Linearization of holomorphic Lipschitz mappings

Luis C. García-Lirola

Joint work with R. Aron, V. Dimant and M. Maestre

Universidad de Zaragoza
ÆSY TO DEFINE, HARD TO ANALYSE
Besançon
20th September, 2023

Agencia de Ciencia y Tecnología Región de Murcia

Outline

1) Holomorphic functions and the holomorphic free space
2) The holomorphic Lipschitz free space
3) Approximation properties
4) Extension of holomorphic Lipschitz functions

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

A function $f: U \rightarrow Y$ is said to be holomorphic at $x_{0} \in U$ if it is Fréchet differentiable at x_{0} : there is $d f\left(x_{0}\right) \in \mathcal{L}(X, Y)$ with

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(h)}{\|h\|}=0
$$

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

A function $f: U \rightarrow Y$ is said to be holomorphic at $x_{0} \in U$ if it is Fréchet differentiable at x_{0} : there is $d f\left(x_{0}\right) \in \mathcal{L}(X, Y)$ with

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(h)}{\|h\|}=0
$$

Equivalently, there is a sequence $\left(P_{k} f\left(x_{0}\right)\right)_{k}$ of continuous k-homogeneous polynomials such that

$$
f(x)=\sum_{k=0}^{\infty} P_{k} f\left(x_{0}\right)\left(x-x_{0}\right)
$$

uniformly in some neighbourhood of x_{0}.

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

A function $f: U \rightarrow Y$ is said to be holomorphic at $x_{0} \in U$ if it is Fréchet differentiable at x_{0} : there is $d f\left(x_{0}\right) \in \mathcal{L}(X, Y)$ with

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(h)}{\|h\|}=0
$$

Equivalently, there is a sequence $\left(P_{k} f\left(x_{0}\right)\right)_{k}$ of continuous k-homogeneous polynomials such that

$$
f(x)=\sum_{k=0}^{\infty} P_{k} f\left(x_{0}\right)\left(x-x_{0}\right)
$$

uniformly in some neighbourhood of x_{0}. $f: U \rightarrow Y$ is holomorphic $\Leftrightarrow y^{*} \circ f$ is holomorphic $\forall y^{*} \in Y^{*}$.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)=\mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^{*} \equiv \mathcal{H}^{\infty}(U)$.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)=\mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^{*} \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)=\mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^{*} \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)=\mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^{*} \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.
- Clouâtre-Davidson, 2016: The same for $\mathcal{G}^{\infty}\left(B_{\mathbb{C}^{n}}\right)$.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)=\mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^{*} \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.
- Clouâtre-Davidson, 2016: The same for $\mathcal{G}^{\infty}\left(B_{\mathbb{C}^{n}}\right)$.
- Jung, 2023: $\mathcal{H}^{\infty}\left(B_{X}\right)$ has the Daugavet property.

The holomorphic free space

$\mathcal{H}^{\infty}(U, Y)=\{f: U \rightarrow Y: f$ is holomorphic and bounded $\}$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U):=\mathcal{H}^{\infty}(U, \mathbb{C})$.

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)=\mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^{*} \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.
- Clouâtre-Davidson, 2016: The same for $\mathcal{G}^{\infty}\left(B_{\mathbb{C}^{n}}\right)$.
- Jung, 2023: $\mathcal{H}^{\infty}\left(B_{X}\right)$ has the Daugavet property.

There is a recent survey by García Sánchez - De Hevia - Tradacete.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$. We denote $\mathcal{H} L_{0}\left(B_{X}\right):=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)$.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$. We denote $\mathcal{H} L_{0}\left(B_{X}\right):=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)$.

Theorem (Aron-Dimant-GL-Maestre, 2023)
There is a Banach space $\mathcal{G}_{0}\left(B_{X}\right)$ and a holomorphic Lipschitz map $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)=\mathcal{H} L_{0}\left(B_{X}, Y\right)$, in particular $\mathcal{G}_{0}\left(B_{X}\right)^{*} \equiv \mathcal{H} L_{0}\left(B_{X}\right)$.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$. We denote $\mathcal{H} L_{0}\left(B_{X}\right):=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)$.

Theorem (Aron-Dimant-GL-Maestre, 2023)
There is a Banach space $\mathcal{G}_{0}\left(B_{X}\right)$ and a holomorphic Lipschitz map $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)=\mathcal{H} L_{0}\left(B_{X}, Y\right)$, in particular $\mathcal{G}_{0}\left(B_{X}\right)^{*} \equiv \mathcal{H} L_{0}\left(B_{X}\right)$. Also, $\|\delta(x)-\delta(y)\|=\|x-y\| \forall x, y \in B_{X}$ and

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$. We denote $\mathcal{H} L_{0}\left(B_{X}\right):=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)$.

Theorem (Aron-Dimant-GL-Maestre, 2023)
There is a Banach space $\mathcal{G}_{0}\left(B_{X}\right)$ and a holomorphic Lipschitz map $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)=\mathcal{H} L_{0}\left(B_{X}, Y\right)$, in particular $\mathcal{G}_{0}\left(B_{X}\right)^{*} \equiv \mathcal{H} L_{0}\left(B_{X}\right)$. Also, $\|\delta(x)-\delta(y)\|=\|x-y\| \forall x, y \in B_{X}$ and
X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}_{0}\left(B_{X}\right)$.

The unit ball of $\mathcal{G}_{0}\left(B_{X}\right)$

- $\|f\|_{L}=\sup _{x \neq y \in B_{X}}\left\{\left\langle f, \frac{\delta(x)-\delta(y)}{\|x-y\|}\right\rangle\right\}$ and so

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{x}\right)}=\overline{\operatorname{aconv}}\left\{\frac{\delta(x)-\delta(y)}{\|x-y\|}: x \neq y \in B_{x}\right\}
$$

The unit ball of $\mathcal{G}_{0}\left(B_{X}\right)$

- $\|f\|_{L}=\sup _{x \neq y \in B_{x}}\left\{\left\langle f, \frac{\delta(x)-\delta(y)}{\|x-y\|}\right\rangle\right\}$ and so

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{X}\right)}=\overline{\operatorname{aconv}}\left\{\frac{\delta(x)-\delta(y)}{\|x-y\|}: x \neq y \in B_{x}\right\}
$$

- $\|f\|_{L}=\sup _{x \in B_{x}}\|d f(x)\|=\sup _{x \in B_{X}, y \in S_{x}}|d f(x)(y)|=\sup _{x \in B_{X}, y \in S_{X}}\left|\left\langle f, e_{x, y}\right\rangle\right|$ where $e_{x, y}(f):=d f(x)(y)$.

The unit ball of $\mathcal{G}_{0}\left(B_{X}\right)$

- $\|f\|_{L}=\sup _{x \neq y \in B_{X}}\left\{\left\langle f, \frac{\delta(x)-\delta(y)}{\|x-y\|}\right\rangle\right\}$ and so

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{X}\right)}=\overline{\operatorname{aconv}}\left\{\frac{\delta(x)-\delta(y)}{\|x-y\|}: x \neq y \in B_{x}\right\}
$$

- $\|f\|_{L}=\sup _{x \in B_{X}}\|d f(x)\|=\sup _{x \in B_{X}, y \in S_{X}}|d f(x)(y)|=\sup _{x \in B_{X}, y \in S_{X}}\left|\left\langle f, e_{x, y}\right\rangle\right|$ where $e_{x, y}(f):=d f(x)(y)$. Then $e_{x, y} \in \mathcal{G}_{0}\left(B_{X}\right)$ and $\left\|e_{x, y}\right\|=\|y\|$. Thus

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{x}\right)}=\operatorname{conv}\left\{e_{x, y}: x \in B_{x}, y \in S_{x}\right\}
$$

The unit ball of $\mathcal{G}_{0}\left(B_{X}\right)$

- $\|f\|_{L}=\sup _{x \neq y \in B_{X}}\left\{\left\langle f, \frac{\delta(x)-\delta(y)}{\|x-y\|}\right\rangle\right\}$ and so

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{x}\right)}=\overline{\operatorname{aconv}}\left\{\frac{\delta(x)-\delta(y)}{\|x-y\|}: x \neq y \in B_{x}\right\}
$$

- $\|f\|_{L}=\sup _{x \in B_{X}}\|d f(x)\|=\sup _{x \in B_{X}, y \in S_{X}}|d f(x)(y)|=\sup _{x \in B_{X}, y \in S_{X}}\left|\left\langle f, e_{x, y}\right\rangle\right|$ where $e_{x, y}(f):=d f(x)(y)$. Then $e_{x, y} \in \mathcal{G}_{0}\left(B_{X}\right)$ and $\left\|e_{x, y}\right\|=\|y\|$. Thus

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{x}\right)}=\operatorname{conv}\left\{e_{x, y}: x \in B_{x}, y \in S_{x}\right\}
$$

- So X is separable $\Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ is separable.

The unit ball of $\mathcal{G}_{0}\left(B_{X}\right)$

- $\|f\|_{L}=\sup _{x \neq y \in B_{x}}\left\{\left\langle f, \frac{\delta(x)-\delta(y)}{\|x-y\|}\right\rangle\right\}$ and so

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{x}\right)}=\overline{\operatorname{aconv}}\left\{\frac{\delta(x)-\delta(y)}{\|x-y\|}: x \neq y \in B_{x}\right\}
$$

- $\|f\|_{L}=\sup _{x \in B_{x}}\|d f(x)\|=\sup _{x \in B_{X}, y \in S_{X}}|d f(x)(y)|=\sup _{x \in B_{X}, y \in S_{X}}\left|\left\langle f, e_{x, y}\right\rangle\right|$ where $e_{x, y}(f):=d f(x)(y)$. Then $e_{x, y} \in \mathcal{G}_{0}\left(B_{x}\right)$ and $\left\|e_{x, y}\right\|=\|y\|$. Thus

$$
\bar{B}_{\mathcal{G}_{0}\left(B_{X}\right)}=\operatorname{conv}\left\{e_{x, y}: x \in B_{X}, y \in S_{x}\right\}
$$

- So X is separable $\Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ is separable.
- About the extreme points...
- The unit ball of $\mathcal{G}_{0}(\mathbb{D}) \equiv \mathcal{G}^{\infty}(\mathbb{D})$ does not have extreme points.
- $e_{x, y}$ is not a extreme point.

Relation with $\mathcal{F}\left(B_{X}\right)$ and $\mathcal{G}^{\infty}\left(B_{X}\right)$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \operatorname{Lip}_{0}\left(B_{X}\right) \\
f & \mapsto f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{F}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) & \mapsto \delta(x)
\end{aligned}
$$

Relation with $\mathcal{F}\left(B_{X}\right)$ and $\mathcal{G}^{\infty}\left(B_{X}\right)$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \operatorname{Lip}_{0}\left(B_{X}\right) \\
f & \mapsto f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{F}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) & \mapsto \delta(x)
\end{aligned}
$$

$\left(\mathcal{F}\left(B_{X}\right)=\right.$ complex Lipschitz-free space, see Abbar-Coine-Petitjean $)$

Relation with $\mathcal{F}\left(B_{X}\right)$ and $\mathcal{G}^{\infty}\left(B_{X}\right)$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \operatorname{Lip}_{0}\left(B_{X}\right) \\
f & \mapsto f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{F}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) & \mapsto \delta(x)
\end{aligned}
$$

$\left(\mathcal{F}\left(B_{X}\right)=\right.$ complex Lipschitz-free space, see Abbar-Coine-Petitjean)

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X}, X^{*}\right) \\
f & \mapsto d f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\Psi: \mathcal{G}^{\infty}(B X) \widehat{\otimes}_{\pi} X & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) \otimes y & \mapsto e_{x, y}
\end{aligned}
$$

Approximation properties

- X has the Approximation Property (AP) if the identity $I: X \rightarrow X$ can be approximated by finite-rank operators in $\mathcal{L}(X, X)$ uniformly on compact sets.
- If the operators can be taken with norm $\leqslant \lambda$ then we say that X has the λ-Bounded Approximation Property (λ-BAP).
- If $\lambda=1$ then we say that X has the Metric Approximation Property (MAP).

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)
X has the $\lambda-B A P \Leftrightarrow \mathcal{F}(X)$ has the $\lambda-B A P$.

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)
X has the $\lambda-B A P \Leftrightarrow \mathcal{F}(X)$ has the $\lambda-B A P$.
X has $\mathrm{AP} \Leftrightarrow \mathcal{F}(X)$ has AP ?

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP ?

Theorem (Godefroy-Kalton, 2003)
X has the $\lambda-B A P \Leftrightarrow \mathcal{F}(X)$ has the $\lambda-B A P$.
X has $\mathrm{AP} \Leftrightarrow \mathcal{F}(X)$ has AP ?

Theorem (Aron-Dimant-GL-Maestre)
X has the $(M) A P \Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ has the (M)AP.

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP ?

Theorem (Godefroy-Kalton, 2003)
X has the $\lambda-B A P \Leftrightarrow \mathcal{F}(X)$ has the $\lambda-B A P$.
X has $\mathrm{AP} \Leftrightarrow \mathcal{F}(X)$ has AP ?
Theorem (Aron-Dimant-GL-Maestre)
X has the $(M) A P \Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ has the (M)AP.
X has the $\mathrm{BAP} \Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ has the BAP?

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.
Now, consider $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.
Now, consider $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$. Take a net $\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{\alpha}(x) \rightarrow \delta(x)$ for all $x \in B_{X}$.
Then $T_{P_{\alpha}}$ has finite rank, $\left\|T_{P_{\alpha}}\right\| \leqslant 1$ and

$$
T_{P_{\alpha}}(\delta(x))=P_{\alpha}(x) \rightarrow \delta(x)=I d(\delta(x))
$$

so $T_{P_{\alpha}} \rightarrow$ ld pointwise on $\operatorname{span}(\delta(x))$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.
Now, consider $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$. Take a net $\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{\alpha}(x) \rightarrow \delta(x)$ for all $x \in B_{X}$.
Then $T_{P_{\alpha}}$ has finite rank, $\left\|T_{P_{\alpha}}\right\| \leqslant 1$ and

$$
T_{P_{\alpha}}(\delta(x))=P_{\alpha}(x) \rightarrow \delta(x)=I d(\delta(x))
$$

so $T_{P_{\alpha}} \rightarrow l d$ pointwise on $\operatorname{span}(\delta(x))$. Since $\left(T_{P_{\alpha}}\right)$ is bounded, the same holds for the closure.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \nRightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\mathcal{G}_{0}\left(B_{X}\right)
$$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \nRightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

Mujica identified the topology τ_{γ} on $\mathcal{G}^{\infty}\left(B_{X}\right)$ such that

$$
\left(\mathcal{H}^{\infty}\left(B_{X}, Y\right), \tau_{\gamma}\right) \cong\left(\mathcal{L}\left(\mathcal{G}^{\infty}\left(B_{X}\right), Y\right), \tau_{0}\right)
$$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \nRightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

Mujica identified the topology τ_{γ} on $\mathcal{G}^{\infty}\left(B_{X}\right)$ such that

$$
\left(\mathcal{H}^{\infty}\left(B_{X}, Y\right), \tau_{\gamma}\right) \cong\left(\mathcal{L}\left(\mathcal{G}^{\infty}\left(B_{X}\right), Y\right), \tau_{0}\right)
$$

To get the corresponding result for $\mathcal{G}_{0}\left(B_{X}\right)$, first we identify the compact sets:
If $K \subset \mathcal{G}_{0}\left(B_{X}\right)$ is norm-compact, then $K \subset \overline{\operatorname{aconv}}\left(\left\{\alpha_{j} m_{x_{j} y_{j}}\right\}\right)$ for some $\left(\alpha_{j}\right) \in c_{0}$ and $\left(x_{j}, y_{j}\right) \subset\left(B_{X} \times B_{X}\right) \backslash \Delta$.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \nRightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

Mujica identified the topology τ_{γ} on $\mathcal{G}^{\infty}\left(B_{X}\right)$ such that

$$
\left(\mathcal{H}^{\infty}\left(B_{X}, Y\right), \tau_{\gamma}\right) \cong\left(\mathcal{L}\left(\mathcal{G}^{\infty}\left(B_{X}\right), Y\right), \tau_{0}\right) .
$$

To get the corresponding result for $\mathcal{G}_{0}\left(B_{X}\right)$, first we identify the compact sets: If $K \subset \mathcal{G}_{0}\left(B_{X}\right)$ is norm-compact, then $K \subset \overline{\operatorname{aconv}}\left(\left\{\alpha_{j} m_{x_{j_{j}}}\right\}\right)$ for some $\left(\alpha_{j}\right) \in c_{0}$ and $\left(x_{j}, y_{j}\right) \subset\left(B_{X} \times B_{X}\right) \backslash \Delta$.

Let τ_{γ} be the locally convex topology on $\mathcal{H} L_{0}\left(B_{X}, Y\right)$ generated by the seminorms $p(f)=\sup _{j} \alpha_{j} \frac{\left\|f\left(x_{j}\right)-f\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}$ where $\left(\alpha_{j}\right) \in c_{0},\left(x_{j}, y_{j}\right) \subset\left(B_{X} \times B_{X}\right) \backslash \Delta$ and $\alpha_{j}>0$. Then we have a homeomorphism:

$$
\begin{aligned}
\left(\mathcal{H} L_{0}\left(B_{X}, Y\right), \tau_{\gamma}\right) & \rightarrow\left(\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right), \tau_{0}\right) \\
f & \mapsto T_{f}
\end{aligned}
$$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$
Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$
Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$
Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net $\left(P_{\alpha}\right)$ is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_{0}} I d$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$
Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net $\left(P_{\alpha}\right)$ is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_{0}} I d$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$
Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net $\left(P_{\alpha}\right)$ is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_{0}} I d$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for m-homogeneous polynomials.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net $\left(P_{\alpha}\right)$ is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_{0}} I d$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for m-homogeneous polynomials.
- Since X has AP, there are finite-rank operators $T_{\alpha}: X \rightarrow X$ with $T_{\alpha} \xrightarrow{\tau_{0}} I d$.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net $\left(P_{\alpha}\right)$ is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_{0}} I d$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for m-homogeneous polynomials.
- Since X has AP, there are finite-rank operators $T_{\alpha}: X \rightarrow X$ with $T_{\alpha} \xrightarrow{\tau_{0}} I d$.
- Given $P \in \mathcal{P}\left({ }^{m} X, \mathcal{G}_{0}(B X)\right)$, we have $P \circ T_{\alpha} \in \mathcal{P}\left({ }^{m} X, \mathcal{G}_{0}\left(B_{X}\right)\right)$ and $P \circ T_{\alpha} \xrightarrow{\tau_{0}} P$.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

Our goal is to find a net $\left(P_{\alpha}\right), P_{\alpha}: X \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists\left(P_{\alpha}\right)$ with $\left\|P_{\alpha} \mid B_{X}\right\|_{L} \leqslant 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net $\left(P_{\alpha}\right)$ is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_{0}} I d$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for m-homogeneous polynomials.
- Since X has AP, there are finite-rank operators $T_{\alpha}: X \rightarrow X$ with $T_{\alpha} \xrightarrow{\tau_{0}} I d$.
- Given $P \in \mathcal{P}\left({ }^{m} X, \mathcal{G}_{0}\left(B_{X}\right)\right)$, we have $P \circ T_{\alpha} \in \mathcal{P}\left({ }^{m} X, \mathcal{G}_{0}(B X)\right)$ and $P \circ T_{\alpha} \xrightarrow{\tau_{0}} P$.
Hence, we just need to show:

Lemma

τ_{0} and τ_{γ} coincide on $\mathcal{P}\left({ }^{m} X, Y\right)$.

Given one of the seminorms p in the definition of τ_{γ}, we'll see there are $C>0$ and a compact K such that $p(P) \leqslant C \sup _{x \in K}\|P(x)\| \forall P \in \mathcal{P}\left({ }^{m} X, Y\right)$.

$$
p(P)=\sup _{j} \alpha_{j} \frac{\left\|P\left(x_{j}\right)-P\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}=\sup _{j} \frac{\left\|P\left(\alpha_{j}^{1 / m} x_{j}\right)-P\left(\alpha_{j}^{1 / m} y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}
$$

Given one of the seminorms p in the definition of τ_{γ}, we'll see there are $C>0$ and a compact K such that $p(P) \leqslant C \sup _{x \in K}\|P(x)\| \forall P \in \mathcal{P}\left({ }^{m} X, Y\right)$.

$$
\begin{aligned}
p(P) & =\sup _{j} \alpha_{j} \frac{\left\|P\left(x_{j}\right)-P\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}=\sup _{j} \frac{\left\|P\left(\alpha_{j}^{1 / m} x_{j}\right)-P\left(\alpha_{j}^{1 / m} y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|} \\
& =\sup _{j} \frac{\left\|\sum_{k=1}^{m}\binom{m}{k} \check{P}\left(\left(\alpha_{j}^{1 / m}\left(x_{j}-y_{j}\right)\right)^{k},\left(\alpha_{j}^{1 / m} y_{j}\right)^{m-k}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}
\end{aligned}
$$

Given one of the seminorms p in the definition of τ_{γ}, we'll see there are $C>0$ and a compact K such that $p(P) \leqslant C \sup _{x \in K}\|P(x)\| \forall P \in \mathcal{P}\left({ }^{m} X, Y\right)$.

$$
\begin{aligned}
p(P) & =\sup _{j} \alpha_{j} \frac{\left\|P\left(x_{j}\right)-P\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}=\sup _{j} \frac{\left\|P\left(\alpha_{j}^{1 / m} x_{j}\right)-P\left(\alpha_{j}^{1 / m} y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|} \\
& =\sup _{j} \frac{\left\|\sum_{k=1}^{m}\binom{m}{k} \check{P}\left(\left(\alpha_{j}^{1 / m}\left(x_{j}-y_{j}\right)\right)^{k},\left(\alpha_{j}^{1 / m} y_{j}\right)^{m-k}\right)\right\|}{\left\|x_{j}-y_{j}\right\|} \\
& =\sup _{j}\left\|\sum_{k=1}^{m}\binom{m}{k} \check{P}\left(\left(\frac{\alpha_{j}^{1 / m}\left(x_{j}-y_{j}\right)}{\left\|x_{j}-y_{j}\right\|^{1 / k}}\right)^{k},\left(\alpha_{j}^{1 / m} y_{j}\right)^{m-k}\right)\right\| \\
& \leqslant \sum_{k=1}^{m}\binom{m}{k} \sup _{a \in K_{1}, b \in K_{2}}\left\|\check{P}\left(a^{k}, b^{m-k}\right)\right\|
\end{aligned}
$$

for some compact sets K_{1}, K_{2}.

Given one of the seminorms p in the definition of τ_{γ}, we'll see there are $C>0$ and a compact K such that $p(P) \leqslant C \sup _{x \in K}\|P(x)\| \forall P \in \mathcal{P}\left({ }^{m} X, Y\right)$.

$$
\begin{aligned}
p(P) & =\sup _{j} \alpha_{j} \frac{\left\|P\left(x_{j}\right)-P\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}=\sup _{j} \frac{\left\|P\left(\alpha_{j}^{1 / m} x_{j}\right)-P\left(\alpha_{j}^{1 / m} y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|} \\
& =\sup _{j} \frac{\left\|\sum_{k=1}^{m}\binom{m}{k} \check{P}\left(\left(\alpha_{j}^{1 / m}\left(x_{j}-y_{j}\right)\right)^{k},\left(\alpha_{j}^{1 / m} y_{j}\right)^{m-k}\right)\right\|}{\left\|x_{j}-y_{j}\right\|} \\
& =\sup _{j}\left\|\sum_{k=1}^{m}\binom{m}{k} \check{P}\left(\left(\frac{\alpha_{j}^{1 / m}\left(x_{j}-y_{j}\right)}{\left\|x_{j}-y_{j}\right\|^{1 / k}}\right)^{k},\left(\alpha_{j}^{1 / m} y_{j}\right)^{m-k}\right)\right\| \\
& \leqslant \sum_{k=1}^{m}\binom{m}{k} \sup _{a \in K_{1}, b \in K_{2}}\left\|\check{P}\left(a^{k}, b^{m-k}\right)\right\|
\end{aligned}
$$

for some compact sets K_{1}, K_{2}. Now,

$$
\check{P}\left(a^{k}, b^{m-k}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{m} P\left(\left(\sum_{i=1}^{k} \varepsilon_{i}\right) a+\left(\sum_{i=k+1}^{m} \varepsilon_{i}\right) b\right) .
$$

So there is a compact set K such that $p(P) \leqslant \frac{2^{m}-1}{m!} \sup _{x \in K}\|P(x)\|$.

Extension of holomorphic Lipschitz functions

If $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.

Extension of holomorphic Lipschitz functions

If $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.
ρ is an isometry \Leftrightarrow every $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ has a norm-preserving extension to B_{Y}.

Extension of holomorphic Lipschitz functions

If $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.
ρ is an isometry \Leftrightarrow every $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ has a norm-preserving extension to B_{Y}.
There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_{2} \rightarrow \mathbb{C}$ given by $P(x)=\sum_{n=1}^{\infty} x_{n}^{2}$ and consider an embedding $\ell_{2} \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \rightarrow \mathbb{C}$ holomorphic extending $\left.P\right|_{B_{\ell_{2}}}$.

Extension of holomorphic Lipschitz functions

If $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \widehat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.
ρ is an isometry \Leftrightarrow every $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ has a norm-preserving extension to B_{Y}.
There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_{2} \rightarrow \mathbb{C}$ given by $P(x)=\sum_{n=1}^{\infty} x_{n}^{2}$ and consider an embedding $\ell_{2} \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \rightarrow \mathbb{C}$ holomorphic extending $\left.P\right|_{B_{\ell_{2}}}$.

Still, there are some cases where we know that ρ is an isometry. For instance, if X is 1-complemented in Y.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)
Let $X \subset Y$. If there is an isometric extension operator $s: X^{*} \rightarrow Y^{*}$ and X is symmetrically regular, then $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)
Let $X \subset Y$. If there is an isometric extension operator s: $X^{*} \rightarrow Y^{*}$ and X is symmetrically regular, then $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$

Recall that

$$
\text { there is such } s: X^{*} \rightarrow Y^{*} \Leftrightarrow \quad X^{* *} \text { is 1-complemented in } Y^{* *}
$$

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)
Let $X \subset Y$. If there is an isometric extension operator s: $X^{*} \rightarrow Y^{*}$ and X is symmetrically regular, then $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$

Recall that

$$
\begin{aligned}
& \text { there is such } s: X^{*} \rightarrow Y^{*} \Leftrightarrow \quad X^{* *} \text { is 1-complemented in } Y^{* *} \\
& \Leftrightarrow \quad X \text { is locally 1-complemented in } Y
\end{aligned}
$$

This is the case, for instance, if $Y=X^{* *}$ (then $s: X^{*} \rightarrow X^{* * *}$ is just the inclusion map).

The Aron-Berner extension

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right)
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.

The Aron-Berner extension

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then
$P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right)
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$.

The Aron-Berner extension

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then
$P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right)
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$. Now, given $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X * *}\right)$ extending f.

The Aron-Berner extension

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then
$P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right)
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$. Now, given $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X * *}\right)$ extending f. A similar argument works for the vector-valued case and

$$
\begin{aligned}
A B: \mathcal{H}^{\infty}\left(B_{X}, Y\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X^{* *}}, Y^{* *}\right) \\
f & \mapsto \tilde{f}
\end{aligned}
$$

is an isometry (Davie-Gamelin, 1989).

Symmetric regularity

X is Arens regular if

$$
\lim _{\alpha_{1}} \lim _{\alpha_{2}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=\lim _{\alpha_{2}} \lim _{\alpha_{1}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right) \quad(*)
$$

for all $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$ and for all continuous bilinear maps $A: X \times X \rightarrow \mathbb{C}$.

Symmetric regularity

X is Arens regular if

$$
\lim _{\alpha_{1}} \lim _{\alpha_{2}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=\lim _{\alpha_{2}} \lim _{\alpha_{1}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right) \quad(*)
$$

for all $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$ and for all continuous bilinear maps $A: X \times X \rightarrow \mathbb{C}$. Equivalently, every $T: X \rightarrow X^{*}$ is weakly compact.

Symmetric regularity

X is Arens regular if

$$
\lim _{\alpha_{1}} \lim _{\alpha_{2}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=\lim _{\alpha_{2}} \lim _{\alpha_{1}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right) \quad(*)
$$

for all $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$ and for all continuous bilinear maps $A: X \times X \rightarrow \mathbb{C}$. Equivalently, every $T: X \rightarrow X^{*}$ is weakly compact. X is symmetrically regular if (*) holds for all symmetric A.

Symmetric regularity

X is Arens regular if

$$
\begin{equation*}
\lim _{\alpha_{1}} \lim _{\alpha_{2}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=\lim _{\alpha_{2}} \lim _{\alpha_{1}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right) \tag{*}
\end{equation*}
$$

for all $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$ and for all continuous bilinear maps $A: X \times X \rightarrow \mathbb{C}$. Equivalently, every $T: X \rightarrow X^{*}$ is weakly compact.
X is symmetrically regular if (*) holds for all symmetric A.

- Spaces with property (V) of Pelczyński are Arens regular (e.g. c_{0}, $\left.C(K), \mathcal{H}^{\infty}(\mathbb{D})\right)$.

Symmetric regularity

X is Arens regular if

$$
\begin{equation*}
\lim _{\alpha_{1}} \lim _{\alpha_{2}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=\lim _{\alpha_{2}} \lim _{\alpha_{1}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right) \tag{*}
\end{equation*}
$$

for all $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$ and for all continuous bilinear maps $A: X \times X \rightarrow \mathbb{C}$. Equivalently, every $T: X \rightarrow X^{*}$ is weakly compact.
X is symmetrically regular if $(*)$ holds for all symmetric A.

- Spaces with property (V) of Pelczyński are Arens regular (e.g. c_{0}, $\left.C(K), \mathcal{H}^{\infty}(\mathbb{D})\right)$.
- ℓ_{1} and $X \oplus X^{*}$ (for non-reflexive X) are not symmetrically regular.

Symmetric regularity

X is Arens regular if

$$
\begin{equation*}
\lim _{\alpha_{1}} \lim _{\alpha_{2}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=\lim _{\alpha_{2}} \lim _{\alpha_{1}} A\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right) \tag{*}
\end{equation*}
$$

for all $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$ and for all continuous bilinear maps $A: X \times X \rightarrow \mathbb{C}$. Equivalently, every $T: X \rightarrow X^{*}$ is weakly compact.
X is symmetrically regular if $(*)$ holds for all symmetric A.

- Spaces with property (V) of Pelczyński are Arens regular (e.g. c_{0}, $\left.C(K), \mathcal{H}^{\infty}(\mathbb{D})\right)$.
- ℓ_{1} and $X \oplus X^{*}$ (for non-reflexive X) are not symmetrically regular.
- (Leung, 1996) There is a symmetrically regular space that is not Arens regular.

Symmetric regularity

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$

Symmetric regularity

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
f & \mapsto \tilde{f}
\end{aligned}
$$

is an isometry.

Symmetric regularity

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
f & \mapsto \tilde{f}
\end{aligned}
$$

is an isometry.
Now, if $s: X^{*} \rightarrow Y^{*}$ is a linear extension operator, we get that

$$
\begin{aligned}
\bar{s}: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{Y}\right) \\
f & \mapsto \tilde{f} \circ s^{*} \circ i_{Y}
\end{aligned}
$$

is an isometric extension

Symmetric regularity

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
f & \mapsto \tilde{f}
\end{aligned}
$$

is an isometry.
Now, if $s: X^{*} \rightarrow Y^{*}$ is a linear extension operator, we get that

$$
\begin{aligned}
\bar{s}: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{Y}\right) \\
f & \mapsto \tilde{f} \circ s^{*} \circ i_{Y}
\end{aligned}
$$

is an isometric extension and so $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$.

Symmetric regularity

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
f & \mapsto \tilde{f}
\end{aligned}
$$

is an isometry.
Now, if $s: X^{*} \rightarrow Y^{*}$ is a linear extension operator, we get that

$$
\begin{aligned}
\bar{s}: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{Y}\right) \\
f & \mapsto \tilde{f} \circ s^{*} \circ i_{Y}
\end{aligned}
$$

is an isometric extension and so $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$.
We also get that if X and Y are symmetrically regular and $X^{*} \equiv Y^{*}$, then $\mathcal{H} L_{0}\left(B_{X}\right) \equiv \mathcal{H} L_{0}\left(B_{Y}\right)$. This is based on a result by Lassalle-Zalduendo, 2000.

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$

$$
x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}(B X) \mapsto \tilde{f}\left(x^{* *}\right)\right] .
$$

is holomorphic and 1-Lipschitz.

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$

$$
x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}\left(B_{X}\right) \mapsto \widetilde{f}\left(x^{* *}\right)\right]
$$

is holomorphic and 1-Lipschitz.

Thus we have

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$

$$
x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}(B X) \mapsto \tilde{f}\left(x^{* *}\right)\right] .
$$

is holomorphic and 1-Lipschitz.

Thus we have

Theorem (Aron-Dimant-GL-Maestre, 2023)
Assume X is symmetrically regular and $X^{* *}$ has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_{0}\left(B_{X * *}\right)$ as a locally 1-complemented in $\mathcal{G}_{0}\left(B_{X}\right)^{* *}$.

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$

$$
x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}(B X) \mapsto \tilde{f}\left(x^{* *}\right)\right] .
$$

is holomorphic and 1-Lipschitz.

Thus we have

Theorem (Aron-Dimant-GL-Maestre, 2023)
Assume X is symmetrically regular and $X^{* *}$ has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_{0}\left(B_{X * *}\right)$ as a locally 1-complemented in $\mathcal{G}_{0}\left(B_{X}\right)^{* *}$. That is, $\mathcal{H} L_{0}\left(B_{X * *}\right)$ is 1-complemented in $\mathcal{H} L_{0}\left(B_{X}\right)^{* *}$.

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$

$$
x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}(B X) \mapsto \tilde{f}\left(x^{* *}\right)\right] .
$$

is holomorphic and 1-Lipschitz.

Thus we have

Theorem (Aron-Dimant-GL-Maestre, 2023)
Assume X is symmetrically regular and $X^{* *}$ has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_{0}\left(B_{X * *}\right)$ as a locally 1-complemented in $\mathcal{G}_{0}\left(B_{X}\right)^{* *}$. That is, $\mathcal{H} L_{0}\left(B_{X * *}\right)$ is 1-complemented in $\mathcal{H} L_{0}\left(B_{X}\right)^{* *}$.

The proof uses a sufficient condition for local complementation in spaces with BAP by Cabello Sánchez - García, 2005.

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$

$$
x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}(B X) \mapsto \tilde{f}\left(x^{* *}\right)\right] .
$$

is holomorphic and 1-Lipschitz.

Thus we have

Theorem (Aron-Dimant-GL-Maestre, 2023)
Assume X is symmetrically regular and $X^{* *}$ has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_{0}\left(B_{X * *}\right)$ as a locally 1-complemented in $\mathcal{G}_{0}\left(B_{X}\right)^{* *}$. That is, $\mathcal{H} L_{0}\left(B_{X * *}\right)$ is 1-complemented in $\mathcal{H} L_{0}\left(B_{X}\right)^{* *}$.

The proof uses a sufficient condition for local complementation in spaces with BAP by Cabello Sánchez - García, 2005.
The analogous stament for $\mathcal{G}^{\infty}\left(B_{X}\right)$ and $\mathcal{H}^{\infty}\left(B_{X}\right)$ also holds (without assuming symmetric regularity).

The bidual of $\mathcal{G}_{0}\left(B_{X}\right)$

If X is symmetrically regular, then
$\Theta: B_{X * *} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)^{* *}=\mathcal{H} L_{0}\left(B_{X}\right)^{*}$ $x^{* *} \mapsto\left[f \in \mathcal{H} L_{0}\left(B_{X}\right) \mapsto \tilde{f}\left(x^{* *}\right)\right]$.
is holomorphic and 1-Lipschitz.

Thus we have

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and $X^{* *}$ has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_{0}\left(B_{X * *}\right)$ as a locally 1-complemented in $\mathcal{G}_{0}\left(B_{X}\right)^{* *}$. That is, $\mathcal{H} L_{0}\left(B_{X * *}\right)$ is 1-complemented in $\mathcal{H} L_{0}\left(B_{X}\right)^{* *}$.

The proof uses a sufficient condition for local complementation in spaces with BAP by Cabello Sánchez - García, 2005.
The analogous stament for $\mathcal{G}^{\infty}\left(B_{X}\right)$ and $\mathcal{H}^{\infty}\left(B_{X}\right)$ also holds (without assuming symmetric regularity).

Assume $X^{* *}$ has BAP. Is $\mathcal{H}^{\infty}\left(B_{X * *}\right) \stackrel{c}{\hookrightarrow} \mathcal{H}^{\infty}\left(B_{X}\right)^{* *}$?

Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let $x \in S_{X *}$. TFAE:
(i) x^{*} has a unique norm preserving extension to a functional on $X^{* *}$.
(ii) Id : $\left(\bar{B}_{X^{*}}, w^{*}\right) \longrightarrow\left(\bar{B}_{X^{*}}, w\right)$ is continuous at x^{*}.

Unique norm-preserving extensions

Lemma (Godefroy, 1981)
Let $x \in S_{X *}$. TFAE:
(i) x^{*} has a unique norm preserving extension to a functional on $X^{* *}$.
(ii) Id : $\left(\bar{B}_{X^{*}}, w^{*}\right) \longrightarrow\left(\bar{B}_{X^{*}}, w\right)$ is continuous at x^{*}.

Theorem (Aron-Boyd-Choi, 2009)
Assume $X^{* *}$ has the MAP. For $P \in \mathcal{P}\left({ }^{n} X\right)$ with $\|P\|=1$, TFAE:
(i) P has a unique norm preserving extension to a polynomial on $X^{* *}$.
(ii) $A B:\left(\bar{B}_{\mathcal{P}\left({ }^{n} X\right)}, \tau_{p}\right) \rightarrow\left(\bar{B}_{\mathcal{P}\left({ }^{n} X * *\right)}, \tau_{p}\right)$ is continuous at P.

Unique norm-preserving extensions

Lemma (Godefroy, 1981)
Let $x \in S_{X *}$. TFAE:
(i) x^{*} has a unique norm preserving extension to a functional on $X^{* *}$.
(ii) Id : $\left(\bar{B}_{X^{*}}, w^{*}\right) \longrightarrow\left(\bar{B}_{X^{*}}, w\right)$ is continuous at x^{*}.

Theorem (Aron-Boyd-Choi, 2009)
Assume $X^{* *}$ has the MAP. For $P \in \mathcal{P}\left({ }^{n} X\right)$ with $\|P\|=1$, TFAE:
(i) P has a unique norm preserving extension to a polynomial on $X^{* *}$.
(ii) $A B:\left(\bar{B}_{\mathcal{P}\left({ }^{n} X\right)}, \tau_{p}\right) \rightarrow\left(\bar{B}_{\mathcal{P}\left({ }^{n} X * *\right)}, \tau_{p}\right)$ is continuous at P.

Theorem (Aron-Dimant-GL-Maestre, 2023)
Assume X is symmetrically regular and $X^{* *}$ has the MAP. For $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ with $\|f\|_{L}=1$, TFAE:
(i) f has a unique norm preserving extension to $\mathcal{H} L_{0}\left(B_{X * *}\right)$.
(ii) $A B:\left(\bar{B}_{\mathcal{H} L_{0}\left(B_{X}\right)}, \tau_{p}\right) \rightarrow\left(\bar{B}_{\mathcal{H} L_{0}\left(B_{X * *}\right)}, \tau_{p}\right)$ is continuous at f.

Thank you for your attention!

