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1. Introduction

Recently the study of polynomials orthogonal with respect to a nonstandard inner
product

〈f, g〉 =
∫
R

fgdµ0 +
m∑

k=1

∫
R

f (k)g(k)dµk

has attracted the interest of many researchers. A motivation for such a study appears
in a paper by D.C. Lewis ([12]) related to polynomial least square approximations with
some smoothness conditions. In fact, this approach becomes valuable when we wish
to approximate a function by its projection onto polynomials and, simultaneously, to
approximate its derivative by the derivative of the polynomial approximant. Since the
derivative of the function is steep, we can expect that the quality of the projection in
the conventional L2 norm deteriorates. The standard projection is poor near the end
points whereas the Sobolev projection displays reasonably good behaviour throughout
the interval. For some numerical examples see [11].

On the other hand, the applications of polynomial approximation to the numerical
simulation of Partial Differential Equations, and more precisely, to elliptic or parabolic
type equations are based in the discretization by spectral type methods. They rely on
the properties of the interpolation or the Fourier operators. The natural norms involved
are those of the Hilbert-Sobolev spaces and approximation results for such operators in
this type of norms are required for the numerical analysis of spectral discretizations. In
particular, for the Legendre and the Tchebychev case the reader can see [5].

Results concerning algebraic properties as well as the location of the zeros of or-
thogonal polynomials with respect to the above inner product when m = 1 and µ1 is
an atomic measure supported at a point c ∈ R, have been done (see for instance [1]).
From an analytic point of view, the relative asymptotic behaviour of such polynomials
when µ0 belongs to the class M(0, 1) has been accomplished in several papers ([2], [13]
and [14]). This behaviour is considered in compact sets of C \ supp µ0.

However, the behaviour of polynomials in supp µ0 remains an open question. The
aim of this paper is to cover this lack in the literature. In fact, a first approach was
given by Marcellán and Osilenker [15] when m = 1, dµ0 = χ[−1,1]dx + M(δ1 + δ−1)
and dµ1 = N(δ1 + δ−1) using some previous work by Bavinck and Meijer ([3], [4]), (δc

denotes a Dirac measure supported at the point c). Recently, the same authors have
considered the case when µ0 is the Gegenbauer weight, see [8].

In our paper, we will consider m = 1

dµ0(x) = (1− x)α(1 + x)βχ[−1,1](x)dx + Mδ1(x)

dµ1(x) = Nδ1(x)

with α > −1 and β > −1. Such a kind of polynomials are strongly connected with
eigenfunctions of linear differential operators with polynomial coefficients (see [7]) as
well as with the analysis of five-diagonal matrices associated with Schrödinger operators
([9]).
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In Section 2 we present the basic tools concerning the polynomials orthogonal with
respect to the inner product above with special emphasis in the case of the so-called
Jacobi-Sobolev type polynomials and some results about Jacobi polynomials which we
will need throughout the paper.

In Section 3 we study the behaviour of the coefficients which appear in their rep-
resentation in terms of Jacobi polynomials and, as a consequence, an estimate for them
at the ends of the interval is given and a result about the convergence acceleration of
the zeros is derived. We also deal with pointwise analysis and upper bounds for Jacobi-
Sobolev type polynomials as well as an upper bound of their uniform norm using the
corresponding estimates for standard Jacobi polynomials is obtained.

Finally, in Section 4 we obtain some bounds and estimates for the kernels associated
with the polynomials considered above. In particular, the analogue of a very well known
result by Máté-Nevai-Totik concerning Christoffel functions is deduced.

In such a way we can give a complete answer in order to estimate the behaviour
on [−1, 1] of such polynomials. Notice that some of the results above, when dµ0 =
wdx+Mδc where w is a generalized Jacobi weight and µk = 0 (k = 1, ...,m), have been
obtained in [10].

2. Representation formulas and basic results

Let µ be a positive Borel measure on R whose moments are finite and whose support
is an infinite set.

We consider the inner product

〈f, g〉 =
∫
R

fgdµ + Mf(c)g(c) + Nf ′(c)g′(c) M,N ≥ 0 c ∈ R (1)

Let pn and qn be the polynomials orthonormal with respect to the measure µ and
the inner product (1), respectively.

Denote qn(x) = γnxn + ... and pn(x) = knxn + ... . The Fourier expansion of qn in
terms of pk (k = 0, ..., n) leads to

qn(x) =
γn

kn
pn(x)−Mqn(c)Kn−1(x, c)−Nq′n(c)K(0,1)

n−1 (x, c) (2)

We have used the abbreviation

K(r,s)
n (x, y) =

n∑
k=0

p
(r)
k (x)p(s)

k (y) =
∂r+s

∂xr∂ys
Kn(x, y)

where, as usual, Kn(x, y) =
∑n

k=0 pk(x)pk(y).
If we take derivatives in (2) with respect to x and evaluating at x = c, the values

of qn(c) and q′n(c) can be expressed by

qn(c) =
γn

knDn
[pn(c){1 + NK

(1,1)
n−1 (c, c)} −Np′n(c)K(0,1)

n−1 (c, c)]

q′n(c) =
γn

knDn
[−Mpn(c)K(0,1)

n−1 (c, c) + p′n(c){1 + MKn−1(c, c)}]
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where

Dn = 1+MKn−1(c, c)+NK
(1,1)
n−1 (c, c)+MN [Kn−1(c, c)K

(1,1)
n−1 (c, c)−(K(0,1)

n−1 (c, c))2] (3)

(note that Dn = Dn(M,N, c) > 0 for all M ≥ 0, N ≥ 0 and c ∈ R).

Let pn(x;µj) = kn(µj)xn + ..., j = 0, 1, 2, ..., the orthonormal polynomials with
respect to the measure dµj = (x − c)2jdµ (where µ0 = µ) and Kn(x, y;µj) the corre-
sponding kernels. Expanding (x− c)pn−1(x;µj+1) in terms of pk(x;µj) we obtain (see
[1, Lemma 2.1])

(x− c)pn−1(x;µj+1) =
kn−1(µj+1)

kn(µj)
[pn(x;µj)−

pn(c;µj)
Kn−1(c, c;µj)

Kn−1(x, c;µj)]

Using the orthonormality of the polynomials pn−1(x;µj+1) and pn(x;µj) and the repro-
ducing property of the kernels Kn−1(x, c;µj) we have(

kn(µj)
kn−1(µj+1)

)2

= 1 +
pn(c;µj)2

Kn−1(c, c;µj)

We want to point out that

lim
n

kn(µj)
kn−1(µj+1)

= 1 whenever µj ∈ M(0, 1) c ∈ [−1, 1] (4)

(see [17, Theorem 3 on p.26]), that we will use later.
Since the polynomials pn(x;µ1) satisfy

Kn(c, c)pn(x;µ1) =
kn(µ1)
kn+1

[p′n+1(c)Kn(x, c)− pn+1(c)K(0,1)
n (x, c)]

we can write qn(c) and q′n(c) as follows

qn(c) =
γn

knDn
[pn(c)−N

kn

kn−1(µ1)
p′n−1(c;µ1)Kn−1(c, c)]

q′n(c) =
γn

knDn
[p′n(c) + M

kn

kn−1(µ1)
pn−1(c;µ1)Kn−1(c, c)}]

(5)

If we represent the kernels Kn−1(x, c) and K
(0,1)
n−1 (x, c) in terms of the polynomials

pn(x) and pn(x;µj) with j = 1, 2 we can obtain (see [1, Proposition 2.2])

Proposition 1. Let pn be the orthonormal polynomials for the measure µ and c ∈ R
such that the condition pn(c)pn−1(c;µ1) 6= 0 is satisfied for every n ∈ N. Then, the
polynomials qn orthonormal with respect to the inner product (1) verify the formula

qn(x) = Anpn(x) + Bn(x− c)pn−1(x;µ1) + Cn(x− c)2pn−2(x;µ2) (6)
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with

An =
γn

kn
(1− αn) Bn =

γn

kn−1(µ1)
(αn − βn) Cn =

γn

kn−2(µ2)
βn (6.1)

where

1− αn = D−1
n

[
1−N

kn

kn−1(µ1)
p′n−1(c;µ1)

pn(c)
Kn−1(c, c)

]
(6.2)

βn = NKn−2(c, c;µ1)D−1
n

[
kn−1(µ1)

kn

p′n(c)
pn−1(c;µ1)

+ MKn−1(c, c)
]

(6.3)

Remark. Since all the zeros of the polynomials pn(x) and pn−1(x;µ1) are in the interior
of the convex hull of supp µ, then the formula (6) is true whenever c is not an interior
point of the convex hull of supp µ.

From (2), it is obvious that

γn

kn
=

∫
R

qnpndµ = 〈qn, pn〉 −Mpn(c)qn(c)−Np′n(c)q′n(c)

and then by straightforward calculations we find, (see [1] or [2])

γn

kn
=

(
Dn

Dn+1

)1/2

(7)

In the sequel we consider the inner product (1) when the measure µ is the Jacobi
weight and c = 1, that is

〈f, g〉 =
∫

[−1,1]

fgwα,βdx + Mf(1)g(1) + Nf ′(1)g′(1) (8)

where wα,β(x) = (1− x)α(1 + x)β with α, β > −1 and M,N ≥ 0.
Let P

(α,β)
n be the Jacobi polynomials with the normalization condition

P
(α,β)
n (1) =

Γ(n + α + 1)
Γ(α + 1)n!

and p
(α,β)
n the Jacobi orthonormal polynomials. We denote

by q
(α,β)
n the polynomials orthonormal with respect to the inner product (8).
Some basic properties of Jacobi polynomials, (see [18], Chapter IV), we will need

in the following, are given below. Throughout this paper we use the notation zn
∼= wn

when the sequence zn/wn converges to 1.

P (α,β)
n (1) ∼=

nα

Γ(α + 1)
(9)

d

dx
P (α,β)

n (x) =
n + α + β + 1

2
P

(α+1,β+1)
n−1 (x) (10)
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‖P (α,β)
n ‖2 =

2α+β+1Γ(n + α + 1)Γ(n + β + 1)
(2n + α + β + 1)n!Γ(n + α + β + 1)

∼= 2α+βn−1 (11)

an =
Γ(2n + α + β + 1)

2nn!Γ(n + α + β + 1)
∼= 2n+α+β(πn)−1/2 (12)

where P
(α,β)
n (x) = anxn + ...

From (9)-(12), we have for Jacobi orthonormal polynomials:

p(α,β)
n (1) ∼=

nα+(1/2)

2(α+β)/2Γ(α + 1)
(13)

(p(α,β)
n )′(1) ∼=

nα+(5/2)

2(α+β+2)/2Γ(α + 2)
(14)

From these formulas we can deduce

Lemma 1. The following estimates hold:

Kn(1, 1) ∼=
n2α+2

2α+β+1Γ(α + 1)Γ(α + 2)
(15)

K(0,1)
n (1, 1) ∼=

n2α+4

2α+β+2Γ(α + 1)Γ(α + 3)
(16)

K(1,1)
n (1, 1) ∼=

α + 2
2α+β+3Γ(α + 2)Γ(α + 4)

n2α+6 (17)

Proof: Because of the reproducing property of the kernels, Kn(x, 1) is a polynomial
of degree n, orthogonal with respect to the weight wα+1,β , that is, for each n there exists
a constant cn such that Kn(x, 1) = cnp

(α+1,β)
n (x). Comparing the leading coefficients

we get

Kn(x, 1) =
‖P (α+1,β)

n ‖
‖P (α,β)

n ‖
n + α + β + 1
2n + α + β + 1

p(α,β)
n (1)p(α+1,β)

n (x) (18)

Now, (15) follows from (11) and (13).
If we derive (18) and evaluating at x = 1, by using (11), (13) and (14), we deduce

(16).
To obtain the estimate for K

(1,1)
n (1, 1) we can consider the formula

Kn(1, 1)K(1,1)
n (1, 1)− (K(0,1)

n (1, 1))2 = Kn−1(1, 1;wα+2,β)Kn(1, 1) (19)

(see [1, Formula (2.9′)]). Now (17) follows from (19), taking into account (15) and (16).

This lemma and (19) allow us to deduce easily the asymptotic behaviour of Dn,
(see formula (3)).

From now on C will denote a positive constant independent of n, but possibly
different in each ocurrence.
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Lemma 2. There exists a positive constant C such that:
a) if MN > 0, then

Dn
∼= MN [Kn−1(1, 1)K(1,1)

n−1 (1, 1)− (K(0,1)
n−1 (1, 1))2] ∼= Cn4α+8

b) if M = 0 and N > 0 then

Dn
∼= NK

(1,1)
n−1 (1, 1) ∼= Cn2α+6

Taking in mind (7), a consequence of the lemma above is the following

Corollary 1. Let kn and γn be the leading coefficients of the polynomials p
(α,β)
n and

q
(α,β)
n respectively. Then lim

n

γn

kn
= 1.

3. Jacobi-Sobolev polynomials q
(α,β)
n : Estimates on [−1, 1] and zeros

In this section, the representation of the polynomials q
(α,β)
n orthonormal with re-

spect to (8) in terms of Jacobi polynomials plays an important role. According to
Proposition 1, the corresponding formula is

q(α,β)
n (x) = Anp(α,β)

n (x) + Bn(x− 1)p(α+2,β)
n−1 (x) + Cn(x− 1)2p(α+4,β)

n−2 (x) (20)

We begin by analyzing the size of the coefficients.

Theorem 1. There exists a positive constant C such that:
a) if MN > 0 then, An

∼= −Cn−2α−2 Bn
∼= Cn−2α−2 Cn

∼= 1
b) if M = 0 and N > 0 then, An

∼= −1
α+2 Bn

∼= 1 Cn
∼= 1

α+2 .

Proof: Firstly, note that because of (4) and Corollary 1,
γn

kn
,

γn

kn−1(wα+2,β)
and

γn

kn−2(wα+4,β)
converge to 1. So, from (6.1), the asymptotic behaviour of An, Bn and

Cn only depends on αn and βn.
a) Assume MN > 0. Using (13)-(15), we can see that, in formula (6.2), the term

in brackets tends to −∞ like −n2α+6. Since, by Lemma 2, Dn
∼= Cn4α+8 it follows that

αn → 1 and An
∼= −Cn−2α−2.

Applying formulas (13)-(15) and Lemma 2 in (6.3), we obtain that βn → 1; hence
αn − βn → 0. Handling as above, it is not difficult to deduce that Bn

∼= Cn−2α−2.
The result for Cn is immediate.
b) Assume M = 0 and N > 0. Lemma 2 and formulas (13)-(15) lead to

D−1
n

NKn−1(1, 1)(p(α+2,β)
n−1 )′(1)

p
(α,β)
n (1)

→ 1
α + 2

which, since Dn
∼= Cn2α+6, implies that 1− αn → −1/(α + 2). As to βn, arguing in a

similar way we get that βn → 1/(α + 2) and the assertion follows.
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Now, we can give the asymptotic behaviour of the polynomials q
(α,β)
n and (q(α,β)

n )′

at the ends of the interval [−1, 1] for M ≥ 0 and N > 0.

Theorem 2. There exists a positive constant C such that the following estimates

q(α,β)
n (−1) ∼= p(α,β)

n (−1) ∼= C(−1)nnβ+(1/2)

(q(α,β)
n )′(−1) ∼= (p(α,β)

n )′(−1) ∼= C(−1)nnβ+(5/2)

q(α,β)
n (1) ∼=

{
−Cn−α−(3/2) if MN > 0
−Cnα+(1/2) if M = 0, N > 0

(q(α,β)
n )′(1) ∼= Cn−α−(7/2)

hold.
Proof: Evaluating formula (20) at x = −1 and taking into account that p

(α,β)
n (−x) =

(−1)np
(β,α)
n (x), for all x ∈ [−1, 1], we have

q(α,β)
n (−1) = (−1)n[Anp(α,β)

n (1) + 2Bnp
(β,α+2)
n−1 (1) + 4Cnp

(β,α+4)
n−2 (1)]

Theorem 1 and (13) yield lim
n

q
(α,β)
n (−1)

p
(α,β)
n (−1)

= 1, whenever M ≥ 0 and N > 0.

Deriving in the expression above of q
(α,β)
n (x) and proceeding as before, from (13),

(14), and Theorem 1, we obtain that lim
n

(q(α,β)
n )′(−1)

(p(α,β)
n )′(−1)

= 1, whenever M ≥ 0 and N > 0.

To give the asymptotic behaviour at the point 1, we can use similar arguments.
However, we want to point out that to estimate (q(α,β)

n )′(1) it is easier to apply formula
(5) written for Jacobi polynomials and c = 1, that is

(q(α,β)
n )′(1) =

γn

knDn
[(p(α,β)

n )′(1) + M
kn

kn−1(wα+2,β)
p
(α+2,β)
n−1 (1)Kn−1(1, 1)]

Now it suffices to apply (4), (13)-(15), Lemma 2 and Corollary 1.

Note that the polynomials orthogonal with respect to the measure µ + Mδ1 are
orthogonal with respect to the inner product (1) with c = 1, M > 0 and N = 0. Next
we summarize for this situation the main results of this section:

Lemma 3. Whenever M > 0 and N = 0, there exists a positive constant C such that,

Dn
∼= MKn−1(1, 1) ∼= Cn2α+2

An
∼= Cn−2α−2 Bn

∼= 1 Cn = 0

q(α,β)
n (1) ∼= Cn−α−(3/2) (q(α,β)

n )′(1) ∼= Cnα+(5/2)
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q(α,β)
n (−1) ∼= p(α,β)

n (−1) ∼= C(−1)nnβ+(1/2)

(q(α,β)
n )′(−1) ∼= (p(α,β)

n )′(−1) ∼= C(−1)nnβ+(5/2)

The results above allow us to deduce some information about the zeros of q
(α,β)
n .

It is known that Jacobi orthonormal polynomials satisfy the Mehler-Heine formula
(see [18, Theorem 8.1.1]):

lim
n

n−α−1/2p(α,β)
n (1− z2

2n2
) = lim

n
n−α−1/2p(α,β)

n (cos
z

n
) = 2−

α+β
2

(z

2

)−α

Jα(z)

uniformly for z on compact sets of C, where Jα is the Bessel function of order α.
Using Hurwitz’s theorem, we get that, if −1 < xnn < ... < x1n < 1 are the zeros

of p
(α,β)
n and we write xkn = cos θkn(0 < θkn < π, 1 ≤ k ≤ n), then lim

n
nθkn = jkα

where jkα is the kth positive zero of Jα. From this and taking into account that

0 < jkα < jk+1,α (see [18] and [19, chapter XV]), it can be derived that 1− xkn
∼=

C

n2
.

Concerning the zeros of q
(α,β)
n , denoted by (ξkn)n

k=1, we know that all of them are
real and simple and at least n− 1 are in the interval (−1, 1).

Theorem 2 and Lemma 3 imply that, for n large enough, either q
(α,β)
n (1) < 0 or

q
(α,β)
n (1) > 0 according to either N > 0 or N = 0, respectively. So we have that
−1 < ξnn < . . . < ξ2n < 1 < ξ1n whenever N > 0 while −1 < ξnn < . . . < ξ1n < 1
whenever N = 0. Moreover, lim

n
ξ1n = 1, (see [1, Proposition 3.3]).

Theorem 3. Let (ξkn)n
k=1 be the zeros of q

(α,β)
n in decreasing order. Then

a) If MN > 0

n2(1− ξkn) → 0, k = 1, 2

1− ξkn
∼=

C

n2
(k ≥ 3)

b) If M = 0, N > 0:

1− ξkn
∼=

C

n2
(k ≥ 1)

c) If M > 0, N = 0:

n2(1− ξ1n) → 0

1− ξkn
∼=

C

n2
(k ≥ 2)

Proof: Formula (20) evaluated at 1− z2

2n2
and Mehler-Heine formula lead to
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lim
n

n−α−1/2q(α,β)
n (1− z2

2n2
) = 2−

α+β
2 (lim

n
An)

(z

2

)−α

Jα(z)−

2−
α+β+4

2 (lim
n

Bn)z2
(z

2

)−(α+2)

Jα+2(z) + 2−
α+β+8

2 (lim
n

Cn)z4
(z

2

)−(α+4)

Jα+4(z)

uniformly for z on compact sets of C
a) Suppose MN > 0. Using the estimates for the coefficients An, Bn, and Cn (see

Theorem 1), we get

lim
n

n−α−1/2q(α,β)
n (1− z2

2n2
) = 2−

α+β+8
2 z4

(z

2

)−(α+4)

Jα+4(z)

uniformly for z on compact sets of C. As a consequence of Hurwitz’s theorem, we obtain

n2(1− ξ1n) → 0

n2(1− ξ2n) → 0

n2(1− ξkn) → 1
2
(jk−2,α+4)2 (k ≥ 3)

b) For M = 0, N > 0, we have

lim
n

n−α−1/2q(α,β)
n (1− z2

2n2
) = −2−

α+β
2

α + 2

(z

2

)−α

[Jα(z) + (α + 2)Jα+2(z)− Jα+4(z)]

uniformly for z on compact sets of C.
Bessel functions satisfy the recurrence relation (see [18, (1.71.5)])

2αz−1Jα(z) = Jα−1(z) + Jα+1(z)

so, after straightforward calculations, it follows

lim
n

n−α−1/2q(α,β)
n (1− z2

2n2
) =

2−
α+β+4

2

[
r4(z)

(z

2

)−(α+4)

Jα+4(z) + s2(z)
(z

2

)−(α+3)

Jα+3(z)
]

uniformly for z on compact sets of C, where r4(z) = z2

4 [z2 + 4(α + 1)] and s2(z) =
−(α + 1)[z2 + 4(α + 3)].

Since r4(z) > 0 and s2(z) < 0 for all z ∈ (0,+∞) and the positive zeros of Jα+3

interlace with those of Jα+4, then between two consecutive positive zeros of Jα+3 there
is precisely one zero of r4(z)

(
z
2

)−(α+4)
Jα+4(z)+ s2(z)

(
z
2

)−(α+3)
Jα+3(z). Besides, this

last function does not vanish at 0. Then, again by Hurwitz’s theorem, it follows that

1− ξkn
∼=

C

n2
(k ≥ 1)
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c) Proceeding as above, for M > 0, N = 0, we obtain that

lim
n

n−α−1/2q(α,β)
n (1− z2

2n2
) = −2−

α+β+4
2 z2

(z

2

)−(α+2)

Jα+2(z)

uniformly for z on compact sets of C and hence

n2(1− ξ1n) → 0

n2(1− ξkn) → 1
2
(jk−1,α+2)2 (k ≥ 2)

holds.

Remark. Note that, the theorem above says that the convergence to 1 of the biggest
or the two biggest zeros of Jacobi polynomials may be accelerated adding to the inner
product either a Dirac’s delta at the point 1 or a Dirac’s delta plus a term involving the
first derivative at the point 1, respectively.

Next we are going to estimate the polynomials q
(α,β)
n in [−1, 1]. The asymptotic

behaviour of q
(α,β)
n (x) for x on compact sets of C \ [−1, 1] is well known since Lemma

16 on p.132 in [17] and Theorem 4 in [14] lead to lim
n

q
(α,β)
n (x)

p
(α,β)
n (x)

= 1 uniformly for x on

compact sets of C \ [−1, 1] , whenever M ≥ 0 and N ≥ 0. (Concerning the asymptotic
behaviour of p

(α,β)
n (x) out of [−1, 1], see [17, Theorem 8.21.7]).

First, we recall a property satisfied by Jacobi polynomials.
Lemma 16 on page 83 in [17] shows that there is a constant C independent of x

and n such that

|p(α,β)
n (x)| ≤ C(1− x + n−2)−(α/2)−(1/4)(1 + x + n−2)−(β/2)−(1/4) (21)

for all x ∈ [−1, 1] and n ≥ 1, with α, β > −1. In the sequel C will denote a positive
constant independent of n and x, but possibly different in each ocurrence.

We will find that similar bounds are valid for the polynomials q
(α,β)
n with M,N ≥ 0.

Theorem 4. There exists a constant C such that for each x ∈ [−1, 1], n ≥ 1 and
α, β > −1

|q(α,β)
n (x)| ≤ C(1− x + n−2)−(α/2)−(1/4)(1 + x + n−2)−(β/2)−(1/4) (22)

Proof: It suffices to prove the result for n large enough.
Since the coefficients An, Bn and Cn are bounded (see Theorem 1 and Lemma

3) and the boundedness (21) for p
(α,β)
n (x) is also true for (1 − x)p(α+2,β)

n−1 (x) and
(1− x)2p(α+4,β)

n−2 (x) for all x ∈ [−1, 1] and n ≥ 2, the statement follows.

As a consequence, whenever α, β ≥ −1/2, we get a bound independent of n

|q(α,β)
n (x)| ≤ C(1− x)−(α/2)−(1/4)(1 + x)−(β/2)−(1/4)
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for all x ∈ (−1, 1).
In particular, if α = β = 0, we have |q(α,β)

n (x)| ≤ C(1−x2)−(1/4) for all x ∈ (−1, 1).
A similar result has been obtained in [15] for the polynomials orthonormal with respect
to the inner product 〈f, g〉 =

∫
[−1,1]

fgdµ0+
∫
[−1,1]

f ′g′dµ1 with dµ0 = 1
2dx+M(δ1+δ−1)

and dµ1 = N(δ1 + δ−1).
Now, from Theorem 4, we can deduce an upper bound of the maximum of q

(α,β)
n (x)

on [−1, 1].

Corollary 2. There exists a constant C such that for each n ≥ 1 we have

max
−1≤x≤1

|q(α,β)
n (x)| ≤

{
Cnq+(1/2) if q ≥ −1/2
C if q ≤ −1/2

where q = max{α, β}.
Proof: The inequalities 1 ≤ 1 + x + n−2 ≤ 3 and n−2 ≤ 1− x + n−2 ≤ 2 hold for

x ∈ [0, 1]. Therefore, from (22), it follows that

|q(α,β)
n (x)| ≤

{
Cnα+(1/2) if α ≥ −1/2
C if α ≤ −1/2

for all x ∈ [0, 1].
A similar argument leads to

|q(α,β)
n (x)| ≤

{
Cnβ+(1/2) if β ≥ −1/2
C if β ≤ −1/2

for all x ∈ [−1, 0]. The assertion follows easily.

Concerning the asymptotic behaviour of the q
(α,β)
n on [−1, 1], by the previous Sec-

tion we know estimates for these polynomials at the end points of the support of the
Jacobi weight. What about the asymptotic behaviour of the q

(α,β)
n on (−1, 1) ?

The Jacobi orthonormal polynomials verify

p(α,β)
n (x) = rα,β

n (1− x)−(α/2)−(1/4)(1 + x)−(β/2)−(1/4) cos(kθ + γ) + O(n−1) (23)

k = n + α+β+1
2 , γ = −(α + 1)π/2 and rα,β

n =
2(α+β+1)/2(πn)−1/2

‖P (α,β)
n ‖

→
(

2
π

)1/2

uniformly for x on compact sets of (−1, 1), (see [18, Theorem 8.21.8]).
Now, we will show that the polynomials q

(α,β)
n have a similar asymptotic behaviour

to the one of p
(α,β)
n on the interval (−1, 1).

Theorem 5. Let q
(α,β)
n be the polynomials orthonormal with respect to (8) and An,

Bn and Cn the corresponding coefficients which appear in formula (20). Then

q(α,β)
n (x) = sα,β

n (1− x)−(α/2)−(1/4)(1 + x)−(β/2)−(1/4) cos(kθ + γ) + O(n−1)
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sα,β
n = Anrα,β

n + Bnrα+2,β
n−1 + Cnrα+4,β

n−2 →
(

2
π

)1/2

uniformly for x on compact sets of (−1, 1). Therefore, lim
n

[q(α,β)
n (x) − p(α,β)

n (x)] = 0

uniformly for x on compact sets of (−1, 1).

Proof: By (20) and (23), we have

q(α,β)
n (x) = (1− x)−(α/2)−(1/4)(1 + x)−(β/2)−(1/4) cos(kθ + γ)[Anrα,β

n + Bnrα+2,β
n−1 + Cnrα+4,β

n−2 ]

+ [An + Bn(x− 1) + Cn(x− 1)2]O(n−1)

uniformly for x on compact sets of (−1, 1).
From the asymptotic behaviour of the coefficients An, Bn and Cn obtained in the

previous section, we get

q(α,β)
n (x) = sα,β

n (1− x)−(α/2)−(1/4)(1 + x)−(β/2)−(1/4) cos(kθ + γ) + O(n−1)

and lim
n

sα,β
n =

(
2
π

)1/2

.

Therefore q(α,β)
n (x) =

sα,β
n

rα,β
n

p(α,β)
n (x) + O(n−1) and we can write

q(α,β)
n (x)− p(α,β)

n (x) =
(

sα,β
n

rα,β
n

− 1
)

p(α,β)
n (x) + O(n−1)

uniformly for x on compact sets of (−1, 1). Thus the result follows.

Remark. From (21) we have |p(α,β)
n (x)| ≤ C for x on compact sets of (−1, 1). Then

lim
n

[q(α,β)
n − p(α,β)

n ] = 0 uniformly on compact sets of (−1, 1) could be also deduced

applying Theorem 5 in [14] and formula (10) of Lemma 16 in [17].

4. Estimates for the kernels

It is known, (Nevai [17, Lemma 5 on p. 108]), that the kernels associated with
Jacobi polynomials satisfy the estimate

Kn(x, x) ∼ n(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2) (24)

uniformly in |x| ≤ 1, n ≥ 1, where by fn(x) ∼ gn(x) we mean that there exist some
positive constants C1 and C2 such that C1fn(x) ≤ gn(x) ≤ C2fn(x) for all x ∈ [−1, 1]
and n ∈ N.

We want to find similar estimates for the new kernels.
Let Ln(x, y) be the kernels relative to the inner product (8). If we consider their

expansion in terms of Jacobi orthonormal polynomials, we can deduce, (see [1, p.744]),

Ln(x, y) = Kn(x, y)−MLn(y, 1)Kn(x, 1)−NL(0,1)
n (y, 1)K(0,1)

n (x, 1) (25)
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with

Ln(x, 1) = D−1
n+1

(
[1 + NK(1,1)

n (1, 1)]Kn(x, 1)−NK(0,1)
n (1, 1)K(0,1)

n (x, 1)
)

L(0,1)
n (x, 1) = D−1

n+1

(
[1 + MKn(1, 1)]K(0,1)

n (x, 1)−MK(0,1)
n (1, 1)Kn(x, 1)

)
Inserting Ln(x, 1) and L

(0,1)
n (x, 1) in (25) and taking y = x, we get

Ln(x, x) = Kn(x, x)−D−1
n+1[M{1 + NK(1,1)

n (1, 1)}Kn(x, 1)2

− 2MNK(0,1)
n (1, 1)Kn(x, 1)K(0,1)

n (x, 1) + N{1 + MKn(1, 1)}K(0,1)
n (x, 1)2]

(26)
If, as usual, we define the Christoffel function

Λn(x) = min{〈p, p〉; deg p ≤ n, p(x) = 1}

it is easy to see that Λn(x) = [Ln(x, x)]−1.
We will use the representation (26) to obtain some bounds for Ln(x, x).

Theorem 6. Let (Ln(x, y)) be the kernels relative to the polynomials q
(α,β)
n . Then

there exists a constant C such that for each x ∈ [−1, 1] and n ≥ 1

|Ln(x, x)| ≤ Cn(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2)

Proof: From (24) we have for each x ∈ [−1, 1], n ≥ 1 and α, β > −1

|Kn(x, x)| ≤ Cn(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2) (27)

Moreover, from (11), (18) and (21),

|Kn(x, 1)| ≤ C|p(α,β)
n (1)||p(α+1,β)

n (x)|
≤ Cnα+(1/2)(1− x + n−2)−(α/2)−(3/4)(1 + x + n−2)−(β/2)−(1/4)

(28)

for all x ∈ [−1, 1].
To find a bound for K

(0,1)
n (x, 1), we will use the formula

K(0,1)
n (x, 1) = (x− 1)Kn−1(x, 1;wα+2,β) +

K
(0,1)
n (1, 1)
Kn(1, 1)

Kn(x, 1) (29)

(see [1, Formula (2.9)]), from which, using (28) and Lemma 1, it follows that

|K(0,1)
n (x, 1)| ≤ Cnα+(5/2)(1− x + n−2)−(α/2)−(3/4)(1 + x + n−2)−(β/2)−(1/4) (30)

for all x ∈ [−1, 1].
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Now it suffices to remind that by Lemmas 1 and 2, whenever MN > 0

MD−1
n+1[1 + NK(1,1)

n (1, 1)] ≤ Cn−2α−2

2MND−1
n+1K

(0,1)
n (1, 1) ≤ Cn−2α−4

ND−1
n+1[1 + MKn(1, 1)] ≤ Cn−2α−6

and to observe that for each x ∈ [−1, 1], the inequality n−1(1−x+n−2)−1 ≤ Cn holds.
For the other values of the parameters M and N , we proceed in a similar way. Thus,
the result follows.

This result gives us only upper bounds. Now we want to estimate more accurately
Ln(x, x). First, we observe the behaviour of Ln(x, x) at the end points of the interval
[−1, 1]. Evaluating at x = 1 the expression of Ln(x, 1) given in (25) and using (19), we
get

Ln(1, 1) = D−1
n+1[1 + NKn−1(1, 1;wα+2,β)]Kn(1, 1)

Then, the kernels Ln(1, 1) are bounded if M > 0, N ≥ 0 while Ln(1, 1) ∼= CKn(1, 1)
if M = 0, N ≥ 0. Note that the boundedness of Ln(1, 1) depends on the addition of a
mass at 1 and not of the term involving derivatives.

Moreover from the expression of Ln(1, 1) we can recover the mass M . Indeed, by
using Lemmas 1, 2 and 3 it follows that, when M > 0 and N ≥ 0, lim

n
Λn(1) = M .

Otherwise, the mass N can be recovered from L
(1,1)
n (1, 1); since

L(1,1)
n (1, 1) = D−1

n+1[K
(1,1)
n (1, 1) + MKn−1(1, 1;wα+2,β)Kn(1, 1)]

when M ≥ 0 and N > 0, we have lim
n

[L(1,1)
n (1, 1)]−1 = N .

Remark. The expressions of the masses M and N , given above, as the limit of
Ln(1, 1)−1 and L

(1,1)
n (1, 1)−1 respectively, can be also obtained from the results of Durán,

see [6].
As to Ln(−1,−1), it suffices to take x = y = −1 in (25) and we obtain

Ln(−1,−1) ∼= CKn(−1,−1) ∼= Cn2β+2

Next, we are going to find uniform estimates for the kernels. When M > 0, Ln(1, 1) is
bounded, so we give uniform estimates on compact sets not containing the mass point
1.

Theorem 7. a) Suppose M > 0, N ≥ 0. Let ε > 0, then

Ln(x, x) ∼ n(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2)

uniformly on [−1, 1− ε], n ≥ 1.

b) Suppose M = 0, N ≥ 0. Then

Ln(x, x) ∼ n(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2)

15



uniformly on |x| ≤ 1, n ∈ N.
Proof: Because of Theorem 6, it suffices to prove that, for n large enough

Ln(x, x) ≥ Cn(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2)

uniformly on [−1, 1− ε] when M > 0 and on [−1, 1] when M = 0.
For the sake of simplicity, we write

d(x, n) = n(1− x + n−2)−α−(1/2)(1 + x + n−2)−β−(1/2)

a) Let N > 0. Using Lemmas 1 and 2 and formulas (28) and (30), we obtain that
the three last summands in (26) are bounded by Cd(x, n)n−2(1 − x + n−2)−1. Thus,
taking into account (24), the result follows. For N = 0, we handle in a similar way.

b) For N = 0 the result is obvious because of Ln(x, x) = Kn(x, x). Suppose N > 0,
as Dn+1 = 1 + NK

(1,1)
n (1, 1), from (26) we have

Ln(x, x) ≥ ND−1
n+1[K

(1,1)
n (1, 1)Kn(x, x)−K(0,1)

n (x, 1)2]

and using, again, the estimates for the kernels and (29) we can deduce the result.

Now we consider the analogue of the Szegő extremum problem for the inner product
(8).

The generalized Szegő extremum problem, associated with a finite positive Borel
measure on the real line, consists of finding lim

n
λn(x;µ) with λn(x;µ) the Christoffel

functions corresponding to µ. It is known that, for µ = wα,β ,

lim
n

nλn(x) = πwα,β(x)(1− x2)1/2

uniformly for x on compact sets of (−1, 1), see [17, Theorem 35 on p. 94]. A solution of
this problem, when µ belongs to the Szegő class of the interval [−1, 1], has been given
in [16, Theorem 5] by proving that lim

n
nλn(x;µ) = πµ′(x)(1 − x2)1/2 for almost every

x ∈ [−1, 1], where µ′ is almost everywhere the Radon-Nikodym derivative of µ.

Theorem 8. Let Λn be the Christoffel functions associated with (8). Then

lim
n

nΛn(x) = πwα,β(x)(1− x2)1/2

uniformly for x on compact sets of (−1, 1).

Proof: We only need to prove lim
n

n−1Ln(x, x) = lim
n

n−1Kn(x, x), uniformly for x

on compact sets of (−1, 1). Thus, by (26), it suffices to deduce

lim
n

MD−1
n+1[1 + NK(1,1)

n (1, 1)]Kn(x, 1)2 = 0

lim
n

MND−1
n+1K

(0,1)
n (1, 1)Kn(x, 1)K(0,1)

n (x, 1) = 0

lim
n

ND−1
n+1[1 + MKn(1, 1)]K(0,1)

n (x, 1)2 = 0
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uniformly for x on compact sets of (−1, 1) and this follows by considering (18), (23),
and (29).

From the results of Section 2 and formulas (28) and (30), the following bounds for
Ln(x, 1) and L

(0,1)
n (x, 1) can also be obtained:

Theorem 9. There exists a constant C such that for each x ∈ [−1, 1] and n ≥ 1

|Ln(x, 1)| ≤ C(1 + x + n−2)−(β/2)−(1/4) if M > 0
|Ln(x, 1)| ≤ Cn2α+4(1 + x + n−2)−(β/2)−(1/4) if M = 0
|L(0,1)

n (x, 1)| ≤ C(1 + x + n−2)−(β/2)−(1/4) if N > 0
|L(0,1)

n (x, 1)| ≤ Cn2α+4(1 + x + n−2)−(β/2)−(1/4) if N = 0

Notice that the bounds above for Ln(x, 1) when M > 0 and for L
(0,1)
n (x, 1) when

N > 0 are, respectively, smaller than the ones for Kn(x, 1) and K
(0,1)
n (x, 1) (see formulas

(28) and (30)).

Remark. Some of the previous results about the kernels appear in [10] for w a gener-
alized Jacobi weight and N = 0.

Finally, it is worth observing that if in the product (1) µ is the Jacobi measure and
we take c = −1, since Jacobi polynomials satisfy p

(α,β)
n (−x) = (−1)np

(β,α)
n (x), we get

the same results as above but exchanging α and β.
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