Some results on duality of spaces of vector-valued Lipschitz functions

Luis C. García-Lirola

Joint work with Colin Petitjean and Abraham Rueda Zoca

Universidad de Murcia

XV Encuentros Análisis Funcional Murcia Valencia July, 2016

Research partially supported by

(日) (四) (王) (王) (王)

Table of Contents

- 2 Duality of $\mathcal{F}(M, X^*)$
- Onconditional almost squareness
- 4 Application to the non-duality of lip(M, X)

Table of Contents

- 2 Duality of $\mathcal{F}(M, X^*)$
- 3 Unconditional almost squareness
- 4 Application to the non-duality of lip(M,X)

3

Let M be a metric space and $0 \in M$ be a distinguished point, and let X be a Banach space

$$Lip(M,X) := \{f \colon M \to X : f \text{ is Lipschitz}, f(0) = 0\}$$

is a Banach space when equipped with the norm

$$||f||_{Lip} := sup\{\frac{||f(x) - f(y)||}{d(x, y)} : x \neq y\}.$$

Let M be a metric space and $0 \in M$ be a distinguished point, and let X be a Banach space

$$Lip(M,X) := \{f \colon M \to X : f \text{ is Lipschitz}, f(0) = 0\}$$

is a Banach space when equipped with the norm

$$||f||_{Lip} := \sup\{\frac{||f(x) - f(y)||}{d(x, y)} : x \neq y\}.$$

In particular, we denote $Lip(M) := Lip(M, \mathbb{R})$.

Let M be a metric space and $0 \in M$ be a distinguished point, and let X be a Banach space

$$Lip(M, X) := \{f : M \to X : f \text{ is Lipschitz}, f(0) = 0\}$$

is a Banach space when equipped with the norm

$$||f||_{Lip} := \sup\{\frac{||f(x) - f(y)||}{d(x, y)} : x \neq y\}.$$

In particular, we denote $Lip(M) := Lip(M, \mathbb{R})$. For each $m \in M$, consider the evaluation functional $\delta_m \in Lip(M)$ given by $\delta_m(f) := f(m)$. The space

$$\mathcal{F}(\mathcal{M}) := \overline{\mathsf{span}}\{\delta_{\mathit{m}}: \mathit{m} \in \mathcal{M}\} \subset \mathit{Lip}(\mathcal{M})^*$$

is the Lipschitz-free space over M, and it is an isometric predual of Lip(M).

Let M be a metric space and $0 \in M$ be a distinguished point, and let X be a Banach space

$$Lip(M,X) := \{f \colon M \to X : f \text{ is Lipschitz}, f(0) = 0\}$$

is a Banach space when equipped with the norm

$$||f||_{Lip} := \sup\{\frac{||f(x) - f(y)||}{d(x, y)} : x \neq y\}.$$

In particular, we denote $Lip(M) := Lip(M, \mathbb{R})$. For each $m \in M$, consider the evaluation functional $\delta_m \in Lip(M)$ given by $\delta_m(f) := f(m)$. The space

$$\mathcal{F}(M) := \overline{\mathsf{span}}\{\delta_m : m \in M\} \subset Lip(M)^*$$

is the Lipschitz-free space over M, and it is an isometric predual of Lip(M).

Example

•
$$\mathcal{F}(\mathbb{N}) = \ell_1 \ (\delta_n \mapsto e_1 + \ldots + e_n).$$

Let M be a metric space and $0 \in M$ be a distinguished point, and let X be a Banach space

$$Lip(M,X) := \{f \colon M \to X : f \text{ is Lipschitz}, f(0) = 0\}$$

is a Banach space when equipped with the norm

$$||f||_{Lip} := \sup\{\frac{||f(x) - f(y)||}{d(x, y)} : x \neq y\}.$$

In particular, we denote $Lip(M) := Lip(M, \mathbb{R})$. For each $m \in M$, consider the evaluation functional $\delta_m \in Lip(M)$ given by $\delta_m(f) := f(m)$. The space

$$\mathcal{F}(M) := \overline{\mathsf{span}}\{\delta_m : m \in M\} \subset Lip(M)^*$$

is the Lipschitz-free space over M, and it is an isometric predual of Lip(M).

Example

•
$$\mathcal{F}(\mathbb{N}) = \ell_1 \ (\delta_n \mapsto e_1 + \ldots + e_n).$$

• $\mathcal{F}(\mathbb{R}) = L_1 \ (\delta_x \mapsto \chi_{(0,x)}).$

Let $f: M \to N$ be a Lipschitz map. Then there exists an operator $T: \mathcal{F}(M) \to \mathcal{F}(N)$ such that $||T_f|| = ||f||_{Lip}$ and the following diagram commutes:

$$\begin{array}{cccc} M & \stackrel{f}{\longrightarrow} & N \\ \delta \downarrow & & \delta \downarrow \\ \mathcal{F}(M) & \stackrel{T_f}{\longrightarrow} & \mathcal{F}(N) \end{array}$$

・同ト (ヨト (ヨト ヨヨ) の()

Let $f: M \to N$ be a Lipschitz map. Then there exists an operator $T: \mathcal{F}(M) \to \mathcal{F}(N)$ such that $||T_f|| = ||f||_{Lip}$ and the following diagram commutes:

М	\xrightarrow{f}	Ν
$\delta\downarrow$		$\delta\downarrow$
$\mathcal{F}(M)$	$\xrightarrow{T_f}$	$\mathcal{F}(N)$

If N = X is a Banach space, we get

$$\begin{array}{cccc} M & \stackrel{f}{\longrightarrow} & X \\ \delta \downarrow & & \delta \downarrow \uparrow \beta \\ \mathcal{F}(M) & \stackrel{T_f}{\longrightarrow} & \mathcal{F}(X) \end{array}$$

where $\beta \colon \mathcal{F}(X) \to X$ is the barycentric mapping.

Let $f: M \to N$ be a Lipschitz map. Then there exists an operator $T: \mathcal{F}(M) \to \mathcal{F}(N)$ such that $||T_f|| = ||f||_{Lip}$ and the following diagram commutes:

М	\xrightarrow{f}	Ν
$\delta\downarrow$		$\delta\downarrow$
$\mathcal{F}(M)$	$\xrightarrow{T_f}$	$\mathcal{F}(N)$

If N = X is a Banach space, we get

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} & X \\ \delta \downarrow & & \delta \downarrow \uparrow \beta \\ \mathcal{F}(M) & \stackrel{T_f}{\longrightarrow} & \mathcal{F}(X) \end{array}$$

where $\beta \colon \mathcal{F}(X) \to X$ is the barycentric mapping. As a consequence Lip(M, X) is isometric to $L(\mathcal{F}(M), X)$. In particular we get $Lip(M) = \mathcal{F}(M)^*$.

L.C. Garcia-Lirola (Universidad de Murcia)

July, 2016

6 / 19

For which infinite metric spaces M is $\mathcal{F}(M)$ isometric to a dual space? Moreover, is it possible to find $S \subset Lip(M)$ such that S is a predual of $\mathcal{F}(M)$?

For which infinite metric spaces M is $\mathcal{F}(M)$ isometric to a dual space? Moreover, is it possible to find $S \subset Lip(M)$ such that S is a predual of $\mathcal{F}(M)$?

Notice that if M is separable and metrically convex then $\mathcal{F}(M)$ is a separable space without the RNP. Thus, it is not isomorphic to a dual Banach space.

A natural candidate for a predual of $\mathcal{F}(M)$ is the so-called space of little-Lipschitz functions:

$$lip(M) = \{f \in Lip(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

ELE NOR

(日) (同) (三) (三)

A natural candidate for a predual of $\mathcal{F}(M)$ is the so-called space of little-Lipschitz functions:

$$lip(M) = \{f \in Lip(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

Let *M* be a compact metric space. Then lip(M) is a predual of $\mathcal{F}(M)$ in the following cases:

A natural candidate for a predual of $\mathcal{F}(M)$ is the so-called space of little-Lipschitz functions:

$$lip(M) = \{f \in Lip(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

Let *M* be a compact metric space. Then lip(M) is a predual of $\mathcal{F}(M)$ in the following cases:

• (Weaver, 1999) $M \subset [0, 1]$ is the middle-thirds Cantor set;

A natural candidate for a predual of $\mathcal{F}(M)$ is the so-called space of little-Lipschitz functions:

$$lip(M) = \{f \in Lip(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

Let *M* be a compact metric space. Then lip(M) is a predual of $\mathcal{F}(M)$ in the following cases:

- (Weaver, 1999) $M \subset [0, 1]$ is the middle-thirds Cantor set;
- (Weaver, 1999) The metric is of the form d^{α} , where $0 < \alpha < 1$;

A natural candidate for a predual of $\mathcal{F}(M)$ is the so-called space of little-Lipschitz functions:

$$lip(M) = \{f \in Lip(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

Let *M* be a compact metric space. Then lip(M) is a predual of $\mathcal{F}(M)$ in the following cases:

- (Weaver, 1999) $M \subset [0, 1]$ is the middle-thirds Cantor set;
- (Weaver, 1999) The metric is of the form d^{α} , where $0 < \alpha < 1$;
- (Dalet, 2014) *M* countable;

A natural candidate for a predual of $\mathcal{F}(M)$ is the so-called space of little-Lipschitz functions:

$$lip(M) = \{f \in Lip(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

Let *M* be a compact metric space. Then lip(M) is a predual of $\mathcal{F}(M)$ in the following cases:

- (Weaver, 1999) $M \subset [0,1]$ is the middle-thirds Cantor set;
- (Weaver, 1999) The metric is of the form d^{α} , where $0 < \alpha < 1$;
- (Dalet, 2014) M countable;

Moreover, Dalet showed in 2015 that if M is a proper metric space (i.e. closed balls are compact sets), then

$$S(M) = \{f \in lip(M) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{x \text{ or } y \notin B(0,r) \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} = 0\}$$

is a predual of $\mathcal{F}(M)$ whenever M is countable or ultrametric (i.e. $d(x, y) \leq \max\{d(x, z), d(y, z)\}$ for every $x, y, z \in M$).

Another duality result is the following. We shall denote $lip_{\tau}(M) = lip(M) \cap C(M, \tau)$.

Theorem (Kalton, 2004)

Let M be a separable complete bounded metric space. Suppose τ is a metrizable topology on M so that (M, τ) is compact and for every $x, y \in M$ and $\varepsilon > 0$ there exists $f \in lip_{\tau}(M)$ with $||f||_{Lip} \leq 1$ and $f(y) - f(x) \geq d(x, y) - \varepsilon$. Then the space $lip_{\tau}(M)$ is a predual of $\mathcal{F}(M)$.

< 回 ト < 三 ト < 三 ト

Another duality result is the following. We shall denote $lip_{\tau}(M) = lip(M) \cap C(M, \tau)$.

Theorem (Kalton, 2004)

Let M be a separable complete bounded metric space. Suppose τ is a metrizable topology on M so that (M, τ) is compact and for every $x, y \in M$ and $\varepsilon > 0$ there exists $f \in lip_{\tau}(M)$ with $||f||_{Lip} \leq 1$ and $f(y) - f(x) \geq d(x, y) - \varepsilon$. Then the space $lip_{\tau}(M)$ is a predual of $\mathcal{F}(M)$.

Corollary (Kalton, 2004)

Let X be a separable Banach space and $0 < \alpha < 1$. Then $lip_{\omega^*}(B_{X^*}, || ||^{\alpha})$ is a predual of $\mathcal{F}(B_{X^*}, || ||^{\alpha})$.

(日) (周) (日) (日) (日) (日) (000)

Table of Contents

- 3 Unconditional almost squareness
- 4 Application to the non-duality of lip(M, X)

Vector-valued Lipschitz free spaces were introduced by Becerra, López and Rueda in 2015 as

$$\mathcal{F}(M,X) := \overline{span}\{\delta_{m,x} : m \in M, x \in X\} \subseteq Lip(M,X^*)^*$$

where $\delta_{m,x}(f) := f(m)(x)$ for every $m \in M, x \in X$ and $f \in Lip(M, X^*)$.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Vector-valued Lipschitz free spaces were introduced by Becerra, López and Rueda in 2015 as

$$\mathcal{F}(M,X) := \overline{span}\{\delta_{m,x} : m \in M, x \in X\} \subseteq Lip(M,X^*)^*$$

where $\delta_{m,x}(f) := f(m)(x)$ for every $m \in M, x \in X$ and $f \in Lip(M, X^*)$. Our goal is to get duality results in the vector-valued setting.

For which metric spaces M and Banach spaces X does there exists a subspace S of $Lip(M, X^{**})$ such that S is a predual of $\mathcal{F}(M, X^{*})$?

Vector-valued Lipschitz free spaces were introduced by Becerra, López and Rueda in 2015 as

$$\mathcal{F}(M,X) := \overline{span}\{\delta_{m,x} : m \in M, x \in X\} \subseteq Lip(M,X^*)^*$$

where $\delta_{m,x}(f) := f(m)(x)$ for every $m \in M, x \in X$ and $f \in Lip(M, X^*)$. Our goal is to get duality results in the vector-valued setting.

For which metric spaces M and Banach spaces X does there exists a subspace S of $Lip(M, X^{**})$ such that S is a predual of $\mathcal{F}(M, X^{*})$?

We will consider the spaces:

$$lip(M,X) := \left\{ f \in Lip(M,X) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{\|f(x) - f(y)\|}{d(x,y)} = 0 \right\},$$
$$S(M,X) := \left\{ f \in lip(M,X) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{x \text{ or } y \notin B(0,r) \\ x \neq y}} \frac{\|f(x) - f(y)\|}{d(x,y)} = 0 \right\}.$$

Let *M* be a proper metric space and *X* be a Banach space. Then S(M, X) is a predual of $\mathcal{F}(M, X^*)$ in the following cases:

- M is the middle third Cantor set.
- M is countable.
- M is ultrametric.
- The metric is of the form d^α, where 0 < α < 1, and either F(M) or X* has the AP.

Let *M* be a proper metric space and *X* be a Banach space. Then S(M, X) is a predual of $\mathcal{F}(M, X^*)$ in the following cases:

- M is the middle third Cantor set.
- M is countable.
- M is ultrametric.
- The metric is of the form d^α, where 0 < α < 1, and either F(M) or X* has the AP.

Our approach is strongly inspired in a paper by Jiménez-Vargas, Sepulcre and Villegas-Vallecillos. The main idea is to get an identification

$$S(M,X) = K_{w^*,w}(X^*,S(M)) = S(M)\widehat{\otimes}_{\varepsilon}X$$

Let *M* be a proper metric space and *X* be a Banach space. Then S(M, X) is a predual of $\mathcal{F}(M, X^*)$ in the following cases:

- M is the middle third Cantor set.
- M is countable.
- M is ultrametric.
- The metric is of the form d^α, where 0 < α < 1, and either F(M) or X* has the AP.

Our approach is strongly inspired in a paper by Jiménez-Vargas, Sepulcre and Villegas-Vallecillos. The main idea is to get an identification

$$S(M,X) = K_{w^*,w}(X^*,S(M)) = S(M)\widehat{\otimes}_{\varepsilon}X$$

and thus

$$S(M,X)^* = (S(M)\widehat{\otimes}_{\varepsilon}X)^* = S(M)^*\widehat{\otimes}_{\pi}X^* = \mathcal{F}(M)\widehat{\otimes}_{\pi}X^* = \mathcal{F}(M,X^*).$$

Theorem (Kalton, 2004)

Let M be a separable complete bounded metric space. Suppose τ is a metrizable topology on M so that (M, τ) is compact and for every $x, y \in M$ and $\varepsilon > 0$ there exists $f \in lip_{\tau}(M)$ with $||f||_{Lip} \leq 1$ and $f(y) - f(x) \geq d(x, y) - \varepsilon$. Then the space $lip_{\tau}(M)$ is a predual of $\mathcal{F}(M)$.

Theorem (Kalton, 2004)

Let M be a separable complete bounded metric space. Suppose τ is a metrizable topology on M so that (M, τ) is compact and for every $x, y \in M$ and $\varepsilon > 0$ there exists $f \in lip_{\tau}(M)$ with $||f||_{Lip} \leq 1$ and $f(y) - f(x) \geq d(x, y) - \varepsilon$. Then the space $lip_{\tau}(M)$ is a predual of $\mathcal{F}(M)$.

Let *M* be a pointed metric space and let τ be a topology on *M* such that (M, τ) is compact and *d* is τ -lower semicontinuous. Then

- $lip_{\tau}(M, X)$ is isometrically isomorphic to $K_{w^*,w}(X^*, lip_{\tau}(M))$.
- If either *lip_τ(M)* or X has the AP, then *lip_τ(M,X)* is isometrically isomorphic to *lip_τ(M)* ⊗_εX.
- If the assumptions of Kalton's result hold and either $\mathcal{F}(M)$ or X^* has the AP, then $lip_{\tau}(M, X)$ is a predual of $\mathcal{F}(M, X^*)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Table of Contents

4 Application to the non-duality of lip(M, X)

L.C. Garcia-Lirola (Universidad de Murcia)

< ∃ > <

Definition (Abrahamsen-Langemets-Lima, 2016)

A Banach space X is said to be *almost square* (ASQ) if for every $x_1, \ldots, x_k \in S_X$ and $\varepsilon > 0$ there exists $y \in S_X$ such that

 $||x_i \pm y|| \le 1 + \varepsilon \ \forall i \in \{1, \ldots, k\}.$

JIN NOR

医脊膜下 有菌的

Definition (Abrahamsen-Langemets-Lima, 2016)

A Banach space X is said to be *almost square* (ASQ) if for every $x_1, \ldots, x_k \in S_X$ and $\varepsilon > 0$ there exists $y \in S_X$ such that

$$\|x_i \pm y\| \leq 1 + \varepsilon \ \forall i \in \{1, \ldots, k\}.$$

Roughly speaking, we can say that ASQ Banach spaces have a strong c_0 behaviour from a geometrical point of view.

ELE DOG

• • = • • = •

Definition (Abrahamsen-Langemets-Lima, 2016)

A Banach space X is said to be *almost square* (ASQ) if for every $x_1, \ldots, x_k \in S_X$ and $\varepsilon > 0$ there exists $y \in S_X$ such that

 $||x_i \pm y|| \le 1 + \varepsilon \,\,\forall i \in \{1, \ldots, k\}.$

Roughly speaking, we can say that ASQ Banach spaces have a strong c_0 behaviour from a geometrical point of view.

Does there exist a dual ASQ Banach space?

> < = > < = > = = < < < >

Definition (Abrahamsen-Langemets-Lima, 2016)

A Banach space X is said to be *almost square* (ASQ) if for every $x_1, \ldots, x_k \in S_X$ and $\varepsilon > 0$ there exists $y \in S_X$ such that

 $||x_i \pm y|| \leq 1 + \varepsilon \ \forall i \in \{1, \ldots, k\}.$

Roughly speaking, we can say that ASQ Banach spaces have a strong c_0 behaviour from a geometrical point of view.

Does there exist a dual ASQ Banach space?

We will give a partial answer to the above question by using the notion of almost squareness.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Definition

Let X be a Banach space. We will say that X is unconditionally almost square (UASQ) if, for each $\varepsilon > 0$, there exists a subset $\{x_{\gamma}\}_{\gamma \in \Gamma} \subseteq S_X$ such that

• For each
$$\{y_1, \ldots, y_k\} \subseteq S_X$$
 and $\delta > 0$ the set

$$\{\gamma \in \mathsf{\Gamma} : \|y_i \pm x_\gamma\| \le 1 + \delta \,\,\forall i \in \{1, \dots, k\}\}$$

is non-empty.

② For every F finite subset of Γ and every choice of signs ξ_γ ∈ {-1,1}, γ ∈ F, it follows || Σ_{γ∈F} ξ_γx_γ || ≤ 1 + ε.

Example

- The space $c_0(\Gamma)$ is UASQ.
- Siven Γ an infinite set and \mathcal{U} a free ultrafilter over Γ , the space $X := \{x \in \ell_{\infty}(\Gamma) : \lim_{\mathcal{U}} (x) = 0\}$ is UASQ.

.

Example

- The space $c_0(\Gamma)$ is UASQ.
- ℓ^c_∞(Γ) := {x ∈ ℓ_∞(Γ) : supp(x) is countable} is UASQ whenever Γ is uncountable.
- Siven Γ an infinite set and \mathcal{U} a free ultrafilter over Γ , the space $X := \{x \in \ell_{\infty}(\Gamma) : \lim_{\mathcal{U}} (x) = 0\}$ is UASQ.

Let X be a separable Banach space. If X is ASQ, then X is UASQ.

- A I I I A I I I I

Example

- The space $c_0(\Gamma)$ is UASQ.
- ℓ^c_∞(Γ) := {x ∈ ℓ_∞(Γ) : supp(x) is countable} is UASQ whenever Γ is uncountable.
- Siven Γ an infinite set and \mathcal{U} a free ultrafilter over Γ , the space $X := \{x \in \ell_{\infty}(\Gamma) : \lim_{\mathcal{U}} (x) = 0\}$ is UASQ.

Let X be a separable Banach space. If X is ASQ, then X is UASQ.

Let X be a Banach space. Then X^* can not be UASQ.

== nan

• • = • • = •

Table of Contents

Introduction

- 2 Duality of $\mathcal{F}(M, X^*)$
- 3 Unconditional almost squareness

< ∃ > <

Let X and Y be Banach spaces, and let $0 < \alpha < 1$. Assume that X^* is separable. Then $lip_{\omega^*}((B_{X^*}, || \parallel^{\alpha}), Y)$ is UASQ.

Let X and Y be Banach spaces, and let $0 < \alpha < 1$. Assume that X^* is separable. Then $lip_{\omega^*}((B_{X^*}, || \parallel^{\alpha}), Y)$ is UASQ.

In particular, above spaces are not isometric to any dual Banach space.

Let X and Y be Banach spaces, and let $0 < \alpha < 1$. Assume that X^* is separable. Then $lip_{\omega^*}((B_{X^*}, || \parallel^{\alpha}), Y)$ is UASQ.

In particular, above spaces are not isometric to any dual Banach space. Previous result has an immediate consequence in terms of octahedrality. It follows from previous result that $\mathcal{F}((B_{X^*}, || \parallel^{\alpha}), Y^*)$ has an octahedral norm whenever X^* is separable. This answers partially a question posed by Becerra, López and Rueda, who wondered whether octahedrality in vector-valued Lipschitz-free Banach spaces actually relies on the scalar case.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

References

Abrahamsen, T., J. Langemets, and V. Lima. "Almost square Banach spaces". In: J. Math. Anal. Appl. 434.2 (2016), pp. 1549–1565.

Dalet, A. "Free spaces over some proper metric spaces". In: *Mediterr. J. Math.* 12.3 (2015), pp. 973–986.

García-Lirola, L., C. Petitjean, and A. Rueda Zoca. "On the structure of spaces of vector-valued Lipschitz functions". arXiv. 2016. URL: arXiv.org/abs/1606.05999.

Godefroy, G. and N. J. Kalton. "Lipschitz-free Banach spaces". In: *Studia Math.* 159.1 (2003), pp. 121–141.

Guerrero, J. Becerra, G. López-Pérez, and A. Rueda Zoca. "Octahedrality in Lipschitz free Banach spaces". arXiv. 2015. URL: arXiv.org/abs/1512.03558.

Jiménez-Vargas, A., J. M. Sepulcre, and M. Villegas-Vallecillos. "Lipschitz compact operators". In: *J. Math. Anal. Appl.* 415.2 (2014), pp. 889–901.

Weaver, N. Lipschitz algebras. World Scientific Publishing Co., 1999, pp. xiv+223.

Thank you for your attention

L.C. Garcia-Lirola (Universidad de Murcia)