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Holomorphic functions

e X,Y = complex Banach spaces

@ U c X open subset

@ Bx = open unit ball of X,  Sx = unit sphere of X
A function f: U — Y is said to be holomorphic at xp € U if it is Fréchet
differentiable at xp: there is df (xg) € L(X, Y) with

i [0+ h) — fx0) — df(x0) (h)
h—0 1]l
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Equivalently, there is a sequence (Pxf(xp))x of continuous k-homogeneous
polynomials such that

F(x) = > Pif(x0)(x — o)
k=0

uniformly in some neighbourhood of xp.
f: U — Y is holomorphic < y* o f is holomorphic Vy* € Y*.
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There is a recent survey by Garcia Sdnchez - De Hevia - Tradacete.
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o [[f]|, = sup {{f, 00 = dly )>} and so
x#y€Bx ” ||
= —[o(x) —d(y) }
B =aconv{:X¢y€BX
ol b=yl
o [[fll, = sup [[df(x)[[ = sup [df(x)(y)l= sup [{f, ex,y)l
XEBX XGBx,yESX XEBx,yESX
where e, ,(f) := df(x)(y). Then e, € Go(Bx) and |lex,|| = |y
Thus

EQO(BX) = conv{ex7y X E Bx,y € Sx}

@ So X is separable < Go(Bx) is separable.
@ About the extreme points...

» The unit ball of Go(ID) = G*(ID) does not have extreme points.
* ey, is not a extreme point.
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Relation with F(Bx) and G*(Bx)
@ The map
HLo(Bx) — Lipo(Bx)
f—f
is an into isometry. It is the adjoint of the quotient operator
F(Bx) — Go(Bx)
6(x) = 0(x)
(F(Bx) =complex Lipschitz-free space, see Abbar-Coine-Petitjean)
@ The map
HLo(Bx) — H™(Bx. X*)
f— df
is an into isometry. It is the adjoint of the quotient operator
V: G®(Bx)®xX — Go(Bx)
I(x)Qy ey



Approximation properties

@ X has the Approximation Property (AP) if the identity /: X — X can
be approximated by finite-rank operators in £(X, X) uniformly on
compact sets.

o If the operators can be taken with norm < A then we say that X has
the A\-Bounded Approximation Property (A-BAP).

o If A =1 then we say that X has the Metric Approximation Property
(MAP).
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Now, consider §: Bx — Go(Bx). Take a net (P,) with ||Py|g||, <1 and
P.(x) — d(x) for all x € Bx.
Then Tp, has finite rank, || Tp, || <1 and

TP, (0(x)) = Pa(x) = d(x) = ld(5(x))

so Tp, — Id pointwise on span(d(x)). Since (Tp,) is bounded, the same
holds for the closure.



AP for Go(Bx)

P Go(Bx)
By ———

|

Go(Bx)



AP for Go(Bx)

By — = Go(Bx)
l Py(x) = 0(x)Vx € Bx =
§

Tp., (1) = pV¥ue Go(Bx)

Tp

Go(Bx)



AP for Go(Bx)

Pq

BX gO(BX)
Py(x) = 0(x)Vx € Bx =
6J, Tr, Tp., (1) = pV¥ue Go(Bx)
Go(Bx)

Mujica identified the topology 7, on G*(Bx) such that
(H”(Bx, Y),7y) = (L(G”(Bx), Y), 7o)



AP for Go(Bx)

By — = Go(Bx)
Py(x) = 0(x)Vx € Bx =
6J, Te., Tp, (1) = nVu € Go(Bx)
Go(Bx)

Mujica identified the topology 7, on G*(Bx) such that
(H”(Bx, Y),7y) = (L(G”(Bx), Y), 7o)

To get the corresponding result for Go(Bx), first we identify the compact sets:

If K < Go(Bx) is norm-compact, then K < aconv({a;m,,}) for some (a;) € co
and (x;, yj) < (Bx x Bx)\A. J




AP for Go(Bx)

By — = Go(Bx)
P.(x) = 0(x)Vx € Bx =
‘SJ, Tra Te, (1) = Vi € Go(Bx)
Go(Bx)

Mujica identified the topology 7., on G*(Bx) such that
(H”(Bx, Y),7y) = (L(G”(Bx), Y), 7o)

To get the corresponding result for Go(Bx), first we identify the compact sets:

If K < Go(Bx) is norm-compact, then K < aconv({a;m,,}) for some (a;) € co
and (x;, yj) < (Bx x Bx)\A.

Let 7, be the locally convex topology on HLy(Bx, Y) generated by the
seminorms p(f) = sup; OZJW where (o) € co, (xj,¥j) € (Bx x Bx)\A
and aj > 0. Then we have a homeomorphism:
(HLo(Bx,Y),7y) —  (L£(G0(Bx),Y), 7o)
f - Tf
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Our goal is to find a net (P,), Po: X — Go(Bx) of finite-type polynomials
with P, 33 6.

o We already know that 3(P,) with ||Py|s, ||, < 1 such that P, -5 .

Since the net (P,) is bounded, we get Tp, B Id so actually P, s

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

@ Since X has AP, there are finite-rank operators T, : X — X with
T, 3 Id.

Given P € P(™X,Go(Bx)), we have Po T, € P("X,Go(Bx)) and
PoT,3

Hence, we just need to show:

Lemma

70 and 7, coincide on P("X,Y).
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Given one of the seminorms p in the definition of 7., we'll see there are C > 0
and a compact K such that p(P) < Csup,.k ||[P(x)|| YP € P("X,Y).
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for some compact sets Ky, K>. Now,

/?’(ak,b’"_k)z 2’”1m| Z €1 EmP ((Zk: ) <Zm: s;) b>.
S ei=t1 —1 i=k+1

So there is a compact set K such that p(P) < 2TT sup,ex [P
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Extension of holomorphic Lipschitz functions

If X 2 Y, we have a map

p: Go(Bx) — Go(By)

P
where (f, &) = (Fly, ).
p is an isometry < every f € HLo(Bx) has a norm-preserving extension to
By.
There is no McShane’s extension theorem!
Aron-Berner, 1978
Let P: ¢, — C given by P(x) = > | x2 and consider an embedding

n=1"n
U — L. There does not exists f: By, — C holomorphic extending P|Bg2-

Still, there are some cases where we know that p is an isometry. For
instance, if X is 1-complemented in Y.
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When go(Bx) C go(By)7

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let X c Y. If there is an isometric extension operator s: X* — Y* and X
is symmetrically regular, then Go(Bx) < Go(By)

Recall that

there is such s: X* - Y* & X** is 1-complemented in Y**

< X is locally 1-complemented in Y

This is the case, for instance, if Y = X** (then s: X* — X*** is just the
inclusion map).
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The Aron-Berner extension

Let P: X — C be an n-homogeneous polynomial. Then
P(x) = A(x, ..., x) for a multilinear symmetric map A: X x --- x X — C.
Define

AGGE . oxE) = lim- - lim A(Xay s - - - Xa,,)

a1 an

where xg; “ X
The Aron-Berner extension of P is P(x**) := A(x**, ... x**).
Now, given f € H®(Bx), we can define f € H®(Bx++) extending f.
A similar argument works for the vector-valued case and

AB: HOO(BX7 Y) — HOO(Bx**, Y**)
fisf

is an isometry (Davie-Gamelin, 1989).
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Symmetric regularity

X is Arens regular if

limlim A(Xay, Xap) = lim lim A(xq, , Xa, ) (%)
a1 o a2 a1

*
for all xq, AN x** and for all continuous bilinear maps A: X x X — C.
Equivalently, every T: X — X* is weakly compact.

X is symmetrically regular if () holds for all symmetric A.

@ Spaces with property (V) of Pelczynski are Arens regular (e.g. co,
C(K), H*(D)).

@ /1 and X @ X* (for non-reflexive X) are not symmetrically regular.

o (Leung, 1996) There is a symmetrically regular space that is not
Arens regular.
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Symmetric regularity
If X is symmetrically regular, then we get df = df for all f e HLy(Bx) so
[#]e = ldflo = [df oo = lldfflo = [If]|,- Thus,
AB: HLo(Bx) i HLo(Bx**)
fios f
is an isomettry.
Now, if s: X* — Y™ is a linear extension operator, we get that
S: HLo(Bx) - /HL()(By)
frsfos*oiy
is an isometric extension and so Go(Bx) < Go(By).
We also get that if X and Y are symmetrically regular and X* = Y*, then

HLo(Bx) = HLo(By). This is based on a result by Lassalle-Zalduendo,
2000.
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The bidual of Gy(Bx)

If X is symmetrically regular, then Thus we have
©: Bysx — Go(Bx)™™ = HLo(Bx)* Byss ———> Go(Bx)**
X** s [f € HLo(Bx) — f(x*)]. 6X**l /
To
is holomorphic and 1-Lipschitz. Go(Byxxx)

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X** has MAP. Then Tg is an isometry
that embeds Go(Bx=x) as a locally 1-complemented in Go(Bx)**. That is,
HLo(Bxxx) is 1-complemented in HLo(Bx)**.

The proof uses a sufficient condition for local complementation in spaces with
BAP by Cabello Sanchez - Garcia, 2005.

The analogous stament for G*(Bx) and H*(Bx) also holds (without assuming
symmetric regularity).

Assume X** has BAP. Is H* (Bxs#) <> H”(Bx)**?
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Unique norm-preserving extensions
Lemma (Godefroy, 1981)
Let x € Sxx. TFAE:
(i) x* has a unique norm preserving extension to a functional on X**.

(i) Id: (Bxx,w*) —> (Bxx,w) is continuous at x*.

Theorem (Aron-Boyd-Choi, 2009)
Assume X** has the MAP. For P € P("X) with ||P| = 1, TFAE:

(i) P has a unique norm preserving extension to a polynomial on X**.

(i) AB: (Bp(nx),Tp) = (Bpnxix),Tp) is continuous at P.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X** has the MAP. For f € HLy(Bx) with
|fll, =1, TFAE:

(i) f has a unique norm preserving extension to HLo(Bxx ).

(1) AB: (ByyLo(Bx) o) = (BiiLo(Byss)> Tp) is continuous at f.




Thank you for your attention!



