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@ V = vector space C {f: X — R continuous}
(we will consider V' = Lipschitz functions, locally Lipschitz functions,
uniformly locally Lipschitz functions,...)

For which metric spaces X do we have that

feV,geV=1fgeV?

For which metric spaces X do we have that

1
fe V,f(x)#OVxGX:?eV?

Remarks:
e If f2 € V whenever f € V, then V is closed under pointwise products.

@ Let V be a lattice containing the constants. If V is closed under
reciprocation, then V is closed under pointwise products.
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& f|k is Lipschitz YK C X compact
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@ LL(X) is always closed under reciprocation.

Let A be a family of subsets of X and consider
V={f: X = R:fl|ais Lipschitz VA € A}

@ V is closed under pointwise product if and only if every element in A
is bounded.

@ V is closed under reciprocation if and only if every element in A is
relatively compact.
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Cauchy-Lipschitz functions

feCL(X) & fl, is Lipschitz V{x,} C X Cauchy sequence
< f|ais Lipschitz VA C X totally bounded

f:(0,00) — R given by f(x) = 1/x is locally Lipschitz but not
Cauchy-Lipschitz (take x, = 1/n).

Theorem (Beer-G.-Garrido)
o CL(X) is always closed under pointwise product.

@ The following are equivalent:
(a) CL(X) is closed under reciprocation.
(b) Every locally Lipschitz function on X is Cauchy-Lipschitz.

(c) X is complete.

(b)<(c) was shown by (Beer-Garrido, 2016).
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Uniformly locally Lipschitz functions

f € ULL(X) < 3r >0 flp(x,r is Lipschitz Vx € X

e f: R — R given by f(x) = x? is uniformly locally Lipschitz but not
Lipschitz.

o X = {kxo+ ren, k,n € N}, f: X — R given by f(kx + 1€,) = n.
Then f is Cauchy-Lipschitz but not uniformly locally Lipschitz.

Theorem (Beer-G.-Garrido)
e ULL(X) is always closed under pointwise product.

@ The following are equivalent:
(a) ULL(X) is closed under reciprocation.
(b) Every locally Lipschitz function on X is uniformly locally

Lipschitz.
(c) X is cofinally complete.

(b)<(c) was shown by (Beer-Garrido, 2015).
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Definition (Beer, 2008)

{xn} is cofinally Cauchy if for all € > 0 there is an infinite subset N, C N
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@ An infinite uniformly discrete space is cofinally complete but not
compact.

@ An infinite dimensional Banach space is complete but not cofinally
complete.

Theorem (Beer-G.-Garrido)

The following are equivalent:
(a) ULL(X) is closed under reciprocation.

(b) Every locally Lipschitz function on X is uniformly locally Lipschitz.
(c) X is cofinally complete.
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o f: R — R, f(x) = x? is uniformly locally Lispchitz but not Lipschitz
in the small.

o X=U4[n—1.n+ 3 CR, f: X — R defined by f(x) = n? if
n— % <x<n+ % is Lipschitz in the small but fails to be Lipschitz.
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Theorem (Garrido-Jaramillo, 2008)

Every uniformly continuous function can be uniformly approximated by
Lipschitz in the small functions.

Theorem (Cabello-Sanchez, 2017)

The space of uniformly continuous functions on X is stable under
pointwise product if and only if every subset of X is either Bourbaki
bounded or contains an infinite uniformly discrete subset.
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Lipschitz in the small functions

felS(X) < 3r,L>0:f|p,r) is L-Lipschitz Vx € X (Luukkainen)

Theorem (Beer-G.-Garrido)

o LS(X) is closed under pointwise product if and only if every subset of
X is either Bourbaki bounded or contains an infinite uniformly
discrete subset.

@ The following are equivalent:

(a) LS(X) is closed under reciprocation.

(b) Every locally Lipschitz function is Lipschitz in the small.

(c) X is a UC-space (i.e. every continuous function on X is
uniformly continuous).

(b)<(c) was shown by (Beer-Garrido, 2015).
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