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Volume product

Given a centrally symmetric convex body K ⊂ Rn, its volume product is
defined as

P(K ) = voln(K ) · voln(K ◦)

Theorem (Blaschke (1917) - Santaló (1949))

P(K ) ≤ P(Bn
2 )

Mahler’s conjecture (1939)

P(K ) ≥ P(Bn
1 ) = P(Bn

∞)

Results by Mahler, Saint Raymond, Gordon, Meyer, Reisner, Nazarov,
Stancu, Schütt, Werner, Petrov, Ryabogin, Zvavitch, Barthe, Fradelizi,
Artstein-Avidan, Karasev, Ostrover, Bourgain, Milman, Giannopoulos,
Paouris, Vritsiou, Kupenberg, Iriyeh, Shibata...
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Lipschitz-free spaces

Let M = {a0, . . . , an} be a finite metric space with metric d .
Consider functions f on M with f (a0) = 0.

We identify f ≡ (f (a1), . . . , f (an)) ∈ Rn. Then

BLip0(M) =

{
f :

f (ai )− f (aj)

d(ai , aj)
≤ 1 ∀i 6= j

}
=

{
f : 〈f ,

ei − ej
d(ai , aj)

〉 ≤ 1 ∀i 6= j

}
(e0 = 0)

and

B◦Lip0(M) = conv

{
ei − ej
d(ai , aj)

: i 6= j

}
=: BF(M)

P(M) := voln(BF(M)) · voln(BLip0(M))
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Lipschitz-free spaces

BF(M) = conv

{
ei − ej
d(ai , aj)

: i 6= j

}

Theorem (Aliaga-Guirao, 2019)
ei−ej

d(ai ,aj )
is a vertex of BF(M) if and

only if d(x , y) < d(x , z) + d(z , y) for
all z ∈ M \ {x , y}

Theorem (Godard, 2010)

M is a tree if and only if BF(M) is a linear image of Bn
1 .
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Minimal volume product

Let M be a finite metric space with minimal volume product such that
BF(M) is a simplicial polytope. Then M is a tree (and so P(M) = P(Bn

1 )).

BF(M) is a Hanner polytope if and only if M can be obtained by ”joining”
the following graphs:

...
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Maximal volume product
For n = 2, the metric space with maximum volume product is

Let M be a finite metric space such that P(M) is maximal among the
metric spaces with the same number of elements. Then

d(x , y) < d(x , z) + d(z , y) for all different points x , y , z ∈ M.

BF(M) is a simplicial polytope.

If n ≥ 3 and M is the complete graph with
equal weights, then BF(M) is not simplicial!

Thank you for your attention



Maximal volume product
For n = 2, the metric space with maximum volume product is

Let M be a finite metric space such that P(M) is maximal among the
metric spaces with the same number of elements. Then

d(x , y) < d(x , z) + d(z , y) for all different points x , y , z ∈ M.

BF(M) is a simplicial polytope.

If n ≥ 3 and M is the complete graph with
equal weights, then BF(M) is not simplicial!

Thank you for your attention



Maximal volume product
For n = 2, the metric space with maximum volume product is

Let M be a finite metric space such that P(M) is maximal among the
metric spaces with the same number of elements. Then

d(x , y) < d(x , z) + d(z , y) for all different points x , y , z ∈ M.

BF(M) is a simplicial polytope.

If n ≥ 3 and M is the complete graph with
equal weights, then BF(M) is not simplicial!

Thank you for your attention



Maximal volume product
For n = 2, the metric space with maximum volume product is

Let M be a finite metric space such that P(M) is maximal among the
metric spaces with the same number of elements. Then

d(x , y) < d(x , z) + d(z , y) for all different points x , y , z ∈ M.

BF(M) is a simplicial polytope.

If n ≥ 3 and M is the complete graph with
equal weights, then BF(M) is not simplicial!

Thank you for your attention


