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e Kadec, 1956. If Y7, x, converges unconditionally in X then

Y ax(Iball) < +eo

n=1

where dx is the modulus of uniform convexity of X.
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I+ Xl = liyll = L. {lx =yl = t}

X is uniformly convex if dx(t) > 0 for every t € (0,2]
o 4y, (t) ~ tm{P2} (1 < p < o0)
e Ox(t) < op(t) ~ t2

@ A space is superreflexive if and only if it has a uniformly convex
renorming (Enflo), moreover one can get dx(t) > ctP for some p > 2,
¢ > 0 (Pisier).
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(Key idea: dx is equivalent to d;,(x))

Definition (Figiel)
A function ¢ satisfying

1 n W
3C>o:/ IS r)xllde < 1= S g(Ixell) < €
(U k=1

is called a generalized cotype of X.

Clearly, X has Rademacher cotype p if and only if t — tP is a generalized
cotype.
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YES if X is a UMD space. J

@ X has the unconditional martingale difference property (UMD) if for
some (eq. for every) 1 < p < oo, for every X-valued martingale (f,)
bounded in L,(X), the series >, (fo11 — f,) converges
unconditionally.

@ [, 1< p< oo and reflexive Orlicz spaces are UMD.

e UMD = superreflexive, but not conversely (first examples by Pisier and
Bourgain; Ly(Lq(Lp(Lg(--.)))) (Qiu, 2012)).
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@ The first task was to find an expression for the generalized cotype
almost equivalent to the homogeneity of the classic cotype.

n 1 n
Z¢(||Xk||) <o (/ I Z () x| dt)
k=1 0 k=1

where ® can be taken convex and such that ®(t/9) is concave for
some g > 2 thanks to the work of Figiel.

o From that we get that

o 1
S [ ottt o < oo

whenever the series Y~ f, is unconditionally convergent in L7(X).
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@ Sz =Szlenk index.

@ In the case of Ly(X), it is equivalent to the dentability index and the
convex Szlenk index.

o From Godefroy-Kalton-Lancien (2001), we get that Sz(By,(x), t) is the
supremum of the modulus of asymptotic uniform convexity of
equivalent norms in Lp(X).

@ For every AUC norm on Ly(X) there is an equivalent UC norm on X
preserving the modulus.

Indeed the argument also works for L,(X). As a byproduct we obtain:

Corollary (GL-Raja, 2021)

Let 1 < r,p < co. Assume that L,(X) has an AUC renorming with power
type p. Then X has a UC renorming of power type p.

This answers a question from C.L. Garcia-W.B. Johnson (2003).
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