Compact convex sets that admit a strictly convex function

Luis Carlos García-Lirola

Joint work with José Orihuela and Matías Raja

Universidad de Murcia

September 26, 2015

Research partially supported by

(日) (四) (王) (王) (王) (王)

Outline

- Introduction
- $\textcircled{O} \ \ \mathsf{The class} \ \mathcal{SC}$
- Saces and exposed points
- Ordinal indices

Outline

Introduction

- $\textcircled{O} \ \ \mathsf{The class} \ \mathcal{SC}$
- Faces and exposed points
- Ordinal indices

Extreme points, exposed points and faces

Extreme points, exposed points and faces

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex.

Extreme points, exposed points and faces

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 正正 ろくの

Extreme points, exposed points and faces

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

We say that a point $x \in K$ is an **exposed point** of K if $\{x\}$ is a face of K.

* = + * = + = = • • • •

Extreme points, exposed points and faces

Let X be a locally convex space.

Definition

Let $K \subset X$ be compact and convex. We say that a closed subset $F \subset K$ is a **face** if there is a continuous affine function $w : K \to \mathbb{R}$ such that

$$F = \{x \in K : w(x) = \sup\{w, K\}\}.$$

We say that a point $x \in K$ is an **exposed point** of K if $\{x\}$ is a face of K.

Each exposed point of K is an extreme point of K.

Motivation (I)

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f : K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then ext K contains a dense subset of continuity points of f.

Motivation (I)

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f : K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then ext K contains a dense subset of continuity points of f.

Is it possible to replace ext K by exp K in the above theorem?

Motivation (II)

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Motivation (II)

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Fact

If K is compact convex metrizable then there exists $f : K \to \mathbb{R}$ continuous and strictly convex.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivation (II)

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Fact

If K is compact convex metrizable then there exists $f : K \to \mathbb{R}$ continuous and strictly convex.

It suffices to take $f = \sum_{n \ge 1} \frac{1}{2^n} h_n(x)^2$, where $\{h_n\}_n$ is a sequence of affine functions separating the points of K.

Motivation (II)

Some useful classes of compact spaces in Banach space theory, such as *Eberlein compacts*, generalizes the metrizability trying to keep some weaker properties.

Fact

If K is compact convex metrizable then there exists $f : K \to \mathbb{R}$ continuous and strictly convex.

It suffices to take $f = \sum_{n \ge 1} \frac{1}{2^n} h_n(x)^2$, where $\{h_n\}_n$ is a sequence of affine functions separating the points of K.

Theorem (Hervé (1961))

If there exists $f : K \to \mathbb{R}$ continuous and strictly convex, then K is metrizable.

Introduction

- $\textcircled{O} \ \ \mathsf{The class} \ \mathcal{SC}$
- Faces and exposed points
- Ordinal indices

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f : K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f : K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

We denote by SC the class composed of all the families SC(X) for any locally convex space X.

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f : K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

We denote by SC the class composed of all the families SC(X) for any locally convex space X.

Since a lower semicontinuous function on a compact space attains its minimum, the function f is bounded below.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f : K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

We denote by SC the class composed of all the families SC(X) for any locally convex space X.

Since a lower semicontinuous function on a compact space attains its minimum, the function f is bounded below.

• Metrizable convex compacts admits continuous strictly convex functions, so they are in the class.

The class \mathcal{SC}

Definition

We denote by $\mathcal{SC}(X)$ the family of compact convex subsets $K \subset X$ such that there exists a function $f : K \to \mathbb{R}$ which is lower semicontinuous and strictly convex.

We denote by SC the class composed of all the families SC(X) for any locally convex space X.

Since a lower semicontinuous function on a compact space attains its minimum, the function f is bounded below.

- Metrizable convex compacts admits continuous strictly convex functions, so they are in the class.
- If X is a Banach space endowed with its weak topology, then SC(X) is made up of all convex weakly compact subsets of X.

Previous work about \mathcal{SC}

Theorem (Ribarska (1990))

If $K \in \mathcal{SC}$ then K is fragmentable by a finer metric.

Previous work about \mathcal{SC}

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Previous work about \mathcal{SC}

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Raja (2009))

If $K \in SC$ then ext K contains a dense subset which is G_{δ} in K and completely metrizable.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Previous work about \mathcal{SC}

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Raja (2009))

If $K \in SC$ then ext K contains a dense subset which is G_{δ} in K and completely metrizable.

Theorem (Godefroy-Li (1990))

Let K be a compact topological group. If $P(K) \in SC(C(K)^*, \omega^*)$ (Radon probabilities), then K is metrizable.

Previous work about \mathcal{SC}

Theorem (Ribarska (1990))

If $K \in SC$ then K is fragmentable by a finer metric. In particular, K is sequentially compact and contains a completely metrizable G_{δ} set.

Theorem (Raja (2009))

If $K \in SC$ then ext K contains a dense subset which is G_{δ} in K and completely metrizable.

Theorem (Godefroy-Li (1990))

Let K be a compact topological group. If $P(K) \in SC(C(K)^*, \omega^*)$ (Radon probabilities), then K is metrizable.

Theorem (Talagrand (1986))

If $K \in SC$ then $[0, \omega_1]$ does not embed into K.

Elementary properties of \mathcal{SC}

Elementary properties of \mathcal{SC}

Let X be a locally convex space.

• $\mathcal{SC}(X)$ is stable by translations and homothetics.

(日)

Elementary properties of \mathcal{SC}

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.

Elementary properties of \mathcal{SC}

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.
- SC(X) is stable by convex hull of finite unions.

Elementary properties of \mathcal{SC}

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.
- SC(X) is stable by convex hull of finite unions.
- \mathcal{SC} is stable by finite cartesian products.

(日)

Elementary properties of \mathcal{SC}

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.
- SC(X) is stable by convex hull of finite unions.
- \mathcal{SC} is stable by finite cartesian products.
- \mathcal{SC} is stable by continuous linear images.

Elementary properties of \mathcal{SC}

Let X be a locally convex space.

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.
- SC(X) is stable by convex hull of finite unions.
- \mathcal{SC} is stable by finite cartesian products.
- \mathcal{SC} is stable by continuous linear images.

These operations allow us to improve the witnessing function.

If K ∈ SC(X), then it is witnessed by a *bounded* strictly convex lower semicontinuous function.

Elementary properties of \mathcal{SC}

Let X be a locally convex space.

- SC(X) is stable by translations and homothetics.
- $\mathcal{SC}(X)$ is stable by set sums.
- SC(X) is stable by convex hull of finite unions.
- \mathcal{SC} is stable by finite cartesian products.
- \mathcal{SC} is stable by continuous linear images.

These operations allow us to improve the witnessing function.

- If K ∈ SC(X), then it is witnessed by a *bounded* strictly convex lower semicontinuous function.
- If K ∈ SC(X), then it is witnessed by the square of a lower semicontinuous rotund norm defined on span(K).

(日)

Embeddings into duals

 $K \in SC$ if and only if it is linearly homeomorphic to a weak* compact convex subset of a rotund dual Banach space.

Embeddings into duals

 $K \in SC$ if and only if it is linearly homeomorphic to a weak^{*} compact convex subset of a rotund dual Banach space.

This result compares to these others

- *K* is *uniformly Eberlein* if and only if it embeds into a uniformly convex Banach space endowed with the weak topology.
- *K* is *Namioka-Phelps* if and only if it embeds into a dual Banach space with a LUR norm endowed with the weak* topology.
- *K* is *descriptive* if and only if it embeds into a dual Banach space with a weak*-LUR norm endowed with the weak* topology.

(日)

Relationship with (*) property

Theorem (Orihuela-Smith-Troyanski (2012))

Let X^* be a dual Banach space. Then (B_{X^*}, ω^*) has (*) with slices if and only if X^* admits a dual rotund norm.
(日)

Relationship with (*) property

Theorem (Orihuela-Smith-Troyanski (2012))

Let X^* be a dual Banach space. Then (B_{X^*}, ω^*) has (*) with slices if and only if X^* admits a dual rotund norm.

Definition (Orihuela-Smith-Troyanski, 2012)

Let K be a compact subset of a locally convex topological space. K is said to have (*) if there exists a sequence $(\mathcal{U}_n)_{n=1}^{\infty}$ of families of open subsets of K such that, given any $x, y \in K$, there exists $n \in \mathbb{N}$ such that:

- i) $\{x, y\} \cap \bigcup \mathcal{U}_n$ is non-empty.
- ii) $\{x, y\} \cap U$ is at most a singleton for every $U \in U_n$.

Relationship with (*) property

Theorem (Orihuela-Smith-Troyanski (2012))

Let X^* be a dual Banach space. Then (B_{X^*}, ω^*) has (*) with slices if and only if X^* admits a dual rotund norm.

Definition (Orihuela-Smith-Troyanski, 2012)

Let K be a compact subset of a locally convex topological space. K is said to have (*) if there exists a sequence $(\mathcal{U}_n)_{n=1}^{\infty}$ of families of open subsets of K such that, given any $x, y \in K$, there exists $n \in \mathbb{N}$ such that:

- i) $\{x, y\} \cap \bigcup \mathcal{U}_n$ is non-empty.
- ii) $\{x, y\} \cap U$ is at most a singleton for every $U \in U_n$.

Let X be locally convex topological vector space and $K \subset X$ be compact and convex. Then $K \in SC(X)$ if and only if K has (*) with slices.

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへ⊙

Introduction

- $\textcircled{O} The class \mathcal{SC}$
- Faces and exposed points
- Ordinal indices

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Faces and exposed points

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f : K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then extK contains a dense subset of continuity points of f.

Faces and exposed points

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f : K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then extK contains a dense subset of continuity points of f.

Let $f: X \to \mathbb{R}$ convex lower semicontinuous and bounded on compact subsets. Then for every compact convex subset $K \subset X$ and every open slice $S \subset K$, there is a face $F \subset S$ of K such that $f|_K$ is constant and continuous on F.

Faces and exposed points

Theorem (Raja, 2009)

Let K be a convex compact subset of X and let $f : K \to \mathbb{R}$ be a bounded convex lower semicontinuous function. Then extK contains a dense subset of continuity points of f.

Let $f: X \to \mathbb{R}$ convex lower semicontinuous and bounded on compact subsets. Then for every compact convex subset $K \subset X$ and every open slice $S \subset K$, there is a face $F \subset S$ of K such that $f|_K$ is constant and continuous on F.

Let $f : X \to \mathbb{R}$ be lower semicontinuous, strictly convex and bounded on compact sets. Then for every $K \subset X$ compact and convex, the set of points in K which are both exposed and continuity points of $f|_K$ is dense in ext(K).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Faces and exposed points

Corollary (Asplund (1968) + Larman-Phelps (1979))

Let X^* be a dual rotund Banach space. Then every convex ω^* -compact is the closed convex hull of its ω^* -exposed points.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回 ろくの

Faces and exposed points

Corollary (Asplund (1968) + Larman-Phelps (1979))

Let X^* be a dual rotund Banach space. Then every convex ω^* -compact is the closed convex hull of its ω^* -exposed points.

Assume that $K \in SC(X)$. Then K is the closed convex hull of its exposed points.

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへ⊙

Sketch of the proof

Let W^* be a dual Banach space.

(日)

Sketch of the proof

Let W^* be a dual Banach space. Let $f : W^* \to \mathbb{R}$ a convex lower semicontinuous function which is bounded on compact subsets.

(日)

Sketch of the proof

Let W^* be a dual Banach space. Let $f: W^* \to \mathbb{R}$ a convex lower semicontinuous function which is bounded on compact subsets. Consider

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

Sketch of the proof

Let W^* be a dual Banach space. Let $f: W^* \to \mathbb{R}$ a convex lower semicontinuous function which is bounded on compact subsets. Consider

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

The convexity of f implies that $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ if and only if $f(x) = f(y) = f(\frac{x+y}{2})$.

Sketch of the proof

Let W^* be a dual Banach space. Let $f: W^* \to \mathbb{R}$ a convex lower semicontinuous function which is bounded on compact subsets. Consider

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

The convexity of f implies that $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ if and only if $f(x) = f(y) = f(\frac{x+y}{2})$. With respect to ρ we can measure diameter of sets

$$\rho\text{-diam}(A) = \sup\{\rho(x, y) : x, y \in A\}$$

Sketch of the proof

Let W^* be a dual Banach space. Let $f: W^* \to \mathbb{R}$ a convex lower semicontinuous function which is bounded on compact subsets. Consider

$$\rho(x,y) = \frac{f(x)^2 + f(y)^2}{2} - f\left(\frac{x+y}{2}\right)^2$$

The convexity of f implies that $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ if and only if $f(x) = f(y) = f(\frac{x+y}{2})$. With respect to ρ we can measure diameter of sets

$$\rho$$
-diam(A) = sup{ $\rho(x, y) : x, y \in A$ }

We shall mimic the Baire category arguments in RNP theory to find faces with ρ -diam(F) = 0.

Sketch of the proof

$$\mathsf{G}(\mathsf{K},\varepsilon) \hspace{.1 in} = \hspace{.1 in} \{w \in \mathsf{W} : \exists \mathsf{a} < \sup\{w,\mathsf{K}\}, \rho\text{-}\mathsf{diam}(\mathsf{K} \cap \{w > \mathsf{a}\}) < \varepsilon\}$$

Sketch of the proof

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists a < \sup\{w, K\}, \rho \text{-} \operatorname{diam}(K \cap \{w > a\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \ge 1} G(K, 1/n) \end{array}$$

Sketch of the proof

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists a < \sup\{w, K\}, \rho \text{-} \operatorname{diam}(K \cap \{w > a\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \ge 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回 ろくの

Sketch of the proof

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists \mathsf{a} < \sup\{w, K\}, \rho\text{-diam}(K \cap \{w > \mathsf{a}\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \geq 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F.

It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists \mathsf{a} < \sup\{w, K\}, \rho\text{-diam}(K \cap \{w > \mathsf{a}\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \geq 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$.

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists \mathsf{a} < \sup\{w, K\}, \rho\text{-diam}(K \cap \{w > \mathsf{a}\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \geq 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$.

(日)

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists \mathsf{a} < \sup\{w, K\}, \rho\text{-diam}(K \cap \{w > \mathsf{a}\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \geq 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists a < \sup\{w, K\}, \rho \text{-diam}(K \cap \{w > a\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \ge 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$. $\exists x \in ext(C)$ where $f|_C$ is continuous.

(日)

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists \mathsf{a} < \sup\{w, K\}, \rho\text{-diam}(K \cap \{w > \mathsf{a}\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \geq 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$. $\exists x \in ext(C)$ where $f|_C$ is continuous.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists a < \sup\{w, K\}, \rho \text{-diam}(K \cap \{w > a\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \ge 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$. $\exists x \in ext(C)$ where $f|_C$ is continuous. By Choquet's lemma, $\exists u \in W$ and $b \in \mathbb{R}$ such that ρ -diam $(C \cap \{u > b\}) < \varepsilon$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{array}{lll} G(K,\varepsilon) &=& \{w \in W : \exists a < \sup\{w, K\}, \rho \text{-diam}(K \cap \{w > a\}) < \varepsilon\} \\ G(K) &=& \bigcap_{n \ge 1} G(K, 1/n) \end{array}$$

Notice that if $w \in G(K)$ and F is the face produced by w then $f|_K$ is constant and continuous at each point of F. It suffices to show that $G(K, \varepsilon)$ is dense in W for each $\varepsilon > 0$.

Take $w \in W$ and $\delta > 0$. $\exists x \in ext(C)$ where $f|_C$ is continuous. By Choquet's lemma, $\exists u \in W$ and $b \in \mathbb{R}$ such that ρ -diam $(C \cap \{u > b\}) < \varepsilon$ $u \in G(K, \varepsilon)$ and $||\omega - u|| < \delta$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回 ののの

Moreover, if f is a strictly convex function then ρ is a symmetric, that is,

$$\rho(x, y) = 0$$
 if and only if $x = y$

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Moreover, if f is a strictly convex function then ρ is a symmetric, that is,

$$\rho(x, y) = 0$$
 if and only if $x = y$

Thus, ρ -diam(F) = 0 implies that F is an exposed point.

Introduction

- $\textcircled{O} The class \mathcal{SC}$
- Faces and exposed points
- Ordinal indices

Ordinal indices

Let K be a convex and compact subset of a normed space.

$$[\mathcal{K}]'_{arepsilon} = \{x \in \mathcal{K} : x \in S \text{ slice of } \mathcal{K} \Rightarrow \mathsf{diam}(S) \geq \varepsilon\}$$

Ordinal indices

Let K be a convex and compact subset of a normed space.

$$[\mathcal{K}]'_{arepsilon} = \{x \in \mathcal{K} : x \in S ext{ slice of } \mathcal{K} \Rightarrow \mathsf{diam}(S) \geq arepsilon \}$$

Ordinal indices

Let K be a convex and compact subset of a normed space.

$$[\mathcal{K}]'_{arepsilon} = \{x \in \mathcal{K} : x \in S ext{ slice of } \mathcal{K} \Rightarrow \mathsf{diam}(S) \geq arepsilon \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□> <□> <=> <=> <=> <=> <=> <=>

Ordinal indices

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \rho \text{-diam}(S) \ge \varepsilon\}$$

ション ふゆ アメリア メリア しょう

Ordinal indices

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[K]'_{\varepsilon} = \{x \in K : x \in S \text{ slice of } K \Rightarrow \rho \text{-diam}(S) \geq \varepsilon\}$$

• $[K]^{\alpha+1}_{\varepsilon} = [[K]^{\alpha}_{\varepsilon}]'_{\varepsilon}$ and intersection in case of limit ordinals.

Ordinal indices

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[\mathcal{K}]'_arepsilon = \{x \in \mathcal{K} : x \in S ext{ slice of } \mathcal{K} \Rightarrow
ho ext{-diam}(S) \geq arepsilon \}$$

- $[K]^{\alpha+1}_{\varepsilon} = [[K]^{\alpha}_{\varepsilon}]'_{\varepsilon}$ and intersection in case of limit ordinals.
- If we reach the empty set at some ordinal, then Dz_ρ(K, ε) = min{α : [K]^α_ε = ∅}.
- $Dz_{\rho}(K) = \sup_{\varepsilon > 0} Dz_{\rho}(K, \varepsilon).$

Ordinal indices

Let K be a convex and compact subset of a locally convex space and ρ a symmetric on K.

$$[\mathcal{K}]'_{arepsilon} = \{x \in \mathcal{K} : x \in S \text{ slice of } \mathcal{K} \Rightarrow
ho ext{-diam}(S) \geq arepsilon\}$$

- $[K]^{\alpha+1}_{\varepsilon} = [[K]^{\alpha}_{\varepsilon}]'_{\varepsilon}$ and intersection in case of limit ordinals.
- If we reach the empty set at some ordinal, then Dz_ρ(K, ε) = min{α : [K]_ε^α = ∅}.
- $Dz_{\rho}(K) = \sup_{\varepsilon > 0} Dz_{\rho}(K, \varepsilon).$
- $Sz_{\rho}(K)$ is defined by using open sets instead of slices.

(日)

Ordinal indices

The following assertions are equivalent:

- i) $K \in SC$;
- ii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega$;
- iii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega_1$.
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Ordinal indices

The following assertions are equivalent:

- i) $K \in SC$;
- ii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega$;
- iii) there exists a symmetric ρ on K such that $Dz_{\rho}(K) \leq \omega_1$.

If there exists a metric d on K such that $Sz_d(K) \le \omega_1$ then K is Gruenhage.

References

1	- 6	
	2	

- J. Orihuela, R. J. Smith, and S. Troyanski. "Strictly convex norms and topology". In: *Proc. London Math. Soc.* 104.3 (2012), pp. 197–222.
- L.C. García-Lirola, J. Orihuela, and M. Raja. "Compact convex sets that admits a lower semicontinuous strictly convex function". to appear. 2015.

M. Hervé. "Sur les représentations intégrales à l'aide des points extrémaux dans un ensemble compact convexe métrisable". In: *C. R. Acad. Sci. Paris* 253 (1961), pp. 366–368.

M. Raja. "Continuity at the extreme points". In: J. Math. Anal. Appl. 350.2 (2009), pp. 436–438.

R.D. Bourgin. Geometric Aspects of Convex Sets with the Radon-Nikodỳm Property. Springer-Verlag, 1983.

Thank you for your attention

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・