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X ,Y Banach spaces, T : X → Y bounded linear operator.

T : X → Y attains its norm if there is x ∈ X with ‖x‖ = 1 such that
‖Tx‖ = ‖T‖.

If X is reflexive, then every x∗ : X → R attains its norm (Hahn-Banach)

If every x∗ : X → R attains its norm, then X is reflexive (James)

Every linear functional can be approximated by norm-attaining ones
(Bishop-Phelps)

Consider

T : `2 → c0

x 7→ (
1

2
x1,

2

3
x2, . . . , . . .

n

n + 1
xn, . . .)

Then ‖Tx‖ < ‖T‖ for all x with ‖x‖ = 1.

The “abundance” of norm-attaining operators depends on X and Y
(Lindenstrauss, Bourgain, Huff, Schachermayer, Godun, Troyanski,
Partington, Gowers, Zizler, Godefroy, Acosta, Mart́ın, Kadets, Aron,...)
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The Weak Maximizing Property

We say that (xn) ⊂ X with ‖xn‖ = 1 is maximizing for T if ‖Txn‖ → ‖T‖.

Definition (Aron-Garćıa-Pellegrino-Teixeira, 2020)

(X ,Y ) has the Weak Maximizing Property (WMP) if for every T : X → Y ,
the existence of a non-weakly null maximizing sequence for T implies that T
attains its norm.

Theorem (Pellegrino-Teixeira, 2009)

Let 1 < p <∞, 1 ≤ q <∞. Then (`p, `q) has the WMP.
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WMP and compact operators

Theorem (Aron-Garćıa-Pellegrino-Teixeira, 2020)

Assume (X ,Y ) has the WMP. Let T ,K : X → Y , K compact. If

‖T‖ < ‖T + K‖

Then T + K attains its norm.

This extends a result of J. Kover (2005) for the case X ,Y Hilbert spaces.

Proof.

Assume T + K does not attain its norm.

Take (xn)n maximizing for T + K . Then xn
w→ 0.

K (xn)→ 0 in norm.

‖T + K‖ = limn ‖(T + K )xn‖ = limn ‖Txn‖ ≤ ‖T‖⇒ Contradiction.

As a consequence,
(X ,Y ) WMP⇒ X is reflexive

(if X is not reflexive, then there is K : X → Y not attaining the norm. Take
T = 0, then ‖T‖ < ‖T + K‖)
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WMP for (`p, `q)

Theorem (Pellegrino-Teixeira, 2009)

(`p, `q) has the WMP for 1 < p <∞ and 1 ≤ q <∞.

(New) short proof:

Key fact: If (un) ⊂ `p converges weakly to 0, then

lim
n→∞

‖x + un‖p = ‖x‖p + lim
n→∞

‖un‖p

If q < p, then every operator from `p to `q is compact (Pitt).

Assume p ≤ q. Let T : `p → `q, and (xn) ⊂ S`p non-weakly null sequence
such that ‖Txn‖ → ‖T‖ = 1.

We may assume that xn
w→ x 6= 0, and that the sequences (‖x − xn‖)n,

(‖Txn‖)n and (‖Tx − Txn‖)n are convergent.

1 = ‖T‖ = lim
n→∞

‖Txn‖ = (‖Tx‖q + lim
n→∞

‖Tx − Txn‖q)1/q

≤ (‖Tx‖q + lim
n→∞

‖x − xn‖q)1/q ≤ (‖Tx‖p + lim
n→∞

‖x − xn‖p)1/p

= (‖Tx‖p + 1− ‖x‖p)1/p, and so ‖x‖ ≤ ‖Tx‖
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A more general result

Theorem (G.L.-Petitjean, 2020)

Assume X is reflexive, and

for all t > 0, δX (t) ≥ ρY (t)

for all t ≥ 1, either δX (t) > ρY (t) or ρY (t) > t − 1.

Then (X ,Y ) has the WMP.

δX is the modulus of asymptotic uniform
convexity of X :

δX (t) = inf
x∈SX

sup
Z⊂X

dim(X/Z)<∞

inf
z∈SZ

‖x + tz‖ − 1

ρY is the modulus of asymptotic uniform
smoothness of Y :

ρY (t) = sup
y∈SY

inf
Z⊂Y

dim(Y/Z)<∞

sup
z∈SY

‖y + tz‖ − 1
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Asymptotic moduli of classical spaces

max{0, t − 1} = ρc0
(t) ≤ ρX (t), δX (t) ≤ δ`1 (t) ≤ t, δX (t) ≤ ρX (t)

Let 1 ≤ p <∞. If X = (
∑∞

n=1 En)p, where dim(En) <∞, then

δX (t) = ρX (t) = (1 + tp)1/p − 1.

δ`p(Γ)(t) = ρ`p(Γ)(t) = (1 + tp)1/p − 1.

δc0(Γ)(t) = ρc0(Γ)(t) = max{0, t − 1}.

Let J be the James space. Then δJ(t) = (1 + t2)1/2 − 1.

The Lorentz sequence space d(w , p) satisfies ρd(w,p)(t) = (1 + tp)1/p − 1.

For a reflexive Orlicz space `ϕ,

(1 + tqϕ)1/qϕ − 1 ≤ δ`ϕ(t), ρ`ϕ(t) ≤ (1 + tpϕ)1/pϕ − 1,

pϕ = sup{p > 0 : u−pϕ(u) is non-decreasing for all 0 < u ≤ ϕ−1(1)}

qϕ = inf{p > 0 : u−pϕ(u) is non-increasing for all 0 < u ≤ ϕ−1(1)}.

If ρX (t) < δY (t) for some t > 0, then every T : X → Y is compact
(Johnson-Lindenstrauss-Preiss-Schechtman, 2002).
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If ρX (t) < δY (t) for some t > 0, then every T : X → Y is compact
(Johnson-Lindenstrauss-Preiss-Schechtman, 2002).



We have

lim inf
n
‖x + xn‖ ≥ ‖x‖

(
1 + δX

(
lim infn ‖xn‖
‖x‖

))
∀x 6= 0, xn

w→ 0 in X .

Also,

lim sup
n
‖y + yn‖ ≤ ‖y‖

(
1 + ρY

(
lim supn ‖yn‖
‖y‖

))
∀y 6= 0, yn

w→ 0 in Y .

Lemma

N(s, t) =

{
|s|+ |s|ρY (|t|/|s|) if s 6= 0,

|t| if s = 0.

defines an absolute norm in R2 that satisfies

lim sup
n
‖y + yn‖ ≤ N(‖y‖ , lim sup

n
‖yn‖) ∀y , yn ∈ Y , yn

w→ 0
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Theorem (G.L.-Petitjean, 2020)

Assume X is reflexive, and

for all t > 0, δX (t) ≥ ρY (t)

for all t ≥ 1, either δX (t) > ρY (t) or ρY (t) > t − 1.

Then (X ,Y ) has the WMP.

Proof:

Let T : X → Y , ‖T‖ = 1 and (xn) be maximizing for T and not weak-null.

We may assume xn
w→ x 6= 0, and the sequences (‖xn − x‖)n, (‖Txn − Tx‖)n

are convergent.

Since Txn − Tx
w→ 0,

1 = ‖T‖ = lim
n
‖Txn‖ = lim

n
‖Tx + Txn − Tx‖ ≤ N(‖Tx‖ , lim

n
‖Txn − Tx‖)
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1 ≤ N(‖Tx‖, lim
n
‖Txn − Tx‖) ≤ N(‖Tx‖, lim

n
‖xn − x‖) ≤ N(‖x‖, lim

n
‖xn − x‖)

Since x 6= 0,

N(‖x‖, lim
n
‖xn − x‖) = ‖x‖+ ‖x‖ρY

(
limn ‖xn − x‖

‖x‖

)
≤ ‖x‖+ ‖x‖δX

(
limn ‖xn − x‖

‖x‖

)
≤ lim

n
‖x + xn − x‖ = 1.

Thus, all the previous inequalities are in fact equalities:

N(‖Tx‖, lim
n
‖xn − x‖) = N(‖x‖, lim

n
‖xn − x‖) = 1 = N(0, 1).

If ‖Tx‖ < ‖x‖, we get limn ‖xn − x‖ = 1, and so δX ( 1
‖x‖ ) = ρY ( 1

‖x‖ ) = 1
‖x‖ − 1,

a contradiction.

Corollary

If δX (t) > ρY (t) for any t > 0, then every non weakly null maximizing sequence
for T has a norm-convergent subsequence.
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Example

Consider T : `2 → `∞, Tx =
(
x1 , x1 +

(
1− 1

2

)
x2 , . . . , x1 +

(
1− 1

n

)
xn , . . .

)
‖T‖ =

√
2. Indeed,

‖Tx‖∞ = sup
{
|x1 + (1− 1/n)xn| : n ≥ 1

}
≤ sup

{
(|x1|2 + |xn|2)1/2(1 + (1− 1/n)2)1/2 : n ≥ 2

}
≤
√

2 ‖x‖2 .

T does not attain its norm: if ‖Tx‖∞ =
√

2 for some x with ‖x‖2 = 1, then
lim supn(|x1|2 + |xn|2)1/2 = 1. Thus |x1| = 1, which implies that x = ±e1, a
contradiction.∥∥∥T( 1√

2
(e1 + en)

)∥∥∥→ √2, so ‖T‖ =
√

2 the sequence
(

1√
2

(e1 + en)
)
n

is

maximizing and not weakly null.

Thus, (`2, `∞) fails the WMP.

What about the pair (Lp, Lq)?

Partial negative answers by S. Dantas, M. Jung, G. Mart́ınez Cervantes, and J.
Rodŕıguez Abellán (still open for the case p < 2, p < q).
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The non-reflexive case

Recall: if (X ,Y ) has the WMP, then X is reflexive.

Definition

(X ∗,Y ) has the weak* maximizing property (W*MP) if for any
T : X ∗ → Y , the existence of a non-weak* null maximizing sequence for T
implies that T attains its norm.

(X ∗,Y ∗) has the weak*-to-weak* maximizing property (w*-to-w*MP)
if for T : Y → X , the existence of a non-weak* null maximizing sequence for
T ∗ implies that T ∗ attains its norm.

(X ,R) has the WMP for any reflexive space X . However, there is X
(isomorphic to c0) such that (X ∗,R) fails the W*MP.

(X , `1) has the WMP for any reflexive space X . However, there is X
(isomorphic to c0) such that (X ∗, `1) fails the w*-to-w*MP.

(`1,Y ) has the W*MP for any Y .
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The non-reflexive case
Consider the James space Jp.

‖x‖Jp = sup
{( k−1∑

i=1

|x(pi+1)− x(pi )|p
)1/p

: 1 ≤ p1 < p2 < . . . < pk
}
.

Theorem (G.L.-Petitjean, 2020)

If 1 < p ≤ q <∞ then there is an equivalent norm J̃q = (Jq, ‖ · ‖) such

that (Jp, J̃q) has the w*-to-w*MP.

If 1 < q < p <∞ then every T : Jp → Jq is compact. In particular, the
pair (Jp,Jq) has the w*-to-w*MP.

(J2,R) fails the W*MP.

If (X ,Y ) has the WMP, does it follow that (Y ∗,X ∗) has the w*-to-w*MP?

Thank you for your attention!
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