### Introduction

#### Definition

A Banach space X is said to have the **Daugavet property** if

||I + T|| = 1 + ||T||

for every rank-one operator  $T: X \rightarrow X$ .

Examples of spaces with the Daugavet property are C[0, 1] (Daugavet, 1963),  $L_1[0, 1]$ (Lozanovskii, 1966),  $L_{\infty}[0, 1]$  (Pełczyński, 1965), and preduals of spaces with the Daugavet property.

We will need the following geometric characterization of the Daugavet property.

Theorem (Kadets– Shvidkoy–Sirotkin–Werner, [6])

X has the Daugavet property if and only if for every  $x_0 \in S_X$ , every  $\varepsilon > 0$  and every slice S of  $B_X$  there is a slice  $S' \subset S$  such that  $||x_0 + x|| > 2 - \varepsilon$  for every  $x \in S'$ .

Given a complete metric space (M, d) and a distinguished point  $0 \in M$ , the space  $Lip_0(M) := \{f \colon M \to \mathbb{R} : f \text{ is Lipschitz}, f(0) = 0\}$ 

is a dual Banach space when equipped with the norm

$$\|f\|_L := \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : x \neq y\right\}.$$

The **Lipschitz-free space** over *M* is given by

 $\mathcal{F}(M) := \overline{\operatorname{span}} \{ \delta(x) : x \in M \} \subset \operatorname{Lip}_0(M)^*,$ 

where  $\langle \delta(x), f \rangle = f(x)$  for  $f \in \text{Lip}_0(M)$ . Let us highlight that for every Banach space Y and every Lipschitz function  $f: M \to Y$  such that f(0) = 0 there is a unique bounded linear operator  $\hat{f}: \mathcal{F}(M) \to Y$  such that  $\hat{f} \circ \delta = f$ . Moreover,  $\|\hat{f}\| = \|f\|_{I}$ . It follows that  $\mathcal{F}(M)^{*}$  is isometric to  $\operatorname{Lip}_{0}(M)$  (see e.g. [4, 7]).

Note that  $Lip_0([0, 1])$  is isometric to  $L_{\infty}[0, 1]$  and thus it has the Daugavet property.

Does  $Lip_0([0, 1]^2)$  have the Daugavet property? (D. Werner, [8])

This problem was solved by Ivakhno, Kadets and Werner in [5]. Before stating their result we need to introduce some notions. A metric space M is said to be:

- a **length space** if for every  $x, y \in M$ , the distance d(x, y) is equal to the infimum of the length of rectifiable curves joining them. Moreover, if that infimum is always attained then we will say that M is a **geodesic space**.
- **local** if for every  $\varepsilon > 0$  and every  $f \in Lip_0(M)$  there exist  $u, v \in M$  such that  $0 < d(u, v) < \varepsilon$  and  $\frac{f(u) - f(v)}{d(u, v)} > \|f\|_L - \varepsilon$ .
- spreadingly local if for every  $\varepsilon > 0$  and every  $f \in \text{Lip}_0(M)$  the set

$$\left\{x \in M : \inf_{\delta > 0} \left\|f\right\|_{B(x,\delta)}\right\|_{L} > \left\|f\right\|_{L} - \varepsilon\right\}$$

is infinite.

• (Z) if for every  $\varepsilon > 0$  and every  $x, y \in M$ ,  $x \neq y$ , there is  $z \in M \setminus \{x, y\}$  such that

$$d(x,z) + d(z,y) \le d(x,y) + \varepsilon \min\{d(x,z), d(z, z)\}$$

Theorem (Ivakhno–Kadets–Werner, [5])

Blue implications hold for complete metric spaces. Red implications hold for compact



# A characterization of the Daugavet property in spaces of Lipschitz functions

L. García-Lirola, A. Procházka, A. Rueda Zoca

#### Main result

Clearly,  $[0, 1]^2$  is a geodesic metric space, so the theorem of lvakhno–Kadets–Werner gives a positive answer to the problem of Werner mentioned above. Moreover, it provides a metric characterization of compact metric spaces M such that  $Lip_0(M)$ has the Daugavet property: they are exactly the spaces having (Z). Our goal here is to provide a metric characterization for complete metric spaces.

Theorem (GL – Procházka – Rueda Zoca, 2018)

Let M be a complete metric space. The following statements are equivalent: (i) *M* is local.

- (ii) *M* is a length space.
- (iii)  $Lip_0(M)$  has the Daugavet property.

(iv)  $\mathcal{F}(M)$  has the Daugavet property.

Remark that a complete metric M is a length space if, and only if, for every  $x, y \in M$  and every  $\delta > 0$  the balls  $B(x, \frac{1+\delta}{2}d(x, y))$  and  $B(y, \frac{1+\delta}{2}d(x, y))$  intersect.

**Sketch of the proof.** (i) $\Rightarrow$ (ii). If *M* is not a length space, then there exists  $x,y \in M$  and  $\delta > 0$  such that the balls  $B\left(x, rac{1+\delta}{2}d(x,y)
ight)$  and  $B\left(y, rac{1+\delta}{2}d(x,y)
ight)$  do not intersect. One can check that the Lipschitz function  $-\frac{d(x,y)}{2}+\frac{d(y,t)}{1+\delta}$ 

$$F(t) = \left(rac{d(x,y)}{2} - rac{d(x,t)}{1+\delta}
ight)^+ - \left(-rac{d(x,t)}{2} + rac{d(x,t)}{2}
ight)^+$$

satisfies  $\|f\|_{I} \geq 1$  and

$$\operatorname{up}\left\{\frac{f(u)-f(v)}{d(u,v)}:d(u,v)<\frac{\delta}{2}d(x,y)\right\}\leq\frac{1}{1+\delta}$$

 $(ii) \Rightarrow (iii)$  was proved in [5] and  $(iii) \Rightarrow (iv)$  is trivial.

 $(iv) \Rightarrow (i)$ . First we prove the following:

*Claim:* For every  $f \in S_{Lip_0(M)}$ ,  $\varepsilon > 0$  and  $x, y \in M$  there are  $u, v \in M$  such that  $rac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$  and

$$(1-\varepsilon)(d(x,y)+d(u,v))<\min\{d(x,v)+$$

Indeed, the geometric characterization of the Daugavet property provides  $u, v \in M$ such that  $\langle f, \frac{\delta(u) - \delta(v)}{d(u,v)} \rangle > 1 - \varepsilon$  and

$$\left|\frac{\delta(x) - \delta(y)}{d(x, y)} \pm \frac{\delta(u) - \delta(v)}{d(u, v)}\right| > 2 - \varepsilon$$

The claim follows easily.

Now, given  $f \in S_{\text{Lip}_0(M)}$ ,  $\varepsilon > 0$  and  $x_1, y_1 \in M$  such that  $\frac{f(x_1) - f(y_1)}{d(x_1, y_1)} > 1 - \varepsilon$ , apply the Claim to the function  $h = \frac{f+g}{2}$ , where

$$g(t) = \frac{d(x_1, y_1)}{2} \frac{d(t, y_1) - d(t, x_1)}{d(t, y_1) + d(t, x_1)},$$
  
that  $\frac{f(x_2) - f(y_2)}{d(x_2, y_2)} > 1 - \varepsilon$  and  $d(x_2, y_2) < \frac{\varepsilon}{(1 - \varepsilon)^2} d(x_1, y_1).$   
the find sequences  $(x_n), (y_n)$  with  
 $d(x_n, y_n) < \left(\frac{\varepsilon}{(1 - \varepsilon)^2}\right)^n d(x_0, y_0)$ 

to get  $x_2, y_2 \in M$  such t Iterating this process we

$$d(x_n, y_n) < \left(\frac{\varepsilon}{(1-\varepsilon)^2}\right)^{2}$$

and 
$$\frac{f(x_n)-f(y_n)}{d(x_n,y_n)} > 1 - \varepsilon$$



Figure: The function g for  $M = \mathbb{R}$ ,  $x_1 = 0$  and  $y_1 = 1$ 

,**y)**}.

 $d(u, y), d(x, u) + d(v, y)\}.$ 

## **Strongly exposed points in** $B_{\mathcal{F}(M)}$

The study of the extremal structure of  $B_{\mathcal{F}(M)}$  probably was started by Weaver in [7], where it is proved that every extreme point  $B_{Lip_0(M)}$  that belongs to  $\mathcal{F}(M)$  is a molecule, that is, an element of the form  $m_{xy} = \frac{\delta(x) - \delta(y)}{d(x, y)}, x, y \in M, x \neq y.$ 

Weaver also proved that  $m_{xy}$  is an extreme point of  $B_{\text{Lip}_0(M)^*}$  whenever there is  $f \in \operatorname{Lip}_0(M)$  peaking at (x, y), that is,  $\langle f, m_{xy} \rangle = 1$  and  $\sup_{(u,v) \notin U} \langle f, m_{uv} \rangle < 1$  for every open subset U of  $M^2 \setminus \Delta$  containing (x, y) and (y, x). Indeed, peaking functions characterise strongly exposed points in  $B_{\mathcal{F}(M)}$ . Recall that a point  $x \in B_X$  is said to be a **strongly exposed point** if there is  $f \in X^*$  such that for every sequence  $(x_n)_n$  in  $B_X$  we have  $x_n \to x$  whenever  $f(x_n) \to f(x)$ .

Theorem (GL – Procházka – Rueda Zoca, 2018)

Let  $x, y \in M$ ,  $x \neq y$ . The following statements are equivalent:

(i) The molecule  $m_{xy}$  is a strongly exposed point of  $B_{\mathcal{F}(M)}$ .

(ii) There is  $f \in \text{Lip}_0(M)$  peaking at (x, y).

(iii) There is  $\varepsilon > 0$  such that  $d(x,z) + d(z,y) - d(x,y) > \varepsilon \min\{d(x,z), d(z,y)\} \text{ for all } z \in M \setminus \{x,y\}.$ 

This result extends the characterization of peaking functions in  $\mathbb{R}$ -trees given in [2]. Note that condition (iii) fails for every pair of distinct points in M if and only if Mhas (Z). As a consequence, the following dichotomy holds:

Let M be a compact metric space. Then either  $Lip_0(M)$  has the Daugavet property (and so every slice of  $B_{\mathcal{F}(M)}$  has diameter 2) or  $B_{\mathcal{F}(M)}$  has a strongly exposed point.

Strongly exposed points are related with points of differentiability of the dual norm via the Smulyan Lemma. This allows us to obtain the following curious consequence:

differentiable at f.

Let us end by giving the following characterization under compactness assumptions, which improves the ones in [5].

Let *M* be a compact metric space. The following statements are equivalent: (i) *M* is geodesic.

(ii) For every  $x \neq y \in M$  there is  $z \in M \setminus \{x, y\}$  with d(x, z) + d(z, y) = d(x, y). (iii)  $Lip_0(M)$  has the Daugavet property.

(iv) No extreme point of  $B_{\text{Lip}_0(M)^*}$  belongs to  $\mathcal{F}(M)$ .

are equivalent for a complete metric space.

#### References

- arXiv:1808.00715. 2018.
- Bull. Belg. Math. Soc. Simon Stevin 23.3 (2016), pp. 391–400.
- Lipschitz functions". J. Math. Anal. Appl. 464.1 (2018), pp. 473-492.
- 101.2 (2007), pp. 261–279. Amer. Math. Soc. 352.2 (2000), pp. 855-873.

[7] N. Weaver. *Lipschitz algebras*. World Scientific Publishing Co., Inc., River Edge, NJ, 1999, pp. xiv+223. [8] D. Werner. "Recent progress on the Daugavet property". Irish Math. Soc. Bull. 46 (2001), pp. 77–97. L. García-Lirola was supported by the grants MINECO/FEDER MTM2014-57838-C2-1-P and Fundación Séneca CARM 19368/PI/14. L. García-Lirola is also supported by a postdoctoral grant in the framework of Programa Regional de Talento Investigador y su Empleabilidad from Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia.

The norm of  $Lip_0(M)$  is Gâteaux differentiable at f if and only if it is Fréchet

(v) The unit ball of  $\mathcal{F}(M)$  does not have any strongly exposed point.

(vi) The norm of  $Lip_0(M)$  does not have any point of Gâteaux differentiability. (vii) The norm of  $Lip_0(M)$  does not have any point of Fréchet differentiability.

Very recently, Avilés and Martínez-Cervantes [1] have proved that every complete metric space with (Z) is a length space. As a consequence, statements (iii) to (vii)

[1] A. Avilés and G. Martínez-Cervantes. "Complete metric spaces with property (Z) are length metric spaces".

[3] L. García-Lirola, A. Procházka, and A. Rueda Zoca. "A characterisation of the Daugavet property in spaces of

[4] G. Godefroy. "A survey on Lipschitz-free Banach spaces". *Comment. Math.* 55.2 (2015), pp. 89–118.

[5] Y. Ivakhno, V. Kadets, and D. Werner. "The Daugavet property for spaces of Lipschitz functions". *Math. Scand.* 

[6] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner. "Banach spaces with the Daugavet property". Trans.

<sup>[2]</sup> A. Dalet, P. L. Kaufmann, and A. Procházka. "Characterization of metric spaces whose free space is isometric to  $\ell_1$ ".