Linearization of holomorphic Lipschitz mappings

Luis C. García-Lirola
Joint work with R. Aron, V. Dimant and M. Maestre

Universidad de Zaragoza

III Jornada en espacios de Banach
Valencia
October 23rd, 2023

Agencia de Ciencia y Tecnología
Región de Murcia

Outline

1) Lipschitz functions and free spaces
2) Holomorphic functions and free spaces
3) Lipschitz holomorphic functions and free spaces
4) Extension of Lipschitz and holomorphic functions

Lipschitz free spaces

- $(M, d)=$ (complete) metric space, $0 \in M, Y=$ Banach space.

Lipschitz free spaces

- $(M, d)=$ (complete) metric space, $0 \in M, Y=$ Banach space.
- $\operatorname{Lip}_{0}(M, Y)=\{f: M \rightarrow Y$ Lipschitz, $f(0)=0\}, \operatorname{Lip}(M)=\operatorname{Lip}(M, \mathbb{K})$
- $\|f\|_{L}=\sup \left\{\frac{\|f(x)-f(y)\|}{d(x, y)}: x \neq y\right\}$

Lipschitz free spaces

- $(M, d)=$ (complete) metric space, $0 \in M, Y=$ Banach space.
- $\operatorname{Lip}_{0}(M, Y)=\{f: M \rightarrow Y$ Lipschitz, $f(0)=0\}, \operatorname{Lip}_{0}(M)=\operatorname{Lip}(M, \mathbb{K})$
- $\|f\|_{L}=\sup \left\{\frac{\|f(x)-f(y)\|}{d(x, y)}: x \neq y\right\}$
$\left(\operatorname{Lip}_{0}(M, Y),\|\cdot\|_{L}\right)$ is a Banach space.

Lipschitz free spaces

- $(M, d)=$ (complete) metric space, $0 \in M, Y=$ Banach space.
- $\operatorname{Lip}_{0}(M, Y)=\{f: M \rightarrow Y$ Lipschitz, $f(0)=0\}, \operatorname{Lip}_{0}(M)=\operatorname{Lip}(M, \mathbb{K})$
- $\|f\|_{L}=\sup \left\{\frac{\|f(x)-f(y)\|}{d(x, y)}: x \neq y\right\}$
$\left(\operatorname{Lip}_{0}(M, Y),\|\cdot\|_{L}\right)$ is a Banach space. Consider

$$
\begin{aligned}
\delta: M & \rightarrow \operatorname{Lip}_{0}(M)^{*} \\
x & \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

Lipschitz free spaces

- $(M, d)=$ (complete) metric space, $0 \in M, Y=$ Banach space.
- $\operatorname{Lip}_{0}(M, Y)=\{f: M \rightarrow Y \operatorname{Lipschitz}, f(0)=0\}, \operatorname{Lip}_{0}(M)=\operatorname{Lip}(M, \mathbb{K})$
- $\|f\|_{L}=\sup \left\{\frac{\|f(x)-f(y)\|}{d(x, y)}: x \neq y\right\}$
$\left(\operatorname{Lip}_{0}(M, Y),\|\cdot\|_{L}\right)$ is a Banach space. Consider

$$
\begin{aligned}
\delta: M & \rightarrow \operatorname{Lip}_{0}(M)^{*} \\
x & \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

The Lipschitz-free space (Kadec (1985), Pestov (1986), Godefroy-Kalton (2003)) $\mathcal{F}(M)$ (a.k.a. Arens-Eells space) is defined as

$$
\mathcal{F}(M)=\operatorname{span}\{\delta(x): x \in M\} \subset \operatorname{Lip}_{0}(M)^{*}
$$

Then $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.

Lipschitz free spaces

- $(M, d)=$ (complete) metric space, $0 \in M, Y=$ Banach space.
- $\operatorname{Lip}_{0}(M, Y)=\{f: M \rightarrow Y \operatorname{Lipschitz}, f(0)=0\}, \operatorname{Lip}_{0}(M)=\operatorname{Lip}(M, \mathbb{K})$
- $\|f\|_{L}=\sup \left\{\frac{\|f(x)-f(y)\|}{d(x, y)}: x \neq y\right\}$
$\left(\operatorname{Lip}_{0}(M, Y),\|\cdot\|_{L}\right)$ is a Banach space. Consider

$$
\begin{aligned}
\delta: M & \rightarrow \operatorname{Lip}_{0}(M)^{*} \\
x & \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

The Lipschitz-free space (Kadec (1985), Pestov (1986), Godefroy-Kalton (2003)) $\mathcal{F}(M)$ (a.k.a. Arens-Eells space) is defined as

$$
\mathcal{F}(M)=\operatorname{span}\{\delta(x): x \in M\} \subset \operatorname{Lip}_{0}(M)^{*}
$$

Then $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.
Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

$$
\mathcal{F}(M)=\left\{\varphi \in \operatorname{Lip}_{0}(M)^{*}:\left.\varphi\right|_{\bar{B}_{\mathrm{Lipo}_{0}(M)}} \text { is } \tau_{p} \text {-continuous }\right\}
$$

Lipschitz free spaces

- Linearization property:

$$
\|f\|_{L}=\left\|T_{f}\right\|
$$

Lipschitz free spaces

- Linearization property:

$$
\begin{aligned}
& \underset{\downarrow}{ } \underset{\sim}{\text { d }} \underset{T_{f}}{f} Y \\
& \mathcal{F}(M) \\
& \|f\|_{L}=\left\|T_{f}\right\|
\end{aligned}
$$

Thus $\operatorname{Lip}_{0}(M, Y)=\mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.

Lipschitz free spaces

- Linearization property:

Thus $\operatorname{Lip}_{0}(M, Y)=\mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.

Lipschitz free spaces

- Linearization property:

$$
\begin{aligned}
& M \xrightarrow{f} N \\
& \downarrow \delta \quad \downarrow \delta \\
& \mathcal{F}(M) \xrightarrow{\hat{f}} \mathcal{F}(N) \\
& \|f\|_{L}=\|\hat{f}\|
\end{aligned}
$$

Thus $\operatorname{Lip}_{0}(M, Y)=\mathcal{L}(\mathcal{F}(M), Y)$. In particular $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.

- $\delta: M \rightarrow \mathcal{F}(M)$ is an isometric embedding.

Lipschitz free spaces

- Linearization property:

$$
\begin{aligned}
& \|f\|_{L}=\|\hat{f}\|
\end{aligned}
$$

Thus $\operatorname{Lip}_{0}(M, Y)=\mathcal{L}(\mathcal{F}(M), Y)$.
In particular $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.

- $\delta: M \rightarrow \mathcal{F}(M)$ is an isometric embedding.
- (Godefroy-Kalton, 2003) If X is separable, then X is (linearly) isometric to a subspace of $\mathcal{F}(X)$.

Lipschitz free spaces

- Linearization property:

$$
\begin{aligned}
& \|f\|_{L}=\|\hat{f}\|
\end{aligned}
$$

Thus $\operatorname{Lip}_{0}(M, Y)=\mathcal{L}(\mathcal{F}(M), Y)$.
In particular $\operatorname{Lip}_{0}(M)=\mathcal{F}(M)^{*}$.

- $\delta: M \rightarrow \mathcal{F}(M)$ is an isometric embedding.
- (Godefroy-Kalton, 2003) If X is separable, then X is (linearly) isometric to a subspace of $\mathcal{F}(X)$.

Example

- $\mathcal{F}(\mathbb{N}) \equiv \ell_{1}$
- $\mathcal{F}(\mathbb{R}) \equiv L_{1}(\mathbb{R})$

Why are they important?

- In non-linear analysis.

Why are they important?

- In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \rightarrow Y$. Then there is a linear isometry $T: X \rightarrow Y$.

Why are they important?

- In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \rightarrow Y$. Then there is a linear isometry $T: X \rightarrow Y$.

- In optimal transport. For a finite metric space M, the norm of an element of $\mathcal{F}(M)$ coincides with the cost of a certain transportation problem (Wasserstein-1, Kantorovich-Rubenstein).

Why are they important?

- In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \rightarrow Y$. Then there is a linear isometry $T: X \rightarrow Y$.

- In optimal transport. For a finite metric space M, the norm of an element of $\mathcal{F}(M)$ coincides with the cost of a certain transportation problem (Wasserstein-1, Kantorovich-Rubenstein).
- In computer science ("earthmover distance").

Theorem (Naor-Schechtman, 2007)

$\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to a subspace of $L_{1}=\mathcal{F}(\mathbb{R})$.
This provides lower bounds for running times of certain algorithms related to similarity of 2D-images and nearest neighbor search.

Why are they important?

- In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X, Y be Banach spaces, with X separable. Assume there is a (non-linear) isometry $f: X \rightarrow Y$. Then there is a linear isometry $T: X \rightarrow Y$.

- In optimal transport. For a finite metric space M, the norm of an element of $\mathcal{F}(M)$ coincides with the cost of a certain transportation problem (Wasserstein-1, Kantorovich-Rubenstein).
- In computer science ("earthmover distance").

Theorem (Naor-Schechtman, 2007)

$\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to a subspace of $L_{1}=\mathcal{F}(\mathbb{R})$.
This provides lower bounds for running times of certain algorithms related to similarity of 2D-images and nearest neighbor search.

Open question: Are $\mathcal{F}\left(\mathbb{R}^{2}\right)$ and $\mathcal{F}\left(\mathbb{R}^{3}\right)$ isomorphic?

How the properties of M and $\mathcal{F}(M)$ are related?

How the properties of M and $\mathcal{F}(M)$ are related?

Theorem (Godefroy-Kalton, 2003)
X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.

How the properties of M and $\mathcal{F}(M)$ are related?

Theorem (Godefroy-Kalton, 2003)
X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.
Therefore, BAP is bi-Lipschitz invariant.

How the properties of M and $\mathcal{F}(M)$ are related?

Theorem (Godefroy-Kalton, 2003)
X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.
Therefore, BAP is bi-Lipschitz invariant.
Theorem (Aliaga-Gartland-Petitjean-Procházka, 2021)
$\mathcal{F}(M)$ has the RNP if and only if M is purely 1 -unrectifiable.

How the properties of M and $\mathcal{F}(M)$ are related?

Theorem (Godefroy-Kalton, 2003)
X has the BAP if and only if $\mathcal{F}(X)$ has the BAP.
Therefore, BAP is bi-Lipschitz invariant.
Theorem (Aliaga-Gartland-Petitjean-Procházka, 2021)
$\mathcal{F}(M)$ has the RNP if and only if M is purely 1 -unrectifiable.

Theorem (GL-Procházka-Rueda Zoca, 2018) TFAE:
i) $\mathcal{F}(M)$ has the Daugavet property.
ii) $\operatorname{Lip}_{0}(M)$ has the Daugavet property.
iii) M is a length space.

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

A function $f: U \rightarrow Y$ is said to be holomorphic at $x_{0} \in U$ if it is Fréchet differentiable at x_{0} : there is $d f\left(x_{0}\right) \in \mathcal{L}(X, Y)$ with

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(h)}{\|h\|}=0
$$

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

A function $f: U \rightarrow Y$ is said to be holomorphic at $x_{0} \in U$ if it is Fréchet differentiable at x_{0} : there is $d f\left(x_{0}\right) \in \mathcal{L}(X, Y)$ with

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(h)}{\|h\|}=0
$$

Equivalently, there is a sequence $\left(P_{k}\right)_{k}$ of continuous k-homogeneous polynomials such that

$$
f(x)=\sum_{k=0}^{\infty} P_{k}\left(x-x_{0}\right)
$$

uniformly in some neighbourhood of x_{0}.

Holomorphic functions

- $X, Y=$ complex Banach spaces
- $U \subset X$ open subset
- $B_{X}=$ open unit ball of $X, \quad S_{X}=$ unit sphere of X

A function $f: U \rightarrow Y$ is said to be holomorphic at $x_{0} \in U$ if it is Fréchet differentiable at x_{0} : there is $d f\left(x_{0}\right) \in \mathcal{L}(X, Y)$ with

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(h)}{\|h\|}=0
$$

Equivalently, there is a sequence $\left(P_{k}\right)_{k}$ of continuous k-homogeneous polynomials such that

$$
f(x)=\sum_{k=0}^{\infty} P_{k}\left(x-x_{0}\right)
$$

uniformly in some neighbourhood of x_{0}.
$f: U \rightarrow Y$ is holomorphic $\Leftrightarrow y^{*} \circ f$ is holomorphic $\forall y^{*} \in Y^{*}$.

The holomorphic free space

$$
\begin{aligned}
\mathcal{H}^{\infty}(U, Y) & =\{f: U \rightarrow Y: f \text { is holomorphic and bounded }\} \\
\mathcal{H}^{\infty}(U) & =\mathcal{H}^{\infty}(U, \mathbb{C})
\end{aligned}
$$

$\left(\mathcal{H}^{\infty}(U, Y),\|\cdot\|_{\infty}\right)$ is a Banach space.

The holomorphic free space

$$
\begin{aligned}
\mathcal{H}^{\infty}(U, Y) & =\{f: U \rightarrow Y: f \text { is holomorphic and bounded }\} \\
\mathcal{H}^{\infty}(U) & =\mathcal{H}^{\infty}(U, \mathbb{C})
\end{aligned}
$$

$\left(\mathcal{H}^{\infty}(U, Y),\|\cdot\|_{\infty}\right)$ is a Banach space. Consider

$$
\begin{aligned}
\delta: & U \\
& \rightarrow \mathcal{H}^{\infty}(U)^{*} \\
x & \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

The holomorphic free space (Mujica (1991)) is defined as

$$
\mathcal{G}^{\infty}(U)=\overline{\operatorname{span}}\{\delta(x): x \in U\} \subset \mathcal{H}^{\infty}(U)^{*}
$$

Then $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.

The holomorphic free space

$$
\begin{aligned}
\mathcal{H}^{\infty}(U, Y) & =\{f: U \rightarrow Y: f \text { is holomorphic and bounded }\} \\
\mathcal{H}^{\infty}(U) & =\mathcal{H}^{\infty}(U, \mathbb{C})
\end{aligned}
$$

$\left(\mathcal{H}^{\infty}(U, Y),\|\cdot\|_{\infty}\right)$ is a Banach space. Consider

$$
\begin{aligned}
\delta: U & \rightarrow \mathcal{H}^{\infty}(U)^{*} \\
& x \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

The holomorphic free space (Mujica (1991)) is defined as

$$
\mathcal{G}^{\infty}(U)=\overline{\operatorname{span}}\{\delta(x): x \in U\} \subset \mathcal{H}^{\infty}(U)^{*}
$$

Then $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.
Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

$$
\mathcal{G}^{\infty}(U)=\left\{\varphi \in \mathcal{H}^{\infty}(U)^{*}:\left.\varphi\right|_{\bar{B}_{\mathcal{H}^{\infty}(U)}} \text { is } \tau_{K} \text {-continuous }\right\}
$$

The holomorphic free space

- Linearization property

Thus $\mathcal{H}^{\infty}(U, Y)=\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)$. In particular $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.

The holomorphic free space

- Linearization property

Thus $\mathcal{H}^{\infty}(U, Y)=\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)$. In particular $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.

The holomorphic free space

- Linearization property

Thus $\mathcal{H}^{\infty}(U, Y)=\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)$. In particular $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.

- The map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ is holomorphic and $\|\delta(x)\|=1$.
- X is isomorphic to a subspace of $\mathcal{G}^{\infty}(U)$. Indeed, it is (linearly) isometric to a subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.

The holomorphic free space

- Linearization property

Thus $\mathcal{H}^{\infty}(U, Y)=\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)$. In particular $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.

- The map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ is holomorphic and $\|\delta(x)\|=1$.
- X is isomorphic to a subspace of $\mathcal{G}^{\infty}(U)$. Indeed, it is (linearly) isometric to a subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.
- There is a recent survey by García Sánchez - De Hevia - Tradacete.

The holomorphic free space

- Linearization property

Thus $\mathcal{H}^{\infty}(U, Y)=\mathcal{L}\left(\mathcal{G}^{\infty}(U), Y\right)$. In particular $\mathcal{H}^{\infty}(U)=\mathcal{G}^{\infty}(U)^{*}$.

- The map $\delta: U \rightarrow \mathcal{G}^{\infty}(U)$ is holomorphic and $\|\delta(x)\|=1$.
- X is isomorphic to a subspace of $\mathcal{G}^{\infty}(U)$. Indeed, it is (linearly) isometric to a subspace of $\mathcal{G}^{\infty}\left(B_{X}\right)$.
- There is a recent survey by García Sánchez - De Hevia - Tradacete.
- Jung, 2023: $\mathcal{H}^{\infty}\left(B_{X}\right)$ has the Daugavet property. Thus $\mathcal{G}^{\infty}\left(B_{X}\right)$ fails RNP.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

$$
\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)
$$

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$
$=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}$
$\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)$
$\mathcal{H} L_{0}\left(B_{X}, Y\right)$ is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$
$=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}$ $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)$
$\mathcal{H} L_{0}\left(B_{X}, Y\right)$ is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$. Consider

$$
\begin{aligned}
\delta: B_{X} & \rightarrow \mathcal{H} L_{0}\left(B_{X}\right)^{*} \\
x & \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

The holomorphic Lipschitz free space (Aron-Dimant-GL-Maestre (2023)) is defined as

$$
\mathcal{G}_{0}\left(B_{X}\right)=\overline{\operatorname{span}}\left\{\delta(x): x \in B_{X}\right\} \subset \mathcal{H} L_{0}\left(B_{X}\right)^{*}
$$

Then $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{G}_{0}\left(B_{X}\right)^{*}$.

The holomorphic Lipschitz free space

$\mathcal{H} L_{0}\left(B_{X}, Y\right)=\left\{f: B_{X} \rightarrow Y: f\right.$ is holomorphic and Lipschitz, $\left.f(0)=0\right\}$

$$
=\left\{f \in \mathcal{H}\left(B_{X}, Y\right): d f \in \mathcal{H}^{\infty}\left(B_{X}, \mathcal{L}(X, Y)\right), f(0)=0\right\}
$$

$$
\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{H} L_{0}\left(B_{X}, \mathbb{C}\right)
$$

$\mathcal{H} L_{0}\left(B_{X}, Y\right)$ is a Banach space with the norm $\|f\|_{L}=\|d f\|_{\infty}$. Consider

$$
\begin{aligned}
\delta: B_{X} & \rightarrow \mathcal{H} L_{0}\left(B_{X}\right)^{*} \\
x & \mapsto \delta(x):\langle f, \delta(x)\rangle=f(x)
\end{aligned}
$$

The holomorphic Lipschitz free space (Aron-Dimant-GL-Maestre (2023)) is defined as

$$
\mathcal{G}_{0}\left(B_{X}\right)=\overline{\operatorname{span}}\left\{\delta(x): x \in B_{X}\right\} \subset \mathcal{H} L_{0}\left(B_{X}\right)^{*}
$$

Then $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{G}_{0}\left(B_{X}\right)^{*}$.
Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

$$
\mathcal{G}_{0}\left(B_{X}\right)=\left\{\varphi \in \mathcal{H} L_{0}\left(B_{X}\right)^{*}:\left.\varphi\right|_{\bar{B}_{\mathcal{H} L_{0}\left(B_{X}\right)}} \text { is } \tau_{K} \text {-continuous }\right\}
$$

The holomorphic Lipschitz free space

- Linearization property

Thus $\mathcal{H} L_{0}\left(B_{X}, Y\right)=\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)$. In particular $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{G}_{0}\left(B_{X}\right)^{*}$.

The holomorphic Lipschitz free space

- Linearization property

$$
\begin{gathered}
\underset{B_{X}}{B_{X}} \stackrel{f}{\downarrow} B_{Y} \\
\underset{\mathcal{G}_{0}\left(B_{X}\right)}{\downarrow} \xrightarrow{\downarrow} \underset{\sim}{\downarrow} \mathcal{G}_{0}\left(B_{X}\right) \\
\|f\|_{L}=\|\hat{f}\|
\end{gathered}
$$

Thus $\mathcal{H} L_{0}\left(B_{X}, Y\right)=\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)$. In particular $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{G}_{0}\left(B_{X}\right)^{*}$.

The holomorphic Lipschitz free space

- Linearization property

Thus $\mathcal{H} L_{0}\left(B_{X}, Y\right)=\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)$. In particular $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{G}_{0}\left(B_{X}\right)^{*}$.

- The map $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ is holomorphic and $\|\delta(x)-\delta(y)\|=\|x-y\|$.

The holomorphic Lipschitz free space

- Linearization property

$$
\begin{gathered}
\stackrel{B_{X}}{\downarrow} \stackrel{f}{\downarrow} B_{Y} \\
\underset{\mathcal{G}_{0}\left(B_{X}\right)}{\downarrow} \stackrel{\hat{f}}{\downarrow} \underset{\mathcal{G}_{0}\left(B_{X}\right)}{\delta \|_{L}}=\|\hat{f}\|
\end{gathered}
$$

Thus $\mathcal{H} L_{0}\left(B_{X}, Y\right)=\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right)$. In particular $\mathcal{H} L_{0}\left(B_{X}\right)=\mathcal{G}_{0}\left(B_{X}\right)^{*}$.

- The map $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$ is holomorphic and $\|\delta(x)-\delta(y)\|=\|x-y\|$.
- X is (linearly) isometric to a subspace of $\mathcal{G}_{0}\left(B_{X}\right)$.

Relation with $\mathcal{F}\left(B_{X}\right)$ and $\mathcal{G}^{\infty}\left(B_{X}\right)$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \operatorname{Lip}_{0}\left(B_{X}\right) \\
f & \mapsto f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{F}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) & \mapsto \delta(x)
\end{aligned}
$$

Relation with $\mathcal{F}\left(B_{X}\right)$ and $\mathcal{G}^{\infty}\left(B_{X}\right)$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \operatorname{Lip}_{0}\left(B_{X}\right) \\
f & \mapsto f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{F}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) & \mapsto \delta(x)
\end{aligned}
$$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X}, X^{*}\right) \\
f & \mapsto d f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{G}^{\infty}\left(B_{X}\right) \widehat{\otimes}_{\pi} X & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) \otimes y & \mapsto e_{x, y}
\end{aligned}
$$

where $e_{x, y}(f)=d f(x)(y)$.

Relation with $\mathcal{F}\left(B_{X}\right)$ and $\mathcal{G}^{\infty}\left(B_{X}\right)$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \operatorname{Lip}_{0}\left(B_{X}\right) \\
f & \mapsto f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{F}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) & \mapsto \delta(x)
\end{aligned}
$$

- The map

$$
\begin{aligned}
\mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X}, X^{*}\right) \\
f & \mapsto d f
\end{aligned}
$$

is an into isometry. It is the adjoint of the quotient operator

$$
\begin{aligned}
\mathcal{G}^{\infty}\left(B_{X}\right) \widehat{\otimes}_{\pi} X & \rightarrow \mathcal{G}_{0}\left(B_{X}\right) \\
\delta(x) \otimes y & \mapsto e_{x, y}
\end{aligned}
$$

where $e_{x, y}(f)=d f(x)(y)$. We have $\mathcal{G}^{\infty}(\mathbb{D}) \equiv \mathcal{G}_{0}(\mathbb{D})$.

Approximation properties

- X has the Approximation Property (AP) if the identity $I: X \rightarrow X$ can be approximated by finite-rank operators in $\mathcal{L}(X, X)$ uniformly on compact sets.
- If the operators can be taken with norm $\leqslant \lambda$ then we say that X has the λ-Bounded Approximation Property (λ-BAP).
- If $\lambda=1$ then we say that X has the Metric Approximation Property (MAP).

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the $\operatorname{BAP} \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)
X has the $\lambda-B A P \Leftrightarrow \mathcal{F}(X)$ has the $\lambda-B A P$.

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

Theorem (Godefroy-Kalton, 2003)
X has the $\lambda-B A P \Leftrightarrow \mathcal{F}(X)$ has the $\lambda-B A P$.
X has $\mathrm{AP} \Leftrightarrow \mathcal{F}(X)$ has AP?

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

```
Theorem (Godefroy-Kalton, 2003)
X has the }\lambda\mathrm{ -BAP }\Leftrightarrow\mathcal{F}(X)\mathrm{ has the }\lambda\mathrm{ -BAP.
```

X has $\mathrm{AP} \Leftrightarrow \mathcal{F}(X)$ has AP?

Theorem (Aron-Dimant-GL-Maestre)
X has the $(M) A P \Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ has the $(M) A P$.

Approximation properties

Theorem (Mujica, 1991)
X has the $(M) A P \Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the (M)AP.

- X has the BAP $\Leftrightarrow \mathcal{G}^{\infty}\left(B_{X}\right)$ has the BAP?
- $\mathcal{H}^{\infty}(\mathbb{D})$ has AP?

```
Theorem (Godefroy-Kalton, 2003)
X has the }\lambda\mathrm{ -BAP }\Leftrightarrow\mathcal{F}(X)\mathrm{ has the }\lambda\mathrm{ -BAP.
```

X has AP $\Leftrightarrow \mathcal{F}(X)$ has AP?

```
Theorem (Aron-Dimant-GL-Maestre)
X has the (M)AP\Leftrightarrow\mathcal{G}0(BX) has the (M)AP.
```

X has the $\mathrm{BAP} \Leftrightarrow \mathcal{G}_{0}\left(B_{X}\right)$ has the BAP?

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{x}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{x}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{x}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.
Now, consider $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{x}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L}$ and $P_{\alpha}(x) \rightarrow P(x)$ for all $x \in B_{X}$.
Now, consider $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$. Take a net $\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{\alpha}(x) \rightarrow \delta(x)$ for all $x \in B_{X}$.
Then $T_{P_{\alpha}}$ has finite rank, $\left\|T_{P_{\alpha}}\right\| \leqslant 1$ and

$$
T_{P_{\alpha}}(\delta(x))=P_{\alpha}(x) \rightarrow \delta(x)=\operatorname{ld}(\delta(x))
$$

so $T_{P_{\alpha}} \rightarrow l d$ pointwise on $\operatorname{span}(\delta(x))$.

MAP for $\mathcal{G}_{0}\left(B_{X}\right)$

First we show:
a) Given $f \in \mathcal{H} L\left(B_{X}, Y\right)$ with $\|f\|_{L} \leqslant 1$, there are polinomials $P_{n}: X \rightarrow Y$ with $\left\|\left.P_{n}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{n}(x) \rightarrow f(x)$ for all $x \in B_{X}$.
b) Assume that X has the MAP with $T_{\alpha} \rightarrow I$ pointwise. For each polynomial $P: X \rightarrow Y$ there are finite-type polinomials $P_{\alpha}=P \circ T_{\alpha}$ with

$$
\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant\left\|\left.P\right|_{B_{X}}\right\|_{L} \text { and } P_{\alpha}(x) \rightarrow P(x) \text { for all } x \in B_{X}
$$

Now, consider $\delta: B_{X} \rightarrow \mathcal{G}_{0}\left(B_{X}\right)$. Take a net $\left(P_{\alpha}\right)$ with $\left\|\left.P_{\alpha}\right|_{B_{X}}\right\|_{L} \leqslant 1$ and $P_{\alpha}(x) \rightarrow \delta(x)$ for all $x \in B_{X}$.
Then $T_{P_{\alpha}}$ has finite rank, $\left\|T_{P_{\alpha}}\right\| \leqslant 1$ and

$$
T_{P_{\alpha}}(\delta(x))=P_{\alpha}(x) \rightarrow \delta(x)=I d(\delta(x))
$$

so $T_{P_{\alpha}} \rightarrow I d$ pointwise on $\operatorname{span}(\delta(x))$. Since $\left(T_{P_{\alpha}}\right)$ is bounded, the same holds for the closure.

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\mathcal{G}_{0}\left(B_{X}\right)
$$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \nRightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\mathcal{G}_{0}\left(B_{X}\right)
$$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \Rightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

Mujica identified τ_{γ} such that $\left(\mathcal{H}^{\infty}\left(B_{X}, Y\right), \tau_{\gamma}\right) \cong\left(\mathcal{L}\left(\mathcal{G}^{\infty}\left(B_{X}\right), Y\right), \tau_{K}\right)$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\mathcal{G}_{0}\left(B_{X}\right)
$$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \Rightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

Mujica identified τ_{γ} such that $\left(\mathcal{H}^{\infty}\left(B_{X}, Y\right), \tau_{\gamma}\right) \cong\left(\mathcal{L}\left(\mathcal{G}^{\infty}\left(B_{X}\right), Y\right), \tau_{K}\right)$ In our case, we get:

Lemma

Let τ_{γ} be the locally convex topology on $\mathcal{H} L_{0}\left(B_{X}, Y\right)$ generated by the seminorms $p(f)=\sup _{j} \alpha_{j} \frac{\left\|f\left(x_{j}\right)-f\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}$ where $\left(\alpha_{j}\right) \in c_{0},\left(x_{j}, y_{j}\right) \subset\left(B_{X} \times B_{X}\right) \backslash \Delta$ and $\alpha_{j}>0$. Then we have a homeomorphism:

$$
\begin{aligned}
\left(\mathcal{H} L_{0}\left(B_{X}, Y\right), \tau_{\gamma}\right) & \rightarrow\left(\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right), \tau_{K}\right) \\
f & \mapsto T_{f}
\end{aligned}
$$

AP for $\mathcal{G}_{0}\left(B_{X}\right)$

$$
\mathcal{G}_{0}\left(B_{X}\right)
$$

$$
\begin{aligned}
& P_{\alpha}(x) \rightarrow \delta(x) \forall x \in B_{X} \nRightarrow \\
& T_{P_{\alpha}}(\mu) \rightarrow \mu \forall \mu \in \mathcal{G}_{0}\left(B_{X}\right)
\end{aligned}
$$

Mujica identified τ_{γ} such that $\left(\mathcal{H}^{\infty}\left(B_{X}, Y\right), \tau_{\gamma}\right) \cong\left(\mathcal{L}\left(\mathcal{G}^{\infty}\left(B_{X}\right), Y\right), \tau_{K}\right)$ In our case, we get:

Lemma

Let τ_{γ} be the locally convex topology on $\mathcal{H} L_{0}\left(B_{X}, Y\right)$ generated by the seminorms $p(f)=\sup _{j} \alpha_{j} \frac{\left\|f\left(x_{j}\right)-f\left(y_{j}\right)\right\|}{\left\|x_{j}-y_{j}\right\|}$ where $\left(\alpha_{j}\right) \in c_{0},\left(x_{j}, y_{j}\right) \subset\left(B_{X} \times B_{X}\right) \backslash \Delta$ and $\alpha_{j}>0$. Then we have a homeomorphism:

$$
\begin{aligned}
\left(\mathcal{H} L_{0}\left(B_{X}, Y\right), \tau_{\gamma}\right) & \rightarrow\left(\mathcal{L}\left(\mathcal{G}_{0}\left(B_{X}\right), Y\right), \tau_{K}\right) \\
f & \mapsto T_{f}
\end{aligned}
$$

Lemma

τ_{K} and τ_{γ} coincide on $\mathcal{P}\left({ }^{m} X, Y\right)$ for each $m \in \mathbb{N}$.

Extension of Lipschitz maps

Given metric spaces with $N \subset M$, we have a map

$$
\begin{aligned}
\rho: \mathcal{F}(N) & \rightarrow \mathcal{F}(M) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{N}, \varphi\right\rangle$.

Extension of Lipschitz maps

Given metric spaces with $N \subset M$, we have a map

$$
\begin{aligned}
\rho: \mathcal{F}(N) & \rightarrow \mathcal{F}(M) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{N}, \varphi\right\rangle$.
The map ρ is an isometry if and only if every $f \in \operatorname{Lip}_{0}(N, \mathbb{K})$ has a extension to $\operatorname{Lip}_{0}(M, \mathbb{K})$ with the same Lipschitz constant.

Extension of Lipschitz maps

Given metric spaces with $N \subset M$, we have a map

$$
\begin{aligned}
\rho: \mathcal{F}(N) & \rightarrow \mathcal{F}(M) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{N}, \varphi\right\rangle$.
The map ρ is an isometry if and only if every $f \in \operatorname{Lip}_{0}(N, \mathbb{K})$ has a extension to $\operatorname{Lip}_{0}(M, \mathbb{K})$ with the same Lipschitz constant.
For $K=\mathbb{R}$, that extension exists! Just take

$$
F(x)=\inf _{y \in N}\left\{f(y)+\|f\|_{L} d(x, y)\right\}
$$

(McShane's theorem)

Extension of Lipschitz maps

Given metric spaces with $N \subset M$, we have a map

$$
\begin{aligned}
\rho: \mathcal{F}(N) & \rightarrow \mathcal{F}(M) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{N}, \varphi\right\rangle$.
The map ρ is an isometry if and only if every $f \in \operatorname{Lip}_{0}(N, \mathbb{K})$ has a extension to $\operatorname{Lip}_{0}(M, \mathbb{K})$ with the same Lipschitz constant.
For $K=\mathbb{R}$, that extension exists! Just take

$$
F(x)=\inf _{y \in N}\left\{f(y)+\|f\|_{L} d(x, y)\right\}
$$

(McShane's theorem)
So $\mathcal{F}(N) \subset \mathcal{F}(M)$ in a canonical way (isometrically for $K=\mathbb{R}$ and isomorphically in the complex case).

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.
The map ρ is an isometry if and only if every $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ has a extension to B_{Y} with the same Lipschitz constant.

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.
The map ρ is an isometry if and only if every $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ has a extension to B_{Y} with the same Lipschitz constant.
There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_{2} \rightarrow \mathbb{C}$ given by $P(x)=\sum_{n=1}^{\infty} x_{n}^{2}$ and consider an embedding $\ell_{2} \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \rightarrow \mathbb{C}$ holomorphic map extending $\left.P\right|_{B_{\ell_{2}}}$.

Extension of holomorphic Lipschitz functions

Given complex Banach spaces $X \subset Y$, we have a map

$$
\begin{aligned}
\rho: \mathcal{G}_{0}\left(B_{X}\right) & \rightarrow \mathcal{G}_{0}\left(B_{Y}\right) \\
\varphi & \mapsto \hat{\varphi},
\end{aligned}
$$

where $\langle f, \hat{\varphi}\rangle=\left\langle\left. f\right|_{B_{X}}, \varphi\right\rangle$.
The map ρ is an isometry if and only if every $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ has a extension to B_{Y} with the same Lipschitz constant.
There is no McShane's extension theorem!

Aron-Berner, 1978

Let $P: \ell_{2} \rightarrow \mathbb{C}$ given by $P(x)=\sum_{n=1}^{\infty} x_{n}^{2}$ and consider an embedding $\ell_{2} \hookrightarrow \ell_{\infty}$. There does not exists $f: B_{\ell_{\infty}} \rightarrow \mathbb{C}$ holomorphic map extending $\left.P\right|_{B_{\ell_{2}}}$.

Still, there are some cases where we know that ρ is an isometry. For instance, if X is 1-complemented in Y.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)
Let $X \subset Y$. If there is an isometric extension operator $s: X^{*} \rightarrow Y^{*}$ and X is symmetrically regular, then $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)
Let $X \subset Y$. If there is an isometric extension operator $s: X^{*} \rightarrow Y^{*}$ and X is symmetrically regular, then $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$

Recall that
there is such $s: X^{*} \rightarrow Y^{*} \Leftrightarrow$
$\Leftrightarrow \quad X$ is locally 1-complemented in Y

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Theorem (Aron-Dimant-GL-Maestre, 2023)
Let $X \subset Y$. If there is an isometric extension operator $s: X^{*} \rightarrow Y^{*}$ and X is symmetrically regular, then $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$

Recall that

$$
\text { there is such } s: X^{*} \rightarrow Y^{*} \Leftrightarrow \quad \begin{aligned}
& X^{* *} \text { is 1-complemented in } Y^{* *} \\
& \Leftrightarrow
\end{aligned} X \text { is locally 1-complemented in } Y
$$

This is the case, for instance, if $Y=X^{* *}$ (then $s: X^{*} \rightarrow X^{* * *}$ is just the inclusion map).

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right)
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right) \quad \text { (*) }
$$

where $x_{\alpha_{i}} \xrightarrow{n^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right)
$$

where $x_{\alpha_{i}} \xrightarrow{n^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$.
Now, given $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X * *}\right)$ extending f.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\begin{equation*}
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right) \tag{*}
\end{equation*}
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$.
Now, given $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X * *}\right)$ extending f. A similar argument works for the vector-valued case and

$$
\begin{aligned}
A B: \mathcal{H}^{\infty}\left(B_{X}, Y\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X * *}, Y^{* *}\right) \\
& f
\end{aligned}
$$

is an isometry (Davie-Gamelin, 1989).

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right) \quad(*)
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$.
Now, given $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X * *}\right)$ extending f.
A similar argument works for the vector-valued case and

$$
\begin{aligned}
A B: \mathcal{H}^{\infty}\left(B_{X}, Y\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X * *}, Y^{* *}\right) \\
& f
\end{aligned}
$$

is an isometry (Davie-Gamelin, 1989).
X symmetrically regular means that we may interchange the limits in (*).

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

Let $P: X \rightarrow \mathbb{C}$ be an n-homogeneous polynomial. Then $P(x)=A(x, \ldots, x)$ for a multilinear symmetric map $A: X \times \cdots \times X \rightarrow \mathbb{C}$. Define

$$
\begin{equation*}
\bar{A}\left(x_{1}^{* *}, \ldots x_{n}^{* *}\right)=\lim _{\alpha_{1}} \cdots \lim _{\alpha_{n}} A\left(x_{\alpha_{1}}, \ldots x_{\alpha_{n}}\right) \tag{*}
\end{equation*}
$$

where $x_{\alpha_{i}} \xrightarrow{w^{*}} x_{i}^{* *}$.
The Aron-Berner extension of P is $\tilde{P}\left(x^{* *}\right):=\bar{A}\left(x^{* *}, \ldots, x^{* *}\right)$.
Now, given $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, we can define $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X * *}\right)$ extending f. A similar argument works for the vector-valued case and

$$
\begin{aligned}
A B: \mathcal{H}^{\infty}\left(B_{X}, Y\right) & \rightarrow \mathcal{H}^{\infty}\left(B_{X * *}, Y^{* *}\right) \\
f & \mapsto \tilde{f}
\end{aligned}
$$

is an isometry (Davie-Gamelin, 1989).
X symmetrically regular means that we may interchange the limits in (*).
This is the case of $X=c_{0}, C(K), \mathcal{H}^{\infty}(\mathbb{D})$ but fails for $X=\ell_{1}$.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

If X is symmetrically regular, then we get $d \widetilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
f & \mapsto \widetilde{f}
\end{aligned}
$$

is an isometry.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
& f
\end{aligned}
$$

is an isometry.
Now, if $s: X^{*} \rightarrow Y^{*}$ is a linear extension operator, we get that

$$
\begin{aligned}
\bar{s}: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{Y}\right) \\
f & \mapsto \tilde{f} \circ s^{*} \circ i_{Y}
\end{aligned}
$$

is an isometric extension

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

If X is symmetrically regular, then we get $d \widetilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
& f
\end{aligned}
$$

is an isometry.
Now, if $s: X^{*} \rightarrow Y^{*}$ is a linear extension operator, we get that

$$
\begin{aligned}
\bar{s}: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{Y}\right) \\
f & \mapsto \tilde{f} \circ s^{*} \circ i_{Y}
\end{aligned}
$$

is an isometric extension and so $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$.

When $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$?

If X is symmetrically regular, then we get $d \tilde{f}=\widetilde{d f}$ for all $f \in \mathcal{H} L_{0}\left(B_{X}\right)$ so $\|\tilde{f}\|_{L}=\|d \tilde{f}\|_{\infty}=\|\widetilde{d f}\|_{\infty}=\|d f\|_{\infty}=\|f\|_{L}$. Thus,

$$
\begin{aligned}
A B: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{X * *}\right) \\
& f
\end{aligned}
$$

is an isometry.
Now, if $s: X^{*} \rightarrow Y^{*}$ is a linear extension operator, we get that

$$
\begin{aligned}
\bar{s}: \mathcal{H} L_{0}\left(B_{X}\right) & \rightarrow \mathcal{H} L_{0}\left(B_{Y}\right) \\
f & \mapsto \tilde{f} \circ s^{*} \circ i_{Y}
\end{aligned}
$$

is an isometric extension and so $\mathcal{G}_{0}\left(B_{X}\right) \subset \mathcal{G}_{0}\left(B_{Y}\right)$.
We also get that if X and Y are symmetrically regular and $X^{*} \equiv Y^{*}$, then $\mathcal{H} L_{0}\left(B_{X}\right) \equiv \mathcal{H} L_{0}\left(B_{Y}\right)$. This is based on a result by Lassalle-Zalduendo, 2000.

Thank you for your attention!

