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Consider

Then || Tx|| < || T|| for all x with ||x]| = 1.

@ The “abundance” of norm-attaining operators depends on X and Y
(Lindenstrauss, Bourgain, Huff, Schachermayer, Godun, Troyanski,
Partington, Gowers, Zizler, Godefroy, Acosta, Martin, Kadets, Aron,...)
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WMP and compact operators

Theorem (Aron-Garcia-Pellegrino-Teixeira, 2020)
Assume (X, Y) has the WMP. Let T,K: X — Y, K compact. If

ITI<IT+K|

Then T + K attains its norm.

This extends a result of J. Kover (2005) for the case X, Y Hilbert spaces.
Proof.

@ Assume T + K does not attain its norm.

@ Take (xp), maximizing for T + K. Then x, 0.

@ K(x,) — 0 in norm.

o || T+ K| =1limy|[(T+ K)xal| = lim, || Tx,|| < || T||= Contradiction.

As a consequence,
(X,Y) WMP = X is reflexive

(if X is not reflexive, then there is K: X — Y not attaining the norm. Take
T =0, then ||T]| <|IT+K|)
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@ Assume p < g. Let T: {, — {4, and (x,) C S, non-weakly null sequence
such that || Tx,|| — || T| = 1.
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@ Letl<p<oo If X= (322 En)p Where dim(E,) < oo, then
x(t) = px(t) = (1 +¢7)V/P — 1.
@ 4, (t) = Py, () = (L + tP)/P — 1.
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@ Let J be the James space. Then d,(t) = (1 + t3)¥/2 — 1.
@ The Lorentz sequence space d(w, p) satisfies py(, ,(t) = (1 + tP)/P 1.
@ For a reflexive Orlicz space ¢,
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If px(t) < dy(t) for some t > 0, then every T: X — Y is compact
(Johnson-Lindenstrauss-Preiss-Schechtman, 2002).
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Corollary

If 5x(t) > py(t) for any t > 0, then every non weakly null maximizing sequence
for T has a norm-convergent subsequence.
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What about the pair (Lp, Lg)? )

Partial negative answers by S. Dantas, M. Jung, G. Martinez Cervantes, and J.
Rodriguez Abellan (still open for the case p < 2, p < q).
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X,R) has the WMP for any reflexive space X. However, there is X
isomorphic to ¢p) such that (X*,R) fails the W*MP.

(
(
(X, ¢1) has the WMP for any reflexive space X. However, there is X
(isomorphic to ¢p) such that (X*,¢;) fails the w*-to-w*MP.

(

(]

41, Y) has the W*MP for any Y.
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Thank you for your attention! )




