Compact convex sets that admit a strictly convex function

Luis Carlos García Lirola

Joint work with José Orihuela and Matías Raja

Universidad de Murcia

September 7, 2015

Research partially supported by

- Introduction
- $oldsymbol{0}$ The class \mathcal{SC}
- Faces and exposed points
- Ordinal indices

- Introduction
- \bigcirc The class \mathcal{SC}
- Faces and exposed points
- Ordinal indices

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex.

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that $x \in K$ is an **extreme point** if x = y = z whenever $x = \frac{y+z}{2}, y, z \in K$.

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that $x \in K$ is an **extreme point** if x = y = z whenever $x = \frac{y+z}{2}, y, z \in K$. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that $x \in K$ is an **extreme point** if x = y = z whenever $x = \frac{y+z}{2}, y, z \in K$. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that $x \in K$ is an **extreme point** if x = y = z whenever $x = \frac{y+z}{2}, y, z \in K$. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that $x \in K$ is an **extreme point** if x = y = z whenever $x = \frac{y+z}{2}, y, z \in K$. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

We say that a point $x \in K$ is an **exposed point** of K if $\{x\}$ is a face of K.

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that $x \in K$ is an **extreme point** if x = y = z whenever $x = \frac{y+z}{2}, y, z \in K$. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

We say that a point $x \in K$ is an **exposed point** of K if $\{x\}$ is a face of K.

A function $f: K \to \mathbb{R}$ is said to be *lower semicontinuous* if $\liminf f(x_{\alpha}) \ge f(x)$ whenever $x_{\alpha} \stackrel{\alpha}{\to} x$.

A function $f: K \to \mathbb{R}$ is said to be *lower semicontinuous* if $\liminf f(x_{\alpha}) \ge f(x)$ whenever $x_{\alpha} \stackrel{\alpha}{\to} x$.

Fact

A norm in a dual Banach space is a dual norm if and only if it is ω^* -lower semicontinuous.

A function $f: K \to \mathbb{R}$ is said to be *lower semicontinuous* if $\liminf f(x_{\alpha}) \ge f(x)$ whenever $x_{\alpha} \stackrel{\alpha}{\to} x$.

Fact

A norm in a dual Banach space is a dual norm if and only if it is ω^* -lower semicontinuous.

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f: K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then ext K contains a dense subset of continuity points of f.

A function $f: K \to \mathbb{R}$ is said to be *lower semicontinuous* if $\liminf f(x_{\alpha}) \ge f(x)$ whenever $x_{\alpha} \stackrel{\alpha}{\to} x$.

Fact

A norm in a dual Banach space is a dual norm if and only if it is ω^* -lower semicontinuous.

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f: K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then ext K contains a dense subset of continuity points of f.

Is it possible to replace ext K by exp K in the above theorem?

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Fact

If K is metrizable then there exists $f:K\to\mathbb{R}$ continuous and strictly convex.

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Fact

If K is metrizable then there exists $f:K\to\mathbb{R}$ continuous and strictly convex.

It suffices to take $f = \sum_{n \ge 1} \frac{1}{2^n} h_n(x)^2$, where $\{h_n\}_n$ is a sequence of affine functions separating the points of K.

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Fact

If K is metrizable then there exists $f:K\to\mathbb{R}$ continuous and strictly convex.

It suffices to take $f = \sum_{n \geq 1} \frac{1}{2^n} h_n(x)^2$, where $\{h_n\}_n$ is a sequence of affine functions separating the points of K.

Theorem (Hervé, 1961)

If there exists $f: K \to \mathbb{R}$ continuous and strictly convex, then K is metrizable.

- Introduction
- $oldsymbol{2}$ The class \mathcal{SC}
- Faces and exposed points
- Ordinal indices

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f: K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f: K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

We denote by SC the class composed of all the families SC(X) for any locally convex space X.

Theorem (Ribarska (1990))

If $K \in \mathcal{SC}$ then K is fragmentable by a finer metric.

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Raja (2009))

If $K \in \mathcal{SC}$ then ext K contains a dense subset which is G_{δ} in K and completely metrizable.

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Raja (2009))

If $K \in SC$ then ext K contains a dense subset which is G_{δ} in K and completely metrizable.

Theorem (Godefroy-Li (1990))

Let K be a compact topological group. If $P(K) \in \mathcal{SC}(C(K)^*, \omega^*)$ (Radon probabilities), then K is metrizable.

Theorem (Ribarska (1990))

If $K \in \mathcal{SC}$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Raja (2009))

If $K \in SC$ then ext K contains a dense subset which is G_{δ} in K and completely metrizable.

Theorem (Godefroy-Li (1990))

Let K be a compact topological group. If $P(K) \in \mathcal{SC}(C(K)^*, \omega^*)$ (Radon probabilities), then K is metrizable.

Theorem (Talagrand (1986))

If $K \in \mathcal{SC}$ then $[0, \omega_1]$ does not embed into K.

Elementary properties of \mathcal{SC}

Elementary properties of \mathcal{SC}

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.
- SC(X) is stable by convex hull of finite unions.
- ullet \mathcal{SC} is stable by finite cartesian products.
- ullet \mathcal{SC} is stable by continuous linear images.

Elementary properties of \mathcal{SC}

- SC(X) is stable by translations and homothetics.
- SC(X) is stable by set sums.
- $\mathcal{SC}(X)$ is stable by convex hull of finite unions.
- ullet \mathcal{SC} is stable by finite cartesian products.
- ullet \mathcal{SC} is stable by continuous linear images.
- If $K \in \mathcal{SC}(X)$, then it is witnessed by a *bounded* strictly convex lower semicontinuous function.
- If $K \in \mathcal{SC}(X)$, then it is witnessed by the square of a lower semicontinuous rotund norm defined on span(K).

 $K \in \mathcal{SC}$ if and only if it is linearly homeomorphic to a weak* compact convex subset of a rotund dual Banach space.

 $K \in \mathcal{SC}$ if and only if it is linearly homeomorphic to a weak* compact convex subset of a rotund dual Banach space.

Recall that a norm $\| \|$ is said to be **rotund** if, given x, y satisfying $||x+y||^2=2||x||^2+2||y||^2$, we have x=y.

 $K \in \mathcal{SC}$ if and only if it is linearly homeomorphic to a weak* compact convex subset of a rotund dual Banach space.

Recall that a norm $\| \|$ is said to be **rotund** if, given x, y satisfying $||x+y||^2 = 2||x||^2 + 2||y||^2$, we have x = y. For instance, $(c_0, \| \|_{\infty})$ is not rotund. Nevertheless, $||| ||| = \| \|_{\infty} + \| \|_2$ is an equivalent rotund norm on c_0 .

 $K \in \mathcal{SC}$ if and only if it is linearly homeomorphic to a weak* compact convex subset of a rotund dual Banach space.

Recall that a norm $\| \|$ is said to be **rotund** if, given x,y satisfying $||x+y||^2=2||x||^2+2||y||^2$, we have x=y. For instance, $(c_0,\| \|_{\infty})$ is not rotund. Nevertheless, $||| ||| = \| \|_{\infty} + \| \|_2$ is an equivalent rotund norm on c_0 .

Theorem (Orihuela-Smith-Troyanski (2012))

Let X^* be a dual Banach space. Then (B_{X^*}, ω^*) has (*) with slices if and only if X^* admits a dual rotund norm.

 $K \in \mathcal{SC}$ if and only if it is linearly homeomorphic to a weak* compact convex subset of a rotund dual Banach space.

Recall that a norm $\| \|$ is said to be **rotund** if, given x,y satisfying $||x+y||^2=2||x||^2+2||y||^2$, we have x=y. For instance, $(c_0,\| \|_{\infty})$ is not rotund. Nevertheless, $||| ||| = \| \|_{\infty} + \| \|_2$ is an equivalent rotund norm on c_0 .

Theorem (Orihuela-Smith-Troyanski (2012))

Let X^* be a dual Banach space. Then (B_{X^*}, ω^*) has (*) with slices if and only if X^* admits a dual rotund norm.

Let X be locally convex topological vector space and $K \subset X$ be compact and convex. Then $K \in \mathcal{SC}(X)$ if and only if K has (*) with slices.

- Introduction
- $oldsymbol{0}$ The class \mathcal{SC}
- Faces and exposed points
- Ordinal indices

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f: K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then extK contains a dense subset of continuity points of f.

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f: K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then extK contains a dense subset of continuity points of f.

Let $f:X\to\mathbb{R}$ convex lower semicontinuous and bounded on compact subsets. Then for every compact convex subset $K\subset X$ and every open slice $S\subset K$, there is a face $F\subset S$ of K such that $f|_K$ is constant and continuous on F.

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f: K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then extK contains a dense subset of continuity points of f.

Let $f:X\to\mathbb{R}$ convex lower semicontinuous and bounded on compact subsets. Then for every compact convex subset $K\subset X$ and every open slice $S\subset K$, there is a face $F\subset S$ of K such that $f|_K$ is constant and continuous on F.

Let $f: X \to \mathbb{R}$ be lower semicontinuous, strictly convex and bounded on compact sets. Then for every $K \subset X$ compact and convex, the set of points in K which are both exposed and continuity points of $f|_K$ is dense in ext(K).

Corollary (Asplund (1968) + Larman-Phelps (1979))

Let X^* be a dual rotund Banach space. Then every convex ω^* -compact is the closed convex hull of its ω^* -exposed points.

Corollary (Asplund (1968) + Larman-Phelps (1979))

Let X^* be a dual rotund Banach space. Then every convex ω^* -compact is the closed convex hull of its ω^* -exposed points.

Assume that $K \in \mathcal{SC}(X)$. Then K is the closed convex hull of its exposed points.

Consider the function

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

Consider the function

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

• If f is convex then $\rho(x, y) \ge 0$ and

$$\rho(x,y) = 0$$
 if and only in $f(x) = f(y) = f(\frac{x+y}{2})$

Consider the function

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

• If f is convex then $\rho(x,y) \ge 0$ and

$$\rho(x,y) = 0$$
 if and only in $f(x) = f(y) = f(\frac{x+y}{2})$

• Moreover, if f is strictly convex then ρ is a *symmetric*, that is,

$$\rho(x,y) = 0$$
 if and only if $x = y$

 \bullet We shall consider a notion of diameter with respect to ρ

$$\rho\text{-diam}(A) = \sup\{\rho(x,y) : x,y \in A\} :$$

ullet We shall consider a notion of diameter with respect to ho

$$\rho\text{-diam}(A) = \sup\{\rho(x, y) : x, y \in A\} :$$

• Notice that if F is a face of K and ρ -diam(F) = 0 then f is constant on F and continuous at each point of F.

ullet We shall consider a notion of diameter with respect to ho

$$\rho\text{-diam}(A) = \sup\{\rho(x, y) : x, y \in A\} :$$

- Notice that if F is a face of K and ρ -diam(F) = 0 then f is constant on F and continuous at each point of F.
- We can use the existence of continuity extreme points of f to find slices of K with arbitrarily small ρ -diameter.

ullet We shall consider a notion of diameter with respect to ho

$$\rho\text{-diam}(A) = \sup\{\rho(x,y) : x,y \in A\} :$$

- Notice that if F is a face of K and ρ -diam(F) = 0 then f is constant on F and continuous at each point of F.
- We can use the existence of continuity extreme points of f to find slices of K with arbitrarily small ρ -diameter.
- Then Baire category arguments in RNP theory can be used to find faces where *f* remains constant.

- Introduction
- \bigcirc The class \mathcal{SC}
- Faces and exposed points
- Ordinal indices

Let K be a convex and compact subset of a locally convex space

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \text{diam}(S) \ge \varepsilon\}$$

Let K be a convex and compact subset of a locally convex space

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \text{diam}(S) \ge \varepsilon\}$$

Let K be a convex and compact subset of a locally convex space

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \text{diam}(S) \ge \varepsilon\}$$

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \rho\text{-diam}(S) \geq \varepsilon\}$$

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \rho\text{-diam}(S) \geq \varepsilon\}$$

• $[K]_{\varepsilon}^{\alpha+1} = [[K]_{\varepsilon}^{\alpha}]_{\varepsilon}'$ and intersection in case of limit ordinals.

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \rho\text{-diam}(S) \geq \varepsilon\}$$

- $[K]_{\varepsilon}^{\alpha+1} = [[K]_{\varepsilon}^{\alpha}]_{\varepsilon}'$ and intersection in case of limit ordinals.
- $Dz_{\rho}(K,\varepsilon) = \min\{\alpha : [K]^{\alpha}_{\varepsilon} = \emptyset\}.$
- $Dz_{\rho}(K) = \sup_{\varepsilon > 0} Dz_{\rho}(K, \varepsilon)$.

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \rho\text{-diam}(S) \geq \varepsilon\}$$

- $[K]_{\varepsilon}^{\alpha+1}=[[K]_{\varepsilon}^{\alpha}]_{\varepsilon}'$ and intersection in case of limit ordinals.
- $Dz_{\rho}(K,\varepsilon) = \min\{\alpha : [K]^{\alpha}_{\varepsilon} = \emptyset\}.$
- $Dz_{\rho}(K) = \sup_{\varepsilon>0} Dz_{\rho}(K, \varepsilon)$.
- $Sz_{\rho}(K)$ is defined by using open sets instead of slices.

The following assertions are equivalent:

- i) $K \in SC$;
- ii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega$;
- iii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega_1$.

The following assertions are equivalent:

- i) $K \in SC$;
- ii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega$;
- iii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega_1$.

If there exists a metric d on K such that $Sz_d(K) \leq \omega_1$ then K is Gruenhage.

References References

References

J. Orihuela, R. J. Smith, and S. Troyanski. "Strictly convex norms and topology". In: *Proc. London Math. Soc.* 104.3 (2012), pp. 197–222.

L.C. García-Lirola, J. Orihuela, and M. Raja. "Compact convex sets that admits a lower semicontinuous strictly convex function". to appear. 2015.

M. Hervé. "Sur les représentations intégrales à l'aide des points extrémaux dans un ensemble compact convexe métrisable". In: *C. R. Acad. Sci. Paris* 253 (1961), pp. 366–368.

M. Raja. "Continuity at the extreme points". In: *J. Math. Anal. Appl.* 350.2 (2009), pp. 436–438.

R.D. Bourgin. Geometric Aspects of Convex Sets with the Radon-Nikodỳm Property. Springer-Verlag, 1983.

References References

References

J. Orihuela, R. J. Smith, and S. Troyanski. "Strictly convex norms and topology". In: *Proc. London Math. Soc.* 104.3 (2012), pp. 197–222.

L.C. García-Lirola, J. Orihuela, and M. Raja. "Compact convex sets that admits a lower semicontinuous strictly convex function". to appear. 2015.

M. Hervé. "Sur les représentations intégrales à l'aide des points extrémaux dans un ensemble compact convexe métrisable". In: *C. R. Acad. Sci. Paris* 253 (1961), pp. 366–368.

M. Raja. "Continuity at the extreme points". In: *J. Math. Anal. Appl.* 350.2 (2009), pp. 436–438.

R.D. Bourgin. Geometric Aspects of Convex Sets with the Radon-Nikodỳm Property. Springer-Verlag, 1983.

Thank you for your attention