Norm-attainment in projective tensor products

Luis C. García-Lirola

Joint works with S. Dantas, J. Guerrero-Viu, M. Jung, A. Rueda Zoca

Universidad de Zaragoza

Il Encuentro de la Red de Análisis Matemático y Aplicaciones Cullera, 7 de marzo 2025

• S. Dantas, L. C. García-Lirola, M. Jung, A. Rueda Zoca. On norm-attainment in (symmetric) tensor products. *Quaest. Math.* 46

Anal., 19 (2025), article 19.

norm-attainment in (symmetric) tensor products. Quaest. Math. 46 (2023), no. 2, 393–409.
L. C. García-Lirola, J. Guerrero-Viu, A. Rueda Zoca. Projective tensor

products where every element is norm-attaining. Banach J. Math.

Outline

- Tensor products
- Projective tensor products where every tensor attains its norm
- Denseness of norm-attaining tensors

$$X, Y, Z = \text{vector spaces}$$

A map $A: X \times Y \rightarrow Z$ is **bilinear** if

- $A(\alpha x + \beta x', y) = \alpha A(x, y) + \beta A(x', y)$
- $A(x, \alpha y + \beta y') = \alpha A(x, y) + \beta A(x, y')$

 $B(X \times Y, Z)$ denotes the space of bilinear maps $A: X \times Y \to Z$

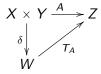
X, Y, Z = vector spaces

A map $A: X \times Y \rightarrow Z$ is **bilinear** if

- $A(\alpha x + \beta x', y) = \alpha A(x, y) + \beta A(x', y)$
- $A(x, \alpha y + \beta y') = \alpha A(x, y) + \beta A(x, y')$

 $B(X \times Y, Z)$ denotes the space of bilinear maps $A: X \times Y \to Z$

We would like to **linearize** bilinear maps. That is, to find a vector space W and a linear embedding $\delta \colon X \times Y \to W$ such that for any $A \in B(X \times Y, Z)$ there is a linear map $T_A \colon W \to Z$ such that this diagram commutes:



Given $x \in X$ and $y \in Y$, consider the linear functional

$$x \otimes y \colon B(X \times Y, \mathbb{K}) \to \mathbb{K}$$

 $A \mapsto A(x, y)$

The **tensor product** $X \otimes Y$ is defined as

$$X \otimes Y = \operatorname{span}\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y, \mathbb{K})^{\#}$$

Given $x \in X$ and $y \in Y$, consider the linear functional

$$x \otimes y \colon B(X \times Y, \mathbb{K}) \to \mathbb{K}$$

 $A \mapsto A(x, y)$

The **tensor product** $X \otimes Y$ is defined as

$$X \otimes Y = \operatorname{span}\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y, \mathbb{K})^{\#}$$

A **tensor** $u \in X \otimes Y$ has the form $u = \sum_{i=1}^{n} x_i \otimes y_i$ where $x_i \in X$ and $y_i \in Y$.

Given $x \in X$ and $y \in Y$, consider the linear functional

$$x \otimes y \colon B(X \times Y, \mathbb{K}) \to \mathbb{K}$$

 $A \mapsto A(x, y)$

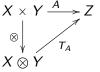
The **tensor product** $X \otimes Y$ is defined as

$$X \otimes Y = \operatorname{span}\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y, \mathbb{K})^{\#}$$

A **tensor** $u \in X \otimes Y$ has the form $u = \sum_{i=1}^{n} x_i \otimes y_i$ where $x_i \in X$ and $y_i \in Y$. This representation is **NOT UNIQUE**. Indeed,

- $(\alpha x + \beta x') \otimes y = \alpha x \otimes y + \beta x' \otimes y$.
- $x \otimes (\alpha y + \beta y') = \alpha x \otimes y + \beta x \otimes y'$

Define \otimes : $X \times Y \to X \otimes Y$ by $\otimes(x, y) = x \otimes y$.



Define \otimes : $X \times Y \to X \otimes Y$ by $\otimes(x, y) = x \otimes y$.

$$\begin{array}{c|c}
X \times Y \xrightarrow{A} Z \\
\otimes \downarrow & T_A \\
X \otimes Y
\end{array}$$

Given $A \in B(X \times Y, Z)$, define

$$T_A(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n A(x_i, y_i).$$

Define \otimes : $X \times Y \to X \otimes Y$ by $\otimes(x, y) = x \otimes y$.

$$\begin{array}{c|c}
X \times Y \xrightarrow{A} Z \\
\otimes \downarrow & T_A \\
X \otimes Y
\end{array}$$

Given $A \in B(X \times Y, Z)$, define

$$T_A(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n A(x_i, y_i).$$

Conversely, if $T: X \otimes Y \to Z$ is linear, define $A \in B(X \times Y, Z)$ by

$$A(x,y) = T(x \otimes y).$$

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

$$\|x \otimes y\| \leqslant \|x\| \cdot \|y\|$$

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

$$||x \otimes y|| \leq ||x|| \cdot ||y||$$

If $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^n ||x_i|| ||y_i||$ and this should hold for every representation of u.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

$$||x \otimes y|| \leq ||x|| \cdot ||y||$$

If $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^n ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{n} \|x_i\| \|y_i\| : u = \sum_{i=1}^{n} x_i \otimes y_i \right\}$$

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

$$||x \otimes y|| \leq ||x|| \cdot ||y||$$

If $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^n ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf \left\{ \sum_{i=1}^{n} \|x_i\| \|y_i\| : u = \sum_{i=1}^{n} x_i \otimes y_i \right\}$$

However, $(X \otimes Y, \|\cdot\|_{\pi})$ is not complete unless X or Y is finite dimensional.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

$$||x \otimes y|| \leq ||x|| \cdot ||y||$$

If $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^n ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{n} ||x_{i}|| ||y_{i}|| : u = \sum_{i=1}^{n} x_{i} \otimes y_{i} \right\}$$

However, $(X \otimes Y, \|\cdot\|_{\pi})$ is not complete unless X or Y is finite dimensional.

The **projective tensor product** $X \widehat{\otimes}_{\pi} Y$ is the completion of $(X \otimes Y, \|\cdot\|_{\pi})$.

X, Y = Banach spaces.

We would like to define a norm on $X \otimes Y$. It is reasonable to require that

$$||x \otimes y|| \leq ||x|| \cdot ||y||$$

If $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$, it must be $||u|| \leq \sum_{i=1}^n ||x_i|| ||y_i||$ and this should hold for every representation of u.

Given $u \in X \otimes Y$, we define the **projective norm** as follows

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{n} ||x_{i}|| ||y_{i}|| : u = \sum_{i=1}^{n} x_{i} \otimes y_{i} \right\}$$

However, $(X \otimes Y, \|\cdot\|_{\pi})$ is not complete unless X or Y is finite dimensional.

The **projective tensor product** $X \widehat{\otimes}_{\pi} Y$ is the completion of $(X \otimes Y, \|\cdot\|_{\pi})$.

Important example: $L_1(\mu) \widehat{\otimes}_{\pi} X = L_1(\mu, X)$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

$$||A(x,y)|| \le C||x|| ||y||, \quad \forall x \in X, y \in Y.$$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}.$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

$$||A(x,y)|| \leqslant C||x|||y||, \quad \forall x \in X, y \in Y.$$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $\|A\| = \sup\{\|A(x,y)\| : \|x\| \le 1, \|y\| \le 1\}.$

$$\begin{array}{c|c}
X \times Y \xrightarrow{A} Z \\
\otimes \downarrow & \\
X \widehat{\otimes}_{\pi} Y
\end{array}$$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

$$\|A(x,y)\| \leqslant C\|x\|\|y\|, \quad \forall x \in X, y \in Y.$$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $\|A\| = \sup\{\|A(x,y)\| : \|x\| \le 1, \|y\| \le 1\}.$

$$X \times Y \xrightarrow{A} Z$$

$$\otimes \bigvee_{T_A} T_A$$

$$X \hat{\otimes}_{\pi} Y$$

$$\mathcal{B}(X \times Y, Z) = \mathcal{L}(X \hat{\otimes}_{\pi} Y, Z)$$

$$\mathcal{B}(X\times Y,\mathbb{R})=\mathcal{L}(X,Y^*)=(X\widehat{\otimes}_{\pi}Y)^*$$

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there is C > 0 such that

$$||A(x,y)|| \leqslant C||x|||y||, \quad \forall x \in X, y \in Y.$$

 $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $\|A\| = \sup\{\|A(x,y)\| : \|x\| \le 1, \|y\| \le 1\}.$

$$\begin{array}{c}
X \times Y \xrightarrow{A} Z \\
\otimes \downarrow & \\
X \widehat{\otimes}_{\pi} Y
\end{array}$$

$$\mathcal{B}(X \times Y, Z) = \mathcal{L}(X \widehat{\otimes}_{\pi} Y, Z)$$

$$\mathcal{B}(X \times Y, \mathbb{R}) = \mathcal{L}(X, Y^*) = (X \widehat{\otimes}_{\pi} Y)^*$$

Since $||A|| = \sup\{|\langle A, x \otimes y \rangle| : x \in B_X, y \in B_Y\}$, it follows that

$$B_{X \hat{\otimes}_{\pi} Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y)$$

Every $u \in X \hat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$.

Every $u \in X \hat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

Every $u \in X \hat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Every $u \in X \hat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Dantas-Jung-Roldán-Rueda Zoca (2022)

We say that $u \in X \hat{\otimes}_{\pi} Y$ attains its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i$$
 and $||u||_{\pi} = \sum_{i=1}^{\infty} ||x_i|| ||y_i||$.

The set of those u is denoted by $NA_{\pi}(X \hat{\otimes}_{\pi} Y)$.

Every $u \in X \hat{\otimes}_{\pi} Y$ can be written as $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ with $x_i \in X$, $y_i \in Y$. Then

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \sum_{i=1}^{\infty} ||x_i|| ||y_i|| < \infty, u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Dantas-Jung-Roldán-Rueda Zoca (2022)

We say that $u \in X \hat{\otimes}_{\pi} Y$ attains its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i$$
 and $||u||_{\pi} = \sum_{i=1}^{\infty} ||x_i|| ||y_i||$.

The set of those u is denoted by $NA_{\pi}(X \hat{\otimes}_{\pi} Y)$.

Most of the results can be translated to other settings:

- Nuclear operators (tensors in $X^* \hat{\otimes}_{\pi} Y$ correspond to operators $X \to Y$)
- Symmetric tensors $(\hat{\otimes}_{\pi,s,N}X)$ is a predual of $\mathcal{P}(^{N}X)$

Definition (Dantas-Jung-Roldán-Rueda Zoca, 2022)

We say that $u \in X \widehat{\otimes}_{\pi} Y$ attains its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i$$
 and $||u||_{\pi} = \sum_{i=1}^{\infty} ||x_i|| ||y_i||$.

The set of those u is denoted by $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$.

Definition (Dantas-Jung-Roldán-Rueda Zoca, 2022)

We say that $u \in X \widehat{\otimes}_{\pi} Y$ attains its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i$$
 and $||u||_{\pi} = \sum_{i=1}^{\infty} ||x_i|| ||y_i||$.

The set of those u is denoted by $NA_{\pi}(X \hat{\otimes}_{\pi} Y)$.

In the finite-dimensional case, it follows from Caratheodory theorem that every u has an optimal representation with at most $\dim(X)\dim(Y)$ terms (or $2\dim(X)\dim(Y)$ for $\mathbb{K}=\mathbb{C}$).

Theorem (Pełczyński - Tomczak-Jaegermann, 1988)

Given n, m, there are spaces X and Y with $\dim(X) = n$ and $\dim(Y) = m$ and $u \in X \widehat{\otimes}_{\pi} Y$ such that all the optimal representations of u have nm terms (resp. 2nm for $\mathbb{K} = \mathbb{C}$).

Definition (Dantas, Jung, Roldán, Rueda Zoca, 2022)

- $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases:
 - a) X and Y are finite dimensional.
 - b) $X = \ell_1(I)$ and Y is any Banach space.
 - c) X and Y are complex Hilbert spaces.

Definition (Dantas, Jung, Roldán, Rueda Zoca, 2022)

$$NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$$
 in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.
- c) X and Y are complex Hilbert spaces.

Sketch of the proof.

a) Compactness

Definition (Dantas, Jung, Roldán, Rueda Zoca, 2022)

$$NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$$
 in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.
- c) X and Y are complex Hilbert spaces.
- Sketch of the proof.
 - a) Compactness
 - b) $\ell_1(I) \widehat{\otimes}_{\pi} Y = \ell_1(I, Y)$

Definition (Dantas, Jung, Roldán, Rueda Zoca, 2022)

$$NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$$
 in the following cases:

- a) X and Y are finite dimensional.
- b) $X = \ell_1(I)$ and Y is any Banach space.
- c) X and Y are complex Hilbert spaces.
- Sketch of the proof.
- a) Compactness
- b) $\ell_1(I) \widehat{\otimes}_{\pi} Y = \ell_1(I, Y)$
- c) Diagonalization

• Given $u \in X \widehat{\otimes}_{\pi} Y$ with ||u|| = 1, we have that $u \in NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ if and only if $u = \sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n$ with $||x_n|| = 1 = ||y_n||$, $\lambda_n \geqslant 0$, $\sum_n \lambda_n = 1$.

- Given $u \in X \widehat{\otimes}_{\pi} Y$ with ||u|| = 1, we have that $u \in NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ if and only if $u = \sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n$ with $||x_n|| = 1 = ||y_n||$, $\lambda_n \ge 0$, $\sum_n \lambda_n = 1$.
- Now, given $T \in (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{L}(X, Y^*)$ with $\langle T, u \rangle = 1 = ||T||$, it follows that $T(x_n)(y_n) = ||x_n|| ||y_n|| \forall n$.

- Given $u \in X \widehat{\otimes}_{\pi} Y$ with ||u|| = 1, we have that $u \in NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ if and only if $u = \sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n$ with $||x_n|| = 1 = ||y_n||$, $\lambda_n \geqslant 0$, $\sum_n \lambda_n = 1$.
- Now, given $T \in (X \hat{\otimes}_{\pi} Y)^* \equiv \mathcal{L}(X, Y^*)$ with $\langle T, u \rangle = 1 = ||T||$, it follows that $T(x_n)(y_n) = ||x_n|| \, ||y_n|| \, \, \forall n$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

If every tensor on $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T \colon X \to Y^*$ can be approximated by norm-attaining ones.

- Given $u \in X \widehat{\otimes}_{\pi} Y$ with ||u|| = 1, we have that $u \in NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ if and only if $u = \sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n$ with $||x_n|| = 1 = ||y_n||$, $\lambda_n \ge 0$, $\sum_n \lambda_n = 1$.
- Now, given $T \in (X \hat{\otimes}_{\pi} Y)^* \equiv \mathcal{L}(X, Y^*)$ with $\langle T, u \rangle = 1 = ||T||$, it follows that $T(x_n)(y_n) = ||x_n|| \, ||y_n|| \, \, \forall n$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

If every tensor on $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T \colon X \to Y^*$ can be approximated by norm-attaining ones.

Thus, there are tensors not attaining its projective norm in $L_1(\mathbb{T}) \hat{\otimes}_{\pi} \ell_2^2$, $L_1[0,1] \hat{\otimes}_{\pi} L_1[0,1]$, $\ell_p \hat{\otimes}_{\pi} G$ (1 ,...

- Given $u \in X \widehat{\otimes}_{\pi} Y$ with ||u|| = 1, we have that $u \in NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ if and only if $u = \sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n$ with $||x_n|| = 1 = ||y_n||, \ \lambda_n \geqslant 0, \ \sum_n \lambda_n = 1.$
- Now, given $T \in (X \hat{\otimes}_{\pi} Y)^* \equiv \mathcal{L}(X, Y^*)$ with $\langle T, u \rangle = 1 = ||T||$, it follows that $T(x_n)(y_n) = ||x_n|| \, ||y_n|| \, \, \forall n$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

If every tensor on $X \hat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T \colon X \to Y^*$ can be approximated by norm-attaining ones.

Thus, there are tensors not attaining its projective norm in $L_1(\mathbb{T}) \hat{\otimes}_{\pi} \ell_2^2$, $L_1[0,1] \hat{\otimes}_{\pi} L_1[0,1]$, $\ell_p \hat{\otimes}_{\pi} G$ (1 ,...

Rueda Zoca (2023)

 $\mathsf{NA}_{\pi}(c_0 \widehat{\otimes}_{\pi} \ell_2) \subset c_0 \otimes \ell_2.$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $\operatorname{NA}_\pi(X \widehat{\otimes}_\pi Y) = X \widehat{\otimes}_\pi Y$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $\operatorname{NA}_\pi(X \widehat{\otimes}_\pi Y) = X \widehat{\otimes}_\pi Y$

$$B_{X \hat{\otimes}_{\pi} Y} = \overline{\text{conv}}(B_X \otimes B_Y)$$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $\operatorname{NA}_\pi(X \widehat{\otimes}_\pi Y) = X \widehat{\otimes}_\pi Y$

$$B_{X \hat{\otimes}_{\pi} Y} = \overline{\text{conv}}(B_X \otimes B_Y)$$
$$= \overline{\text{conv}}(\bigcup_{i=1}^n \{x_i\} \otimes B_Y)$$

Dantas, G.L., Jung, Rueda Zoca (2023)

Let X be a finite-dimensional polyhedral Banach space and Y is any dual Banach space. Then $\operatorname{NA}_\pi(X \widehat{\otimes}_\pi Y) = X \widehat{\otimes}_\pi Y$

$$B_{X \widehat{\otimes}_{\pi} Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y)$$

$$= \overline{\operatorname{conv}}(\bigcup_{i=1}^n \{x_i\} \otimes B_Y)$$

$$= \operatorname{conv}(\bigcup_{i=1}^n \{x_i\} \otimes B_Y)$$

Note that B_X is a polytope if and only if B_{X^*} is a polytope.

Note that B_X is a polytope if and only if B_{X^*} is a polytope. If $B_{X^*} = \text{conv}\{x_1^*, \dots, x_n^*\}$ then the mapping

$$\begin{array}{ccc} X & \longrightarrow & \ell_{\infty}^{n} \\ x & \longmapsto & (x_{1}^{*}(x), \dots, x_{n}^{*}(x)) \end{array}$$

is a linear into isometry since

$$||x|| = \sup\{|x^*(x)| : x \in B_{X^*}\} = \max\{|x_i^*(x)| : i \in \{1, \dots, n\}\}$$

Note that B_X is a polytope if and only if B_{X^*} is a polytope. If $B_{X^*} = \text{conv}\{x_1^*, \dots, x_n^*\}$ then the mapping

$$\begin{array}{ccc} X & \longrightarrow & \ell_{\infty}^{n} \\ x & \longmapsto & (x_{1}^{*}(x), \dots, x_{n}^{*}(x)) \end{array}$$

is a linear into isometry since

$$||x|| = \sup\{|x^*(x)| : x \in B_{X^*}\} = \max\{|x_i^*(x)| : i \in \{1, \dots, n\}\}$$

Therefore, X is a subspace of Z with $Z^* = \ell_1^n$.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

These hypotheses are satisfied for $X \subset C(K)$ with K compact and scattered, such that X^* or Y has the AP.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

These hypotheses are satisfied for $X \subset C(K)$ with K compact and scattered, such that X^* or Y has the AP.

The hypothesis of K being scattered cannot be removed, since

$$\mathsf{NA}_{\pi}(C(\mathbb{T})^* \widehat{\otimes}_{\pi} \ell_2^2) \neq C(\mathbb{T})^* \widehat{\otimes}_{\pi} \ell_2^2$$

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

These hypotheses are satisfied for $X \subset C(K)$ with K compact and scattered, such that X^* or Y has the AP.

The hypothesis of K being scattered cannot be removed, since

$$\mathsf{NA}_\pi(C(\mathbb{T})^* \widehat{\otimes}_\pi \ell_2^2) \neq C(\mathbb{T})^* \widehat{\otimes}_\pi \ell_2^2$$

We can take X^* the **Lipschitz-free space** $\mathcal{F}(M)$ for a metric space M satisfying one of the following conditions:

- a) M is countable and compact.
- b) M is uniformly discrete, countable, and there is a compact Hausdorff topology τ on M such that d is τ -lower semicontinuous, and $V = \{d(x,y) : (x,y) \in M^2\} \subseteq \mathbb{R}_0^+$ is a compact set.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_\pi(X^* \hat{\otimes}_\pi Y) = X^* \hat{\otimes}_\pi Y$.

- Say $Y = E^*$.
- $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear (into) isometry.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^* = \ell_1(I)$, $X \subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $NA_\pi(X^* \hat{\otimes}_\pi Y) = X^* \hat{\otimes}_\pi Y$.

- Say $Y = E^*$.
- $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear (into) isometry.
- $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$ is an adjoint quotient operator.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

- Say $Y = E^*$.
- $T: X \widehat{\otimes}_{\varepsilon} E \to Z \widehat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear (into) isometry.
- $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$ is an adjoint quotient operator.
- Given $u \in X^* \widehat{\otimes}_{\pi} Y$ it follows that there is $\widetilde{u} \in Z^* \widehat{\otimes}_{\pi} Y = \ell_1(I) \widehat{\otimes}_{\pi} Y$ with $T^*(\widetilde{u}) = u$ and the same norm.

G.L., Guerrero-Viu, Rueda Zoca (2025)

Let Z be such that $Z^*=\ell_1(I)$, $X\subset Z$ and Y be any dual space. If either X^* or Y has the approximation property, then $\operatorname{NA}_\pi(X^*\widehat{\otimes}_\pi Y)=X^*\widehat{\otimes}_\pi Y$.

- Say $Y = E^*$.
- $T: X \hat{\otimes}_{\varepsilon} E \to Z \hat{\otimes}_{\varepsilon} E$ given by T(u) = u is a linear (into) isometry.
- $T^*: Z^* \hat{\otimes}_{\pi} Y \to X^* \hat{\otimes}_{\pi} Y$ is an adjoint quotient operator.
- Given $u \in X^* \widehat{\otimes}_{\pi} Y$ it follows that there is $\widetilde{u} \in Z^* \widehat{\otimes}_{\pi} Y = \ell_1(I) \widehat{\otimes}_{\pi} Y$ with $T^*(\widetilde{u}) = u$ and the same norm.
- \tilde{u} admits an optimal representation \Rightarrow the same holds for u.

Recall that every tensor in $\ell_1(I) \widehat{\otimes}_{\pi} Y$ attains its projective norm for any Y.

Recall that every tensor in $\ell_1(I) \widehat{\otimes}_{\pi} Y$ attains its projective norm for any Y.

What are the spaces X such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ for every Y?

Recall that every tensor in $\ell_1(I) \widehat{\otimes}_{\pi} Y$ attains its projective norm for any Y.

What are the spaces X such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ for every Y?

G.L., Guerrero-Viu, Rueda Zoca (2025)

Assume that X is separable and $NA_{\pi}(X^*\widehat{\otimes}_{\pi}Y)=X^*\widehat{\otimes}_{\pi}Y$ for any Y. Then $B_X=\overline{\operatorname{conv}}(\exp B_X)$.

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets.

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets. Then

$$||f||_1 = \sum_{n=1}^N \mu(E_n) ||y_n|| = \sum_{n=1}^N ||\chi_{E_n}||_1 \cdot ||y_n||$$

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets. Then

$$||f||_1 = \sum_{n=1}^N \mu(E_n) ||y_n|| = \sum_{n=1}^N ||\chi_{E_n}||_1 \cdot ||y_n||$$

That is, $f \in NA_{\pi}(L_1(\mu) \widehat{\otimes}_{\pi} Y)$. It follows that

$$\overline{\mathsf{NA}_{\pi}(L_1(\mu)\widehat{\otimes}_{\pi}Y)} = L_1(\mu)\widehat{\otimes}_{\pi}Y$$

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets. Then

$$||f||_1 = \sum_{n=1}^N \mu(E_n) ||y_n|| = \sum_{n=1}^N ||\chi_{E_n}||_1 \cdot ||y_n||$$

That is, $f \in NA_{\pi}(L_1(\mu) \widehat{\otimes}_{\pi} Y)$. It follows that

$$\overline{\mathsf{NA}_{\pi}(L_1(\mu)\widehat{\otimes}_{\pi}Y)} = L_1(\mu)\widehat{\otimes}_{\pi}Y$$

Dantas, Jung, Roldán, Rueda Zoca (2022)

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \hat{\otimes}_{\pi} Y)$ dense in $X \hat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \hat{\otimes}_{\pi} Y)$ dense in $X \hat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $\|u\|_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $\|u\|_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Consider $F = \{z \in B_{X \widehat{\otimes}_{-Y}} : \langle A, z \rangle = 1\}.$

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \hat{\otimes}_{\pi} Y)$ dense in $X \hat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}.$

 $F = \overline{\mathsf{conv}}(\mathsf{ext}\,F).$

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \hat{\otimes}_{\pi} Y)$ dense in $X \hat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $||u||_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Consider $F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}.$

 $F=\overline{\operatorname{conv}}(\operatorname{ext} F). \text{ Since } F \text{ is a face of } B_{X \widehat{\otimes}_{\pi} Y}, \operatorname{ext} F \subset \operatorname{ext} B_{X \widehat{\otimes}_{\pi} Y}.$

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $\|u\|_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Consider $F = \{z \in B_{X\widehat{\otimes}_{-}Y} : \langle A, z \rangle = 1\}.$

 $F = \overline{\operatorname{conv}}(\operatorname{ext} F)$. Since F is a face of $B_{X \hat{\otimes}_{\pi} Y}$, $\operatorname{ext} F \subset \operatorname{ext} B_{X \hat{\otimes}_{\pi} Y}$.

Under these hypotheses, $\text{ext}(B_{X \widehat{\otimes}_{\pi} Y}) \subset B_X \otimes B_Y$ (Collins-Ruess (1983))

Dantas, Jung, Roldán, Rueda Zoca (2022)

Let X, Y be reflexive Banach spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

Dantas, G.L., Jung, Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $\operatorname{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch of the proof

Given $u \in B_{X \widehat{\otimes}_{\pi} Y}$ with $\|u\|_{\pi} = 1$, take $A \in (X \widehat{\otimes}_{\pi} Y)^*$ with $\langle A, u \rangle = 1$.

Consider
$$F = \{z \in B_{X \widehat{\otimes}_{\pi} Y} : \langle A, z \rangle = 1\}.$$

$$F = \overline{\operatorname{conv}}(\operatorname{ext} F)$$
. Since F is a face of $B_{X \hat{\otimes}_{\pi} Y}$, $\operatorname{ext} F \subset \operatorname{ext} B_{X \hat{\otimes}_{\pi} Y}$.

Under these hypotheses, $\operatorname{ext}(B_{X \widehat{\otimes}_{\pi} Y}) \subset B_X \otimes B_Y$ (Collins-Ruess (1983)) Thus,

$$u \in \overline{\text{conv}}\{x \otimes y \in S_X \otimes S_Y : A(x, y) = 1\}$$

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x_i' \in M$ with $||x_i - x_i'|| < \varepsilon \ \forall i$.

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x_i' \in M$ with $\|x_i - x_i'\| < \varepsilon \ \forall i$.

Equivalently, there are finite-rank projections $P_{\alpha} \colon X \to X$ with $||P_{\alpha}|| = 1$ and $P_{\alpha}x \to x$ for every $x \in X$.

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x_i' \in M$ with $\|x_i - x_i'\| < \varepsilon \ \forall i$.

Equivalently, there are finite-rank projections $P_{\alpha} \colon X \to X$ with $||P_{\alpha}|| = 1$ and $P_{\alpha}x \to x$ for every $x \in X$.

monotone FDD \Rightarrow metric π -property \Rightarrow metric approximation property

A space X is said to have the **metric** π -**property** if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x_i' \in M$ with $||x_i - x_i'|| < \varepsilon \ \forall i$.

Equivalently, there are finite-rank projections $P_{\alpha} \colon X \to X$ with $||P_{\alpha}|| = 1$ and $P_{\alpha}x \to x$ for every $x \in X$.

monotone FDD \Rightarrow metric π -property \Rightarrow metric approximation property

Key point: If M is 1-complemented in X then $M \widehat{\otimes}_{\pi} Y$ is (isometrically) a subspace of $X \widehat{\otimes}_{\pi} Y$.

Let X be a space with the metric π -property. $\overline{\mathsf{NA}_\pi(X \widehat{\otimes}_\pi Y)} = X \widehat{\otimes}_\pi Y$ if

- Y has the metric π -property or Y is uniformly convex (Dantas-Jung-Roldán-Rueda Zoca, 2022).
- X is polyhedral and Y is a dual space (Dantas-G.L.-Jung-Rueda Zoca, 2023).

Let X be a space with the metric π -property. $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ if

- Y has the metric π -property or Y is uniformly convex (Dantas-Jung-Roldán-Rueda Zoca, 2022).
- X is polyhedral and Y is a dual space (Dantas-G.L.-Jung-Rueda Zoca, 2023).

These results are implied by the following theorem:

G.L., Guerrero-Viu, Rueda Zoca (2025)

Suppose that for every $\varepsilon > 0$ and $x_1, \ldots, x_n \in X$, there exists a finite dimensional 1-complemented subspace $\underline{M} \subseteq X$ and $x_i' \in M$ with $\|x_i - x_i'\| < \varepsilon$ for each $i = 1, \ldots, n$. Assume that $\overline{\mathsf{NA}_\pi(M \widehat{\otimes}_\pi Y)} = M \widehat{\otimes}_\pi Y$. Then,

$$\overline{\mathsf{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)} = X \widehat{\otimes}_{\pi} Y.$$

Let X be a space with the metric π -property. $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ if

- Y has the metric π -property or Y is uniformly convex (Dantas-Jung-Roldán-Rueda Zoca, 2022).
- *X* is polyhedral and *Y* is a dual space (Dantas-G.L.-Jung-Rueda Zoca, 2023).

These results are implied by the following theorem:

G.L., Guerrero-Viu, Rueda Zoca (2025)

Suppose that for every $\varepsilon > 0$ and $x_1, \ldots, x_n \in X$, there exists a finite dimensional 1-complemented subspace $\underline{M} \subseteq X$ and $x_i' \in M$ with $\|x_i - x_i'\| < \varepsilon$ for each $i = 1, \ldots, n$. Assume that $\overline{\mathsf{NA}}_\pi(M \widehat{\otimes}_\pi Y) = M \widehat{\otimes}_\pi Y$. Then,

$$\overline{\mathsf{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)} = X \widehat{\otimes}_{\pi} Y.$$

As a consequence, $\overline{\mathsf{NA}_{\pi}(X \widehat{\otimes}_{\pi} Y)} = X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) $X^* = L_1(\mu)$ and Y is 1-complemented in Y^{**} .
- b) X has the metric π -property and Y is a dual space with the RNP.

Some related questions

Is every extreme point of $B_{X \hat{\otimes}_{\pi} Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

Some related questions

Is every extreme point of $B_{X \hat{\otimes}_{\pi} Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

Are there X, Y such that the set of operators attaining its nuclear norm is **NOT** dense in $\mathcal{N}(X, Y)$?

Some related questions

Is every extreme point of $B_{X \hat{\otimes}_{\pi} Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

Are there X, Y such that the set of operators attaining its nuclear norm is **NOT** dense in $\mathcal{N}(X, Y)$?

Is there X such that the set of symmetric tensors attaining its projective norm is **NOT** dense in $\widehat{\otimes}_{\pi,s,N}X$?

Thank you for your attention!