Linearization of holomorphic Lipschitz mappings

Luis C. García-Lirola

Joint work with R. Aron, V. Dimant and M. Maestre

Universidad de Zaragoza

III Jornada en espacios de Banach Valencia October 23rd, 2023

f SéNeCa⁽⁺⁾

Agencia de Ciencia y Tecnología Región de Murcia

Outline

- 1) Lipschitz functions and free spaces
- 2) Holomorphic functions and free spaces
- 3) Lipschitz holomorphic functions and free spaces
- 4) Extension of Lipschitz and holomorphic functions

• $(M, d) = (\text{complete}) \text{ metric space}, 0 \in M, Y = \text{Banach space}.$

- (M, d) = (complete) metric space, $0 \in M$, Y = Banach space.
- $\operatorname{Lip}_0(M, Y) = \{f \colon M \to Y \text{ Lipschitz}, f(0) = 0\}, \operatorname{Lip}_0(M) = \operatorname{Lip}_0(M, \mathbb{K})$

•
$$||f||_L = \sup\left\{\frac{||f(x) - f(y)||}{d(x,y)} : x \neq y\right\}$$

- (M, d) =(complete) metric space, $0 \in M$, Y = Banach space.
- $\operatorname{Lip}_0(M, Y) = \{f \colon M \to Y \text{ Lipschitz}, f(0) = 0\}, \operatorname{Lip}_0(M) = \operatorname{Lip}_0(M, \mathbb{K})$

•
$$||f||_L = \sup\left\{\frac{||f(x) - f(y)||}{d(x,y)} : x \neq y\right\}$$

 $(\operatorname{Lip}_0(M, Y), \|\cdot\|_L)$ is a Banach space.

- (M, d) =(complete) metric space, $0 \in M$, Y = Banach space.
- $\operatorname{Lip}_{0}(M, Y) = \{f : M \to Y \text{ Lipschitz}, f(0) = 0\}, \operatorname{Lip}_{0}(M) = \operatorname{Lip}_{0}(M, \mathbb{K})$ • $\|f\|_{L} = \sup \left\{ \frac{\|f(x) - f(y)\|}{d(x, y)} : x \neq y \right\}$

 $(\operatorname{Lip}_0(M,Y), \left\|\cdot\right\|_L)$ is a Banach space. Consider

$$\begin{split} \delta \colon M &\to \operatorname{Lip}_0(M)^* \\ x &\mapsto \delta(x) : \langle f, \delta(x) \rangle = f(x) \end{split}$$

- (M, d) =(complete) metric space, $0 \in M$, Y = Banach space.
- $\operatorname{Lip}_{0}(M, Y) = \{f : M \to Y \text{ Lipschitz}, f(0) = 0\}, \operatorname{Lip}_{0}(M) = \operatorname{Lip}_{0}(M, \mathbb{K})$ • $\|f\|_{L} = \sup \left\{ \frac{\|f(x) - f(y)\|}{d(x, y)} : x \neq y \right\}$

 $(\mathsf{Lip}_0(M,Y), \| \cdot \|_L)$ is a Banach space. Consider

$$\delta \colon M \to \operatorname{Lip}_0(M)^*$$
$$x \mapsto \delta(x) \colon \langle f, \delta(x) \rangle = f(x)$$

The **Lipschitz-free space** (Kadec (1985), Pestov (1986), Godefroy-Kalton (2003)) $\mathcal{F}(M)$ (a.k.a. *Arens-Eells space*) is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}}\{\delta(x) : x \in M\} \subset \operatorname{Lip}_0(M)^*$$

Then $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

- (M, d) =(complete) metric space, $0 \in M$, Y = Banach space.
- $\operatorname{Lip}_{0}(M, Y) = \{f : M \to Y \text{ Lipschitz}, f(0) = 0\}, \operatorname{Lip}_{0}(M) = \operatorname{Lip}_{0}(M, \mathbb{K})$ • $\|f\|_{L} = \sup \left\{ \frac{\|f(x) - f(y)\|}{d(x, y)} : x \neq y \right\}$

 $(\operatorname{Lip}_0(M, Y), \|\cdot\|_L)$ is a Banach space. Consider

$$\delta \colon M \to \operatorname{Lip}_0(M)^*$$
$$x \mapsto \delta(x) \colon \langle f, \delta(x) \rangle = f(x)$$

The **Lipschitz-free space** (Kadec (1985), Pestov (1986), Godefroy-Kalton (2003)) $\mathcal{F}(M)$ (a.k.a. *Arens-Eells space*) is defined as

$$\mathcal{F}(M) = \overline{\operatorname{span}}\{\delta(x) : x \in M\} \subset \operatorname{Lip}_0(M)^*$$

Then $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

$$\mathcal{F}(M) = \{\varphi \in \operatorname{Lip}_{0}(M)^{*} : \varphi|_{\overline{B}_{\operatorname{Lip}_{0}(M)}} \text{ is } \tau_{p}\text{-continuous}\}$$

• Linearization property:

• Linearization property:

Thus $\operatorname{Lip}_0(M, Y) = \mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

• Linearization property:

Thus $\operatorname{Lip}_0(M, Y) = \mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

• Linearization property:

Thus $\operatorname{Lip}_0(M, Y) = \mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

• $\delta \colon M \to \mathcal{F}(M)$ is an isometric embedding.

• Linearization property:

Thus $\operatorname{Lip}_0(M, Y) = \mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

- $\delta \colon M \to \mathcal{F}(M)$ is an isometric embedding.
- (Godefroy-Kalton, 2003) If X is separable, then X is (linearly) isometric to a subspace of $\mathcal{F}(X)$.

• Linearization property:

Thus $\operatorname{Lip}_0(M, Y) = \mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_0(M) = \mathcal{F}(M)^*$.

- $\delta \colon M \to \mathcal{F}(M)$ is an isometric embedding.
- (Godefroy-Kalton, 2003) If X is separable, then X is (linearly) isometric to a subspace of $\mathcal{F}(X)$.

Example

- $\mathcal{F}(\mathbb{N}) \equiv \ell_1$
- $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$

• In non-linear analysis.

• In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \to Y$. Then there is a linear isometry $T: X \to Y$.

• In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \to Y$. Then there is a linear isometry $T: X \to Y$.

• In optimal transport. For a finite metric space M, the norm of an element of $\mathcal{F}(M)$ coincides with the cost of a certain transportation problem (Wasserstein-1, Kantorovich-Rubenstein).

• In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \to Y$. Then there is a linear isometry $T: X \to Y$.

- In optimal transport. For a finite metric space M, the norm of an element of $\mathcal{F}(M)$ coincides with the cost of a certain transportation problem (Wasserstein-1, Kantorovich-Rubenstein).
- In computer science ("earthmover distance").

Theorem (Naor-Schechtman, 2007)

 $\mathcal{F}(\mathbb{R}^2)$ is not isomorphic to a subspace of $L_1 = \mathcal{F}(\mathbb{R})$.

This provides lower bounds for running times of certain algorithms related to similarity of 2D-images and nearest neighbor search.

• In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \to Y$. Then there is a linear isometry $T: X \to Y$.

- In optimal transport. For a finite metric space M, the norm of an element of $\mathcal{F}(M)$ coincides with the cost of a certain transportation problem (Wasserstein-1, Kantorovich-Rubenstein).
- In computer science ("earthmover distance").

Theorem (Naor-Schechtman, 2007)

 $\mathcal{F}(\mathbb{R}^2)$ is not isomorphic to a subspace of $L_1 = \mathcal{F}(\mathbb{R})$.

This provides lower bounds for running times of certain algorithms related to similarity of 2D-images and nearest neighbor search.

Open question: Are $\mathcal{F}(\mathbb{R}^2)$ and $\mathcal{F}(\mathbb{R}^3)$ isomorphic?

Theorem (Godefroy-Kalton, 2003)

X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.

Theorem (Godefroy-Kalton, 2003)

X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.

Therefore, BAP is bi-Lipschitz invariant.

Theorem (Godefroy-Kalton, 2003)

X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.

Therefore, BAP is bi-Lipschitz invariant.

Theorem (Aliaga-Gartland-Petitjean-Procházka, 2021)

 $\mathcal{F}(M)$ has the RNP if and only if M is purely 1-unrectifiable.

Theorem (Godefroy-Kalton, 2003)

X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.

Therefore, BAP is bi-Lipschitz invariant.

Theorem (Aliaga-Gartland-Petitjean-Procházka, 2021)

 $\mathcal{F}(M)$ has the RNP if and only if M is purely 1-unrectifiable.

Theorem (GL-Procházka-Rueda Zoca, 2018)

TFAE:

- i) $\mathcal{F}(M)$ has the Daugavet property.
- ii) $Lip_0(M)$ has the Daugavet property.

iii) M is a length space.

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open}$ unit ball of X, $S_X = \text{unit sphere of } X$

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X =$ open unit ball of X, $S_X =$ unit sphere of X

A function $f: U \to Y$ is said to be **holomorphic** at $x_0 \in U$ if it is Fréchet differentiable at x_0 : there is $df(x_0) \in \mathcal{L}(X, Y)$ with

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - df(x_0)(h)}{\|h\|} = 0$$

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open}$ unit ball of X, $S_X = \text{unit sphere of } X$

A function $f: U \to Y$ is said to be **holomorphic** at $x_0 \in U$ if it is Fréchet differentiable at x_0 : there is $df(x_0) \in \mathcal{L}(X, Y)$ with

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - df(x_0)(h)}{\|h\|} = 0$$

Equivalently, there is a sequence $(P_k)_k$ of continuous k-homogeneous polynomials such that

$$f(x) = \sum_{k=0}^{\infty} P_k(x - x_0)$$

uniformly in some neighbourhood of x_0 .

- X, Y = complex Banach spaces
- $U \subset X$ open subset
- $B_X = \text{open}$ unit ball of X, $S_X = \text{unit sphere of } X$

A function $f: U \to Y$ is said to be **holomorphic** at $x_0 \in U$ if it is Fréchet differentiable at x_0 : there is $df(x_0) \in \mathcal{L}(X, Y)$ with

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - df(x_0)(h)}{\|h\|} = 0$$

Equivalently, there is a sequence $(P_k)_k$ of continuous k-homogeneous polynomials such that

$$f(x) = \sum_{k=0}^{\infty} P_k(x - x_0)$$

uniformly in some neighbourhood of x_0 .

 $f: U \to Y$ is holomorphic $\Leftrightarrow y^* \circ f$ is holomorphic $\forall y^* \in Y^*$.

$$\mathcal{H}^{\infty}(U, Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\}$$
$$\mathcal{H}^{\infty}(U) = \mathcal{H}^{\infty}(U, \mathbb{C})$$

 $(\mathcal{H}^{\infty}(U, Y), \|\cdot\|_{\infty})$ is a Banach space.

 $\mathcal{H}^{\infty}(U, Y) = \{ f \colon U \to Y : f \text{ is holomorphic and bounded} \}$ $\mathcal{H}^{\infty}(U) = \mathcal{H}^{\infty}(U, \mathbb{C})$

 $(\mathcal{H}^{\infty}(\mathcal{U}, \mathbf{Y}), \left\|\cdot\right\|_{\infty})$ is a Banach space. Consider

$$\delta \colon U \to \mathcal{H}^{\infty}(U)^*$$
$$x \mapsto \delta(x) \colon \langle f, \delta(x) \rangle = f(x)$$

The holomorphic free space (Mujica (1991)) is defined as

$$\mathcal{G}^{\infty}(U) = \overline{\operatorname{span}}\{\delta(x) : x \in U\} \subset \mathcal{H}^{\infty}(U)^*$$

Then $\mathcal{H}^{\infty}(U) = \mathcal{G}^{\infty}(U)^*$.

 $\mathcal{H}^{\infty}(U, Y) = \{f \colon U \to Y : f \text{ is holomorphic and bounded}\}$ $\mathcal{H}^{\infty}(U) = \mathcal{H}^{\infty}(U, \mathbb{C})$

 $(\mathcal{H}^{\infty}(\mathcal{U}, \mathbf{Y}), \left\|\cdot\right\|_{\infty})$ is a Banach space. Consider

$$\delta \colon U \to \mathcal{H}^{\infty}(U)^*$$
$$x \mapsto \delta(x) \colon \langle f, \delta(x) \rangle = f(x)$$

The holomorphic free space (Mujica (1991)) is defined as

$$\mathcal{G}^{\infty}(U) = \overline{\operatorname{span}}\{\delta(x) : x \in U\} \subset \mathcal{H}^{\infty}(U)^*$$

Then $\mathcal{H}^{\infty}(U) = \mathcal{G}^{\infty}(U)^*$.

Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

$$\mathcal{G}^{\infty}(U) = \{ \varphi \in \mathcal{H}^{\infty}(U)^* : \varphi|_{\overline{B}_{\mathcal{H}^{\infty}(U)}} \text{ is } \tau_{\mathcal{K}} \text{-continuous} \}$$

• Linearization property

• Linearization property

 $\|f\|_{\infty} = \|T_f\|$

Thus $\mathcal{H}^{\infty}(U, Y) = \mathcal{L}(\mathcal{G}^{\infty}(U), Y)$. In particular $\mathcal{H}^{\infty}(U) = \mathcal{G}^{\infty}(U)^*$.

• Linearization property

$$\|f\|_{\infty} = \|T_f\|$$

Thus $\mathcal{H}^{\infty}(U, Y) = \mathcal{L}(\mathcal{G}^{\infty}(U), Y)$. In particular $\mathcal{H}^{\infty}(U) = \mathcal{G}^{\infty}(U)^*$.

- The map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ is holomorphic and $\|\delta(x)\| = 1$.
- X is isomorphic to a subspace of G[∞](U). Indeed, it is (linearly) isometric to a subspace of G[∞](B_X).

• Linearization property

$$\|f\|_{\infty} = \|T_f\|$$

Thus $\mathcal{H}^{\infty}(U, Y) = \mathcal{L}(\mathcal{G}^{\infty}(U), Y)$. In particular $\mathcal{H}^{\infty}(U) = \mathcal{G}^{\infty}(U)^*$.

- The map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ is holomorphic and $\|\delta(x)\| = 1$.
- X is isomorphic to a subspace of G[∞](U). Indeed, it is (linearly) isometric to a subspace of G[∞](B_X).
- There is a recent survey by García Sánchez De Hevia Tradacete.
The holomorphic free space

• Linearization property

$$\|f\|_{\infty} = \|T_f\|$$

Thus $\mathcal{H}^{\infty}(U, Y) = \mathcal{L}(\mathcal{G}^{\infty}(U), Y)$. In particular $\mathcal{H}^{\infty}(U) = \mathcal{G}^{\infty}(U)^*$.

- The map $\delta \colon U \to \mathcal{G}^{\infty}(U)$ is holomorphic and $\|\delta(x)\| = 1$.
- X is isomorphic to a subspace of G[∞](U). Indeed, it is (linearly) isometric to a subspace of G[∞](B_X).
- There is a recent survey by García Sánchez De Hevia Tradacete.
- Jung, 2023: $\mathcal{H}^{\infty}(B_X)$ has the Daugavet property. Thus $\mathcal{G}^{\infty}(B_X)$ fails RNP.

 $\begin{aligned} \mathcal{H}L_0(B_X,Y) &= \{f \colon B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0\} \\ &= \{f \in \mathcal{H}(B_X,Y) : df \in \mathcal{H}^{\infty}(B_X,\mathcal{L}(X,Y)), f(0) = 0\} \\ \mathcal{H}L_0(B_X) &= \mathcal{H}L_0(B_X,\mathbb{C}) \end{aligned}$

$$\begin{aligned} \mathcal{H}L_0(B_X,Y) &= \{f \colon B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0\} \\ &= \{f \in \mathcal{H}(B_X,Y) : df \in \mathcal{H}^{\infty}(B_X,\mathcal{L}(X,Y)), f(0) = 0\} \\ \mathcal{H}L_0(B_X) &= \mathcal{H}L_0(B_X,\mathbb{C}) \end{aligned}$$

 $\mathcal{H}L_0(B_X, Y)$ is a Banach space with the norm $\|f\|_L = \|df\|_{\infty}$.

$$\begin{aligned} \mathcal{H}L_0(B_X,Y) &= \{f \colon B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0\} \\ &= \{f \in \mathcal{H}(B_X,Y) : df \in \mathcal{H}^\infty(B_X,\mathcal{L}(X,Y)), f(0) = 0\} \\ \mathcal{H}L_0(B_X) &= \mathcal{H}L_0(B_X,\mathbb{C}) \end{aligned}$$

 $\mathcal{H}L_0(B_X, Y)$ is a Banach space with the norm $\|f\|_L = \|df\|_{\infty}$. Consider

$$\delta \colon B_X \to \mathcal{H}L_0(B_X)^*$$
$$x \mapsto \delta(x) \colon \langle f, \delta(x) \rangle = f(x)$$

The **holomorphic Lipschitz free space** (Aron-Dimant-GL-Maestre (2023)) is defined as

$$\mathcal{G}_0(B_X) = \overline{\operatorname{span}}\{\delta(x) : x \in B_X\} \subset \mathcal{H}L_0(B_X)^*$$

Then $\mathcal{H}L_0(B_X) = \mathcal{G}_0(B_X)^*$.

$$\begin{aligned} \mathcal{H}L_0(B_X,Y) &= \{f \colon B_X \to Y : f \text{ is holomorphic and Lipschitz}, f(0) = 0\} \\ &= \{f \in \mathcal{H}(B_X,Y) : df \in \mathcal{H}^\infty(B_X,\mathcal{L}(X,Y)), f(0) = 0\} \\ \mathcal{H}L_0(B_X) &= \mathcal{H}L_0(B_X,\mathbb{C}) \end{aligned}$$

 $\mathcal{H}L_0(B_X, Y)$ is a Banach space with the norm $||f||_L = ||df||_{\infty}$. Consider

$$\delta \colon B_X \to \mathcal{H}L_0(B_X)^*$$
$$x \mapsto \delta(x) \colon \langle f, \delta(x) \rangle = f(x)$$

The **holomorphic Lipschitz free space** (Aron-Dimant-GL-Maestre (2023)) is defined as

$$\mathcal{G}_0(B_X) = \overline{\text{span}}\{\delta(x) : x \in B_X\} \subset \mathcal{H}L_0(B_X)^*$$

Then $\mathcal{H}L_0(B_X) = \mathcal{G}_0(B_X)^*$.

Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

$$\mathcal{G}_0(B_X) = \{ \varphi \in \mathcal{H}L_0(B_X)^* : \varphi|_{\overline{B}_{\mathcal{H}L_0(B_X)}} \text{ is } \tau_K \text{-continuous} \}$$

• Linearization property

$$\left\|f\right\|_{L}=\left\|T_{f}\right\|$$

Thus $\mathcal{H}L_0(B_X, Y) = \mathcal{L}(\mathcal{G}_0(B_X), Y)$. In particular $\mathcal{H}L_0(B_X) = \mathcal{G}_0(B_X)^*$.

• Linearization property

$$\left\|f\right\|_{L}=\left\|T_{f}\right\|$$

Thus $\mathcal{H}L_0(B_X, Y) = \mathcal{L}(\mathcal{G}_0(B_X), Y)$. In particular $\mathcal{H}L_0(B_X) = \mathcal{G}_0(B_X)^*$.

• Linearization property

 $||f||_{I} = ||T_{f}||$

Thus $\mathcal{H}L_0(B_X, Y) = \mathcal{L}(\mathcal{G}_0(B_X), Y)$. In particular $\mathcal{H}L_0(B_X) = \mathcal{G}_0(B_X)^*$.

• The map $\delta \colon B_X \to \mathcal{G}_0(B_X)$ is holomorphic and $\|\delta(x) - \delta(y)\| = \|x - y\|$.

• Linearization property

$$\|f\|_{L} = \|T_{f}\|$$
 $\|f\|_{L} = \|\hat{f}\|$

Thus $\mathcal{H}L_0(B_X, Y) = \mathcal{L}(\mathcal{G}_0(B_X), Y)$. In particular $\mathcal{H}L_0(B_X) = \mathcal{G}_0(B_X)^*$.

- The map $\delta \colon B_X \to \mathcal{G}_0(B_X)$ is holomorphic and $\|\delta(x) \delta(y)\| = \|x y\|$.
- X is (linearly) isometric to a subspace of $\mathcal{G}_0(B_X)$.

Relation with $\mathcal{F}(B_X)$ and $\mathcal{G}^{\infty}(B_X)$

• The map

$$\mathcal{H}L_0(B_X) \to \operatorname{Lip}_0(B_X)$$
$$f \mapsto f$$

is an into isometry. It is the adjoint of the quotient operator

 $\mathcal{F}(B_X) \to \mathcal{G}_0(B_X)$ $\delta(x) \mapsto \delta(x)$

Relation with $\mathcal{F}(B_X)$ and $\mathcal{G}^{\infty}(B_X)$

• The map

$$\mathcal{H}L_0(B_X) \to \operatorname{Lip}_0(B_X)$$
$$f \mapsto f$$

is an into isometry. It is the adjoint of the quotient operator

$$\mathcal{F}(B_X) \to \mathcal{G}_0(B_X)$$
$$\delta(x) \mapsto \delta(x)$$

• The map

$$\mathcal{H}L_0(B_X) \to \mathcal{H}^\infty(B_X, X^*)$$
$$f \mapsto df$$

is an into isometry. It is the adjoint of the quotient operator

$$\mathcal{G}^{\infty}(B_X)\widehat{\otimes}_{\pi}X \to \mathcal{G}_0(B_X)$$
$$\delta(x) \otimes y \mapsto e_{x,y}$$

where $e_{x,y}(f) = df(x)(y)$.

Relation with $\mathcal{F}(B_X)$ and $\mathcal{G}^{\infty}(B_X)$

• The map

$$\mathcal{H}L_0(B_X) \to \operatorname{Lip}_0(B_X)$$
$$f \mapsto f$$

is an into isometry. It is the adjoint of the quotient operator

$$\mathcal{F}(B_X) \to \mathcal{G}_0(B_X)$$
$$\delta(x) \mapsto \delta(x)$$

• The map

$$\mathcal{H}L_0(B_X) \to \mathcal{H}^\infty(B_X, X^*)$$
$$f \mapsto df$$

is an into isometry. It is the adjoint of the quotient operator

$$\mathcal{G}^{\infty}(B_X)\widehat{\otimes}_{\pi}X \to \mathcal{G}_0(B_X)$$
$$\delta(x) \otimes y \mapsto e_{x,y}$$

where $e_{x,y}(f) = df(x)(y)$. We have $\mathcal{G}^{\infty}(\mathbb{D}) \equiv \mathcal{G}_0(\mathbb{D})$.

- X has the Approximation Property (AP) if the identity I: X → X can be approximated by finite-rank operators in L(X, X) uniformly on compact sets.
- If the operators can be taken with norm $\leq \lambda$ then we say that X has the λ -Bounded Approximation Property (λ -BAP).
- If $\lambda = 1$ then we say that X has the Metric Approximation Property (MAP).

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

• X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?
- $\mathcal{H}^\infty(\mathbb{D})$ has AP?

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

• X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?

• $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

• X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?

• $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

• X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?

• $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Aron-Dimant-GL-Maestre)

X has the (M)AP $\Leftrightarrow \mathcal{G}_0(B_X)$ has the (M)AP.

Theorem (Mujica, 1991)

X has the (M)AP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the (M)AP.

• X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}(B_X)$ has the BAP?

• $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ -BAP $\Leftrightarrow \mathcal{F}(X)$ has the λ -BAP.

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Aron-Dimant-GL-Maestre)

X has the (M)AP $\Leftrightarrow \mathcal{G}_0(B_X)$ has the (M)AP.

X has the BAP $\Leftrightarrow \mathcal{G}_0(B_X)$ has the BAP?

First we show:

a) Given $f \in \mathcal{HL}(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polynomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polynomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

Now, consider $\delta \colon B_X \to \mathcal{G}_0(B_X)$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polynomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

Now, consider $\delta \colon B_X \to \mathcal{G}_0(B_X)$. Take a net (P_α) with $||P_\alpha|_{B_X}||_L \leq 1$ and $P_\alpha(x) \to \delta(x)$ for all $x \in B_X$. Then T_{P_α} has finite rank, $||T_{P_\alpha}|| \leq 1$ and

$$T_{P_{\alpha}}(\delta(x)) = P_{\alpha}(x) \to \delta(x) = Id(\delta(x))$$

so $T_{P_{\alpha}} \rightarrow Id$ pointwise on span $(\delta(x))$.

First we show:

- a) Given $f \in \mathcal{H}L(B_X, Y)$ with $||f||_L \leq 1$, there are polynomials $P_n \colon X \to Y$ with $||P_n|_{B_X}||_L \leq 1$ and $P_n(x) \to f(x)$ for all $x \in B_X$.
- b) Assume that X has the MAP with $T_{\alpha} \to I$ pointwise. For each polynomial $P: X \to Y$ there are finite-type polynomials $P_{\alpha} = P \circ T_{\alpha}$ with $\|P_{\alpha}|_{B_X}\|_L \leq \|P|_{B_X}\|_L$ and $P_{\alpha}(x) \to P(x)$ for all $x \in B_X$.

Now, consider $\delta \colon B_X \to \mathcal{G}_0(B_X)$. Take a net (P_α) with $||P_\alpha|_{B_X}||_L \leq 1$ and $P_\alpha(x) \to \delta(x)$ for all $x \in B_X$. Then T_{P_α} has finite rank, $||T_{P_\alpha}|| \leq 1$ and

$$T_{P_{\alpha}}(\delta(x)) = P_{\alpha}(x) \to \delta(x) = Id(\delta(x))$$

so $T_{P_{\alpha}} \rightarrow Id$ pointwise on span $(\delta(x))$. Since $(T_{P_{\alpha}})$ is bounded, the same holds for the closure.

$$\begin{split} P_{\alpha}(x) &\to \delta(x) \, \forall x \in B_X \not \Rightarrow \\ T_{P_{\alpha}}(\mu) &\to \mu \, \forall \mu \in \mathcal{G}_0(B_X) \end{split}$$

Mujica identified τ_{γ} such that $(\mathcal{H}^{\infty}(B_X, Y), \tau_{\gamma}) \cong (\mathcal{L}(\mathcal{G}^{\infty}(B_X), Y), \tau_{\kappa})$

Mujica identified τ_{γ} such that $(\mathcal{H}^{\infty}(B_X, Y), \tau_{\gamma}) \cong (\mathcal{L}(\mathcal{G}^{\infty}(B_X), Y), \tau_K)$ In our case, we get:

Lemma

Let τ_{γ} be the locally convex topology on $\mathcal{H}L_0(B_X, Y)$ generated by the seminorms $p(f) = \sup_j \alpha_j \frac{\|f(x_j) - f(y_j)\|}{\|x_j - y_j\|}$ where $(\alpha_j) \in c_0$, $(x_j, y_j) \subset (B_X \times B_X) \setminus \Delta$ and $\alpha_j > 0$. Then we have a homeomorphism:

$$\begin{array}{rcl} (\mathcal{H}L_0(B_X,Y),\tau_\gamma) & \to & (\mathcal{L}(\mathcal{G}_0(B_X),Y),\tau_K) \\ & f & \mapsto & T_f \end{array}$$

Mujica identified τ_{γ} such that $(\mathcal{H}^{\infty}(B_X, Y), \tau_{\gamma}) \cong (\mathcal{L}(\mathcal{G}^{\infty}(B_X), Y), \tau_K)$ In our case, we get:

Lemma

Let τ_{γ} be the locally convex topology on $\mathcal{H}L_0(B_X, Y)$ generated by the seminorms $p(f) = \sup_j \alpha_j \frac{\|f(x_j) - f(y_j)\|}{\|x_j - y_j\|}$ where $(\alpha_j) \in c_0$, $(x_j, y_j) \subset (B_X \times B_X) \setminus \Delta$ and $\alpha_j > 0$. Then we have a homeomorphism:

$$\begin{array}{rcl} (\mathcal{H}L_0(B_X,Y),\tau_\gamma) & \to & (\mathcal{L}(\mathcal{G}_0(B_X),Y),\tau_K) \\ & f & \mapsto & T_f \end{array}$$

Lemma

 $\tau_{\mathcal{K}}$ and τ_{γ} coincide on $\mathcal{P}({}^{m}X, Y)$ for each $m \in \mathbb{N}$.

Given metric spaces with $N \subset M$, we have a map

$$\rho \colon \mathcal{F}(\mathbf{N}) \to \mathcal{F}(\mathbf{M})$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f |_{N}, \varphi \rangle$.

Given metric spaces with $N \subset M$, we have a map

$$\rho \colon \mathcal{F}(N) \to \mathcal{F}(M)$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f |_{N}, \varphi \rangle$.

The map ρ is an isometry if and only if every $f \in \operatorname{Lip}_0(N, \mathbb{K})$ has a extension to $\operatorname{Lip}_0(M, \mathbb{K})$ with the same Lipschitz constant.

Given metric spaces with $N \subset M$, we have a map

$$\rho \colon \mathcal{F}(\mathbf{N}) \to \mathcal{F}(\mathbf{M})$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f|_N, \varphi \rangle$.

The map ρ is an isometry if and only if every $f \in \operatorname{Lip}_0(N, \mathbb{K})$ has a extension to $\operatorname{Lip}_0(M, \mathbb{K})$ with the same Lipschitz constant.

For $K = \mathbb{R}$, that extension exists! Just take

$$F(x) = \inf_{y \in N} \{ f(y) + \|f\|_L d(x, y) \}$$

(McShane's theorem)

Given metric spaces with $N \subset M$, we have a map

$$\rho \colon \mathcal{F}(N) \to \mathcal{F}(M)$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f |_{N}, \varphi \rangle$.

The map ρ is an isometry if and only if every $f \in \operatorname{Lip}_0(N, \mathbb{K})$ has a extension to $\operatorname{Lip}_0(M, \mathbb{K})$ with the same Lipschitz constant.

For $K = \mathbb{R}$, that extension exists! Just take

$$F(x) = \inf_{y \in N} \{ f(y) + \|f\|_L d(x, y) \}$$

(McShane's theorem)

So $\mathcal{F}(N) \subset \mathcal{F}(M)$ in a canonical way (isometrically for $K = \mathbb{R}$ and isomorphically in the complex case).

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f |_{B_X}, \varphi \rangle$.

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f|_{B_X}, \varphi \rangle$.

The map ρ is an isometry if and only if every $f \in \mathcal{H}L_0(B_X)$ has a extension to B_Y with the same Lipschitz constant.
Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f|_{B_X}, \varphi \rangle$.

The map ρ is an isometry if and only if every $f \in \mathcal{H}L_0(B_X)$ has a extension to B_Y with the same Lipschitz constant.

There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_2 \to \mathbb{C}$ given by $P(x) = \sum_{n=1}^{\infty} x_n^2$ and consider an embedding $\ell_2 \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \to \mathbb{C}$ holomorphic map extending $P|_{B_{\ell_2}}$.

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$\rho \colon \mathcal{G}_0(B_X) \to \mathcal{G}_0(B_Y)$$
$$\varphi \mapsto \hat{\varphi},$$

where $\langle f, \hat{\varphi} \rangle = \langle f|_{B_X}, \varphi \rangle$.

The map ρ is an isometry if and only if every $f \in \mathcal{H}L_0(B_X)$ has a extension to B_Y with the same Lipschitz constant.

There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_2 \to \mathbb{C}$ given by $P(x) = \sum_{n=1}^{\infty} x_n^2$ and consider an embedding $\ell_2 \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \to \mathbb{C}$ holomorphic map extending $P|_{B_{\ell_2}}$.

Still, there are some cases where we know that ρ is an isometry. For instance, if X is 1-complemented in Y.

When $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let $X \subset Y$. If there is an isometric extension operator $s \colon X^* \to Y^*$ and X is symmetrically regular, then $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let $X \subset Y$. If there is an isometric extension operator $s \colon X^* \to Y^*$ and X is symmetrically regular, then $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$

 \Leftrightarrow

Recall that

there is such $s: X^* \to Y^* \Leftrightarrow$

X^{**} is 1-complemented in Y^{**} X is locally 1-complemented in Y

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let $X \subset Y$. If there is an isometric extension operator $s \colon X^* \to Y^*$ and X is symmetrically regular, then $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$

Recall that

there is such
$$s \colon X^* \to Y^* \Leftrightarrow X^{**}$$
 is 1-complemented in Y^{**}
 $\Leftrightarrow X$ is locally 1-complemented in Y

This is the case, for instance, if $Y = X^{**}$ (then $s: X^* \to X^{***}$ is just the inclusion map).

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots x_n^{**}) = \lim_{\alpha_1} \cdots \lim_{\alpha_n} A(x_{\alpha_1},\ldots x_{\alpha_n}) \quad (*)$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots\lim_{\alpha_n}A(x_{\alpha_1},\ldots,x_{\alpha_n}) \quad (*)$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

The Aron-Berner extension of P is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$.

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots\lim_{\alpha_n}A(x_{\alpha_1},\ldots,x_{\alpha_n}) \quad (*)$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

The **Aron-Berner extension** of *P* is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$. Now, given $f \in \mathcal{H}^{\infty}(B_X)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$ extending *f*.

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots\lim_{\alpha_n}A(x_{\alpha_1},\ldots,x_{\alpha_n}) \quad (*)$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

The **Aron-Berner extension** of P is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$. Now, given $f \in \mathcal{H}^{\infty}(B_X)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$ extending f. A similar argument works for the vector-valued case and

$$AB: \mathcal{H}^{\infty}(B_X, Y) \to \mathcal{H}^{\infty}(B_{X^{**}}, Y^{**})$$
$$f \mapsto \tilde{f}$$

is an isometry (Davie-Gamelin, 1989).

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots\lim_{\alpha_n}A(x_{\alpha_1},\ldots,x_{\alpha_n}) \quad (*)$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

The **Aron-Berner extension** of P is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$. Now, given $f \in \mathcal{H}^{\infty}(B_X)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$ extending f. A similar argument works for the vector-valued case and

$$AB: \mathcal{H}^{\infty}(B_X, Y) \to \mathcal{H}^{\infty}(B_{X^{**}}, Y^{**})$$
$$f \mapsto \tilde{f}$$

is an isometry (Davie-Gamelin, 1989).

X symmetrically regular means that we may interchange the limits in (*).

Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then P(x) = A(x, ..., x) for a multilinear symmetric map $A: X \times \cdots \times X \to \mathbb{C}$. Define

$$\overline{A}(x_1^{**},\ldots,x_n^{**}) = \lim_{\alpha_1}\cdots\lim_{\alpha_n}A(x_{\alpha_1},\ldots,x_{\alpha_n}) \quad (*)$$

where $x_{\alpha_i} \xrightarrow{w^*} x_i^{**}$.

The **Aron-Berner extension** of P is $\tilde{P}(x^{**}) := \overline{A}(x^{**}, \dots, x^{**})$. Now, given $f \in \mathcal{H}^{\infty}(B_X)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$ extending f. A similar argument works for the vector-valued case and

$$AB: \mathcal{H}^{\infty}(B_X, Y) \to \mathcal{H}^{\infty}(B_{X^{**}}, Y^{**})$$
$$f \mapsto \tilde{f}$$

is an isometry (Davie-Gamelin, 1989).

X symmetrically regular means that we may interchange the limits in (*). This is the case of $X = c_0, C(K), \mathcal{H}^{\infty}(\mathbb{D})$ but fails for $X = \ell_1$.

If X is symmetrically regular, then we get $d\tilde{f} = d\tilde{f}$ for all $f \in \mathcal{H}L_0(B_X)$

If X is symmetrically regular, then we get $d\tilde{f} = d\tilde{f}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|d\tilde{f}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

If X is symmetrically regular, then we get $d\tilde{f} = d\tilde{f}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|d\tilde{f}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

Now, if $s: X^* \to Y^*$ is a linear extension operator, we get that

$$\overline{s} \colon \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_Y)$$
$$f \mapsto \widetilde{f} \circ s^* \circ i_Y$$

is an isometric extension

If X is symmetrically regular, then we get $d\tilde{f} = d\tilde{f}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|d\tilde{f}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

Now, if $s: X^* \to Y^*$ is a linear extension operator, we get that

$$\overline{s} \colon \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_Y)$$
$$f \mapsto \widetilde{f} \circ s^* \circ i_Y$$

is an isometric extension and so $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$.

If X is symmetrically regular, then we get $d\tilde{f} = d\tilde{f}$ for all $f \in \mathcal{H}L_0(B_X)$ so $\|\tilde{f}\|_L = \|d\tilde{f}\|_{\infty} = \|d\tilde{f}\|_{\infty} = \|df\|_{\infty} = \|f\|_L$. Thus,

$$AB: \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_{X^{**}})$$
$$f \mapsto \tilde{f}$$

is an isometry.

Now, if $s: X^* \to Y^*$ is a linear extension operator, we get that

$$\overline{s} \colon \mathcal{H}L_0(B_X) \to \mathcal{H}L_0(B_Y)$$
$$f \mapsto \widetilde{f} \circ s^* \circ i_Y$$

is an isometric extension and so $\mathcal{G}_0(B_X) \subset \mathcal{G}_0(B_Y)$.

We also get that if X and Y are symmetrically regular and $X^* \equiv Y^*$, then $\mathcal{H}L_0(B_X) \equiv \mathcal{H}L_0(B_Y)$. This is based on a result by Lassalle-Zalduendo, 2000.

Thank you for your attention!