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Every preserved extreme point of BF(M) is a denting point.



Notation

X Banach space,

X ∗ = {f : X → R linear, continuous}

BX unit ball of X .

X ∗∗ bidual

Definition

x ∈ BX is an extreme point if

λy + (1− λ)z = x , y , z ∈ BX , λ ∈ (0, 1) ⇒ x = y = z

x ∈ BX is a preserved extreme point if it is an extreme point of
BX∗∗

, equivalently, the slices of BX containing x are a neighbourhood
basis of x in (BX ,w).

x ∈ BX is a denting point if the slices of BX containing x are a
neighbourhood basis of x in (BX , ‖·‖)

, equivalently, for each ε > 0
there is a slice S of BX containing x with diam(S) < ε

.
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(M, d) metric space,

0 ∈ M.

Lip0(M) = {f : M → R Lipschitz,

f (0) = 0

}

‖f ‖L = sup

{
|f (x)− f (y)|

d(x , y)
, x 6= y

}
Given x ∈ M and f ∈ Lip0(M), we denote δx(f ) := f (x).

Definition

The Lipschitz-free space over M is defined as

F(M) = span{δx : x ∈ M} ⊂ Lip0(M)∗.

The norm on F(M) satisfies that:

‖δx‖ = d(x , 0),

‖δx − δy‖ = d(x , y),

BF(M) = conv
{
δx−δy
d(x ,y) , x 6= y

}
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Question
δx−δy
d(x ,y) is extreme if and only if d(x , z) + d(z , y) > d(x , y) ∀z ∈ M \ {x , y}.

True if M:

compact (Aliaga-Guirao, 2017).

bounded and uniformly discrete (GL-RZ-P-P).

The general case has just been solved by Aliaga and Pernecka.

Question

If µ ∈ F(M) is a extreme point, then µ =
δx−δy
d(x ,y) for some x , y ∈ M.

True if M is compact and the metric is of the form dα, 0 < α < 1
(GL-RZ-P-P)

Theorem (Weaver)

Every preserved extreme point of BF(M) is of the form
δx−δy
d(x ,y) .
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Every preserved extreme point of BF(M) is a denting point.

Lemma

If
δxα−δyα
d(xα,yα)

converges weakly to
δx−δy
d(x ,y) , then d(xα, x)→ 0 y d(yα, y)→ 0.

Proof.
If d(xα, x) 6→ 0, then there is 0 < ε < min{d(x , y), lim supα d(xα, x)}.
Consider the Lipschitz function

f (t) = max{ε− d(x , t), 0}

On the one hand, f (x)−f (y)
d(x ,y) = ε

d(x ,y) > 0. On the other,

lim inf
α

f (xα)− f (yα)

d(xα, yα)
= lim inf

α

−f (yα)

d(xα, yα)
≤ 0.
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δxS−δyS
d(xS ,yS )

∈ S such

that
∥∥∥ δxS−δySd(xS ,yS )

− δx−δy
d(x ,y)

∥∥∥ > ε/4.

Since the slices containing
δx−δy
d(x ,y) are a neighbourhood basis for the

weak topology, we have
δxS−δyS
d(xS ,yS )

w→ δx−δy
d(x ,y) .Thus d(xS , x)→ 0 y

d(yS , y)→ 0.This is a contradiction.
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Every preserved extreme point of BF(M) is a denting point.

Proof.

Case 2 (based on the Superlemma of Asplund-Bourgain-Namioka).

There is a slice S containing
δx−δy
d(x ,y) with V ∩ S ⊂ B(

δx−δy
d(x ,y) , ε/4),

where V = { δu−δvd(u,v) , u 6= v}.We have

BF(M) = conv(V ) = conv(V ∩ S) ∪ (V \ S))

⊂ conv

(
B(
δx − δy
d(x , y)

, ε/4) ∪ conv(V \ S)

)
Consider

Cr =

{
λx + (1− λ)y : x ∈ B(

δx − δy
d(x , y)

, ε/4), y ∈ conv(V \ S), λ ∈ [0, r ]

}
.

Since
δx−δy
d(x ,y) is a preserved extreme point, we have

δx−δy
d(x ,y) ∈ BF(M) \ Cr .

If r ≈ 0, then diam(BF(M) \ Cr ) < ε. Now, we can take a slice S with
δx−δy
d(x ,y) ∈ S ⊂ BF(M) \ Cr .
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Question

Is every extreme point of BF(M) is a preserved extreme point?

No! To see that we need the following result.

Theorem (Aliaga-Guirao, 2017)
δx−δy
d(x ,y) is a preserved extreme point of BF(M) if and only if for all ε > 0
there is δ > 0 such that

(1− δ)(d(x , z) + d(z , y)) < d(x , y)⇒ min{d(x , z), d(y , z)} < ε

Example

Let M = {0} ∪ {xn} ⊂ c0, where x1 = 2en, xn = e1 + (1 + 1/n)en if n ≥ 2.

Then
δx1−δ0
d(x1,0)

is an extreme point of BF(M) which is not a preserved
extreme point.
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Definition (Schachermayer, 1983)

A Banach space has property α if there is Γ = {xλ} ⊂ X and Γ∗ = {x∗λ}
such that

1 ‖xλ‖ = ‖x∗λ‖ = |x∗λ(xλ)| = 1.

2 There is ≤ α < 1 such that |x∗λ(xµ)| ≤ α if λ 6= µ.

3 conv(Γ) = BX .

If a Banach space has property α then every operator T : X → Y can be
approximated by operators attaining the norm.

Question

When F(M) has property α?
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A metric space is said to be concave if every molecule is a preserved
extreme point of BF(M).

For instance, every Holder metric space (that is, the metric is of the form
dθ for some 0 < θ < 1) is concave.

Theorem (Cascales-Chiclana-GL-Mart́ın-Rueda Zoca, 2018)

Let M be a concave metric space. Then F(M) has property α if and only
if M is uniformly discrete and bounded and there is ε > 0 such that

d(x , z) + d(z , y)− d(x , y) ≥ ε
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Thank you for your attention!


