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Holomorphic functions

X ,Y � complex Banach spaces

U � X open subset

BX � open unit ball of X , SX � unit sphere of X

A function f : U Ñ Y is said to be holomorphic at x0 P U if it is Fréchet

differentiable at x0: there is df px0q P LpX ,Y q with

lim
hÑ0

f px0 � hq � f px0q � df px0qphq

∥h∥
� 0

Equivalently, there is a sequence pPk f px0qqk of continuous k-homogeneous

polynomials such that

f pxq �
8̧

k�0

Pk f px0qpx � x0q

uniformly in some neighbourhood of x0.

f : U Ñ Y is holomorphic ô y� � f is holomorphic @y� P Y �.
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The holomorphic free space

H8pU,Y q � tf : U Ñ Y : f is holomorphic and boundedu is a Banach

space with the norm ∥�∥8.

We denote H8pUq :� H8pU,Cq.

Theorem (Mujica, 1991)

There is a Banach space G8pUq and a

holomorphic bounded map δ : U Ñ G8pUq
satisfying the linearization property of the

diagram.

U
f //

δ
��

Y

G8pUq
Tf

;;

Thus LpG8pUq,Y q � H8pU,Y q, in particular G8pUq� � H8pUq.

Also, X is (linearly) isometric to a 1-complemented subspace of G8pBX q.

Ando, 1978: The unit ball of G8pDq doesn’t have extreme points.

Clouâtre-Davidson, 2016: The same for G8pBCnq.

Jung, 2023: H8pBX q has the Daugavet property.

There is a recent survey by Garćıa Sánchez - De Hevia - Tradacete.
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The unit ball of G0pBX q

∥f ∥L � sup
x�yPBX

txf ,
δpxq � δpyq

∥x � y∥
yu and so

BG0pBX q � aconv

"
δpxq � δpyq

∥x � y∥
: x � y P BX

*

∥f ∥L � sup
xPBX

∥df pxq∥ � sup
xPBX ,yPSX

|df pxqpyq| � sup
xPBX ,yPSX

|xf , ex ,y y|

where ex ,y pf q :� df pxqpyq. Then ex ,y P G0pBX q and ∥ex ,y∥ � ∥y∥.
Thus

BG0pBX q � conv tex ,y : x P BX , y P SX u

So X is separable ô G0pBX q is separable.

About the extreme points...
� The unit ball of G0pDq � G8pDq does not have extreme points.
� ex,y is not a extreme point.
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Relation with FpBX q and G8pBX q
The map

HL0pBX q Ñ Lip0pBX q

f ÞÑ f

is an into isometry. It is the adjoint of the quotient operator

FpBX q Ñ G0pBX q

δpxq ÞÑ δpxq

(FpBX q �complex Lipschitz-free space, see Abbar-Coine-Petitjean)

The map

HL0pBX q Ñ H8pBX ,X
�q

f ÞÑ df

is an into isometry. It is the adjoint of the quotient operator

Ψ: G8pBX qpbπX Ñ G0pBX q

δpxq b y ÞÑ ex ,y
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Approximation properties

X has the Approximation Property (AP) if the identity I : X Ñ X can

be approximated by finite-rank operators in LpX ,X q uniformly on

compact sets.

If the operators can be taken with norm ¤ λ then we say that X has

the λ-Bounded Approximation Property (λ-BAP).

If λ � 1 then we say that X has the Metric Approximation Property

(MAP).



Approximation properties

Theorem (Mujica, 1991)

X has the (M)AP ô G8pBX q has the (M)AP.

X has the BAP ô G8pBX q has the BAP?

H8pDq has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ-BAP ô FpX q has the λ-BAP.

X has AP ô FpX q has AP?

Theorem (Aron-Dimant-GL-Maestre)
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MAP for G0pBX q

First we show:

a) Given f P HLpBX ,Y q with ∥f ∥L ¤ 1, there are polinomials

Pn : X Ñ Y with ∥Pn|BX
∥L ¤ 1 and Pnpxq Ñ f pxq for all x P BX .

b) Assume that X has the MAP with Tα Ñ I pointwise. For each

polynomial P : X Ñ Y there are finite-type polinomials Pα � P � Tα

with ∥Pα|BX
∥L ¤ ∥P|BX

∥L and Pαpxq Ñ Ppxq for all x P BX .

Now, consider δ : BX Ñ G0pBX q. Take a net pPαq with ∥Pα|BX
∥L ¤ 1 and

Pαpxq Ñ δpxq for all x P BX .

Then TPα has finite rank, ∥TPα∥ ¤ 1 and

TPαpδpxqq � Pαpxq Ñ δpxq � Idpδpxqq

so TPα Ñ Id pointwise on spanpδpxqq. Since pTPαq is bounded, the same

holds for the closure.
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AP for G0pBX q

BX
Pα //

δ

��

G0pBX q

G0pBX q

TPα

99

Pαpxq Ñ δpxq @x P BX ÷

TPα
pµq Ñ µ@µ P G0pBX q

Mujica identified the topology τγ on G8pBX q such that

pH8pBX ,Y q, τγq � pLpG8pBX q,Y q, τ0q.

To get the corresponding result for G0pBX q, first we identify the compact sets:

If K � G0pBX q is norm-compact, then K � aconvptαjmxjyj uq for some pαjq P c0
and pxj , yjq � pBX � BX qz∆.

Let τγ be the locally convex topology on HL0pBX ,Y q generated by the

seminorms ppf q � supj αj
}f pxj q�f pyj q}

}xj�yj}
where pαjq P c0, pxj , yjq � pBX � BX qz∆

and αj ¡ 0. Then we have a homeomorphism:

pHL0pBX ,Y q, τγq Ñ pLpG0pBX q,Y q, τ0q

f ÞÑ Tf
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AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



AP for G0pBX q

Our goal is to find a net pPαq, Pα : X Ñ G0pBX q of finite-type polynomials

with Pα
τγ
Ñ δ.

We already know that DpPαq with ∥Pα|BX
∥L ¤ 1 such that Pα

τ0Ñ δ.

Since the net pPαq is bounded, we get TPα

τ0Ñ Id so actually Pα
τγ
Ñ δ.

We still need to approximate these polynomials by finite-type ones.

It suffices to do that for m-homogeneous polynomials.

Since X has AP, there are finite-rank operators Tα : X Ñ X with

Tα
τ0Ñ Id .

Given P P PpmX ,G0pBX qq, we have P � Tα P PpmX ,G0pBX qq and

P � Tα
τ0Ñ P.

Hence, we just need to show:

Lemma

τ0 and τγ coincide on PpmX ,Y q.



Given one of the seminorms p in the definition of τγ , we’ll see there are C ¡ 0

and a compact K such that ppPq ¤ C supxPK ∥Ppxq∥ @P P PpmX ,Y q.

ppPq � sup
j

αj
}Ppxjq � Ppyjq}

}xj � yj}
� sup

j

}Ppα
1{m
j xjq � Ppα

1{m
j yjq}

}xj � yj}

� sup
j

���°m
k�1

�
m
k

� qP �pα1{m
j pxj � yjqq

k , pα
1{m
j yjq

m�k
	���

}xj � yj}

� sup
j

������
m̧

k�1

�
m

k


qP
���α

1{m
j pxj � yjq

}xj � yj}1{k

�k

, pα
1{m
j yjq

m�k

�������
¤

m̧

k�1

�
m

k



sup

aPK1,bPK2

}qPpak , bm�kq}

for some compact sets K1,K2. Now,

qPpak , bm�kq �
1

2mm!

¸
εi��1

ε1 � � � εmP

��
ķ

i�1

εi

�
a�

�
m̧

i�k�1

εi

�
b

�
.

So there is a compact set K such that ppPq ¤ 2m�1
m! supxPK ∥Ppxq∥.
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Extension of holomorphic Lipschitz functions

If X � Y , we have a map

ρ : G0pBX q Ñ G0pBY q

φ ÞÑ pφ,
where xf , pφy � xf |BX

, φy.

ρ is an isometry ô every f P HL0pBX q has a norm-preserving extension to

BY .

There is no McShane’s extension theorem!

Aron-Berner, 1978

Let P : ℓ2 Ñ C given by Ppxq �
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instance, if X is 1-complemented in Y .
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When G0pBX q � G0pBY q?

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let X � Y . If there is an isometric extension operator s : X � Ñ Y � and X

is symmetrically regular, then G0pBX q � G0pBY q

Recall that

there is such s : X � Ñ Y � ô X �� is 1-complemented in Y ��

ô X is locally 1-complemented in Y

This is the case, for instance, if Y � X �� (then s : X � Ñ X ��� is just the

inclusion map).
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The Aron-Berner extension

Let P : X Ñ C be an n-homogeneous polynomial. Then

Ppxq � Apx , . . . , xq for a multilinear symmetric map A : X � � � � � X Ñ C.
Define

Apx��1 , . . . x��n q � lim
α1

� � � lim
αn

Apxα1 , . . . xαnq

where xαi

w�
Ñ x��i .

The Aron-Berner extension of P is P̃px��q :� Apx��, . . . , x��q.

Now, given f P H8pBX q, we can define f̃ P H8pBX��q extending f .

A similar argument works for the vector-valued case and

AB : H8pBX ,Y q Ñ H8pBX�� ,Y
��q

f ÞÑ f̃

is an isometry (Davie-Gamelin, 1989).
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Symmetric regularity

X is Arens regular if

lim
α1

lim
α2

Apxα1 , xα2q � lim
α2

lim
α1

Apxα1 , xα2q p�q

for all xαi

w�
Ñ x��i and for all continuous bilinear maps A : X � X Ñ C.

Equivalently, every T : X Ñ X � is weakly compact.

X is symmetrically regular if p�q holds for all symmetric A.

Spaces with property (V) of Pelczyński are Arens regular (e.g. c0,

C pK q, H8pDq).
ℓ1 and X ` X � (for non-reflexive X ) are not symmetrically regular.

(Leung, 1996) There is a symmetrically regular space that is not

Arens regular.



Symmetric regularity

X is Arens regular if

lim
α1

lim
α2

Apxα1 , xα2q � lim
α2

lim
α1

Apxα1 , xα2q p�q

for all xαi

w�
Ñ x��i and for all continuous bilinear maps A : X � X Ñ C.

Equivalently, every T : X Ñ X � is weakly compact.

X is symmetrically regular if p�q holds for all symmetric A.

Spaces with property (V) of Pelczyński are Arens regular (e.g. c0,
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C pK q, H8pDq).
ℓ1 and X ` X � (for non-reflexive X ) are not symmetrically regular.

(Leung, 1996) There is a symmetrically regular space that is not

Arens regular.



Symmetric regularity

X is Arens regular if

lim
α1

lim
α2

Apxα1 , xα2q � lim
α2

lim
α1

Apxα1 , xα2q p�q

for all xαi

w�
Ñ x��i and for all continuous bilinear maps A : X � X Ñ C.

Equivalently, every T : X Ñ X � is weakly compact.

X is symmetrically regular if p�q holds for all symmetric A.

Spaces with property (V) of Pelczyński are Arens regular (e.g. c0,
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Symmetric regularity

If X is symmetrically regular, then we get d rf ��df for all f P HL0pBX q

so

}f̃ }L � }df̃ }8 � }�df }8 � }df }8 � ∥f ∥L. Thus,

AB : HL0pBX q Ñ HL0pBX��q

f ÞÑ rf
is an isometry.

Now, if s : X � Ñ Y � is a linear extension operator, we get that

s : HL0pBX q Ñ HL0pBY q

f ÞÑ rf � s� � iY
is an isometric extension and so G0pBX q � G0pBY q.

We also get that if X and Y are symmetrically regular and X � � Y �, then

HL0pBX q � HL0pBY q. This is based on a result by Lassalle-Zalduendo,

2000.
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The bidual of G0pBX q

If X is symmetrically regular, then

Θ: BX�� Ñ G0pBX q
�� � HL0pBX q

�

x�� ÞÑ rf P HL0pBX q ÞÑ rf px��qs.
is holomorphic and 1-Lipschitz.

Thus we have

BX��
Θ //

δX��

��

G0pBX q
��

G0pBX��q

TΘ

88

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X�� has MAP. Then TΘ is an isometry
that embeds G0pBX��q as a locally 1-complemented in G0pBX q

��.That is,
HL0pBX��q is 1-complemented in HL0pBX q

��.

The proof uses a sufficient condition for local complementation in spaces with
BAP by Cabello Sánchez - Garćıa, 2005.
The analogous stament for G8pBX q and H8pBX q also holds (without assuming
symmetric regularity).

Assume X�� has BAP. Is H8pBX��q
c

ãÑ H8pBX q
��?
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Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let x P SX� . TFAE:

(i) x� has a unique norm preserving extension to a functional on X��.

(ii) Id : pBX� ,w
�q ÝÑ pBX� ,wq is continuous at x

�.

Theorem (Aron-Boyd-Choi, 2009)

Assume X�� has the MAP. For P P PpnX q with ∥P∥ � 1, TFAE:

(i) P has a unique norm preserving extension to a polynomial on X��.

(ii) AB : pBPpnXq, τpq Ñ pBPpnX��q, τpq is continuous at P.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X�� has the MAP. For f P HL0pBX q with
∥f ∥L � 1, TFAE:

(i) f has a unique norm preserving extension to HL0pBX��q.

(ii) AB : pBHL0pBX q, τpq Ñ pBHL0pBX�� q
, τpq is continuous at f .



Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let x P SX� . TFAE:

(i) x� has a unique norm preserving extension to a functional on X��.

(ii) Id : pBX� ,w
�q ÝÑ pBX� ,wq is continuous at x

�.

Theorem (Aron-Boyd-Choi, 2009)

Assume X�� has the MAP. For P P PpnX q with ∥P∥ � 1, TFAE:

(i) P has a unique norm preserving extension to a polynomial on X��.

(ii) AB : pBPpnXq, τpq Ñ pBPpnX��q, τpq is continuous at P.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X�� has the MAP. For f P HL0pBX q with
∥f ∥L � 1, TFAE:

(i) f has a unique norm preserving extension to HL0pBX��q.

(ii) AB : pBHL0pBX q, τpq Ñ pBHL0pBX�� q
, τpq is continuous at f .



Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let x P SX� . TFAE:

(i) x� has a unique norm preserving extension to a functional on X��.

(ii) Id : pBX� ,w
�q ÝÑ pBX� ,wq is continuous at x

�.

Theorem (Aron-Boyd-Choi, 2009)

Assume X�� has the MAP. For P P PpnX q with ∥P∥ � 1, TFAE:

(i) P has a unique norm preserving extension to a polynomial on X��.

(ii) AB : pBPpnXq, τpq Ñ pBPpnX��q, τpq is continuous at P.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X�� has the MAP. For f P HL0pBX q with
∥f ∥L � 1, TFAE:

(i) f has a unique norm preserving extension to HL0pBX��q.

(ii) AB : pBHL0pBX q, τpq Ñ pBHL0pBX�� q
, τpq is continuous at f .



Thank you for your attention!


