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Lipschitz-free spaces

Let (M, d) be a complete metric space, 0 ∈ M.

Lip0(M) = {f : M → R, f (0) = 0}

‖f ‖L = sup

{
f (x)− f (y)

d(x , y)
: x 6= y

}
(Lip0(M), ‖·‖L) is a Banach space.

Consider

δ : M → Lip0(M)∗

x 7→ δ(x) : 〈f , δ(x)〉 = f (x)

The Lipschitz-free space (Kadec (1985), Pestov (1986), Godefroy-Kalton
(2003)) F(M) over M (a.k.a. Arens-Eells space, transportation cost space)
is defined as

F(M) = span{δ(x) : x ∈ M} ⊂ Lip0(M)∗

M
δ
↪→ F(M) is an isometric embedding and F(M)∗ = Lip0(M).
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Lipschitz-free spaces
Fundamental property: for every Lipschitz function from M to N with
f (0) = 0 there is a unique bounded linear operator f̂ : F(M)→ F(N) such
that ‖f̂ ‖ = ‖f ‖L and the following diagram commutes:

M N

F(M) F(N)

f

δ δ

f̂

There is a lot of recent work relating properties of M and of F(M)...

Theorem (Aliaga-Gartland-Petitjean-Procházka, 2021)

The following are equivalent:

i) F(M) has the Radon-Nikodym Property.

ii) F(M) has the Schur property.

iii) M is purely 1-unrectifiable.

M purely 1-unrectifiable means that it contains no curve fragment
(γ : K → M bi-Lipschitz embedding with K ⊂ R compact with λ(K ) > 0).
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How the properties of f and f̂ are related?

M N

F(M) F(N)

f

δ δ

f̂

f is bi-Lipschitz if and only if f̂ is a linear into isomorphism.

f has dense range if and only if f̂ has dense range.

f is a Lipschitz retraction if and only if f̂ is a linear projection.

There exist a characterization of when f̂ is a (weak) compact operator
(Jiménez Vargas - Villegas Vallecillos, 2013 + Cabrera Padilla -
Jiménez Vargas, 2016 + Abbar-Coine-Petitjean, 2021)

f injective ⇒ f̂ injective?

If you don’t like free spaces... consider f̂ ∗ = Cf : Lip0(N)→ Lip0(M)

f injective ⇒ Cf has weak*-dense range?
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Counterexamples

There is an injective Lipschitz function f : [0, 1]→ [0, 1] such that
f̂ : F([0, 1])→ F([0, 1]) is not injective.

The same argument works for f : ([0, 1], | · |α)→ [0, 1], 0 < α < 1.

Counterexamples with additional properties:

There exists a compact, totally disconnected, purely 1-unrectifiable M
and a Lipschitz injective map f : M → [0, 1] such that ker f̂ 6= {0}.
There exists a countable, discrete, complete M and a Lipschitz
injective map f : M → [0, 1] such that ker f̂ 6= {0}.

That also shows that

f injective + locally bi-Lipschitz 6⇒ f̂ injective
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A positive example
Every biLipschitz map!

A less trivial one...

Let 0 < α < 1 and Id : ([0, 1], | · |α)→ ([0, 1], | · |) (which is Lipschitz and
injective). Then Îd is injective.

Proof.
Îd : F([0, 1], | · |α)→ F([0, 1], | · |)

Îd
∗

= CId : Lip0([0, 1], | · |)→ Lip0([0, 1], | · |α)

Easy exercise: T : X → Y injective if and only if T ∗(Y ∗)
w∗

= X ∗.

Claim: CId(Lip0([0, 1], | · |) is norming for F([0, 1], | · |α).

Claim’: ∃c > 0 ∀x 6= y ∈ [0, 1] ∃g ∈ Lip0([0, 1], | · |) such that

‖g ◦ Id‖Lip0([0,1],|·|α) ≤ 1 and |g ◦ Id(x)− g ◦ Id(y)| ≥ c |x − y |

Fix x 6= y ∈ [0, 1]. Consider ωn(t) := min{tα, nt}→ tα and

gn(z) := ωn(|z − y |)− ωn(|y |)) ∀z ∈ [0, 1]

One can check ‖gn‖Lip0([0,1],|·|) ≤ n, ‖gn ◦ Id‖Lip0([0,1],|·|α) ≤ 1 and

|gn ◦ Id(x)− gn ◦ Id(y)| = ωn(|x − y |)→ |x − y |α
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Îd : F([0, 1], | · |α)→ F([0, 1], | · |)

Îd
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A positive example
Every biLipschitz map! A less trivial one...
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Metric spaces where injectivity is always preserved

Definition. We say M is Lip-lin injective (or OTOTOTO) if for every N
and every Lipschitz injective function f : M → N with f (0) = 0, it follows
that f̂ : F(M)→ F(N) is injective.

If M is Lip-lin injective and L biLipschitz embeds into M, then L is Lip-lin
injective.

Proof. Let f : L→ N. Extend f to f̃ : M → `∞(N). Let ρ = min{1, d} and

g : M → `∞(N)×F(M, ρ)

x 7→ (f̃ (x), ρ(L, x)δ(x))

Then g is Lipschitz, injective, and ker(f̂ ) ⊂ ker(ĝ).

If M is Lip-lin injective, then M is purely 1-unrectifiable

However, the converse statement does not hold.
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Metric spaces where injectivity is always preserved

The following spaces are Lip-lin injective:

a) M is uniformly discrete.

b) M is compact and scattered.

c) M is compact and H1(M) = 0.

d) M is compact and there is ρ > 1 such that for every ε > 0, M can be
covered by finitely many balls B(xi , r) of radius r ≤ ε such that the
balls B(xi , ρr) are pairwise disjoint (for instance, the Cantor dust).

Idea for c) and d):

Assume M is compact. The following are equivalent:

(i) M is Lip-lin injective and totally disconnected.

(ii) The locally constant functions are weak*-dense in Lip0(M).

Idea for a) and b): look at the support of elements in F(M).
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Lipschitz functions preserving supports
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Given 0 6= µ ∈ F(M), its support suppµ is the intersection of closed subsets
0 ∈ L ⊂ M with µ ∈ F(L).

If µ =
∑∞

n=1 anδ(xn), (an) ∈ `1 and an 6= 0, then suppµ = {xn : n ∈ N}.

We say that f : M → N preserve supports if

suppf̂ (µ) = f (suppµ) ∀µ ∈ F(M)

Let f : M → N be a Lipschitz injective map with f (0) = 0.

If f preserve supports, then f̂ is injective.

If M is uniformly discrete then f preserves supports.

If there are r , ρ > 0 such that f |B(x,r) is bi-Lipschitz and

f −1(B(f (x), ρ)) ⊂ B(x , r), then f (x) ∈ suppf̂ (µ) whenever
x ∈ suppµ.

If f is closed and x is in the closure of isolated points of suppµ, then
f (x) ∈ suppµ.
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Lipschitz functions preserving supports

Recall that
f preserve supports⇒ f̂ injective

What about the converse?

Let f : M → N be a Lipschitz function with f (0) = 0. Assume that M is
bounded. If f̂ is injective, then f preserve supports.

The proof relies on the weak*-weak*-continuity of the multiplication
operators Mω(f ) = ω · f .
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Thank you for your attention!


