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Notation

X Banach space, X* ={f: X — R linear, continuous}
Bx unit ball of X.  X** bidual

Definition
@ x € By is an extreme point if

Ay+(1—-Nz=x,y,z€ Bx,A€(0,1) = x=y==z

@ x € By is a preserved extreme point if it is an extreme point of
Bx+=, equivalently, the slices of Bx containing x are a neighbourhood
basis of x in (Bx, w).

@ x € Bx is a denting point if the slices of Bx containing x are a
neighbourhood basis of x in (Bx, ||-||), equivalently, for each £ > 0
there is a slice S of Bx containing x with diam(S) < ¢.
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Every preserved extreme point of Br(yy) is of the form

Theorem (Weaver) J
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No! To see that we need the following result.

Theorem (Aliaga-Guirao, 2017)

Zz;f/y) is a preserved extreme point of Br(y) if and only if for all € > 0

there is 6 > 0 such that

(1-9)(d(x,2) +d(z,y)) < d(x,y) = min{d(x,z),d(y,z)} <e

Example
Let M = {0} U{xn} C co, where x; = 2ep,, x, = e1 + (1 +1/n)e, if n > 2.
Then 21=% s an extreme point of Br(p) which is not a preserved

d(x1,0_)
extreme point.




Definition (Schachermayer, 1983)

A Banach space has property « if there is [ = {xy} C X and ' = {x}}
such that

Q [xall = I3l = Gl = 1.
@ There is < o < 1 such that |[x¥(x,)| < o if A # p.
@ conv(lN) = Bx.




Definition (Schachermayer, 1983)

A Banach space has property « if there is [ = {xy} C X and ' = {x}}
such that

O [l =[xl = (o)l = 1.
@ There is < a < 1 such that [x¥(x,)| < o if X # p.
@ conv(l) = Bx.

If a Banach space has property « then every operator T: X — Y can be
approximated by operators attaining the norm.



Definition (Schachermayer, 1983)

A Banach space has property « if there is [ = {xy} C X and ' = {x}}
such that

O [l =[xl = (o)l = 1.
@ There is < o < 1 such that |[x¥(x,)| < o if A # p.
© conv(l') = Bx.

If a Banach space has property « then every operator T: X — Y can be
approximated by operators attaining the norm.

Question
When F(M) has property a? J
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Theorem (Cascales-Chiclana-GL-Martin-Rueda Zoca, 2018)

Let M be a concave metric space. Then F(M) has property « if and only
if M is uniformly discrete and bounded and there is € > 0 such that

d(x,z)+d(z,y) —d(x,y) > ¢




Thank you for your attention!



