that f + g′ + h = f ′ + g + h. Since h(x) is bounded



4.4. Structure of dimension functions 89

for every x, we obtain f(x)(y) + g′(x)(y) = f ′(x)(y) + g(x)(y) for all x and y, and so f(x)(y) −
g(x)(y) = f ′(x)(y)− g′(x)(y). By (ii), it is clear that β([f ]− [g]) ∈ Gb(X, Y ), and that it is a group
homomorphism. If [f ]− [g] ∈ G(Lscb(X,Lscb(Y )++)), then g ≤ f , if and only if g(x)(y) ≤ f(x)(y)
for each x and y, proving that β is an order-embedding.

The result below provides a good characterization of the set of extreme points of a convex
set K. As usual, we denote this set by ∂eK.

Lemma 4.4.3. Let X be a compact Hausdorff space and let A be a unital C∗-algebra. Then there exists a
homeomorphism between ∂eT(C(X,A)) and X × ∂eT(A). Moreover, if τ ∈ ∂eT(C(X,A)) corresponds
to (x, τA), then dτ (b) = dτA(b(x)) for any b ∈M∞(C(X,A))+.

Proof. Recall that a normalized trace on a unital C∗-algebra is extremal if, and only if, the weak
closure of its corresponding GNS-representation is a factor (i.e. it has trivial center), see, e.g.
[Dix77, Theorem 6.7.3]. Now identify C(X,A) with B := C(X) ⊗ A. Let τ ∈ ∂eT(B) and let
(πτ ,Hτ , v) be the GNS-triple associated to τ , and we know that πτ (B)′′ is a factor.

Since C(X) ⊗ 1A is in the center of B, we have that πτ (C(X) ⊗ 1A) is in the center of πτ (B)′′,
whence πτ (C(X) ⊗ 1A) = C. Thus, the restriction of πτ to C(X) ⊗ 1A corresponds to a point
evaluation evx0 for some x0 ∈ X .

Next,

τ(f ⊗ a) = 〈πτ (f ⊗ a)v, v〉 = 〈evx0(f)πτ (1⊗ a)v, v〉 = f(x0)〈πτ (1⊗ a)v, v〉 = f(x0)τ(1⊗ a) ,

for all f ∈ C(X) and a ∈ A. Therefore τ = evx0⊗ τA where τA is the restriction of τ to 1⊗A. Note
that τA is extremal as τ is.

We thus have a map ψ : ∂eT(B) → ∂eT(C(X)) × ∂eT(A) defined by ψ(τ) = (evx0 , τA), which
is easily seen to be a homeomorphism.

Now identify Mn(C(X,A)) with C(X,Mn(A)) and let b ∈ C(X,Mn(A))+. Let τ ∈ ∂eT(B) and
ψ(τ) = (x, τA). Then

dτ (b) = lim
k→∞

τ(b1/k) = lim
k→∞

τA(b1/k(x)) = dτA(b(x)) .

Recall that if K is a compact convex set, we denote by LAffb(K)++ the semigroup of (real-
valued) bounded, strictly positive, lower semicontinuous, and affine functions on K. In parti-
cular, this is a subsemigroup of the group Affb(K) of all real-valued, bounded affine functions
defined on K. Now, given an exact C∗-algebra A, we may define a semigroup homomorphism

ϕ : W(A)+ → LAffb(T(A))+ ,

where T(A) is the trace simplex of A, by ϕ(〈a〉)(τ) = dτ (a) (see, e.g. Chapter 1, [APT11],
[PT07]). For ease of notation, we shall denote ϕ(〈a〉) = â. Notice that, if A is simple, then
â ∈ LAffb(T(A))++ if a is non-zero.

Observe also that there is an ordered morphism α : W(C(X,A)) → Lscb(X,W(A)), given by
α(〈b〉)(x) = 〈b(x)〉.
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We next use the notion of Bauer simplex. A Choquet simplex is called a Bauer simplex if the set
of its extreme points is closed. Bauer simplices are also characterized as those simplices K such
that every real-valued continuous function on ∂e(K) can be extended to a (unique) continuous
affine function on K ([Bau61]).

Proposition 4.4.4. Let X be a compact Hausdorff space, and let A be a separable, infinite dimensional,
simple, unital and exact C∗-algebra with strict comparison and such that T(A) is a Bauer simplex. Then
there is an order-embedding

G(Lscb(X,W(A)))→ Affb(T(C(X,A))) .

Moreover, given b ∈ C(X,Mn(A))+, this map sends the class of the function α(〈b〉) to b̂.

Proof. Since Lscb(X,W(A)+) absorbs Lscb(X,W(A)), there is by Lemma 4.3.9 an order-isomor-
phism between G(Lscb(X,W(A))) and G(Lscb(X,W(A)+)). In fact, if we take 〈a〉 ∈W(A)+, and
let v : X →W(A)+ be the function defined as v(x) = 〈a〉, the previous isomorphism takes [α(〈b〉)]
to [α(〈b〉) + v]− [v]. Next, as A has strict comparison, the semigroup homomorphism ϕ defined
previous to this proposition is an order-embedding (see [PT07, Theorem 4.4]) and thus induces

G(Lscb(X,W(A)+))→ G(Lscb(X,LAffb(T(A))++)) ,

which is also an order-embedding, and takes [α(〈b〉) + v]− [v] to [ϕ̃(α(〈b〉)) + â]− [â], where we
identify â with a constant function and ϕ̃(α(〈b〉))(x) = b̂(x). Now, since T(A) is a Bauer simplex,
the restriction to the extreme boundary yields a semigroup isomorphism r : LAffb(T(A))++ ∼=
Lscb(∂eT(A))++ (see, e.g. [Goo96, Lemma 7.2]). Combining these observations with condition
(iii) in Proposition 4.4.2, we obtain an order-embedding

G(Lscb(X,Lscb(∂eT(A))++))→ Gb(X, ∂eT(A)) ,

that sends [r(ϕ̃(α(〈b〉)) + â)] − [r(â)] to r(ϕ̃(α(〈b〉)) + â)∼ − r(â)∼, which equals the function
(x, τA) 7→ dτA(b(x)). Finally, upon identifying the compact space X × ∂eT(A) with ∂eT(C(X,A))
(by Lemma 4.4.3), a second use of [Goo96, Lemma 7.2] allows us to order-embed Gb(X, ∂eT(A))

into Affb(T(C(X,A))), and the map (x, τA) 7→ dτA(b(x)) is sent to b̂, as desired.

Theorem 4.4.5. Let X be a finite dimensional, compact metric space, and let A be a unital, separable
infinite dimensional and exact C∗-algebra of stable rank one such that T(A) is a Bauer simplex. Then
LDF(C(X,A)) is dense in DF(C(X,A)) in the following cases:

(i) dimX ≤ 1 and A is simple, K1(A) = 0 and A has strict comparison.

(ii) X is arc-like, A is simple, has real rank zero, and strict comparison.

(iii) dimX ≤ 2 and Ȟ2(X,Z) = 0, with A an infinite dimensional AF-algebra.

(iv) A is a non-type I, simple, unital ASH algebra with slow dimension growth.
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Proof. (i): By Theorem 3.3.13, one has that Cu(C(X,A)) and Lsc(X,Cu(A)) are order-isomorphic.
Moreover, W(C(X,A)) is hereditary by Theorem 4.1.12 and Lemma 4.2.7. By the hereditari-
ness of W(C(X,A)) and Proposition 4.3.2, it follows that W(C(X,A)) is order-isomorphic to
Lscb(X,W(A)).

Now, by Proposition 4.4.4 we obtain that K∗0(C(X,A)) is order-isomorphic to a (pointwise
ordered) subgroup G of Affb(T(C(X,A))) in such a way that [b] is mapped to b̂, and in particular
[1] is sent to the constant function 1.

Applying the same argument as in [BPT08, Theorem 6.4], which we next sketch, we get the
desired result. If d ∈ DF(C(X,A)), then it can be identified with a normalized state (at 1) on G.
By [BPT08, Lemma 6.1], there is a net of traces (τi) in T(C(X,A)) such that d(s) = limi s(τi) for
any s ∈ G. In particular, d([b]) = limi b̂(τi) = limi dτi(b) for b ∈M∞(C(X,A))+.

(ii): This case uses the same arguments as (i), replacing Theorem 3.3.13 by Proposition 4.2.14
and its proof.

(iii): Proceed as in case (i), using [APS11, Corollary 3.6] instead of Theorem 3.3.13 and Re-
mark 4.2.12.

(iv): As in the proof of Theorem 4.3.10, we see that K∗0(C(X,A)) ∼= G(Lscb(X,W(A))) as
ordered groups, and then we may use the same argument as in case (i).
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