

Volume product and Mahler's conjecture

The **volume product** of an origin-symmetric convex body $K \subset \mathbb{R}^n$ is

 $\mathcal{P}(K) := \operatorname{vol}_n(K) \cdot \operatorname{vol}_n(K^\circ)$

where K° is the *polar body* of K, i.e.

$$\mathcal{K}^{\circ} = \{x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \ \forall y \in \mathcal{K}\}.$$

Note that if K is the unit ball of some norm in \mathbb{R}^n , then K° is the unit ball of the dual norm.

The volume product is invariant under invertible linear transformations on \mathbb{R}^n . It follows from the continuity of the volume function in the Banach-Mazur compactum that the volume product attains its maximum and minimum.

Theorem (Blaschke-Santaló)

Let K be an origin-symmetric convex body in \mathbb{R}^n . Then

$$\mathcal{P}(K) \leq \mathcal{P}(B_2^n)$$

where B_2^n is the Euclidean ball in \mathbb{R}^n .

Blaschke (1917) proved that inequality for n = 2, 3 and Santaló (1949) for general n. The equality holds if and only if K is an ellipsoid (Saint-Raymond, 1981). Modern versions of proof uses Steiner Symmetrization (Meyer-Pajor, 1990). The minimum value of $\mathcal{P}(K)$ is an intriguing problem. Mahler (1939) proved that

$$\mathcal{P}(K) \geq rac{4^n}{(n!)^2}$$

and applied this result to geometric number theory. He conjectured the following: Mahler's conjecture

Let K be an origin-symmetric convex body in \mathbb{R}^n . Then

$$\mathcal{P}(K) \geq \mathcal{P}(B_1^n) = \mathcal{P}(B_\infty^n) = rac{4^n}{4}$$

The conjectured minimizers for the volume product are the **Hanner polytopes**, i.e. the unit balls of spaces which are obtaining by taking ℓ_1 or ℓ_∞ sums of ℓ_1^n or ℓ_∞^n . Mahler's conjecture is known to be true in a number of cases:

- n = 2 (Mahler, 1939).
- n = 3. (Iriyeh-Shibata, 2017; short proof by Fradelizi-Hubard-Meyer-Roldán Pensado-Zvavitch, 2019).
- Unconditional bodies (Saint Raymond, 1981, short proof by Meyer, 1986)
- Zonoids, that is, K° is the unit ball of a subspace of L_1 (Reisner, 1986; short proof by Gordon-Meyer-Reisner, 1988).
- Bodies which are small perturbations of B_{∞}^{n} (Nazarov-Petrov-Ryabogin-Zvavitch, 2010) and of Hanner polytopes (Kim, 2014).
- Bodies having hyperplane symmetries which fix only one common point (Barthe-Fradelizi, 2013).
- Hyperplane sections of ℓ_p -balls and Hanner polytopes (Karasev, 2019).
- It is known that bodies with some positive curvature assumption (Stancu, 2009; Reisner-Schütt-Werner, 2012) are not local minimizers for the volume product.

An isomorphic version of the conjectures was proved by Bourgain and Milman (1987): there is a universal constant c > 0 such that $\mathcal{P}(K) \ge c^n \mathcal{P}(B_2^n)$ (other proofs by Nazarov, 2012; and Giannopoulos-Paouris-Vritsiou, 2014). The best known result in arbitrary dimension is $\mathcal{P}(K) \geq \frac{\pi''}{n!}$ (Kuperberg, 2008).

Volume product and Lipschitz-free Banach spaces

M. Alexander¹, M. Fradelizi², L. García-Lirola¹, A. Zvavitch¹ ¹Kent State University, ²Université Paris-Est Marne-la-Vallée,

Lipschitz-free spaces and spaces of Lipschitz functions

Given a metric space (M, d) with a distinguished point a_0 , we consider the space $Lip_0(M)$ of Lipschitz functions on M vanishing at a_0 . $Lip_0(M)$ is a dual Banach space when it is endowed with the norm given by the Lipschitz constant. Its canonical predual is the Lipschitz-free space over M,

$$\mathcal{F}(M) := \overline{\operatorname{span}} \{ \delta(x) : x \in M \}$$

where
$$\langle \delta(x), f \rangle = f(x)$$
 for $f \in \operatorname{Lip}_0(M)$.

Lipschitz-free spaces have become a very active research topic. They have a number of applications on Non-Linear Analysis, for infinite metric spaces, and on Computer Science and Optimal Transportation, in the finite case. Here we focus on the case in which $M = \{a_0, a_1, \ldots, a_n\}$ is finite. Then we can identify each function $f \in Lip_0(M)$ with the vector $(f(a_1), \ldots, f(a_n)) \in \mathbb{R}^n$. So we can identify $B_{\text{Lip}_0(M)}$ and $B_{\mathcal{F}(M)}$ with certain convex bodies in \mathbb{R}^n , indeed,

Every finite metric space M is represented by a weighted graph, where the nodes are the points of M and the weight of the edges are the distances between them. We agree that (x, y) is an edge of the graph if and only if d(x, y) < d(x, z) + d(z, y)for all $z \in M \setminus \{x, y\}$.

This representation is very well adapted to our study. Indeed, • The point $\frac{e_i - e_j}{d(a_i, a_i)}$ is an extreme point of $B_{\mathcal{F}(M)}$ if and only if

 $B_{\mathcal{F}(M)}$ correspond to the edges in the canonical graph of M.

• $\mathcal{F}(M)$ is isometric to ℓ_1^n if and only if n = 3 and M is a tree (Godard, 2010).

Besides, one can check that $\mathcal{F}(M)$ is isometric to ℓ_{∞}^n with $n \geq 3$ if and only if n = 3and M is a regular cycle with 4 points.

The volume product of a metric space

We define

$$\mathcal{P}(M) := \mathcal{P}(B_{\mathcal{F}(M)}) = \operatorname{vol}_n(B_{\mathcal{F}(M)})$$

It follows from the properties of Lipschitz-free spaces that $\mathcal{P}(M)$ is an isometric invariant of M. Our goal is to study the maximum and the minimum values of the volume product of M.

Is it true that $\mathcal{P}(M) \geq \frac{4^n}{n!}$ for every metric space with n+1 elements?

Note also that $B_{\mathcal{F}(M)}$ is a polytope with at most n(n+1) vertices. Thus, it also makes sense to wonder about the maximum value for $\mathcal{P}(M)$.

For which metric spaces M is $\mathcal{P}(M)$ maximal among the metric spaces with the same number of elements?

 $\subset \operatorname{Lip}_{0}(M)^{*},$

$$: i \neq j \bigg\}.$$

$$A_{2}$$

$$B_{\mathcal{F}(M_{2})}$$

d(x,y) < d(x,z) + d(z,y) for all $z \in M \setminus \{x,y\}$

(Aliaga-Guirao, 2019). Thus, in the finite setting, the vertices of the polytope

 $_{M})$ vol_n $(B_{\text{Lip}_{0}(M)}).$

The maximum value of $\mathcal{P}(M)$

One can check that the maximum of $\mathcal{P}(M)$ among metric spaces with 3 elements is attained at the metric space corresponding to the complete graph with equal weights. To deal with the maximum in general dimension we use the shadow-system technique and ideas coming from Alexander-Fradelizi-Zvavitch (2019).

Theorem A

d(x,y) < d(x,z) + d(z,y) for all different points $x, y, z \in M$.

It is easy to check that $B_{\mathcal{F}(M)}$ is not simplicial in the case corresponding to the complete graph with equal weights, provided the metric space has at least 4 points. Thus, the volume product of that metric space is not maximum.

The minimum value of $\mathcal{P}(M)$

It is already known that $\mathcal{P}(M) \geq \frac{4^n}{n!}$ for certain metric spaces. Namely: • If M embeds into a tree, then $B_{\text{Lip}_0(M)}$ is a zonoid (Godard, 2010). • If M is a cycle, then $B_{\mathcal{F}(M)}$ has 2n+2 vertices and so it is a section of B_{∞}^{n+1} . By using shadow systems and the structure of $B_{\mathcal{F}(M)}$, we get the following.

Theorem B

Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{F}(M)$ is isometric to ℓ_1^n).

Our techniques also lead to a direct proof.

Corollary

and only if M is a tree or a regular cycle.

Note that $\mathcal{F}(M \diamond N) = \mathcal{F}(M) \oplus_1 \mathcal{F}(N)$.

A metric space is a *spiderweb* if it contains only two points or it is the complete bipartite graph $K_{2,n}$, where all the edges have the same weight.

Theorem C

spiderweb.

To prove that theorem, we characterize the finite metric spaces M such that $\mathcal{F}(M)$ admits a non-trivial decomposition as $X \oplus_1 Y$ or $X \oplus_{\infty} Y$.

The first author is supported in part by the Chateaubriand Fellowship of the Office for Science & Technology of the Embassy of France in the United States and The Centre National de la Recherche Scientifique funding visiting research at Université Paris-Est Marne-la-Vallée; the second author supported in part by the Agence Nationale de la Recherche, project GeMeCoD (ANR 2011 BS01 007 01); the third author is supported in part by the grants MTM2017-83262-C2-2-P and Fundación Séneca CARM 19368/PI/14 also supported by a postdoctoral grant from *Fundación* Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia; the forth author is supported in part by the U.S. National Science Foundation Grant DMS-1101636 and the Bézout Labex.

Let M be a finite metric space such that $\mathcal{P}(M)$ is maximal among the metric spaces with the same number of elements. Then $B_{\mathcal{F}(M)}$ is a simplicial polytope and

The minimal case for four points corresponds to the question on the minimality of volume product in \mathbb{R}^3 . That question was solved by Iriyeh-Shibata (2017) and automatically gives $\mathcal{P}(M) \geq \mathcal{P}(B_1^3)$, for M being a metric space of four elements.

We also characterize the metric spaces such that $B_{\mathcal{F}(M)}$ is a Hanner polytope. To this end, we introduce some notation. The ℓ_1 -sum of two finite metric spaces M, N is the metric space $M \diamond N$ obtained by identifying the distinguished points of M and N.

