Linearization of holomorphic Lipschitz mappings

Luis C. García-Lirola

Joint work with R. Aron, V. Dimant and M. Maestre

Universidad de Zaragoza

ÆSY TO DEFINE, HARD TO ANALYSE Besançon 20th September, 2023

f SéNeCa⁽⁺⁾

Agencia de Ciencia y Tecnología Región de Murcia

Outline

- 1) Holomorphic functions and the holomorphic free space
- 2) The holomorphic Lipschitz free space
- 3) Approximation properties
- 4) Extension of holomorphic Lipschitz functions

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open unit ball of } X$, $S_X = \text{unit sphere of } X$

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open}$ unit ball of X, $S_X = \text{unit sphere of } X$

A function $f: U \to Y$ is said to be **holomorphic** at $x_0 \in U$ if it is Fréchet differentiable at x_0 : there is $df(x_0) \in \mathcal{L}(X, Y)$ with

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - df(x_0)(h)}{\|h\|} = 0$$

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open}$ unit ball of X, $S_X = \text{unit sphere of } X$

A function $f: U \to Y$ is said to be **holomorphic** at $x_0 \in U$ if it is Fréchet differentiable at x_0 : there is $df(x_0) \in \mathcal{L}(X, Y)$ with

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - df(x_0)(h)}{\|h\|} = 0$$

Equivalently, there is a sequence $(P_k f(x_0))_k$ of continuous k-homogeneous polynomials such that

$$f(x) = \sum_{k=0}^{\infty} P_k f(x_0)(x - x_0)$$

uniformly in some neighbourhood of x_0 .

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open unit ball of } X$, $S_X = \text{unit sphere of } X$

A function $f: U \to Y$ is said to be **holomorphic** at $x_0 \in U$ if it is Fréchet differentiable at x_0 : there is $df(x_0) \in \mathcal{L}(X, Y)$ with

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - df(x_0)(h)}{\|h\|} = 0$$

Equivalently, there is a sequence $(P_k f(x_0))_k$ of continuous k-homogeneous polynomials such that

$$f(x) = \sum_{k=0}^{\infty} P_k f(x_0) (x - x_0)$$

uniformly in some neighbourhood of x_0 .

 $f: U \to Y$ is holomorphic $\Leftrightarrow y^* \circ f$ is holomorphic $\forall y^* \in Y^*$.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}.$

 $\mathcal{H}^{\infty}(U, Y) = \{f : U \to Y : f \text{ is holomorphic and bounded}\}\$ is a Banach space with the norm $\|\cdot\|_{\infty}$. We denote $\mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U, \mathbb{C})$.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}. \text{ We denote } \mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U,\mathbb{C}).$

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}^{\infty}(U), Y) = \mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^* \equiv \mathcal{H}^{\infty}(U)$.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}. \text{ We denote } \mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U,\mathbb{C}).$

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}^{\infty}(U), Y) = \mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^* \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}(B_X)$.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}. \text{ We denote } \mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U,\mathbb{C}).$

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}^{\infty}(U), Y) = \mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^* \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}(B_X)$.

• Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}. \text{ We denote } \mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U,\mathbb{C}).$

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}^{\infty}(U), Y) = \mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^* \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}(B_X)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.
- Clouâtre-Davidson, 2016: The same for $\mathcal{G}^{\infty}(\mathcal{B}_{\mathbb{C}^n})$.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}. \text{ We denote } \mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U,\mathbb{C}).$

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}^{\infty}(U), Y) = \mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^* \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}(B_X)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.
- Clouâtre-Davidson, 2016: The same for $\mathcal{G}^{\infty}(\mathcal{B}_{\mathbb{C}^n})$.
- Jung, 2023: $\mathcal{H}^{\infty}(B_X)$ has the Daugavet property.

 $\mathcal{H}^{\infty}(U,Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\} \text{ is a Banach space with the norm } \|\cdot\|_{\infty}. \text{ We denote } \mathcal{H}^{\infty}(U) := \mathcal{H}^{\infty}(U,\mathbb{C}).$

Theorem (Mujica, 1991)

There is a Banach space $\mathcal{G}^{\infty}(U)$ and a holomorphic bounded map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}^{\infty}(U), Y) = \mathcal{H}^{\infty}(U, Y)$, in particular $\mathcal{G}^{\infty}(U)^* \equiv \mathcal{H}^{\infty}(U)$. Also, X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}^{\infty}(B_X)$.

- Ando, 1978: The unit ball of $\mathcal{G}^{\infty}(\mathbb{D})$ doesn't have extreme points.
- Clouâtre-Davidson, 2016: The same for $\mathcal{G}^{\infty}(\mathcal{B}_{\mathbb{C}^n})$.
- Jung, 2023: $\mathcal{H}^{\infty}(B_X)$ has the Daugavet property.

There is a recent survey by García Sánchez - De Hevia - Tradacete.

$$\mathcal{H}L_0(B_X, Y) = \{ f : B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0 \}$$
$$= \{ f \in \mathcal{H}(B_X, Y) : df \in \mathcal{H}^{\infty}(B_X, \mathcal{L}(X, Y)), f(0) = 0 \}$$

is a Banach space with the norm $||f||_L = ||df||_{\infty}$.

$$\mathcal{H}L_0(B_X, Y) = \{ f : B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0 \}$$
$$= \{ f \in \mathcal{H}(B_X, Y) : df \in \mathcal{H}^{\infty}(B_X, \mathcal{L}(X, Y)), f(0) = 0 \}$$

is a Banach space with the norm $||f||_L = ||df||_{\infty}$. We denote $\mathcal{H}L_0(B_X) := \mathcal{H}L_0(B_X, \mathbb{C}).$

 $\mathcal{H}L_0(B_X, Y) = \{ f : B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0 \}$ $= \{ f \in \mathcal{H}(B_X, Y) : df \in \mathcal{H}^{\infty}(B_X, \mathcal{L}(X, Y)), f(0) = 0 \}$

is a Banach space with the norm $||f||_L = ||df||_{\infty}$. We denote $\mathcal{H}L_0(B_X) := \mathcal{H}L_0(B_X, \mathbb{C}).$

Theorem (Aron-Dimant-GL-Maestre, 2023)

There is a Banach space $\mathcal{G}_0(B_X)$ and a holomorphic Lipschitz map $\delta \colon B_X \to \mathcal{G}_0(B_X)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}_0(B_X), Y) = \mathcal{H}L_0(B_X, Y)$, in particular $\mathcal{G}_0(B_X)^* \equiv \mathcal{H}L_0(B_X)$.

 $\mathcal{H}L_0(B_X, Y) = \{ f : B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0 \}$ $= \{ f \in \mathcal{H}(B_X, Y) : df \in \mathcal{H}^{\infty}(B_X, \mathcal{L}(X, Y)), f(0) = 0 \}$

is a Banach space with the norm $||f||_L = ||df||_{\infty}$. We denote $\mathcal{H}L_0(B_X) := \mathcal{H}L_0(B_X, \mathbb{C}).$

Theorem (Aron-Dimant-GL-Maestre, 2023)

There is a Banach space $\mathcal{G}_0(B_X)$ and a holomorphic Lipschitz map $\delta \colon B_X \to \mathcal{G}_0(B_X)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}_0(B_X), Y) = \mathcal{H}L_0(B_X, Y)$, in particular $\mathcal{G}_0(B_X)^* \equiv \mathcal{H}L_0(B_X)$. Also, $\|\delta(x) - \delta(y)\| = \|x - y\| \ \forall x, y \in B_X$ and

 $\mathcal{H}L_0(B_X, Y) = \{ f : B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0 \}$ $= \{ f \in \mathcal{H}(B_X, Y) : df \in \mathcal{H}^{\infty}(B_X, \mathcal{L}(X, Y)), f(0) = 0 \}$

is a Banach space with the norm $||f||_L = ||df||_{\infty}$. We denote $\mathcal{H}L_0(B_X) := \mathcal{H}L_0(B_X, \mathbb{C}).$

Theorem (Aron-Dimant-GL-Maestre, 2023)

There is a Banach space $\mathcal{G}_0(B_X)$ and a holomorphic Lipschitz map $\delta \colon B_X \to \mathcal{G}_0(B_X)$ satisfying the linearization property of the diagram.

Thus $\mathcal{L}(\mathcal{G}_0(B_X), Y) = \mathcal{H}L_0(B_X, Y)$, in particular $\mathcal{G}_0(B_X)^* \equiv \mathcal{H}L_0(B_X)$. Also, $\|\delta(x) - \delta(y)\| = \|x - y\| \ \forall x, y \in B_X$ and X is (linearly) isometric to a 1-complemented subspace of $\mathcal{G}_0(B_X)$.

•
$$\|f\|_{L} = \sup_{x \neq y \in B_{X}} \{\langle f, \frac{\delta(x) - \delta(y)}{\|x - y\|} \rangle\}$$
 and so
 $\overline{B}_{\mathcal{G}_{0}(B_{X})} = \overline{\operatorname{aconv}} \left\{ \frac{\delta(x) - \delta(y)}{\|x - y\|} : x \neq y \in B_{X} \right\}$

•
$$\|f\|_{L} = \sup_{x \neq y \in B_{X}} \{\langle f, \frac{\delta(x) - \delta(y)}{\|x - y\|} \rangle\}$$
 and so
 $\overline{B}_{\mathcal{G}_{0}(B_{X})} = \overline{\operatorname{aconv}} \left\{ \frac{\delta(x) - \delta(y)}{\|x - y\|} : x \neq y \in B_{X} \right\}$

•
$$||f||_L = \sup_{x \in B_X} ||df(x)|| = \sup_{x \in B_X, y \in S_X} |df(x)(y)| = \sup_{x \in B_X, y \in S_X} |\langle f, e_{x,y} \rangle|$$

where $e_{x,y}(f) := df(x)(y)$.

•
$$\|f\|_{L} = \sup_{x \neq y \in B_{X}} \{ \langle f, \frac{\delta(x) - \delta(y)}{\|x - y\|} \rangle \}$$
 and so
 $\overline{B}_{\mathcal{G}_{0}(B_{X})} = \overline{\operatorname{aconv}} \left\{ \frac{\delta(x) - \delta(y)}{\|x - y\|} : x \neq y \in B_{X} \right\}$

•
$$||f||_L = \sup_{x \in B_X} ||df(x)|| = \sup_{x \in B_X, y \in S_X} |df(x)(y)| = \sup_{x \in B_X, y \in S_X} |\langle f, e_{x,y} \rangle|$$

where $e_{x,y}(f) := df(x)(y)$. Then $e_{x,y} \in \mathcal{G}_0(B_X)$ and $||e_{x,y}|| = ||y||$.
Thus

$$\overline{B}_{\mathcal{G}_0(B_X)} = \overline{\operatorname{conv}} \{ e_{x,y} : x \in B_X, y \in S_X \}$$

•
$$\|f\|_{L} = \sup_{x \neq y \in B_{X}} \{\langle f, \frac{\delta(x) - \delta(y)}{\|x - y\|} \rangle\}$$
 and so
 $\overline{B}_{\mathcal{G}_{0}(B_{X})} = \overline{\operatorname{aconv}} \left\{ \frac{\delta(x) - \delta(y)}{\|x - y\|} : x \neq y \in B_{X} \right\}$

•
$$||f||_L = \sup_{x \in B_X} ||df(x)|| = \sup_{x \in B_X, y \in S_X} |df(x)(y)| = \sup_{x \in B_X, y \in S_X} |\langle f, e_{x,y} \rangle|$$

where $e_{x,y}(f) := df(x)(y)$. Then $e_{x,y} \in \mathcal{G}_0(B_X)$ and $||e_{x,y}|| = ||y||$.
Thus

$$\overline{B}_{\mathcal{G}_0(B_X)} = \overline{\operatorname{conv}} \{ e_{x,y} : x \in B_X, y \in S_X \}$$

• So X is separable $\Leftrightarrow \mathcal{G}_0(B_X)$ is separable.

•
$$\|f\|_{L} = \sup_{x \neq y \in B_{X}} \{\langle f, \frac{\delta(x) - \delta(y)}{\|x - y\|} \rangle\}$$
 and so
 $\overline{B}_{\mathcal{G}_{0}(B_{X})} = \overline{\operatorname{aconv}} \left\{ \frac{\delta(x) - \delta(y)}{\|x - y\|} : x \neq y \in B_{X} \right\}$

•
$$||f||_L = \sup_{x \in B_X} ||df(x)|| = \sup_{x \in B_X, y \in S_X} |df(x)(y)| = \sup_{x \in B_X, y \in S_X} |\langle f, e_{x,y} \rangle|$$

where $e_{x,y}(f) := df(x)(y)$. Then $e_{x,y} \in \mathcal{G}_0(B_X)$ and $||e_{x,y}|| = ||y||$.
Thus

$$\overline{B}_{\mathcal{G}_0(B_X)} = \overline{\operatorname{conv}} \{ e_{x,y} : x \in B_X, y \in S_X \}$$

- So X is separable $\Leftrightarrow \mathcal{G}_0(B_X)$ is separable.
- About the extreme points...
 - The unit ball of $\mathcal{G}_0(\mathbb{D})\equiv \mathcal{G}^\infty(\mathbb{D})$ does not have extreme points.
 - $e_{x,y}$ is not a extreme point.

Relation with $\mathcal{F}(B_X)$ and $\mathcal{G}^{\infty}(B_X)$

• The map

$$\mathcal{H}L_0(B_X) \to \operatorname{Lip}_0(B_X)$$
$$f \mapsto f$$

is an into isometry. It is the adjoint of the quotient operator

 $\mathcal{F}(B_X) \to \mathcal{G}_0(B_X)$ $\delta(x) \mapsto \delta(x)$

Relation with $\mathcal{F}(B_X)$ and $\mathcal{G}^{\infty}(B_X)$

• The map

$$\mathcal{H}L_0(B_X) \to \operatorname{Lip}_0(B_X)$$
$$f \mapsto f$$

is an into isometry. It is the adjoint of the quotient operator

$$\mathcal{F}(B_X) \to \mathcal{G}_0(B_X)$$
$$\delta(x) \mapsto \delta(x)$$

 $(\mathcal{F}(B_X) = \text{complex Lipschitz-free space, see Abbar-Coine-Petitjean})$

Relation with $\mathcal{F}(B_X)$ and $\mathcal{G}^{\infty}(B_X)$

• The map

$$\mathcal{H}L_0(B_X) \to \operatorname{Lip}_0(B_X)$$
$$f \mapsto f$$

is an into isometry. It is the adjoint of the quotient operator

$$\mathcal{F}(B_X) \to \mathcal{G}_0(B_X)$$
$$\delta(x) \mapsto \delta(x)$$

 $(\mathcal{F}(B_X) = \text{complex Lipschitz-free space, see Abbar-Coine-Petitjean})$ • The map

$$\mathcal{H}L_0(B_X) \to \mathcal{H}^\infty(B_X, X^*)$$
$$f \mapsto df$$

is an into isometry. It is the adjoint of the quotient operator

$$\Psi \colon \mathcal{G}^{\infty}(B_X) \widehat{\otimes}_{\pi} X \to \mathcal{G}_0(B_X)$$
$$\delta(x) \otimes y \mapsto e_{x,y}$$

- X has the Approximation Property (AP) if the identity I: X → X can be approximated by finite-rank operators in L(X, X) uniformly on compact sets.
- If the operators can be taken with norm ≤ λ then we say that X has the λ-Bounded Approximation Property (λ-BAP).
- If $\lambda = 1$ then we say that X has the Metric Approximation Property (MAP).

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

• X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Aron-Dimant-GL-Maestre)

X has the (M)AP $\Leftrightarrow \mathcal{G}_0(B_X)$ has the (M)AP.

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Aron-Dimant-GL-Maestre)

X has the (M)AP $\Leftrightarrow \mathcal{G}_0(B_X)$ has the (M)AP.

X has the BAP $\Leftrightarrow \mathcal{G}_0(B_X)$ has the BAP?
First we show:

a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polinomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polinomials $P_{\alpha} = P \circ T_{\alpha}$ with $||P_{\alpha}|_{B_X}||_L \leq ||P|_{B_X}||_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$. Now, consider $\delta: B_X \to \mathcal{G}_0(B_X)$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polinomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

Now, consider $\delta: B_X \to \mathcal{G}_0(B_X)$. Take a net (P_α) with $||P_\alpha|_{B_X}||_L \leq 1$ and $P_\alpha(x) \to \delta(x)$ for all $x \in B_X$.

Then $T_{P_{\alpha}}$ has finite rank, $||T_{P_{\alpha}}|| \leq 1$ and

$$T_{P_{\alpha}}(\delta(x)) = P_{\alpha}(x) \rightarrow \delta(x) = Id(\delta(x))$$

so $T_{P_{\alpha}} \rightarrow Id$ pointwise on span $(\delta(x))$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polinomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

Now, consider $\delta: B_X \to \mathcal{G}_0(B_X)$. Take a net (P_α) with $||P_\alpha|_{B_X}||_L \leq 1$ and $P_\alpha(x) \to \delta(x)$ for all $x \in B_X$.

Then $T_{P_{\alpha}}$ has finite rank, $||T_{P_{\alpha}}|| \leq 1$ and

$$T_{P_{\alpha}}(\delta(x)) = P_{\alpha}(x) \rightarrow \delta(x) = Id(\delta(x))$$

so $T_{P_{\alpha}} \rightarrow Id$ pointwise on span $(\delta(x))$. Since $(T_{P_{\alpha}})$ is bounded, the same holds for the closure.

$$\begin{split} P_{\alpha}(x) &\to \delta(x) \, \forall x \in B_X \not\Rightarrow \\ T_{P_{\alpha}}(\mu) &\to \mu \, \forall \mu \in \mathcal{G}_0(B_X) \end{split}$$

$$\begin{aligned} & P_{\alpha}(x) \to \delta(x) \, \forall x \in B_X \not \Rightarrow \\ & T_{P_{\alpha}}(\mu) \to \mu \, \forall \mu \in \mathcal{G}_0(B_X) \end{aligned}$$

Mujica identified the topology au_γ on $\mathcal{G}^\infty(\mathcal{B}_X)$ such that

 $(\mathcal{H}^{\infty}(B_X,Y),\tau_{\gamma})\cong (\mathcal{L}(\mathcal{G}^{\infty}(B_X),Y),\tau_0).$

$$\begin{aligned} & \mathcal{P}_{\alpha}(x) \to \delta(x) \, \forall x \in B_X \not\Rightarrow \\ & \mathcal{T}_{\mathcal{P}_{\alpha}}(\mu) \to \mu \, \forall \mu \in \mathcal{G}_0(B_X) \end{aligned}$$

Mujica identified the topology au_{γ} on $\mathcal{G}^{\infty}(B_X)$ such that

$$(\mathcal{H}^{\infty}(\mathcal{B}_X, Y), \tau_{\gamma}) \cong (\mathcal{L}(\mathcal{G}^{\infty}(\mathcal{B}_X), Y), \tau_0).$$

To get the corresponding result for $\mathcal{G}_0(B_X)$, first we identify the compact sets:

If $K \subset \mathcal{G}_0(B_X)$ is norm-compact, then $K \subset \overline{\operatorname{aconv}}(\{\alpha_j m_{x_j y_j}\})$ for some $(\alpha_j) \in c_0$ and $(x_j, y_j) \subset (B_X \times B_X) \setminus \Delta$.

$$\begin{aligned} & P_{\alpha}(x) \to \delta(x) \, \forall x \in B_X \Rightarrow \\ & T_{P_{\alpha}}(\mu) \to \mu \, \forall \mu \in \mathcal{G}_0(B_X) \end{aligned}$$

Mujica identified the topology au_{γ} on $\mathcal{G}^{\infty}(B_X)$ such that

$$(\mathcal{H}^{\infty}(\mathcal{B}_X, Y), \tau_{\gamma}) \cong (\mathcal{L}(\mathcal{G}^{\infty}(\mathcal{B}_X), Y), \tau_0).$$

To get the corresponding result for $\mathcal{G}_0(B_X)$, first we identify the compact sets:

If $K \subset \mathcal{G}_0(B_X)$ is norm-compact, then $K \subset \overline{\operatorname{aconv}}(\{\alpha_j m_{x_j y_j}\})$ for some $(\alpha_j) \in c_0$ and $(x_j, y_j) \subset (B_X \times B_X) \setminus \Delta$.

Let τ_{γ} be the locally convex topology on $\mathcal{H}L_0(B_X, Y)$ generated by the seminorms $p(f) = \sup_j \alpha_j \frac{\|f(x_j) - f(y_j)\|}{\|x_j - y_j\|}$ where $(\alpha_j) \in c_0$, $(x_j, y_j) \subset (B_X \times B_X) \setminus \Delta$ and $\alpha_j > 0$. Then we have a homeomorphism:

$$\begin{array}{rcl} (\mathcal{H}L_0(B_X,Y),\tau_\gamma) & \to & (\mathcal{L}(\mathcal{G}_0(B_X),Y),\tau_0) \\ & f & \mapsto & T_f \end{array}$$

Our goal is to find a net (P_{α}) , $P_{\alpha} \colon X \to \mathcal{G}_0(B_X)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

• We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.

- We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net (P_{α}) is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_0} Id$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net (P_{α}) is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_0} Id$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.

- We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net (P_{α}) is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_0} Id$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for *m*-homogeneous polynomials.

- We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net (P_{α}) is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_0} Id$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for *m*-homogeneous polynomials.
- Since X has AP, there are finite-rank operators $T_{\alpha} \colon X \to X$ with $T_{\alpha} \xrightarrow{\tau_0} Id$.

- We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net (P_{α}) is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_0} Id$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for *m*-homogeneous polynomials.
- Since X has AP, there are finite-rank operators $T_{\alpha} \colon X \to X$ with $T_{\alpha} \xrightarrow{\tau_0} Id$.
- Given $P \in \mathcal{P}(^{m}X, \mathcal{G}_{0}(B_{X}))$, we have $P \circ T_{\alpha} \in \mathcal{P}(^{m}X, \mathcal{G}_{0}(B_{X}))$ and $P \circ T_{\alpha} \xrightarrow{\tau_{0}} P$.

Our goal is to find a net (P_{α}) , $P_{\alpha} \colon X \to \mathcal{G}_0(B_X)$ of finite-type polynomials with $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.

- We already know that $\exists (P_{\alpha})$ with $\|P_{\alpha}|_{B_{X}}\|_{L} \leq 1$ such that $P_{\alpha} \xrightarrow{\tau_{0}} \delta$.
- Since the net (P_{α}) is bounded, we get $T_{P_{\alpha}} \xrightarrow{\tau_0} Id$ so actually $P_{\alpha} \xrightarrow{\tau_{\gamma}} \delta$.
- We still need to approximate these polynomials by finite-type ones.
- It suffices to do that for *m*-homogeneous polynomials.
- Since X has AP, there are finite-rank operators $T_{\alpha} \colon X \to X$ with $T_{\alpha} \xrightarrow{\tau_0} Id$.
- Given $P \in \mathcal{P}(^{m}X, \mathcal{G}_{0}(B_{X}))$, we have $P \circ T_{\alpha} \in \mathcal{P}(^{m}X, \mathcal{G}_{0}(B_{X}))$ and $P \circ T_{\alpha} \xrightarrow{\tau_{0}} P$.

Hence, we just need to show:

Lemma

 τ_0 and τ_γ coincide on $\mathcal{P}({}^mX, Y)$.

Given one of the seminorms p in the definition of τ_{γ} , we'll see there are C > 0and a compact K such that $p(P) \leq C \sup_{x \in K} ||P(x)|| \quad \forall P \in \mathcal{P}(^{m}X, Y).$

$$p(P) = \sup_{j} \alpha_{j} \frac{\|P(x_{j}) - P(y_{j})\|}{\|x_{j} - y_{j}\|} = \sup_{j} \frac{\|P(\alpha_{j}^{1/m}x_{j}) - P(\alpha_{j}^{1/m}y_{j})\|}{\|x_{j} - y_{j}\|}$$

Given one of the seminorms p in the definition of τ_{γ} , we'll see there are C > 0and a compact K such that $p(P) \leq C \sup_{x \in K} ||P(x)|| \quad \forall P \in \mathcal{P}(^{m}X, Y).$

$$p(P) = \sup_{j} \alpha_{j} \frac{\|P(x_{j}) - P(y_{j})\|}{\|x_{j} - y_{j}\|} = \sup_{j} \frac{\|P(\alpha_{j}^{1/m}x_{j}) - P(\alpha_{j}^{1/m}y_{j})\|}{\|x_{j} - y_{j}\|}$$
$$= \sup_{j} \frac{\left\|\sum_{k=1}^{m} {m \choose k} \check{P}\left((\alpha_{j}^{1/m}(x_{j} - y_{j}))^{k}, (\alpha_{j}^{1/m}y_{j})^{m-k}\right)\right\|}{\|x_{j} - y_{j}\|}$$

Given one of the seminorms p in the definition of τ_{γ} , we'll see there are C > 0and a compact K such that $p(P) \leq C \sup_{x \in K} \|P(x)\| \ \forall P \in \mathcal{P}(^{m}X, Y).$

$$p(P) = \sup_{j} \alpha_{j} \frac{\|P(x_{j}) - P(y_{j})\|}{\|x_{j} - y_{j}\|} = \sup_{j} \frac{\|P(\alpha_{j}^{1/m}x_{j}) - P(\alpha_{j}^{1/m}y_{j})\|}{\|x_{j} - y_{j}\|}$$

$$= \sup_{j} \frac{\|\sum_{k=1}^{m} {m \choose k} \check{P}\left((\alpha_{j}^{1/m}(x_{j} - y_{j}))^{k}, (\alpha_{j}^{1/m}y_{j})^{m-k}\right)\|}{\|x_{j} - y_{j}\|}$$

$$= \sup_{j} \left\|\sum_{k=1}^{m} {m \choose k} \check{P}\left(\left(\frac{\alpha_{j}^{1/m}(x_{j} - y_{j})}{\|x_{j} - y_{j}\|^{1/k}}\right)^{k}, (\alpha_{j}^{1/m}y_{j})^{m-k}\right)\right\|$$

$$\leqslant \sum_{k=1}^{m} {m \choose k} \sup_{a \in K_{1}, b \in K_{2}} \|\check{P}(a^{k}, b^{m-k})\|$$

for some compact sets K_1, K_2 .

Given one of the seminorms p in the definition of τ_{γ} , we'll see there are C > 0and a compact K such that $p(P) \leq C \sup_{x \in K} ||P(x)|| \quad \forall P \in \mathcal{P}(^{m}X, Y).$

$$p(P) = \sup_{j} \alpha_{j} \frac{\|P(x_{j}) - P(y_{j})\|}{\|x_{j} - y_{j}\|} = \sup_{j} \frac{\|P(\alpha_{j}^{1/m}x_{j}) - P(\alpha_{j}^{1/m}y_{j})\|}{\|x_{j} - y_{j}\|}$$

$$= \sup_{j} \frac{\left\|\sum_{k=1}^{m} {m \choose k} \check{P}\left((\alpha_{j}^{1/m}(x_{j} - y_{j}))^{k}, (\alpha_{j}^{1/m}y_{j})^{m-k}\right)\right\|}{\|x_{j} - y_{j}\|}$$

$$= \sup_{j} \left\|\sum_{k=1}^{m} {m \choose k} \check{P}\left(\left(\frac{\alpha_{j}^{1/m}(x_{j} - y_{j})}{\|x_{j} - y_{j}\|^{1/k}}\right)^{k}, (\alpha_{j}^{1/m}y_{j})^{m-k}\right)\right\|$$

$$\leqslant \sum_{k=1}^{m} {m \choose k} \sup_{a \in K_{1}, b \in K_{2}} \|\check{P}(a^{k}, b^{m-k})\|$$

for some compact sets K_1, K_2 . Now,

$$\check{P}(a^k, b^{m-k}) = \frac{1}{2^m m!} \sum_{\varepsilon_i = \pm 1} \varepsilon_1 \cdots \varepsilon_m P\left(\left(\sum_{i=1}^k \varepsilon_i\right) a + \left(\sum_{i=k+1}^m \varepsilon_i\right) b\right).$$

So there is a compact set K such that $p(P) \leq \frac{2^m - 1}{m!} \sup_{x \in K} \|P(x)\|$.

If $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \widehat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f |_{B_X}, \varphi \rangle$.

If $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \widehat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f |_{B_X}, \varphi \rangle$.

 ρ is an isometry \Leftrightarrow every $f \in \mathcal{H}L_0(B_X)$ has a norm-preserving extension to B_Y .

If $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \widehat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f | B_X, \varphi \rangle$.

 ρ is an isometry \Leftrightarrow every $f \in \mathcal{H}L_0(B_X)$ has a norm-preserving extension to B_Y .

There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_2 \to \mathbb{C}$ given by $P(x) = \sum_{n=1}^{\infty} x_n^2$ and consider an embedding $\ell_2 \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \to \mathbb{C}$ holomorphic extending $P|_{B_{\ell_2}}$.

If $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \widehat{\varphi},$$

where
$$\langle f, \hat{\varphi} \rangle = \langle f |_{B_X}, \varphi \rangle.$$

 ρ is an isometry \Leftrightarrow every $f \in \mathcal{H}L_0(B_X)$ has a norm-preserving extension to B_Y .

There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_2 \to \mathbb{C}$ given by $P(x) = \sum_{n=1}^{\infty} x_n^2$ and consider an embedding $\ell_2 \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \to \mathbb{C}$ holomorphic extending $P|_{B_{\ell_2}}$.

Still, there are some cases where we know that ρ is an isometry. For instance, if X is 1-complemented in Y.

When $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let $X \subset Y$. If there is an isometric extension operator $s \colon X^* \to Y^*$ and X is symmetrically regular, then $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$

When $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let $X \subset Y$. If there is an isometric extension operator $s \colon X^* \to Y^*$ and X is symmetrically regular, then $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$

Recall that

there is such $s: X^* \to Y^* \Leftrightarrow X^{**}$ is 1-complemented in Y^{**} $\Leftrightarrow X$ is locally 1-complemented in Y

When $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let $X \subset Y$. If there is an isometric extension operator $s \colon X^* \to Y^*$ and X is symmetrically regular, then $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$

Recall that

there is such
$$s \colon X^* \to Y^* \Leftrightarrow X^{**}$$
 is 1-complemented in Y^{**}
 $\Leftrightarrow X$ is locally 1-complemented in Y

This is the case, for instance, if $Y = X^{**}$ (then $s: X^* \to X^{***}$ is just the inclusion map).

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{\mathcal{A}}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots \lim_{\alpha_n} \mathcal{A}(x_{\alpha_1},\ldots,x_{\alpha_n})$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{\mathcal{A}}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots \lim_{\alpha_n} \mathcal{A}(x_{\alpha_1},\ldots,x_{\alpha_n})$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$. The **Aron-Berner extension** of *P* is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$.

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots \lim_{\alpha_n} A(x_{\alpha_1},\ldots,x_{\alpha_n})$$

where $x_{\alpha_i} \stackrel{w^*}{\to} x_i^{**}$. The **Aron-Berner extension** of *P* is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$. Now, given $f \in \mathcal{H}^{\infty}(B_X)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$ extending *f*.

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots \lim_{\alpha_n} A(x_{\alpha_1},\ldots,x_{\alpha_n})$$

where $x_{\alpha_i} \stackrel{w^*}{\to} x_i^{**}$. The **Aron-Berner extension** of *P* is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$. Now, given $f \in \mathcal{H}^{\infty}(B_X)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$ extending *f*. A similar argument works for the vector-valued case and

$$AB: \mathcal{H}^{\infty}(B_X, Y) \to \mathcal{H}^{\infty}(B_{X^{**}}, Y^{**})$$
$$f \mapsto \tilde{f}$$

is an isometry (Davie-Gamelin, 1989).

Symmetric regularity

X is Arens regular if

$$\lim_{\alpha_1} \lim_{\alpha_2} A(x_{\alpha_1}, x_{\alpha_2}) = \lim_{\alpha_2} \lim_{\alpha_1} A(x_{\alpha_1}, x_{\alpha_2}) \qquad (*)$$

for all $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$ and for all continuous bilinear maps $A \colon X \times X \to \mathbb{C}$.

Symmetric regularity

X is **Arens regular** if

$$\lim_{\alpha_1} \lim_{\alpha_2} A(x_{\alpha_1}, x_{\alpha_2}) = \lim_{\alpha_2} \lim_{\alpha_1} A(x_{\alpha_1}, x_{\alpha_2}) \qquad (*)$$

for all $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$ and for all continuous bilinear maps $A: X \times X \to \mathbb{C}$. Equivalently, every $T: X \to X^*$ is weakly compact.

Symmetric regularity

X is **Arens regular** if

$$\lim_{\alpha_1} \lim_{\alpha_2} A(x_{\alpha_1}, x_{\alpha_2}) = \lim_{\alpha_2} \lim_{\alpha_1} A(x_{\alpha_1}, x_{\alpha_2}) \qquad (*)$$

for all $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$ and for all continuous bilinear maps $A: X \times X \to \mathbb{C}$. Equivalently, every $T: X \to X^*$ is weakly compact. X is symmetrically regular if (*) holds for all symmetric A.
X is **Arens regular** if

$$\lim_{\alpha_1} \lim_{\alpha_2} A(x_{\alpha_1}, x_{\alpha_2}) = \lim_{\alpha_2} \lim_{\alpha_1} A(x_{\alpha_1}, x_{\alpha_2}) \qquad (*)$$

for all $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$ and for all continuous bilinear maps $A: X \times X \to \mathbb{C}$. Equivalently, every $T: X \to X^*$ is weakly compact.

- X is symmetrically regular if (*) holds for all symmetric A.
 - Spaces with property (V) of Pelczyński are Arens regular (e.g. c₀, C(K), H[∞](D)).

X is **Arens regular** if

$$\lim_{\alpha_1} \lim_{\alpha_2} A(x_{\alpha_1}, x_{\alpha_2}) = \lim_{\alpha_2} \lim_{\alpha_1} A(x_{\alpha_1}, x_{\alpha_2}) \qquad (*)$$

for all $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$ and for all continuous bilinear maps $A: X \times X \to \mathbb{C}$. Equivalently, every $T: X \to X^*$ is weakly compact.

- X is symmetrically regular if (*) holds for all symmetric A.
 - Spaces with property (V) of Pelczyński are Arens regular (e.g. c₀, C(K), H[∞](D)).
 - ℓ_1 and $X \oplus X^*$ (for non-reflexive X) are not symmetrically regular.

X is **Arens regular** if

$$\lim_{\alpha_1} \lim_{\alpha_2} A(x_{\alpha_1}, x_{\alpha_2}) = \lim_{\alpha_2} \lim_{\alpha_1} A(x_{\alpha_1}, x_{\alpha_2}) \qquad (*)$$

for all $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$ and for all continuous bilinear maps $A: X \times X \to \mathbb{C}$. Equivalently, every $T: X \to X^*$ is weakly compact.

- X is symmetrically regular if (*) holds for all symmetric A.
 - Spaces with property (V) of Pelczyński are Arens regular (e.g. c_0 , C(K), $\mathcal{H}^{\infty}(\mathbb{D})$).
 - ℓ_1 and $X \oplus X^*$ (for non-reflexive X) are not symmetrically regular.
 - (Leung, 1996) There is a symmetrically regular space that is not Arens regular.

If X is symmetrically regular, then we get $d\tilde{f} = d\tilde{f}$ for all $f \in \mathcal{H}L_0(B_X)$

If X is symmetrically regular, then we get $d\tilde{f} = \widetilde{df}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|\widetilde{df}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

If X is symmetrically regular, then we get $d\tilde{f} = \widetilde{df}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|\widetilde{df}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

Now, if $s: X^* \to Y^*$ is a linear extension operator, we get that

$$\overline{s} \colon \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_Y)$$
$$f \mapsto \widetilde{f} \circ s^* \circ i_Y$$

is an isometric extension

If X is symmetrically regular, then we get $d\tilde{f} = \widetilde{df}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|\widetilde{df}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

Now, if $s: X^* \to Y^*$ is a linear extension operator, we get that

$$\overline{s} \colon \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_Y)$$
$$f \mapsto \widetilde{f} \circ s^* \circ i_Y$$

is an isometric extension and so $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$.

If X is symmetrically regular, then we get $d\tilde{f} = \widetilde{df}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|\widetilde{df}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

Now, if $s: X^* \to Y^*$ is a linear extension operator, we get that

$$\overline{s} \colon \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_Y)$$
$$f \mapsto \widetilde{f} \circ s^* \circ i_Y$$

is an isometric extension and so $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$.

We also get that if X and Y are symmetrically regular and $X^* \equiv Y^*$, then $\mathcal{H}L_0(B_X) \equiv \mathcal{H}L_0(B_Y)$. This is based on a result by Lassalle-Zalduendo, 2000.

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \tilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \tilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

Thus we have

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \tilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X^{**} has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_0(B_{X^{**}})$ as a locally 1-complemented in $\mathcal{G}_0(B_X)^{**}$.

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \tilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X^{**} has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_0(B_{X^{**}})$ as a locally 1-complemented in $\mathcal{G}_0(B_X)^{**}$. That is, $\mathcal{H}L_0(B_{X^{**}})$ is 1-complemented in $\mathcal{H}L_0(B_X)^{**}$.

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \widetilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X^{**} has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_0(B_{X^{**}})$ as a locally 1-complemented in $\mathcal{G}_0(B_X)^{**}$. That is, $\mathcal{H}L_0(B_{X^{**}})$ is 1-complemented in $\mathcal{H}L_0(B_X)^{**}$.

The proof uses a sufficient condition for local complementation in spaces with BAP by Cabello Sánchez - García, 2005.

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \tilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X^{**} has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_0(B_{X^{**}})$ as a locally 1-complemented in $\mathcal{G}_0(B_X)^{**}$. That is, $\mathcal{H}_0(B_{X^{**}})$ is 1-complemented in $\mathcal{H}_0(B_X)^{**}$.

The proof uses a sufficient condition for local complementation in spaces with BAP by Cabello Sánchez - García, 2005. The analogous stament for $\mathcal{G}^{\infty}(B_X)$ and $\mathcal{H}^{\infty}(B_X)$ also holds (without assuming symmetric regularity).

If X is symmetrically regular, then $\Theta \colon B_{X^{**}} \to \mathcal{G}_0(B_X)^{**} = \mathcal{H}L_0(B_X)^*$ $x^{**} \mapsto [f \in \mathcal{H}L_0(B_X) \mapsto \tilde{f}(x^{**})].$

is holomorphic and 1-Lipschitz.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X^{**} has MAP. Then T_{Θ} is an isometry that embeds $\mathcal{G}_0(B_{X^{**}})$ as a locally 1-complemented in $\mathcal{G}_0(B_X)^{**}$. That is, $\mathcal{H}_0(B_{X^{**}})$ is 1-complemented in $\mathcal{H}_0(B_X)^{**}$.

The proof uses a sufficient condition for local complementation in spaces with BAP by Cabello Sánchez - García, 2005. The analogous stament for $\mathcal{G}^{\infty}(B_X)$ and $\mathcal{H}^{\infty}(B_X)$ also holds (without assuming symmetric regularity).

Assume X^{**} has BAP. Is $\mathcal{H}^{\infty}(B_{X^{**}}) \stackrel{c}{\hookrightarrow} \mathcal{H}^{\infty}(B_X)^{**}$?

Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let $x \in S_{X*}$. TFAE:

(i) x^* has a unique norm preserving extension to a functional on X^{**} .

(ii) Id: $(\overline{B}_{X*}, w^*) \longrightarrow (\overline{B}_{X*}, w)$ is continuous at x^* .

Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let $x \in S_{X*}$. TFAE:

(i) x^* has a unique norm preserving extension to a functional on X^{**} .

(ii) Id: $(\overline{B}_{X*}, w^*) \longrightarrow (\overline{B}_{X*}, w)$ is continuous at x^* .

Theorem (Aron-Boyd-Choi, 2009)

Assume X^{**} has the MAP. For $P \in \mathcal{P}(^nX)$ with ||P|| = 1, TFAE:

(i) P has a unique norm preserving extension to a polynomial on X^{**} .

(ii) $AB: (\overline{B}_{\mathcal{P}(^{n}X)}, \tau_{p}) \rightarrow (\overline{B}_{\mathcal{P}(^{n}X^{**})}, \tau_{p})$ is continuous at P.

Unique norm-preserving extensions

Lemma (Godefroy, 1981)

Let $x \in S_{X*}$. TFAE:

(i) x^* has a unique norm preserving extension to a functional on X^{**} .

(ii) Id: $(\overline{B}_{X*}, w^*) \longrightarrow (\overline{B}_{X*}, w)$ is continuous at x^* .

Theorem (Aron-Boyd-Choi, 2009)

Assume X^{**} has the MAP. For $P \in \mathcal{P}(^nX)$ with ||P|| = 1, TFAE:

(i) P has a unique norm preserving extension to a polynomial on X^{**} .

(ii) $AB: (\overline{B}_{\mathcal{P}(^{n}X)}, \tau_{p}) \rightarrow (\overline{B}_{\mathcal{P}(^{n}X^{**})}, \tau_{p})$ is continuous at P.

Theorem (Aron-Dimant-GL-Maestre, 2023)

Assume X is symmetrically regular and X^{**} has the MAP. For $f \in HL_0(B_X)$ with $||f||_L = 1$, TFAE:

(i) f has a unique norm preserving extension to $\mathcal{H}L_0(B_{X^{**}})$.

(ii) $AB: (\overline{B}_{\mathcal{H}L_0(B_X)}, \tau_p) \to (\overline{B}_{\mathcal{H}L_0(B_{X^{**}})}, \tau_p)$ is continuous at f.

Thank you for your attention!