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Introduction

Definition

A Banach space X is said to have the Daugavet property if

‖I + T‖ = 1 + ‖T‖
for every rank-one operator T : X → X .

Examples of spaces with the Daugavet property are C [0, 1] (Daugavet, 1963), L1[0, 1]
(Lozanovskii, 1966), L∞[0, 1] (Pe lczyński, 1965), and preduals of spaces with the
Daugavet property.
We will need the following geometric characterization of the Daugavet property.

Theorem (Kadets– Shvidkoy–Sirotkin–Werner, [6])

X has the Daugavet property if and only if for every x0 ∈ SX , every ε > 0 and every
slice S of BX there is a slice S ′ ⊂ S such that ‖x0 + x‖ > 2− ε for every x ∈ S ′.

Given a complete metric space (M , d) and a distinguished point 0 ∈ M , the space

Lip0(M) := {f : M → R : f is Lipschitz, f (0) = 0}
is a dual Banach space when equipped with the norm

‖f ‖L := sup

{
|f (x)− f (y)|

d(x , y)
: x 6= y

}
.

The Lipschitz-free space over M is given by

F(M) := span{δ(x) : x ∈ M} ⊂ Lip0(M)∗,

where 〈δ(x), f 〉 = f (x) for f ∈ Lip0(M). Let us highlight that for every Banach
space Y and every Lipschitz function f : M → Y such that f (0) = 0 there is a
unique bounded linear operator f̂ : F(M)→ Y such that f̂ ◦ δ = f . Moreover,
‖f̂ ‖ = ‖f ‖L. It follows that F(M)∗ is isometric to Lip0(M) (see e.g. [4, 7]).

Note that Lip0([0, 1]) is isometric to L∞[0, 1] and thus it has the Daugavet property.

Does Lip0([0, 1]2) have the Daugavet property? (D. Werner, [8])

This problem was solved by Ivakhno, Kadets and Werner in [5]. Before stating their
result we need to introduce some notions. A metric space M is said to be:

a length space if for every x , y ∈ M , the distance d(x , y) is equal to the
infimum of the length of rectifiable curves joining them. Moreover, if that
infimum is always attained then we will say that M is a geodesic space.

local if for every ε > 0 and every f ∈ Lip0(M) there exist u, v ∈ M such that

0 < d(u, v) < ε and f (u)−f (v)
d(u,v) > ‖f ‖L − ε.

spreadingly local if for every ε > 0 and every f ∈ Lip0(M) the set{
x ∈ M : inf

δ>0

∥∥f |B(x ,δ)

∥∥
L
> ‖f ‖L − ε

}
is infinite.

(Z) if for every ε > 0 and every x , y ∈ M , x 6= y , there is z ∈ M \ {x , y} such
that

d(x , z) + d(z , y) ≤ d(x , y) + εmin{d(x , z), d(z , y)}.

Theorem (Ivakhno–Kadets–Werner, [5])

Blue implications hold for complete metric spaces. Red implications hold for compact
metric spaces.
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Main result

Clearly, [0, 1]2 is a geodesic metric space, so the theorem of Ivakhno–Kadets–Werner
gives a positive answer to the problem of Werner mentioned above. Moreover, it
provides a metric characterization of compact metric spaces M such that Lip0(M)
has the Daugavet property: they are exactly the spaces having (Z). Our goal here is
to provide a metric characterization for complete metric spaces.

Theorem (GL – Procházka – Rueda Zoca, 2018)

Let M be a complete metric space. The following statements are equivalent:

(i) M is local.

(ii) M is a length space.

(iii) Lip0(M) has the Daugavet property.

(iv) F(M) has the Daugavet property.

Remark that a complete metric M is a length space if, and only if, for every
x , y ∈ M and every δ > 0 the balls B(x , 1+δ

2 d(x , y)) and B(y , 1+δ
2 d(x , y)) intersect.

Sketch of the proof. (i)⇒(ii). If M is not a length space, then there exists
x , y ∈ M and δ > 0 such that the balls B

(
x , 1+δ

2 d(x , y)
)

and B
(
y , 1+δ

2 d(x , y)
)

do
not intersect. One can check that the Lipschitz function

f (t) =

(
d(x , y)

2
− d(x , t)

1 + δ

)+

−
(
−d(x , y)

2
+
d(y , t)

1 + δ

)+

satisfies ‖f ‖L ≥ 1 and

sup

{
f (u)− f (v)

d(u, v)
: d(u, v) <

δ

2
d(x , y)

}
≤ 1

1 + δ
.

(ii)⇒(iii) was proved in [5] and (iii)⇒(iv) is trivial.

(iv)⇒(i). First we prove the following:

Claim: For every f ∈ SLip0(M), ε > 0 and x , y ∈ M there are u, v ∈ M such that
f (u)−f (v)
d(u,v) > 1− ε and

(1− ε)(d(x , y) + d(u, v)) < min{d(x , v) + d(u, y), d(x , u) + d(v , y)}.
Indeed, the geometric characterization of the Daugavet property provides u, v ∈ M
such that 〈f , δ(u)−δ(v)

d(u,v) 〉 > 1− ε and∣∣∣∣∣∣∣∣δ(x)− δ(y)

d(x , y)
± δ(u)− δ(v)

d(u, v)

∣∣∣∣∣∣∣∣ > 2− ε.

The claim follows easily.

Now, given f ∈ SLip0(M), ε > 0 and x1, y1 ∈ M such that f (x1)−f (y1)
d(x1,y1) > 1− ε, apply

the Claim to the function h = f +g
2 , where

g(t) =
d(x1, y1)

2

d(t, y1)− d(t, x1)

d(t, y1) + d(t, x1)
,

to get x2, y2 ∈ M such that f (x2)−f (y2)
d(x2,y2) > 1− ε and d(x2, y2) < ε

(1−ε)2d(x1, y1).

Iterating this process we find sequences (xn), (yn) with

d(xn, yn) <

(
ε

(1− ε)2

)n

d(x0, y0)

and f (xn)−f (yn)
d(xn,yn) > 1− ε.
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Figure: The function g for M = R, x1 = 0 and y1 = 1

Strongly exposed points in BF(M)

The study of the extremal structure of BF(M) probably was started by Weaver in [7],
where it is proved that every extreme point BLip0(M) that belongs to F(M) is
a molecule, that is, an element of the form

mxy =
δ(x)− δ(y)

d(x , y)
, x , y ∈ M , x 6= y .

Weaver also proved that mxy is an extreme point of BLip0(M)∗ whenever there is
f ∈ Lip0(M) peaking at (x , y), that is, 〈f ,mxy〉 = 1 and sup(u,v)/∈U〈f ,muv〉 < 1 for
every open subset U of M2 \∆ containing (x , y) and (y , x).
Indeed, peaking functions characterise strongly exposed points in BF(M). Recall that
a point x ∈ BX is said to be a strongly exposed point if there is f ∈ X ∗ such
that for every sequence (xn)n in BX we have xn → x whenever f (xn)→ f (x).

Theorem (GL – Procházka – Rueda Zoca, 2018)

Let x , y ∈ M , x 6= y . The following statements are equivalent:

(i) The molecule mxy is a strongly exposed point of BF(M).

(ii) There is f ∈ Lip0(M) peaking at (x , y).

(iii) There is ε > 0 such that

d(x , z) + d(z , y)− d(x , y) > εmin{d(x , z), d(z , y)} for all z ∈ M \ {x , y}.

This result extends the characterization of peaking functions in R-trees given in [2].
Note that condition (iii) fails for every pair of distinct points in M if and only if M
has (Z). As a consequence, the following dichotomy holds:

Let M be a compact metric space. Then either Lip0(M) has the Daugavet property
(and so every slice of BF(M) has diameter 2) or BF(M) has a strongly exposed point.

Strongly exposed points are related with points of differentiability of the dual norm
via the S̆mulyan Lemma. This allows us to obtain the following curious consequence:

The norm of Lip0(M) is Gâteaux differentiable at f if and only if it is Fréchet
differentiable at f .

Let us end by giving the following characterization under compactness assumptions,
which improves the ones in [5].

Let M be a compact metric space. The following statements are equivalent:

(i) M is geodesic.

(ii) For every x 6= y ∈ M there is z ∈ M \ {x , y} with d(x , z) + d(z , y) = d(x , y).

(iii) Lip0(M) has the Daugavet property.

(iv) No extreme point of BLip0(M)∗ belongs to F(M).

(v) The unit ball of F(M) does not have any strongly exposed point.

(vi) The norm of Lip0(M) does not have any point of Gâteaux differentiability.

(vii) The norm of Lip0(M) does not have any point of Fréchet differentiability.

Very recently, Avilés and Mart́ınez-Cervantes [1] have proved that every complete
metric space with (Z) is a length space. As a consequence, statements (iii) to (vii)
are equivalent for a complete metric space.
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