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There is a lot of recent work relating properties of M and of F(M)...

Theorem (Aliaga-Gartland-Petitjean-Prochazka, 2021)
The following are equivalent:
i) F(M) has the Radon-Nikodym Property.
ii) F(M) has the Schur property.
iii) M is purely 1-unrectifiable.

M purely 1-unrectifiable means that it contains no curve fragment
(v: K — M bi-Lipschitz embedding with K C R compact with A(K) > 0).
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f injective = f injective?

If you don't like free spaces... consider * = C;: Lipy(N) — Lipg(M)

f injective = C; has weak*-dense range?
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Counterexamples

There is an injective Lipschitz function f: [0, 1] — [0, 1] such that
f: F([0,1]) — F([0,1]) is not injective.

The same argument works for : ([0,1],]-|*) = [0,1], 0 < a < 1.

Counterexamples with additional properties:

@ There exists a compact, totally disconnected, purely 1-unrectifiable M
and a Lipschitz injective map f: M — [0, 1] such that ker f # {0}.

@ There exists a countable, discrete, completg M and a Lipschitz
injective map f: M — [0, 1] such that ker f # {0}.
That also shows that

f injective + locally bi-Lipschitz % f injective
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Every biLipschitz map! A less trivial one...

Let 0 <a <1land/d: (M,d*) — (M,d), M bounded (which is Lipschitz
and injective). Then /d is injective. J

Proof s F([0,11,1+17) = F((0, 11, -
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Definition. We say M is Lip-lin injective (or OTOTOTO) if for every N
and every Lipschitz injective function f: M — N with f(0) =0, it follows
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Proof. Let f: L — N. Extend f to f: M — £ (N). Let p = min{1,d} and

g: M= Lo (N) x F(M,)p)
x = (F(x), p(L, x)d(x))

Then g is Lipschitz, injective, and ker(f) C ker(g).

If M is Lip-lin injective, then M is purely 1-unrectifiable )

However, the converse statement does not hold.
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The following spaces are Lip-lin injective:
a) M is uniformly discrete.
b) M is compact and scattered.
c) M is compact and H(M) = 0.
d) M is compact and there is p > 1 such that for every ¢ > 0, M can be

covered by finitely many balls B(x;, r) of radius r < € such that the
balls B(x;, pr) are pairwise disjoint (for instance, the Cantor dust).

Idea for c) and d):

Assume M is compact. The following are equivalent:
(i) M is Lip-lin injective and totally disconnected.
(ii) The locally constant functions are weak*-dense in Lipy(M).

Idea for a) and b): look at the support of elements in F(M).
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Given 0 # p € F(M), its support suppy is the intersection of closed subsets
0€Lc M with u € F(L).

If w="13721an0(xn), (an) € ¢1 and a, # 0, then suppp = {x, : n € N}.
We say that f: M — N preserve supports if

suppf (1) = f(suppu) Vu € F(M)

Let f: M — N be a Lipschitz injective map with f(0) = 0.

o If f preserve supports, then f is injective.

o If M is uniformly discrete then f preserves supports.

o If there are r, p > 0 such that f|p(y.) is bi-Lipschitz and
f=Y(B(f(x), p)) C B(x,r), then f(x) € suppf (1) whenever
X € Suppu.

o If f is closed and x is in the closure of isolated points of supppu, then
f(x) € suppp.
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Thank you for your attention!



