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Abstract. Given the Sobolev bilinear form

(f, g)S = 〈u0, fg〉 + 〈u1, f
′g′〉,

with u0 andu1 linear functionals, a characterization of the linear second–order differential operators
with polynomial coefficients, symmetric with respect to(·, ·)S in terms ofu0 andu1 is obtained. In
particular, several interesting functionalsu0 andu1 are considered, recovering as particular cases of
our study, results already known in the literature.

Mathematics Subject Classifications (2000):42C05, 33C45.

Key words: Sobolev bilinear forms, orthogonal polynomials, symmetric differential operators.

1. Introduction

As is well known, polynomials orthogonal with respect to a Sobolev inner product,
that is, an inner product involving derivatives, do not satisfy the same general prop-
erties as those orthogonal with respect to a standard inner product. The interest in
studying these families of orthogonal polynomials lies not only in their connections
with topics such as least squares data fitting, spectral theory of ordinary differential
equations, Fourier expansions, but also in their applications to the theory of orthog-
onal polynomials. For instance, it has been shown that some families of classical
polynomials as Laguerre(L(α)n (x)) or Jacobi(P (α,β)n (x)) polynomials which, for
some values of their parameters, are not orthogonal in the standard sense. How-
ever, they are orthogonal with respect to a Sobolev inner product (see Alfaroet al.
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(1999), Álvarez de Moraleset al. (1998b), Kwonet al. (1995, 1996, 1998), Pérez
et al. (1996)).

One of these properties is the existence of a recurrence relation: standard or-
thogonal polynomials satisfy a three-term recurrence relation as a consequence
of the symmetry of the operator associated to the multiplication byx. However,
multiplications by polynomials are not symmetric operators for many Sobolev
inner products (see Evanset al. (1995)) and therefore the corresponding orthog-
onal polynomials do not satisfy an algebraic recurrence relation. We can avoid this
unpleasant situation looking for a linear operatorF on the linear spaceP of real
polynomials, symmetric with respect to a Sobolev bilinear form (for a preliminary
comment, see Danese (1976)). So,FQn can be expressed as a linear combination
of polynomialsQh, beeing the number of terms independent ofn and (Qn) the
sequence of monic Sobolev orthogonal polynomials. The derivatives in the bilinear
form suggest the use of a differential operator. This has been done, for instance, in
Alfaro et al. (1999), Álvarez de Moraleset al. (1998a, 1998b), Evanset al. (1995),
Marcellánet al. (1994b, 1995, 1996a, 1996b), Pérezet al. (1998), where differ-
ential operators with polynomial coefficients, symmetric with respect to Sobolev
bilinear forms have been constructed. Because of the symmetric character of the
operator, a differential recurrence relation for the Sobolev orthogonal polynomials
can be deduced. The operatorF has also been used to obtain several properties
about zeros of the Sobolev polynomials in some particular cases (see Marcellánet
al. (1994b, 1996a)).

The aim of this paper is to characterize the linear second-order differential
operators with polynomial coefficientsF = p0I + p1D + p2D

2 which are sym-
metric with respect to the Sobolev bilinear form defined by(f, g)S = 〈u0, fg〉 +
〈u1, f

′g′〉, whereu0 andu1 are linear functionals onP.
For the particular case whenu0 andu1 are defined by positive Borel measures,

andp1 = p2 = 0, that is,F is a multiplication operator, this problem has been
solved in Evanset al. (1995), where it has been proved thatF is symmetric if, and
only if, u1 is given by a discrete positive measure.

The paper is organized as follows: In Section 2, we obtain the main result,
namely the characterization of the symmetry ofF = p0I+p1D+p2D

2 in terms of
the functionalsu0 andu1. As a consequence, a substitute of the recurrence relation
is derived. Section 3 is devoted to analyze several situations for different function-
alsu0 andu1; all the results known in the literature are recovered as particular cases
of our analysis. In Section 4, the case whenF is a degree preserving operator is
considered.

2. The Main Result

Let P be the linear space of real polynomials,u0, u1 linear functionals onP, and

(f, g)S = 〈u0, fg〉 + 〈u1, f
′g′〉,
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a bilinear form onP. We define a second-order differential operator

F = p0I + p1D + p2D
2, (1)

wherep0, p1, p2 are arbitrary polynomials andI,D denotes the identity and the
derivative operator, respectively.

We say thatF is symmetricwith respect to(·, ·)S if

(F f, g)S = (f,F g)S, for all f, g ∈ P. (2)

Notice that ifc is a constant, the operatorF = cI is trivially symmetric. Moreover,
if F is symmetric, thencF andF + cI are symmetric too. Then, we will consider
expression (1) forp1 andp2 given, andp0 up to an additive constant.

The goal of this section is to characterize the symmetry of such a operatorF in
terms ofu0, u1.

Let us recall the definition of some useful operations for linear functionalsu on
P (see, for instance, Marcellánet al. (1994a)):

– Givenp ∈ P, we define theleft multiplicationof the functionalu by the poly-
nomialp as the functional such that〈pu, f 〉 = 〈u, pf 〉, for all f ∈ P.

– The (distributional)derivativeof the functionalu, is the functionalDu such that
〈Du, f 〉 = −〈u, f ′〉 for all f ∈ P.

THEOREM 1. Let us consider the Sobolev bilinear form

(f, g)S = 〈u0, fg〉 + 〈u1, f
′g′〉, (3)

whereu0, u1 are nonzero linear functionals. Letp0, p1, p2 be polynomials and
F = p0I + p1D + p2D

2 a linear differential operator, nontrivially symmetric.
ThenF is symmetric with respect to(3) if and only if the linear functionalsu0, u1

satisfy

p2Du0+ (p′2− p1)u0+ p′0u1 = 0, (4)

and

p2Du1 = p1u1. (5)

Moreover, in this situation the functional

p2u0+ p0u1, (6)

is a solution of Equation(5).
Proof.Let assume that the operatorF = p0I +p1D+p2D

2 is symmetric, that
is, it satisfies (2). Then, we have

〈u0, (p1f
′ + p2f

′′)g〉 + 〈u1, (p
′
0f + p1f

′′ + p′2f ′′ + p2f
′′′)g′〉

= 〈u0, f (p1g
′ + p2g

′′)〉 + 〈u1, f
′(p′0g + p1g

′′ + p′2g′′ + p2g
′′′)〉 (7)
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for all f, g ∈ P. Equation (7) forf = 1 andg ∈ P gives

〈u1, p
′
0g
′〉 = 〈u0, p1g

′ + p2g
′′〉,

and we obtain (4). Observe that if a linear functionalu satisfiesDu = 0, thenu = 0
(see Lemma 2.3 in Kwonet al. (1996)).

To deduce (5), it suffices to replacef = x in (7) and from (4) we have, for all
g ∈ P, 〈p1u1 − p2Du1, g

′′〉 = 0. Conversely, to derive the symmetry ofF from
(4) and (5), previously we need to obtain the expressions(p0f, g)S , (p1f, g)S and
(p2f, g)S in terms ofu0, u1 andF . In fact, from (4), we have

(p0f, g)S = 〈u0, p0fg〉 + 〈u1, p
′
0fg

′〉 + 〈u1, p0f
′g′〉

= 〈u0, p0fg〉 + 〈p1u0−D(p2u0), fg
′〉 + 〈u1, p0f

′g′〉
= 〈u0, p0fg〉 + 〈u0, p1fg

′〉 + 〈p2u0, (fg
′)′〉 + 〈p0u1, f

′g′〉
= 〈u0, fF g〉 + 〈p2u0+ p0u1, f

′g′〉.
In a similar way, (4) and (5) give

(p1f, g)S = −〈p2u0+ p0u1, (fg)
′〉 − 〈Du1, fF g〉.

Using (5), we obtain

(p2f, g)S = 〈p2u0 + p0u1, fg〉 − 〈u1, fF g〉.
Thus, by straightforward calculations, we get

(F f, g)S = (p0f + p1f
′ + p2f

′′, g)S = (f,F g)S.
Finally, a simple computation shows that the functionalp2u0+p0u1 is a solution

of the distributional equationp2Dv = p1v. 2

Remark.Sobolev bilinear forms like (3) are usually calleddiagonal. The non-
diagonal case (see Álvarez de Moraleset al.(1998a), Marcellánet al.(1996b)) can
be expressed as

(f, g)S = 〈u0,0, fg〉 + 〈u0,1, fg
′〉 + 〈u1,0, f

′g〉 + 〈u1,1, f
′g′〉,

whereu0,1 = u1,0, in order to preserve the symmetry of the bilinear form. There-
fore, we get

(f, g)S = 〈u0,0−Du0,1, fg〉 + 〈u1,1, f
′g′〉,

and the nondiagonal Sobolev bilinear form reduces to the diagonal one.

In the sequel, we will assume that the bilinear form (3) is regular, that is, all the
principal minors of the associated Gram matrix with respect to the canonical basis
{xn;n > 0}, are nonzero. Then, there exists a sequence of monic polynomials,
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namely {Qn}n, orthogonal with respect to (3). In this situation, we can deduce
some consequences of the previous theorem.

Let assume thatu0, u1 satisfy (4) and (5), andF = p0I + p1D + p2D
2 is

the symmetric operator associated with (3). We can ask about the degree of the
polynomialF xn, n ∈ N. Clearly it depends on the polynomialsp0, p1 andp2.

COROLLARY 1. If the Sobolev bilinear form(3) is regular, then

(i) There existsn0 ∈ N such thatdegF xn0 > n0.
(ii) For all n ∈ N except at most for two values ofn, degF xn = n + r where

r = max{degp0,degp1− 1,degp2− 2} > 0.

Proof. (i) If degF xn < n, for all n ∈ N, we can consider the expansion

FQn =
n−1∑
i=0

an,iQi.

Thus, using the symmetry ofF , we have

an,i = (FQn,Qi)S

(Qi,Qi)S
= (Qn,FQi)S

(Qi,Qi)S
= 0, i = 0,1, . . . , n− 1.

(ii) Let d0, d1, d2 be the degree of the polynomialsp0, p1, p2, respectively and

p0(x) =
d0∑
i=0

aix
i , p1(x) =

d1∑
j=0

bjx
j and p2(x) =

d2∑
k=0

ckx
k.

Including, if necessary, some zero coefficients in the expansions of the polynomials
p0, p1, p2, we can write

F xn =
r∑
i=0

aix
i+n +

r+1∑
j=0

nbjx
j+n−1 +

r+2∑
k=0

n(n− 1)ckx
k+n−2

= (ar + nbr+1+ n(n− 1)cr+2)x
n+r + lower degree terms,

and the result follows. 2
Remark. Observe that, as a consequence, if the Sobolev bilinear form (3) is

regular, thenF never reduces the degree ofall the polynomials, andr > 0.

COROLLARY 2 (Difference–Differential Relation).For everyn > r, wherer is
as in Corollary1, the following relation holds:

FQn =
n+r∑
i=n−r

αn,iQi,
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where

αn,n+r = (FQn,Qn+r )S
(Qn+r ,Qn+r )S

6= 0

except at most for two values ofn.

Proof.Consider the Fourier expansion of the polynomialFQn in terms ofQn,

FQn =
n+r∑
i=0

αn,iQi . Then, the result follows from the symmetry of the operatorF

and Corollary 1(ii). 2
A linear functionalu onP will be called aPearsonfunctional if there exist two

polynomialsφ andψ , non simultaneously zero, such that

D(φu) = ψu. (8)

Let us recall that a linear functionalu is semiclassical (see Hendriksenet al.
(1985)), if it is regular, i.e., there exists a sequence of monic orthogonal polynomi-
als with respect to the linear functionalu, and it satisfies (8).

If a linear functionalu is semiclassical (regular and Pearson) with polynomials
φ andψ , then degψ > 1 andφ 6≡ 0.

Observe that there exist linear functionals which are Pearson and non regular,
for instance,δa (〈δa, f 〉 = f (a)) and(x − a)−1u, whereu is a regular functional(

〈(x − a)−1u, f 〉 = 〈u, f (x)− f (a)
x − a 〉

)
.

Remark.By Theorem 1, ifF = p0I +p1D+p2D
2 is symmetric (non trivially

symmetric, i.e.,F 6≡ cI , for any constantc) with respect to (3) then the functional
u1 is Pearson and besides ifp0 is constant,u0 is also Pearson.

3. The Case whereu0 and u1 are Given by Positive Borel Measures

Let u be a linear functional given by a positive Borel measureµ on the real lineR,
that is, for allf ∈ P, we have

〈u, f 〉 =
∫
R
f dµ. (9)

Assume that all the moments exist and are finite.
Recall that thespectrumof µ (see Chihara (1978), Chapter 2) is defined by

S(µ) = {x;µ(x − ε, x + ε) > 0 for all ε > 0}.
If S(µ) is an infinite set, the linear functionalu defined by the relation (9) is positive
definite.
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Conversely, ifu is a positive definite linear functional, then there exists a posi-
tive Borel measureµ with infinite spectrum such thatu can be represented as (9)
(Chihara (1978), p. 56).

If S(µ) is finite, that is,S(µ) = {x1, x2, . . . , xN }, thenµ =∑N
j=1 αjδxj , where

αj > 0, for j = 1,2, . . . , N , andδxj denotes the Dirac mass measure supported
on {xj }.

In this section, we consider the case whenu0 andu1 are given by positive Borel
measuresµ0 andµ1 onR, and the Sobolev bilinear form (3) is an inner product.
Thus, the spectrum of at least one of the measures is an infinite set. In this situation,
we can write (3) as

(f, g)S =
∫
R
fg dµ0 +

∫
R
f ′g′ dµ1, (10)

for all polynomialsf andg.
According toS(µ0) andS(µ1) being either finite or infinite, we obtain the cor-

responding operatorF associated with (10). In every case, we recover the results
aboutF already known in the literature.

3.1. S(µ0) FINITE

Let S(µ0) be finite and nonempty, thenµ0 = ∑N
i=1 αiδxi , whereN > 1, xi are

distinct real points andαi > 0 for i = 1,2, . . . , N . Since (10) is an inner product,
S(µ1) is infinite andu1 is positive definite.

Using Theorem 1, ifu0 andu1 satisfy (4) and (5),u1 is semiclassical and the
correspondingF is symmetric with respect to (10).

Define q(x) = ∏N
i=1(x − xi). In this way,qu0 = 0, andq ′(xi) 6= 0, i =

1,2, . . . , N .
Multiplying (4) by q, we get−p2q

′u0+p′0qu1 = 0, which leads top′0q
2u1 = 0.

Thereforep′0 = 0 and by (4),u0 is Pearson with equationD(p2u0) = p1u0. The
polynomialsp2 andp1 contain the factorq. Indeed, from last equation we have
qD(p2u0) = 0, that is,p2q

′u0 = 0, andq ′(xi)p2(xi) = 0, i = 1,2, . . . , N , andq
dividesp2. Fromp2u0 = 0 and (4),q also dividesp1.

The linear operatorF can be expressed as

F = p0I + q
[
p̃1D + p̃2D

2
]
,

wherep0 is a constant, andpi = qp̃i , i = 1,2.
Observe that this result includes as a particular case, the previously one obtained

in Alfaro et al. (1999).

3.2. S(µ1) FINITE

Orthogonal polynomials associated with (10) whenµ1 is a finite spectrum posi-
tive Borel measure (the so-called Sobolev-type) have been studied exhaustively by
several authors.
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In 1995, Evanset al. (1995) gave a characterization of the Sobolev orthogonal
polynomials satisfying a recurrence relation. In particular, they obtain that there
exists a nonconstant polynomialh such that(hf, g)S = (f, hg)S if and only if
µ1 has finite spectrum. Moreover, degh > 2 andh is not necessarily of minimal
degree.

In our case, takingF = p0I , with p0 a nonconstant polynomial, Theorem 1
says thatF is symmetric with respect to the Sobolev inner product (10) if and only
if p′0u1 = 0. Thereforeµ1 = ∑N

j=1 αjδxj , for some integerN , whereαj > 0 (at
least one must be nonzero), and{xj }N1 are the distinct real roots ofp′0. In this case,
degp0 > 2.

Finally, we can observe thatp0 could be not of minimal degree, in the sense
that we can consider only the nonzeroα’s, and we will obtain another polynomial
in the same conditions.
Moreover, we point out that thedifference-differential relation(Corollary 2) for
the orthogonal polynomials associated with (10) is a recurrence relation with at
least five terms.

3.3. S(µ0) AND S(µ1) INFINITE

In this case, the linear functionalsu0 andu1 are positive definite, and from Equa-
tion (5),u1 is semiclassical withp2 6≡ 0, and deg(p1+ p′2) > 1.

Here, we will analyze two cases from the literature: The so-calledsemiclassical
case, introduced and studied in Marcellánet al. (1995), and thecoherent pairs,
concept introduced by Iserleset al. (1991), and developed by several authors.

Finally, a study whenu0 andu1 are defined from weight functions is given.

3.3.1. The Semiclassical Case

The existence of a linear operatorF symmetric with respect to (10) whenu0 and
u1 are positive definite functionals satisfying

Au0 = Bu1, (11)

whereA andB are nonzero polynomials, and

D(φ1u1) = ψ1u1, (12)

is shown in Marcellánet al. (1995). Sinceu1 is regular, it is semiclassical,φ1 6≡ 0
and degψ1 > 1. Moreover,u0 is semiclassical because of (11), in factu0 is semi-
classical if and only ifu1 is semiclassical. In Marcellánet al. (1995), the authors
proved that the linear operator

F = Bφ1I −A(ψ1− φ′1)D −Aφ1D
2 (13)

is symmetric with respect to the Sobolev inner product (10).
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The hypothesis (11) and (12), are a particular case of the hypothesis (4)–(5) of
Theorem 1.

In fact, multiplying (11) byφ1, and taking derivatives, we obtain

Aφ1Du0+ [(Aφ1)
′ −A(ψ1− φ′1)]u0− (Bφ1)

′u1 = 0. (14)

The above expression is equal to (4), where

p0 = Bφ1, p1 = −A(ψ1− φ′1), p2 = −Aφ1,

and we recover (13).
Observe that (11) is a particular case of (6), sinceAu0 − Bu1 = 0 is always a

solution of (5)–(12).
Now, we can ask for the reciprocal. Let us asssume that we have a linear opera-

tor F , symmetric with respect to (10), whose explicit expression is given by (13).
Applying Theorem 1, we obtain a wider class of linear functionals that includes, as
a particular case, the originalsu0 andu1.

Remark that the caseu0 = u, u1 = λu, λ > 0, considered in Marcellánet al.
(1994b, 1996a), whereu is either the classical Gegenbauer or the classical Laguerre
functional, respectively, is a particular case of the semiclassical one, withA = λ,
andB = 1.

3.3.2. Coherent Pairs

Coherent pairs have been the subject of a great number of papers during the last
few years. This concept for positive definite functionalsu0 andu1, was introduced
in Iserleset al. (1991).

In Marcellánet al.(1995), it has been proved that coherent pairs are a particular
case of 3.3.1. In fact,u1 is semiclassical withD(φ1u1) = ψ1u1 andφ1u0 = Bu1

where degφ1 6 3, degψ1 6 2 and degB = 2.
Using Theorem 1, in this case, we deduce that

F = Bφ1I − φ1(ψ1− φ′1)D − φ2
1D

2,

is symmetric with respect to (10).
Recently, Meijer (1997) has shown that if{u0, u1} is a coherent pair, then at

least eitheru0 or u1 is a Laguerre or Jacobi functional.

3.3.3. Weight Functions

To conclude this section, we study the case when the positive linear functionalsu0

andu1, are defined by means of weight functionsw0 andw1, respectively, i.e., for
all polynomialsf ∈ P, we have

〈ui, f 〉 =
∫
R
fwi dx, i = 0,1.
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In this situation, Equations (4) and (5) can be written as

p2w
′
0+ (p′2− p1)w0+ p′0w1 = 0, (15)

p2w
′
1− p1w1 = 0. (16)

Remark thatp2 6≡ 0, sinceu1 is positive definite. Solving these differential
equations, directely, we obtain

w1 = k exp
∫
p1

p2
, w0 = −p0+ c

p2
w1,

wherek > 0, andc ∈ R. This is a particular case of the semiclassical one.

4. Degree-Preserving Operators

Corollary 1 shows how the operatorF increases the degree of the polynomials
when the Sobolev bilinear form (3) is regular. In this section we study whenF
is a degree preserving operator, that is, when degF f = degf for all f ∈ P, or
equivalently, degF xn = n for every nonnegative integern.

This situation is very interesting, since ifF preserves the degree of the poly-
nomials, as a consequence of the difference-differential relation (Corollary 2),
the corresponding Sobolev orthogonal polynomials are the eigenfunctions of the
differential operatorF , i.e.,

FQn = λnQn, n > 0,

that is, they satisfy a second-order differential equation

p2y
′′ + p1y

′ + p0y = λny.
First, notice that it is easy to express this fact in terms of the polynomial coeffi-

cients of the operatorF :

LEMMA 1. SetF = p0I +p1D+p2D
2, thenF is a degree preserving operator

if and only ifdeg[x2p0+ nxp1 + n(n− 1)p2] = 2 holds for everyn > 0.

This characterization implies thatp0 is a nonzero constant, degp1 6 1, and
degp2 6 2.

Now, we will consider (3) as a regular bilinear form and we will deduce neces-
sary and sufficient conditions aboutu0 andu1 in order to obtain a symmetric linear
second-order differential operatorF with polynomial coefficients preserving the
degree. Observe that, wheneverp0 is constant, Equations (4) and (5) can be written
as

D(p2u0) = p1u0, (17)

D(p2u1) = (p1+ p′2)u1. (18)
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THEOREM 2. Letu0 andu1 be two regular linear functionals. Then,F = p0I +
p1D + p2D

2 is a degree preserving operator symmetric with respect to(3) if and
only if u0 is classical with distributional equation(17), and u1 is also classical
satisfyingu1 = p2u0.

Proof. If F is symmetric and preserves the degree, then Theorem 1, Lemma 1
and the regularity ofu0 yield degp1 = 1 and degp2 6 2. So,u0 is classical. In
a similar way, we deduce thatu1 is also classical. Relationu1 = p2u0 follows
from the canonical representations for classical functionals (see Marcellánet al.
(1994a)).

Conversely, ifu0 is classical, then it satisfies (17) with degp2 6 2 and degp1 =
1. So, we have (4) withp′0 = 0. Using this fact andu1 = p2u0, we get (5). We can
choosep0 satisfiying Lemma 1 and thereforeF preserves the degree. Applying
Theorem 1, the result follows. 2

It is well known that the only classical functionals are those associated with
Hermite, Laguerre, Jacobi and Bessel polynomials. (The Pearson equation for these
functionals can be seen, for instance, in Marcellánet al. (1994a).) So, we have

COROLLARY 3. The only regular functionalsu0 andu1 with a degree preserving
operatorF symmetric with respect to(3) are the following:

(a) u0 andu1 Hermite functionals.
(b) u0 = u(α) andu1 = u(α+1), whereu(α) is the Laguerre functional, withα not a

negative integer.
(c) u0 = u(α,β) andu1 = u(α+1,β+1), whereu(α,β) is the Jacobi functional, withα,

β andα + β + 1 not a negative integer.
(d) u0 = u(α) andu1 = u(α+2), whereu(α) is the Bessel functional, withα + 1 not

a negative integer.

Moreover,F = p0I +ψD+φD2, wherep0 is some constant andD(φu0) = ψu0

is the Pearson equation satisfied byu0.

Remark.The reader is referred to the contribution (Kwonet al., 1998, Theorem
3.5), where the statements of Theorem 2 and Corollary 3 have been obtained, using
a different method.
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