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The Lipschitz-free space (Kadec (1985), Pestov (1986), Godefroy-Kalton
(2003)) F(M) (a.k.a. Arens-Eells space) is defined as

F(M) =3span{d(x) : x e M} c Lipg(M)*

Then Lipy(M) = F(M)*.
Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

F(M) = {¢ € Lipg(M)* : <p|§Up0(M) is T,-continuous}
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Thus Lipg(M, Y) = L(F(M),Y).
In particular Lipg(M) = F(M)*.
@ §: M — F(M) is an isometric embedding.

o (Godefroy-Kalton, 2003) If X is separable, then X is (linearly) isometric to a
subspace of F(X).

Example
o F(N) =14
o F(R) = L;(R)
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Why are they important?
@ In non-linear analysis.
Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear)
isometry f: X — Y. Then there is a linear isometry T: X — Y.

@ In optimal transport. For a finite metric space M, the norm of an element
of F(M) coincides with the cost of a certain transportation problem
(Wasserstein-1, Kantorovich-Rubenstein).

@ In computer science (“earthmover distance”).

Theorem (Naor-Schechtman, 2007)
F(R?) is not isomorphic to a subspace of L; = F(R).

This provides lower bounds for running times of certain algorithms related to
similarity of 2D-images and nearest neighbor search.

Open question: Are F(R?) and F(R?) isomorphic?
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How the properties of M and F (M) are related?

Theorem (Godefroy-Kalton, 2003)
X has the BAP if and only if F(X) has the BAP.

Therefore, BAP is bi-Lipschitz invariant.

Theorem (Aliaga-Gartland-Petitjean-Prochazka, 2021)
F(M) has the RNP if and only if M is purely 1-unrectifiable.

Theorem (GL-Prochdzka-Rueda Zoca, 2018)
TFAE:

i) F(M) has the Daugavet property.

ii) Lipg(M) has the Daugavet property.

iii) M is a length space.
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Holomorphic functions

e X,Y = complex Banach spaces
@ U c X open subset
@ Bx = open unit ball of X,  Sx = unit sphere of X

A function f: U — Y is said to be holomorphic at xp € U if it is Fréchet
differentiable at xo: there is df (xo) € L(X, Y) with

lim f(xo + h) — f(x0) — df (x0)(h)

=0
o0 A

Equivalently, there is a sequence (Px)y of continuous k-homogeneous polynomials

such that

uniformly in some neighbourhood of xg.
f: U — Y is holomorphic < y™* o f is holomorphic Yy* € Y*.
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o Linearization property
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11l = 11Tl Il = ||7?||
Thus H* (U, Y) = L(GF(V),Y).
In particular H*(U) = G*(U)*.
@ The map §: U — G*(U) is holomorphic and ||§(x)|| = 1.

e X is isomorphic to a subspace of G*(U). Indeed, it is (linearly) isometric to
a subspace of G*(Bx).

@ There is a recent survey by Garcia Sdnchez - De Hevia - Tradacete.
e Jung, 2023: H*™(Bx) has the Daugavet property. Thus G*(Bx) fails RNP.
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In particular HLo(Bx) = Go(Bx)*.
o The map &: Bx — Go(Bx) is holomorphic and [|5(x) — 6(y)|| = [lx — y||.

e X is (linearly) isometric to a subspace of Go(Bx).
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Relation with F(Bx) and G*(Bx)
@ The map
HLo(Bx) — Lipg(Bx)
ff

is an into isometry. It is the adjoint of the quotient operator

F(Bx) — Go(Bx)
6(x) > 6(x)
@ The map
HLo(Bx) — H” (Bx, X*)
f— df

is an into isometry. It is the adjoint of the quotient operator
G” (Bx)®zX = Go(Bx)
I(X)®y — e,

where e, , () = df (x)(y). We have G* (D) = Go(D).



Approximation properties

@ X has the Approximation Property (AP) if the identity /: X — X can be
approximated by finite-rank operators in £(X, X) uniformly on compact sets.

o If the operators can be taken with norm < X then we say that X has the
A-Bounded Approximation Property (A-BAP).

o If A =1 then we say that X has the Metric Approximation Property (MAP).
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MAP for Go(Bx)

First we show:

a) Given f e HL(Bx, Y) with |||, < 1, there are polinomials P,: X — Y with
|Palegll, <1 and Py(x) — f(x) for all x € Bx.
b) Assume that X has the MAP with T, — / pointwise. For each polynomial

P: X — Y there are finite-type polinomials P, = P o T, with
1PalexllL < [[Playll, and Pa(x) — P(x) for all x € Bx.
Now, consider §: Bx — Go(Bx). Take a net (P,) with ||Py|g.|/, <1 and
P.(x) — 0(x) for all x € Bx.
<1and

Tp, (8(x)) = Pa(x) = 6(x) = ld(5(x))

so Tp, — Id pointwise on span(d(x)). Since (Tp,) is bounded, the same holds
for the closure.
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Bx ——> Go(Bx)
i Po(x) = 0(x)Vx € Bx =
s

Tp, (1) = uVp € Go(Bx)

TPD(
Go(Bx)
Mujica identified 7, such that (X*(Bx, Y),7,) = (L(G"(Bx), Y), k)

In our case, we get:

Lemma
Let 7, be the locally convex topology on HLy(Bx, Y) generated by the seminorms
p(f) = sup; QJW where () € ¢, (Xj,Yj) © (Bx x Bx)\A and «; > 0.

Then we have a homeomorphism:

(HLo(Bx, Y),7y) — (L(Go(Bx),Y), k)
f - Tt

Lemma
Tk and 7, coincide on P(™X, Y) for each me N.
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Extension of Lipschitz maps

Given metric spaces with N — M, we have a map

p: F(N) - F(M)
sz
where (f, &) = (f|n; ¥)-
The map p is an isometry if and only if every f € Lipy(N,K) has a extension to

Lipy (M, K) with the same Lipschitz constant.
For K = IR, that extension exists! Just take

F(x) = inf{F(y) + [IFll, d0e )}

(McShane's theorem)
So F(N) € F(M) in a canonical way (isometrically for K = R and isomorphically
in the complex case).
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Extension of holomorphic Lipschitz functions

Given complex Banach spaces X c Y, we have a map

p: Go(Bx) — Go(By)
p— o,
where {f, @) = (f|By, ¢).
The map p is an isometry if and only if every f € HLo(Bx) has a extension to By

with the same Lipschitz constant.
There is no McShane's extension theorem!

Aron-Berner, 1978
Let P: ¢, — C given by P(x) = Y._, x2 and consider an embedding £> < ¢.,..

n=

There does not exists f: By, — C holomorphic map extending P|g,, .

Still, there are some cases where we know that p is an isometry. For instance, if X
is 1-complemented in Y.
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Theorem (Aron-Dimant-GL-Maestre, 2023)

Let X c Y. If there is an isometric extension operator s: X* — Y* and X is
symmetrically regular, then Go(Bx) < Go(By)

Recall that

there is such s: X* - Y* < X** is 1-complemented in Y**

= X is locally 1-complemented in Y

This is the case, for instance, if Y = X** (then s: X* — X*** is just the
inclusion map).
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Let P: X — C be an n-homogeneous polynomial. Then P(x) = A(x, ..., x) for a
multilinear symmetric map A: X x -+ x X — C. Define

A, oxFE) = lime - lim A(Xay, - - Xa,) (%)

n
[e%] Qp
w* g
where x,;, = x*.
The Aron-Berner extension of P is P(x**) := A(x** ... x**).

Now, given f € H*(Bx), we can define f € H* (Bxsx) extending f.
A similar argument works for the vector-valued case and

AB: H”(Bx,Y) = H*(Bxssx, Y*¥)
fisf
is an isometry (Davie-Gamelin, 1989).

X symmetrically regular means that we may interchange the limits in ().
This is the case of X = ¢, C(K), H* (D) but fails for X = /5.
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When go(Bx) C go(By)7

If X is symmetrically regular, then we get df = df for all f e HLo(Bx) so
Il = ldfle = [df]l» = [dffle = [[f]l.- Thus,
AB: HLo(Bx) — HLo(Bxxx)

fisf
is an isometry.
Now, if s: X* — Y* is a linear extension operator, we get that

S: HLo(Bx) — HLo(By)

fisfos*oiy

is an isometric extension and so Go(Bx) < Go(By).

We also get that if X and Y are symmetrically regular and X* = Y*, then
HLo(Bx) = HLo(By). This is based on a result by Lassalle-Zalduendo, 2000.



Thank you for your attention!



