Convexidad uniforme y cotipos en espacios de Banach

Luis C. García-Lirola

Joint work with Matías Raja

University of Zaragoza

Congreso Bienal RSME, Ciudad Real 17 de enero, 2022

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

- X = infinite-dimensional Banach space
 - $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if and only if $\sum_{n=1}^{\infty} \pm x_n$ converges for every choice of signs.

- X = infinite-dimensional Banach space
 - $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if and only if $\sum_{n=1}^{\infty} \pm x_n$ converges for every choice of signs.
 - Dvoretzky-Rogers, 1950: for every X, there exists an unconditionally convergent series in X which is not absolutely convergent.

- X = infinite-dimensional Banach space
 - $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if and only if $\sum_{n=1}^{\infty} \pm x_n$ converges for every choice of signs.
 - Dvoretzky-Rogers, 1950: for every X, there exists an unconditionally convergent series in X which is not absolutely convergent.
 - Orlicz, 1930. If $\sum_{n=1}^{\infty} x_n$ converges unconditionally in L^p with 1 then

$$\sum_{n=1}^{\infty} \|x_n\|^{\max\{p,2\}} < +\infty$$

- X = infinite-dimensional Banach space
 - $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if and only if $\sum_{n=1}^{\infty} \pm x_n$ converges for every choice of signs.
 - Dvoretzky-Rogers, 1950: for every X, there exists an unconditionally convergent series in X which is not absolutely convergent.
 - Orlicz, 1930. If $\sum_{n=1}^{\infty} x_n$ converges unconditionally in L^p with 1 then

$$\sum_{n=1}^{\infty} \|x_n\|^{\max\{p,2\}} < +\infty$$

• Kadec, 1956. If $\sum_{n=1}^{\infty} x_n$ converges unconditionally in X then

$$\sum_{n=1}^{\infty} \delta_X(\|x_n\|) < +\infty$$

where δ_X is the modulus of uniform convexity of X.

The modulus of uniform convexity of X is given by

$$\delta_X(t) = \inf\{1 - \|rac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

X is uniformly convex if $\delta_X(t) > 0$ for every $t \in (0, 2]$

The modulus of uniform convexity of X is given by

$$\delta_X(t) = \inf\{1 - \|rac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

X is uniformly convex if $\delta_X(t) > 0$ for every $t \in (0,2]$

- $\delta_{L_p}(t) \sim t^{\max\{p,2\}} \ (1$
- $\delta_X(t) \leq \delta_H(t) \sim t^2$

The modulus of uniform convexity of X is given by

$$\delta_X(t) = \inf\{1 - \|rac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

X is uniformly convex if $\delta_X(t) > 0$ for every $t \in (0,2]$

•
$$\delta_{L_p}(t) \sim t^{\max\{p,2\}}$$
 $(1$

- $\delta_X(t) \leq \delta_H(t) \sim t^2$
- A space is superreflexive if and only if it has a uniformly convex renorming (Enflo),

The modulus of uniform convexity of X is given by

$$\delta_X(t) = \inf\{1 - \|rac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge t\}$$

X is uniformly convex if $\delta_X(t) > 0$ for every $t \in (0,2]$

•
$$\delta_{L_p}(t) \sim t^{\max\{p,2\}}$$
 $(1$

- $\delta_X(t) \leq \delta_H(t) \sim t^2$
- A space is superreflexive if and only if it has a uniformly convex renorming (Enflo), moreover one can get δ_X(t) ≥ ct^p for some p ≥ 2, c > 0 (Pisier).

Kadec:
$$\sup_{\varepsilon_k = \pm 1} \sum_{k=1}^n \varepsilon_k x_k \Rightarrow \sum_{k=1}^n \delta_X(||x_k||) < +\infty$$

$$\begin{aligned} \mathsf{Kadec:} \quad \sup_{\varepsilon_k = \pm 1} \sum_{k=1}^n \varepsilon_k x_k \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) < +\infty \end{aligned}$$
$$\begin{aligned} \mathsf{Figiel-Pisier, 1974:} \quad \exists C > 0: \int_0^1 \|\sum_{k=1}^n r_k(t) x_k\| dt \leq 1 \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) \leq C \end{aligned}$$

$$\begin{array}{l} \mathsf{Kadec:} \quad \sup_{\varepsilon_k = \pm 1} \sum_{k=1}^n \varepsilon_k x_k \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) < +\infty \\ \mathsf{Figiel-Pisier, 1974:} \ \exists C > 0 : \int_0^1 \|\sum_{k=1}^n r_k(t) x_k\| dt \leq 1 \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) \leq C \end{array}$$

(Key idea: δ_X is equivalent to $\delta_{L_2(X)}$)

$$\begin{aligned} \text{Kadec:} \quad \sup_{\varepsilon_k = \pm 1} \sum_{k=1}^n \varepsilon_k x_k \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) < +\infty \end{aligned}$$

$$\begin{aligned} \text{Figiel-Pisier, 1974:} \quad \exists C > 0 : \int_0^1 \|\sum_{k=1}^n r_k(t) x_k\| dt \leq 1 \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) \leq C \end{aligned}$$

(Key idea: δ_X is equivalent to $\delta_{L_2(X)}$)

Definition (Figiel)

A function ϕ satisfying

$$\exists C > 0: \int_0^1 \|\sum_{k=1}^n r_k(t) x_k \| dt \le 1 \Rightarrow \sum_{k=1}^n \phi(\|x_k\|) \le C$$

is called a generalized cotype of X.

$$\begin{aligned} \text{Kadec:} \quad \sup_{\varepsilon_k = \pm 1} \sum_{k=1}^n \varepsilon_k x_k \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) < +\infty \end{aligned}$$

$$\begin{aligned} \text{Figiel-Pisier, 1974:} \quad \exists C > 0 : \int_0^1 \|\sum_{k=1}^n r_k(t) x_k\| dt \leq 1 \Rightarrow \sum_{k=1}^n \delta_X(\|x_k\|) \leq C \end{aligned}$$

(Key idea: δ_X is equivalent to $\delta_{L_2(X)}$)

Definition (Figiel)

A function ϕ satisfying

$$\exists C > 0: \int_0^1 \|\sum_{k=1}^n r_k(t) x_k\| dt \le 1 \Rightarrow \sum_{k=1}^n \phi(\|x_k\|) \le C$$

is called a **generalized cotype** of X.

Clearly, X has Rademacher cotype p if and only if $t \mapsto t^p$ is a generalized cotype.

Theorem (Figiel-Pisier, 1974)

Every modulus of convexity is a generalized cotype.

Theorem (Figiel-Pisier, 1974)

Every modulus of convexity is a generalized cotype.

Question: Let X be a superreflexive space and ϕ be a generalized cotype of X. Does there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|}(t) \ge c\phi(t)$?

Theorem (Figiel-Pisier, 1974)

Every modulus of convexity is a generalized cotype.

Question: Let X be a superreflexive space and ϕ be a generalized cotype of X. Does there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|}(t) \ge c\phi(t)$?

Figiel, 1975: YES if X has an unconditional basis (more generally, l.u.st.).

Theorem (Figiel-Pisier, 1974)

Every modulus of convexity is a generalized cotype.

Question: Let X be a superreflexive space and ϕ be a generalized cotype of X. Does there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|}(t) \ge c\phi(t)$?

Figiel, 1975: YES if X has an unconditional basis (more generally, l.u.st.).

Theorem (GL-Raja, 2021)

YES if X is a UMD space.

Theorem (Figiel-Pisier, 1974)

Every modulus of convexity is a generalized cotype.

Question: Let X be a superreflexive space and ϕ be a generalized cotype of X. Does there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|}(t) \ge c\phi(t)$?

Figiel, 1975: YES if X has an unconditional basis (more generally, l.u.st.).

Theorem (GL-Raja, 2021)

YES if X is a UMD space.

 X has the unconditional martingale difference property (UMD) if for some (eq. for every) 1 n</sub>) bounded in L_p(X), the series ∑_{n=1}[∞](f_{n+1} - f_n) converges unconditionally.

Theorem (Figiel-Pisier, 1974)

Every modulus of convexity is a generalized cotype.

Question: Let X be a superreflexive space and ϕ be a generalized cotype of X. Does there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|}(t) \ge c\phi(t)$?

Figiel, 1975: YES if X has an unconditional basis (more generally, l.u.st.).

Theorem (GL-Raja, 2021)

YES if X is a UMD space.

- X has the unconditional martingale difference property (UMD) if for some (eq. for every) 1 n</sub>) bounded in L_p(X), the series ∑_{n=1}[∞](f_{n+1} f_n) converges unconditionally.
- L_p , 1 and reflexive Orlicz spaces are UMD.
- UMD \Rightarrow superreflexive, but not conversely (first examples by Pisier and Bourgain; $L_p(L_q(L_p(L_q(...))))$ (Qiu, 2012)).

Theorem (GL-Raja, 2021)

Let X be a UMD space and ϕ be a generalized cotype of X. Then there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|\|}(t) \ge c\phi(t)$.

Theorem (GL-Raja, 2021)

Let X be a UMD space and ϕ be a generalized cotype of X. Then there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|\|}(t) \ge c\phi(t)$.

Some ideas about the proof...

• The first task was to find an expression for the generalized cotype almost equivalent to the homogeneity of the classic cotype.

$$\sum_{k=1}^n \phi(\|x_k\|) \leq \Phi\left(\int_0^1 \|\sum_{k=1}^n r_k(t)x_k\|\,dt\right)$$

where Φ can be taken convex and such that $\Phi(t^{1/q})$ is concave for some $q \ge 2$ thanks to the work of Figiel.

Theorem (GL-Raja, 2021)

Let X be a UMD space and ϕ be a generalized cotype of X. Then there exist an equivalent norm $\|\| \|\|$ on X so that $\delta_{\|\| \|\|}(t) \ge c\phi(t)$.

Some ideas about the proof...

• The first task was to find an expression for the generalized cotype almost equivalent to the homogeneity of the classic cotype.

$$\sum_{k=1}^n \phi(\|x_k\|) \leq \Phi\left(\int_0^1 \|\sum_{k=1}^n r_k(t)x_k\|\,dt\right)$$

where Φ can be taken convex and such that $\Phi(t^{1/q})$ is concave for some $q \ge 2$ thanks to the work of Figiel.

• From that we get that

$$\sum_{n=1}^{\infty}\int_0^1\phi(\|f_n(s)\|)\,ds<+\infty$$

whenever the series $\sum_{n=1}^{\infty} f_n$ is unconditionally convergent in $L^q(X)$.

Consider the order $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$. If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Consider the order $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$. If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Theorem (Raja, 2015)

Let X be a superreflexive Banach space. There exists a positive decreasing submultiplicative function $\mathfrak{N}_X(t)$ defined on (0,1] such that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\parallel\parallel} \mid \| (t) : \| \| \|$ is an equivalent norm on $X\}.$

Consider the order $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$. If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Theorem (Raja, 2015)

Let X be a superreflexive Banach space. There exists a positive decreasing submultiplicative function $\mathfrak{N}_X(t)$ defined on (0,1] such that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\parallel\parallel} \mid \| (t) : \| \| \|$ is an equivalent norm on $X\}.$

For L_p and Orlicz spaces, the supremum is attained (at the usual norm).

Consider the order $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$. If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Theorem (Raja, 2015)

Let X be a superreflexive Banach space. There exists a positive decreasing submultiplicative function $\mathfrak{N}_X(t)$ defined on (0,1] such that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\parallel \parallel} \mid (t) : \parallel \parallel \}$ is an equivalent norm on $X\}.$

For L_p and Orlicz spaces, the supremum is attained (at the usual norm). Figiel 1978: there exist a Banach space X with an unconditional basis for which there are no best uniformly convex renorming nor a best generalized cotype.

Consider the order $\phi \leq \psi$ if there is a constant c > 0 such that $\phi(t) \leq c \psi(t)$ for all $t \in (0, 1]$. If $\phi \leq \psi$ and $\psi \leq \phi$, then we say that ϕ and ψ are *equivalent*.

Theorem (Raja, 2015)

Let X be a superreflexive Banach space. There exists a positive decreasing submultiplicative function $\mathfrak{N}_X(t)$ defined on (0,1] such that $\mathfrak{N}_X(t)^{-1}$ is the supremum, up to equivalence, with respect to the order \leq of the set

 $\{\delta_{\parallel\parallel} \mid \| (t) : \| \| \|$ is an equivalent norm on $X\}.$

For L_p and Orlicz spaces, the supremum is attained (at the usual norm). Figiel 1978: there exist a Banach space X with an unconditional basis for which there are no best uniformly convex renorming nor a best generalized cotype.

Theorem (GL-Raja, 2021)

Let X be a superreflexive Banach space. Then $\mathfrak{N}_X(t) \sim Sz(B_{L^2(X)}, t)$.

Let X be a superreflexive Banach space. Then $\mathfrak{N}_X(t) \sim Sz(B_{L_2(X)}, t)$.

Let X be a superreflexive Banach space. Then $\mathfrak{N}_X(t) \sim Sz(B_{L_2(X)}, t)$.

- *Sz* =Szlenk index.
- In the case of $L_2(X)$, it is equivalent to the *dentability index* and the *convex Szlenk index*.

Let X be a superreflexive Banach space. Then $\mathfrak{N}_X(t) \sim Sz(B_{L_2(X)}, t)$.

- *Sz* =Szlenk index.
- In the case of $L_2(X)$, it is equivalent to the *dentability index* and the *convex Szlenk index*.
- From Godefroy-Kalton-Lancien (2001), we get that $Sz(B_{L_2(X)}, t)$ is the supremum of the modulus of asymptotic uniform convexity of equivalent norms in $L_2(X)$.
- For every AUC norm on $L_2(X)$ there is an equivalent UC norm on X preserving the modulus.

Let X be a superreflexive Banach space. Then $\mathfrak{N}_X(t) \sim Sz(B_{L_2(X)}, t)$.

- *Sz* =Szlenk index.
- In the case of $L_2(X)$, it is equivalent to the *dentability index* and the *convex Szlenk index*.
- From Godefroy-Kalton-Lancien (2001), we get that $Sz(B_{L_2(X)}, t)$ is the supremum of the modulus of *asymptotic uniform convexity* of equivalent norms in $L_2(X)$.
- For every AUC norm on $L_2(X)$ there is an equivalent UC norm on X preserving the modulus.

Indeed the argument also works for $L_p(X)$. As a byproduct we obtain:

Corollary (GL-Raja, 2021)

Let $1 < r, p < \infty$. Assume that $L_r(X)$ has an AUC renorming with power type p. Then X has a UC renorming of power type p.

This answers a question from C.L. García-W.B. Johnson (2003).

- Figiel, T. "Uniformly convex norms on Banach lattices". In: *Studia Math.* 68.3 (1980), pp. 215–247.
- Figiel, T. and G. Pisier. "Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses". In: *C. R. Acad. Sci. Paris Sér. A* 279 (1974), pp. 611–614.
- García, C.L. and W.B. Johnson. "Power type uniform convexity of X via *p*-asymptotic uniform convexity of $L_r(X)$ ". In: *Houston J. Math.* 29.2 (2003), pp. 393–402.
- García-Lirola, Luis C. and Matías Raja. "Uniformly convex renormings and generalized cotypes". In: *Adv. Math.* 383 (2021), Paper No. 107679, 23.

Godefroy, G., N. J. Kalton, and G. Lancien. "Szlenk indices and uniform homeomorphisms". In: *Trans. Amer. Math. Soc.* 353.10 (2001), pp. 3895–3918.

Raja, M. "Finite slicing in superreflexive Banach spaces". In: J. Funct. Anal. 268.9 (2015), pp. 2672–2694.

Figiel, T. "Uniformly convex norms on Banach lattices". In: *Studia Math.* 68.3 (1980), pp. 215–247.

- Figiel, T. and G. Pisier. "Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses". In: *C. R. Acad. Sci. Paris Sér. A* 279 (1974), pp. 611–614.
- García, C.L. and W.B. Johnson. "Power type uniform convexity of X via *p*-asymptotic uniform convexity of $L_r(X)$ ". In: *Houston J. Math.* 29.2 (2003), pp. 393–402.
- García-Lirola, Luis C. and Matías Raja. "Uniformly convex renormings and generalized cotypes". In: Adv. Math. 383 (2021), Paper No. 107679, 23.
- Godefroy, G., N. J. Kalton, and G. Lancien. "Szlenk indices and uniform homeomorphisms". In: *Trans. Amer. Math. Soc.* 353.10 (2001), pp. 3895–3918.
- Raja, M. "Finite slicing in superreflexive Banach spaces". In: J. Funct. Anal. 268.9 (2015), pp. 2672–2694.

Thank you for your attention!