Abstract

We analyse the relationship between different extremal notions in Lipschitz free spaces. We completely characterise strongly exposed points in the unit ball of a free space. We prove that every preserved extreme point of the unit ball is also a denting point. We show in some particular cases that every extreme point is a molecule, and that a molecule is extreme whenever the two points, say x and y, which define it satisfy that the metric segment [x, y]only contains x and y. As an application, we get some new consequences about normattainment in spaces of vector-valued Lipschitz functions. This is based on a joint work with A. Procházka, C. Petitjean and A. Rueda Zoca.

Introduction

We are interested in studying the following families of distinguished points in the unit ball B_X of a Banach space X.

Definition

- A point x in the unit ball B_X of a Banach space X is said to be:
- an extreme point of B_X if $x = \lambda y + (1 \lambda)z$, $y, z \in B_X$, $\lambda \in (0, 1)$, then x = y = z.
- a preserved extreme point of B_X if x is an extreme point of $B_{X^{**}}$,
- a **denting point** of B_X if the slices of B_X containing x are a neighbourhood basis of x in $(B_X, \parallel \parallel)$.
- an **exposed point** of B_X if there is $f \in X^*$ such that

$$f(x) > f(y)$$
 for every $y \in B_X \setminus \{x\}$.

- a weak-strongly exposed point of B_X if there is $f \in X^*$ such that for every sequence $(x_n)_n$ in B_X we have $x_n \stackrel{w}{\to} x$ whenever $f(x_n) \to f(x)$, equivalently, the slices of B_X provided by f are a neighbourhood basis of x in (B_X, w) .
- a strongly exposed point of B_X if there is $f \in X^*$ such that for every sequence $(x_n)_n$ in B_X we have $x_n \to x$ whenever $f(x_n) \to f(x)$, equivalently, the slices of B_X provided by f are a neighbourhood basis of x in $(B_X, || ||)$.

It is not difficult to check that the above concepts are related in the following way:

strongly exposed \implies weak-strongly exposed \implies exposed denting \implies preserved extreme \implies extreme

Moreover, none of these implications reverse in general.

Our aim is to study the former notions in the particular case in which the Banach space is the Lipschitz free space $\mathcal{F}(M)$ over a complete metric space (M, d). Recall that the space Lip₀(M) of Lipschitz functions on M vanishing at a distinguised point $0 \in M$ is a Banach space when it is endowed with the norm given by the best Lipschitz constant. Then

$$\mathcal{F}(M) := \overline{\operatorname{span}} \{ \delta(x) : x \in M \} \subset \operatorname{Lip}_0(M)^*,$$

where $\langle \delta(x), f \rangle = f(x) \rangle$ for $f \in \text{Lip}_0(M)$. We refer the reader to [1, 2] for the fundamental properties and applications of these spaces. Let us highlight that for every Banach space Y and every Lipschitz function $f: M \to Y$ such that f(0) = 0 there is a unique bounded linear operator $\hat{f}: \mathcal{F}(M) \to Y$ such that $\hat{f} \circ \delta = f$. Moreover, $\|f\| = \|f\|$. It follows from this fact that $\mathcal{F}(M)^*$ is isometric to $\operatorname{Lip}_0(M)$. The study of the extremal structure of $B_{\mathcal{F}(M)}$ probably was started by Weaver in [2], where it is proved that every preserved extreme point of $B_{\mathcal{F}(M)}$ is a molecule, that is, an element of the form

$$m_{xy} = rac{\delta(x) - \delta(y)}{d(x, y)}, x, y \in M, x \neq y.$$

We denote V the set of molecules in $\mathcal{F}(M)$. Note that

$$\|f\| = \sup\left\{\frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y\right\} = \sup\{\langle f, m_{xy} \rangle$$

and so V is 1-norming for Lip₀(M). Equivalently, $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(V)$. That provides a useful way for describing the norm in $\mathcal{F}(M)$.

Extremal structure of Lipschitz free spaces

L. García-Lirola

 $v: m_{xy} \in V\}$

Extreme points in $B_{\mathcal{F}(M)}$

In order to get some intuition, let us assume first that M just consists of three points, $M = \{0, x, y\}$. Let us define the following metrics on M:

$$d_1(x,0) = d_1(y,0) = d_1(x,y) = 1 \qquad d_2(x,0) = d_2(y,0) = 1, d_2(x,y) = 2$$

Note that in $\mathcal{F}(M, d_1)$ the set of extreme points of the ball coincides with the set of molecules. On the other hand, the molecule m_{xy} is not an extreme point of the ball of $\mathcal{F}(M, d_2)$. The reason is that 0 belongs to the metric segment [x, y] in (M, d_2) . More generally, for a molecule m_{xy} to be an extreme point of $B_{\mathcal{F}(M)}$ it is necessary that the metric segment [x, y] between x and y reduces to $\{x, y\}$. Indeed, if d(x,z) + d(z,y) = d(x,y) for some $z \in M \setminus \{x,y\}$ then

$$m_{xy} = \frac{d(x,z)}{d(x,y)}m_{xz} + \frac{d}{dx}$$

and so m_{xy} is not an extreme point of $B_{\mathcal{F}(M)}$. This fact motivates the following question:

Open problem

Assume that $[x, y] = \{x, y\}$. Is m_{xy} an extreme point of $B_{\mathcal{F}(M)}$?

Aliaga and Guirao have recently proved that the above problem has an affirmative answer if M is compact. We have shown the following:

Let M be a bounded uniformly discrete (i.e. $\inf_{x\neq y} d(x,y) > 0$) metric space. If $[x, y] = \{x, y\}$, then m_{xy} is an extreme point of $B_{\mathcal{F}(M)}$.

The above result allows us to find an example of a bounded uniformly discrete countable metric space M such that $\mathcal{F}(M)$ is not isometric to a dual Banach space. Another natural question is the following:

Open problem

If μ is an extreme point of $B_{\mathcal{F}(M)}$, is μ necessarily a molecule $\mu = m_{xy}$?

We have shown that this question has an affirmative answer in some particular cases.

Theorem 1 (GL – Procházka – Petitjean – Rueda Zoca, 2017)

Let M be a bounded separable metric space. Assume that there is a subspace of $lip_0(M)$ (little-Lipschitz functions) which is predual of $\mathcal{F}(M)$ and $\delta(M)$ is weak*-closed. Then given $\mu \in B_{\mathcal{F}(M)}$ the following are equivalent:

- (i) μ is an extreme point of $B_{\mathcal{F}(M)}$.
- (ii) μ is an exposed point of $B_{\mathcal{F}(M)}$.
- (iii) There are $x, y \in M$, $x \neq y$, such that $[x, y] = \{x, y\}$ and $\mu = m_{xy}$.

This applies for instance in the following cases:

- *M* compact countable.
- (M, d^{α}) , $0 < \alpha < 1$ compact α -snowflaking of a metric space (M, d).
- M bounded uniformly discrete admitting a compact topology τ such that d is τ -lsc. Theorem 1 has the following application to the norm-attainment of Lipschitz functions, which extends a result in [1].

Let Y be a Banach space and M be a metric space satisfying the hypotheses of Theorem 1. Then every Lipschitz function $f: M \to Y$ which attains its norm as an operator from $\mathcal{F}(M)$ to Y also attains its Lipschitz norm on a pair of points in M.

 $\frac{f(z,y)}{f(x,y)}m_{zy}$

Strongly exposed points in $B_{\mathcal{F}(M)}$

every open subset U of $M^2 \setminus \Delta$ containing (x, y) and (y, x).

Theorem 2 (GL – Procházka – Rueda Zoca, 2017)

Let $x, y \in M$, $x \neq y$. The following assertions are equivalent:

- (i) The molecule m_{xy} is a strongly exposed point of $B_{\mathcal{F}(M)}$.
- (ii) There is $f \in \text{Lip}_0(M)$ peaking at (x, y).

(iii) There is
$$arepsilon > 0$$
 such that

$$d(x,z) + d(z,y) - d(x,$$

This result extends a characterisation of peaking functions in subsets of \mathbb{R} -trees due to Dalet, Kaufmann and Procházka [3]. It was shown in [4] that if M is compact then $Lip_0(M)$ has the Daugavet property if and only if condition (iii) fails for every pair of distinct points in M. As a consequence, the following dichotomy holds:

Let M be a compact metric space. Then either $Lip_0(M)$ has the Daugavet property (and so every slice of $B_{\mathcal{F}(M)}$ has diameter 2) or $B_{\mathcal{F}(M)}$ has a strongly exposed point.

Preserved extreme points in $B_{\mathcal{F}(M)}$

Aliaga and Guirao have recently proved a characterisation of preserved extreme points in $B_{\mathcal{F}(M)}$ in the spirit of Theorem 2. Namely, they prove in [5] that m_{xy} is a preserved extreme point of $B_{\mathcal{F}(M)}$ if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that

We have proved the following result:

Every preserved extreme point of $B_{\mathcal{F}(M)}$ is a denting point, and every weak-strongly exposed point of $B_{\mathcal{F}(M)}$ is a strongly exposed point.

Now, one may wonder if some more implications in the diagram hold in the particular case of $B_{\mathcal{F}(M)}$. However, we have shown:

- strongly exposed.

• There is a bounded uniformly discrete countable metric space M with an extreme point of $B_{\mathcal{F}(M)}$ which is not a preserved extreme point. Finally, a curious consequence of Theorem 3 is the following:

The norm of $Lip_0(M)$ is Gâteaux differentiable at f if and only if it is Fréchet differentiable at *f* .

References

- [2] N. Weaver, *Lipschitz algebras*.
- World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
- Belg. Math. Soc. Simon Stevin, vol. 23, no. 3, pp. 391–400, 2016.
- no. 2, pp. 261–279, 2007.
- functions." arXiv:1705.05145, 2017.
- arXiv:1705.05145, 2017.

The research of L. García-Lirola was supported by the grants MINECO/FEDER MTM2014-57838-C2-1-P and Fundación Séneca CARM 19368/PI/14.

Weaver proved that m_{xy} is a preserved extreme point of $B_{\mathcal{F}(M)}$ whenever there is $f \in \operatorname{Lip}_0(M)$ peaking at (x, y), that is, $\langle f, m_{xy} \rangle = 1$ and $\sup_{(u,v) \notin U} \langle f, m_{uv} \rangle < 1$ for Indeed, peaking functions characterise strongly exposed points in $B_{\mathcal{F}(M)}$.

 $(x,y) > \varepsilon \min\{d(x,z), d(z,y)\}$ for all $z \in M \setminus \{x,y\}$.

 $(1-\delta)(d(x,z)+d(z,y)) < d(x,y), z \in M \setminus \{x,y\} \Rightarrow \min\{d(x,z),d(y,z)\} < \varepsilon.$

Theorem 3 (GL – Procházka – Petitjean – Rueda Zoca, 2017)

• There is a compact metric space M with a denting point of $B_{\mathcal{F}(M)}$ which is not

[1] G. Godefroy, "A survey on Lipschitz-free Banach spaces," *Comment. Math.*, vol. 55, no. 2, pp. 89–118, 2015.

[3] A. Dalet, P. L. Kaufmann, and A. Procházka, "Characterization of metric spaces whose free space is isometric to ℓ_1 ," Bull.

[4] Y. Ivakhno, V. Kadets, and D. Werner, "The Daugavet property for spaces of Lipschitz functions," Math. Scand., vol. 101,

[5] R. Aliaga and A. J. Guirao, "On the preserved extremal structure of Lipschitz-free spaces." arXiv:1705.09579, 2017. [6] L. García-Lirola, A. Procházka, and A. Rueda Zoca, "A characterisation of the Daugavet property in spaces of Lipschitz

[7] L. García-Lirola, C. Petitjean, A. Procházka, and A. Rueda Zoca, "Extreme structure and duality in Lipschitz free spaces."