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Results by Mahler, Saint Raymond, Gordon, Meyer, Reisner, Nazarov,
Stancu, Schiitt, Werner, Petrov, Ryabogin, Zvavitch, Barthe, Fradelizi,
Artstein-Avidan, Karasev, Ostrover, Bourgain, Milman, Giannopoulos,
Paouris, Vritsiou, Kupenberg, Iriyeh, Shibata...
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Theorem (Godard, 2010)

M is a tree if and only if Br(y)y is a linear image of By
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Let M be a finite metric space with minimal volume product such that
Br(m) is a simplicial polytope. Then M is a tree (and so P(M) = P(Bf))J

Br(m) is a Hanner polytope if and only if M can be obtained by " joining” J

the following graphs:
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Let M be a finite metric space such that P(M) is maximal among the
metric spaces with the same number of elements. Then

e d(x,y) < d(x,z)+ d(z,y) for all different points x,y,z € M.
@ Br(um) is a simplicial polytope.
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