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Lipschitz free spaces
pM, dq � (complete) metric space, 0 P M, Y � Banach space.

Lip0pM,Y q � tf : M Ñ Y Lipschitz, f p0q � 0u, Lip0pMq � Lip0pM,Kq

∥f ∥L � sup
!

∥f pxq�f pyq∥
dpx,yq : x � y

)
pLip0pM,Y q, ∥�∥Lq is a Banach space. Consider

δ : M Ñ Lip0pMq�

x ÞÑ δpxq : xf , δpxqy � f pxq

The Lipschitz-free space (Kadec (1985), Pestov (1986), Godefroy-Kalton

(2003)) FpMq (a.k.a. Arens-Eells space) is defined as

FpMq � spantδpxq : x P Mu � Lip0pMq�

Then Lip0pMq � FpMq�.

Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

FpMq � tφ P Lip0pMq� : φ|BLip0pMq
is τp-continuousu
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Lipschitz free spaces

Linearization property:

M Y

FpMq

f

δ
Tf

∥f ∥L � ∥Tf ∥

Thus Lip0pM,Y q � LpFpMq,Y q.

In particular Lip0pMq � FpMq�.

M N

FpMq FpNq

f

δ δ

f̂

∥f ∥L � }f̂ }

δ : M Ñ FpMq is an isometric embedding.

(Godefroy-Kalton, 2003) If X is separable, then X is (linearly) isometric to a

subspace of FpX q.

Example

FpNq � ℓ1

FpRq � L1pRq
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Why are they important?
In non-linear analysis.

Theorem (Godefroy-Kalton, 2003)

Let X ,Y be Banach spaces, with X separable. Assume there is a (non-linear)

isometry f : X Ñ Y . Then there is a linear isometry T : X Ñ Y .

In optimal transport. For a finite metric space M, the norm of an element

of FpMq coincides with the cost of a certain transportation problem

(Wasserstein-1, Kantorovich-Rubenstein).

In computer science (“earthmover distance”).

Theorem (Naor-Schechtman, 2007)

FpR2q is not isomorphic to a subspace of L1 � FpRq.

This provides lower bounds for running times of certain algorithms related to

similarity of 2D-images and nearest neighbor search.

Open question: Are FpR2q and FpR3q isomorphic?
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How the properties of M and FpMq are related?

Theorem (Godefroy-Kalton, 2003)

X has the BAP if and only if FpX q has the BAP.

Therefore, BAP is bi-Lipschitz invariant.

Theorem (Aliaga-Gartland-Petitjean-Procházka, 2021)

FpMq has the RNP if and only if M is purely 1-unrectifiable.

Theorem (GL-Procházka-Rueda Zoca, 2018)

TFAE:

i) FpMq has the Daugavet property.

ii) Lip0pMq has the Daugavet property.

iii) M is a length space.
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Holomorphic functions

X ,Y � complex Banach spaces

U � X open subset

BX � open unit ball of X , SX � unit sphere of X

A function f : U Ñ Y is said to be holomorphic at x0 P U if it is Fréchet

differentiable at x0: there is df px0q P LpX ,Y q with

lim
hÑ0

f px0 � hq � f px0q � df px0qphq

∥h∥
� 0

Equivalently, there is a sequence pPkqk of continuous k-homogeneous polynomials

such that

f pxq �
8̧

k�0

Pkpx � x0q

uniformly in some neighbourhood of x0.

f : U Ñ Y is holomorphic ô y� � f is holomorphic @y� P Y �.
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The holomorphic free space

H8pU,Y q � tf : U Ñ Y : f is holomorphic and boundedu

H8pUq � H8pU,Cq

pH8pU,Y q, ∥�∥8q is a Banach space.

Consider

δ : U Ñ H8pUq�

x ÞÑ δpxq : xf , δpxqy � f pxq

The holomorphic free space (Mujica (1991)) is defined as

G8pUq � spantδpxq : x P Uu � H8pUq�

Then H8pUq � G8pUq�.
Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

G8pUq � tφ P H8pUq� : φ|BH8pUq
is τK -continuousu



The holomorphic free space

H8pU,Y q � tf : U Ñ Y : f is holomorphic and boundedu

H8pUq � H8pU,Cq

pH8pU,Y q, ∥�∥8q is a Banach space. Consider

δ : U Ñ H8pUq�

x ÞÑ δpxq : xf , δpxqy � f pxq

The holomorphic free space (Mujica (1991)) is defined as

G8pUq � spantδpxq : x P Uu � H8pUq�

Then H8pUq � G8pUq�.

Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

G8pUq � tφ P H8pUq� : φ|BH8pUq
is τK -continuousu



The holomorphic free space

H8pU,Y q � tf : U Ñ Y : f is holomorphic and boundedu

H8pUq � H8pU,Cq

pH8pU,Y q, ∥�∥8q is a Banach space. Consider

δ : U Ñ H8pUq�

x ÞÑ δpxq : xf , δpxqy � f pxq

The holomorphic free space (Mujica (1991)) is defined as

G8pUq � spantδpxq : x P Uu � H8pUq�

Then H8pUq � G8pUq�.
Alternatively, the existence of a predual follows from Dixmier-Ng theorem:

G8pUq � tφ P H8pUq� : φ|BH8pUq
is τK -continuousu



The holomorphic free space

Linearization property

U Y

G8pUq

f

δ
Tf

∥f ∥8 � ∥Tf ∥

Thus H8pU,Y q � LpG8pUq,Y q.
In particular H8pUq � G8pUq�.

U V

G8pUq G8pV q

f

δ δ

f̂

∥f ∥8 � }f̂ }

The map δ : U Ñ G8pUq is holomorphic and ∥δpxq∥ � 1.

X is isomorphic to a subspace of G8pUq. Indeed, it is (linearly) isometric to

a subspace of G8pBX q.

There is a recent survey by Garćıa Sánchez - De Hevia - Tradacete.

Jung, 2023: H8pBX q has the Daugavet property. Thus G8pBX q fails RNP.
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The holomorphic Lipschitz free space

Linearization property

BX Y

G0pBX q

f

δ
Tf

∥f ∥L � ∥Tf ∥

Thus HL0pBX ,Y q � LpG0pBX q,Y q.

In particular HL0pBX q � G0pBX q
�.

BX BY

G0pBX q G0pBX q

f

δ δ

f̂

∥f ∥L � }f̂ }

The map δ : BX Ñ G0pBX q is holomorphic and ∥δpxq � δpyq∥ � ∥x � y∥.
X is (linearly) isometric to a subspace of G0pBX q.



The holomorphic Lipschitz free space

Linearization property

BX Y

G0pBX q

f

δ
Tf

∥f ∥L � ∥Tf ∥

Thus HL0pBX ,Y q � LpG0pBX q,Y q.

In particular HL0pBX q � G0pBX q
�.

BX BY

G0pBX q G0pBX q

f

δ δ

f̂

∥f ∥L � }f̂ }

The map δ : BX Ñ G0pBX q is holomorphic and ∥δpxq � δpyq∥ � ∥x � y∥.
X is (linearly) isometric to a subspace of G0pBX q.



The holomorphic Lipschitz free space

Linearization property

BX Y

G0pBX q

f

δ
Tf

∥f ∥L � ∥Tf ∥

Thus HL0pBX ,Y q � LpG0pBX q,Y q.

In particular HL0pBX q � G0pBX q
�.

BX BY

G0pBX q G0pBX q

f

δ δ

f̂

∥f ∥L � }f̂ }

The map δ : BX Ñ G0pBX q is holomorphic and ∥δpxq � δpyq∥ � ∥x � y∥.

X is (linearly) isometric to a subspace of G0pBX q.



The holomorphic Lipschitz free space

Linearization property

BX Y

G0pBX q

f

δ
Tf

∥f ∥L � ∥Tf ∥

Thus HL0pBX ,Y q � LpG0pBX q,Y q.

In particular HL0pBX q � G0pBX q
�.

BX BY

G0pBX q G0pBX q

f

δ δ

f̂

∥f ∥L � }f̂ }

The map δ : BX Ñ G0pBX q is holomorphic and ∥δpxq � δpyq∥ � ∥x � y∥.
X is (linearly) isometric to a subspace of G0pBX q.



Relation with FpBX q and G8pBX q
The map

HL0pBX q Ñ Lip0pBX q

f ÞÑ f

is an into isometry. It is the adjoint of the quotient operator

FpBX q Ñ G0pBX q

δpxq ÞÑ δpxq

The map

HL0pBX q Ñ H8pBX ,X
�q

f ÞÑ df

is an into isometry. It is the adjoint of the quotient operator

G8pBX qpbπX Ñ G0pBX q

δpxq b y ÞÑ ex,y

where ex,y pf q � df pxqpyq. We have G8pDq � G0pDq.
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Approximation properties

X has the Approximation Property (AP) if the identity I : X Ñ X can be

approximated by finite-rank operators in LpX ,X q uniformly on compact sets.

If the operators can be taken with norm ¤ λ then we say that X has the

λ-Bounded Approximation Property (λ-BAP).

If λ � 1 then we say that X has the Metric Approximation Property (MAP).



Approximation properties

Theorem (Mujica, 1991)

X has the (M)AP ô G8pBX q has the (M)AP.

X has the BAP ô G8pBX q has the BAP?

H8pDq has AP?

Theorem (Godefroy-Kalton, 2003)

X has the λ-BAP ô FpX q has the λ-BAP.

X has AP ô FpX q has AP?

Theorem (Aron-Dimant-GL-Maestre)

X has the (M)AP ô G0pBX q has the (M)AP.

X has the BAP ô G0pBX q has the BAP?
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MAP for G0pBX q

First we show:

a) Given f P HLpBX ,Y q with ∥f ∥L ¤ 1, there are polinomials Pn : X Ñ Y with

∥Pn|BX
∥L ¤ 1 and Pnpxq Ñ f pxq for all x P BX .

b) Assume that X has the MAP with Tα Ñ I pointwise. For each polynomial

P : X Ñ Y there are finite-type polinomials Pα � P � Tα with

∥Pα|BX
∥L ¤ ∥P|BX

∥L and Pαpxq Ñ Ppxq for all x P BX .

Now, consider δ : BX Ñ G0pBX q. Take a net pPαq with ∥Pα|BX
∥L ¤ 1 and

Pαpxq Ñ δpxq for all x P BX .

Then TPα has finite rank, ∥TPα∥ ¤ 1 and

TPα
pδpxqq � Pαpxq Ñ δpxq � Idpδpxqq

so TPα Ñ Id pointwise on spanpδpxqq. Since pTPαq is bounded, the same holds

for the closure.
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AP for G0pBX q

BX
Pα //

δ

��

G0pBX q

G0pBX q

TPα

99

Pαpxq Ñ δpxq @x P BX ÷

TPα
pµq Ñ µ@µ P G0pBX q

Mujica identified τγ such that pH8pBX ,Y q, τγq � pLpG8pBX q,Y q, τK q

In our case, we get:

Lemma

Let τγ be the locally convex topology on HL0pBX ,Y q generated by the seminorms

ppf q � supj αj
}f pxj q�f pyj q}
}xj�yj}

where pαjq P c0, pxj , yjq � pBX � BX qz∆ and αj ¡ 0.

Then we have a homeomorphism:

pHL0pBX ,Y q, τγq Ñ pLpG0pBX q,Y q, τK q

f ÞÑ Tf

Lemma

τK and τγ coincide on PpmX ,Y q for each m P N.
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Extension of Lipschitz maps

Given metric spaces with N � M, we have a map

ρ : FpNq Ñ FpMq

φ ÞÑ pφ,
where xf , pφy � xf |N , φy.

The map ρ is an isometry if and only if every f P Lip0pN,Kq has a extension to

Lip0pM,Kq with the same Lipschitz constant.

For K � R, that extension exists! Just take

F pxq � inf
yPN

tf pyq � ∥f ∥L dpx , yqu

(McShane’s theorem)

So FpNq � FpMq in a canonical way (isometrically for K � R and isomorphically

in the complex case).
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Extension of holomorphic Lipschitz functions

Given complex Banach spaces X � Y , we have a map

ρ : G0pBX q Ñ G0pBY q

φ ÞÑ pφ,
where xf , pφy � xf |BX

, φy.

The map ρ is an isometry if and only if every f P HL0pBX q has a extension to BY

with the same Lipschitz constant.

There is no McShane’s extension theorem!

Aron-Berner, 1978

Let P : ℓ2 Ñ C given by Ppxq �
°8

n�1 x
2
n and consider an embedding ℓ2 ãÑ ℓ8.

There does not exists f : Bℓ8 Ñ C holomorphic map extending P|Bℓ2
.

Still, there are some cases where we know that ρ is an isometry. For instance, if X

is 1-complemented in Y .



Extension of holomorphic Lipschitz functions

Given complex Banach spaces X � Y , we have a map

ρ : G0pBX q Ñ G0pBY q

φ ÞÑ pφ,
where xf , pφy � xf |BX

, φy.

The map ρ is an isometry if and only if every f P HL0pBX q has a extension to BY

with the same Lipschitz constant.

There is no McShane’s extension theorem!

Aron-Berner, 1978

Let P : ℓ2 Ñ C given by Ppxq �
°8

n�1 x
2
n and consider an embedding ℓ2 ãÑ ℓ8.

There does not exists f : Bℓ8 Ñ C holomorphic map extending P|Bℓ2
.

Still, there are some cases where we know that ρ is an isometry. For instance, if X

is 1-complemented in Y .



Extension of holomorphic Lipschitz functions

Given complex Banach spaces X � Y , we have a map

ρ : G0pBX q Ñ G0pBY q

φ ÞÑ pφ,
where xf , pφy � xf |BX

, φy.

The map ρ is an isometry if and only if every f P HL0pBX q has a extension to BY

with the same Lipschitz constant.

There is no McShane’s extension theorem!

Aron-Berner, 1978

Let P : ℓ2 Ñ C given by Ppxq �
°8

n�1 x
2
n and consider an embedding ℓ2 ãÑ ℓ8.

There does not exists f : Bℓ8 Ñ C holomorphic map extending P|Bℓ2
.

Still, there are some cases where we know that ρ is an isometry. For instance, if X

is 1-complemented in Y .



Extension of holomorphic Lipschitz functions

Given complex Banach spaces X � Y , we have a map

ρ : G0pBX q Ñ G0pBY q

φ ÞÑ pφ,
where xf , pφy � xf |BX

, φy.

The map ρ is an isometry if and only if every f P HL0pBX q has a extension to BY

with the same Lipschitz constant.

There is no McShane’s extension theorem!

Aron-Berner, 1978

Let P : ℓ2 Ñ C given by Ppxq �
°8

n�1 x
2
n and consider an embedding ℓ2 ãÑ ℓ8.

There does not exists f : Bℓ8 Ñ C holomorphic map extending P|Bℓ2
.

Still, there are some cases where we know that ρ is an isometry. For instance, if X

is 1-complemented in Y .



When G0pBX q � G0pBY q?

Theorem (Aron-Dimant-GL-Maestre, 2023)

Let X � Y . If there is an isometric extension operator s : X� Ñ Y � and X is

symmetrically regular, then G0pBX q � G0pBY q

Recall that

there is such s : X� Ñ Y � ô X�� is 1-complemented in Y ��

ô X is locally 1-complemented in Y

This is the case, for instance, if Y � X�� (then s : X� Ñ X��� is just the

inclusion map).
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When G0pBX q � G0pBY q?

Let P : X Ñ C be an n-homogeneous polynomial. Then Ppxq � Apx , . . . , xq for a

multilinear symmetric map A : X � � � � � X Ñ C. Define

Apx��1 , . . . x��n q � lim
α1

� � � lim
αn

Apxα1 , . . . xαnq p�q

where xαi

w�
Ñ x��i .

The Aron-Berner extension of P is P̃px��q :� Apx��, . . . , x��q.

Now, given f P H8pBX q, we can define f̃ P H8pBX��q extending f .

A similar argument works for the vector-valued case and

AB : H8pBX ,Y q Ñ H8pBX�� ,Y ��q

f ÞÑ f̃

is an isometry (Davie-Gamelin, 1989).

X symmetrically regular means that we may interchange the limits in p�q.

This is the case of X � c0,C pK q,H8pDq but fails for X � ℓ1.
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When G0pBX q � G0pBY q?

If X is symmetrically regular, then we get d rf ��df for all f P HL0pBX q

so

}f̃ }L � }df̃ }8 � }�df }8 � }df }8 � ∥f ∥L. Thus,

AB : HL0pBX q Ñ HL0pBX��q

f ÞÑ rf
is an isometry.

Now, if s : X� Ñ Y � is a linear extension operator, we get that

s : HL0pBX q Ñ HL0pBY q

f ÞÑ rf � s� � iY
is an isometric extension and so G0pBX q � G0pBY q.

We also get that if X and Y are symmetrically regular and X� � Y �, then

HL0pBX q � HL0pBY q. This is based on a result by Lassalle-Zalduendo, 2000.
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Thank you for your attention!


