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Abstract

This paper deals with Mehler–Heine type asymptotic formulas for the so-called discrete Sobolev
orthogonal polynomials whose continuous part is given by Laguerre and generalized Hermite measures.
We use a new approach which allows to solve the problem when the discrete part contains an arbitrary
(finite) number of mass points.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let {µi }
r
i=0 be finite positive Borel measures supported on the real line. Define the Sobolev

space

W 2,r (µ0, µ1, . . . , µr ) :=


f :

∫
| f |

2dµ0 +

r−
i=1

∫
| f (i)

|
2dµi < +∞


with the inner product

( f, g) =

∫
f gdµ0 +

r−
i=1

∫
f (i)g(i)dµi .

It is very well known that this inner product is nonstandard; that is, (x f, g) ≠ ( f, xg). Con-
sequently, some nice properties of standard orthogonal polynomials (for example, the three-term
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recurrence relation and the interlacing properties of zeros) are lost. More importantly, some pow-
erful methods and techniques developed through the years to treat standard orthogonal polyno-
mials have not found their equivalent in this setting and many questions remain unanswered.

Here, we give a general solution to one of those problems. Let µ be a finite positive Borel
measure supported on the real line, c ∈ R and Mi ≥ 0 for i = 0, 1, . . . , r . We consider an inner
product of the form

( f, g) =

∫
f (x)g(x)dµ(x) +

r−
i=0

Mi f (i)(c)g(i)(c),

and let {Qn}n≥0 be the corresponding sequence of monic orthogonal polynomials. Such products
are called discrete types. More general discrete type products, in which derivatives of different
orders are multiplied, have also been studied. Recently in [13] the authors prove that every
symmetric bilinear form of this type can be reduced to the diagonal case; therefore, to some
extent, we are considering the most general situation (as long as the reduction is plausible).

Our aim is to obtain Mehler–Heine asymptotic formulas for the sequence of Sobolev
orthogonal polynomials when the measure which appears in the continuous part is Laguerre
or generalized Hermite. We do this by comparing the Sobolev orthogonal polynomial and its
classical counterpart, and see how the addition of derivatives in the inner product affects the
orthogonal system. Some applications of Sobolev discrete type orthogonality within the theory of
standard orthogonal polynomials are known. For instance, some standard classical polynomials
with nonstandard parameters are not orthogonal in the usual sense, but they are orthogonal with
respect to nonhermitian inner products (see e.g. [11] for the Laguerre case and [10] for the Jacobi
case). Moreover, they are also orthogonal with respect to a discrete type Sobolev inner product
(see e.g. [1] or [12]). This last approach has its origin in a paper by Gonchar where he studies the
convergence of diagonal Padé approximation to meromorphic Markov type functions (see [7]).
Its first use in the context of discrete type Sobolev orthogonal polynomials (and more general)
dates to [14].

This idea allows to reinterpret Sobolev orthogonality as standard quasi-orthogonality (where
some orthogonality conditions are lost). Consequently, the polynomial Qn can be expressed as
a linear combination (with a fixed number of terms) of standard orthogonal polynomials Rn
corresponding to the modified measure dν = (x − c)r+1dµ; that is,

Qn(x) =

r+1−
j=0

a j
n Rn− j (x). (1)

This approach has proved to be fruitful when µ has compact support and c lies in the complement
of the support of the measure.

In the bounded case, a straightforward argument allows to prove that all the connection
coefficients a j

n are bounded. If the measure µ is in the Nevai class, the orthogonal polynomials
Rn have ratio asymptotic which simplifies the study of (1), in order to get the relative asymptotics
of Qn/Rn . The situation is quite different in the case of measures with unbounded support. For
example, consider the Laguerre probability measure, i.e. dµ(x) =

xαe−x

Γ (α+1)
dx with α > −1, and

the inner product

( f, g)r =
1

Γ (α + 1)

∫
∞

0
f (x)g(x)xαe−x dx +

r−
i=0

Mi f (i)(0)g(i)(0), (2)
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where Mi > 0, i = 0, . . . , r . We will see in Theorem 2 that the connection coefficients which
appear in (1) are unbounded, and it is well known that the Laguerre polynomials do not have
ratio asymptotics. So, new ideas must be brought in to make efficient use of (1).

We will study the difference between the Laguerre polynomials and the Sobolev polynomials
Qn,r orthogonal with respect to (2). Because of the structure of (2), one can imagine that the
main difference between two polynomials of equal degree lies around the origin, where the
perturbation of the standard inner product takes place. We will see that is so.

To carry out our plan, we consider Mehler–Heine type formulas since they allow to describe
precisely the Laguerre–Sobolev type polynomials close to the origin. In [4], with r = 1 and
M0, M1 > 0 the authors find an asymptotic formula for the polynomials Qn , and conjecture the
expression this formula should take in the general case. We formulate the conjecture as stated
more clearly in [15].

If Mi > 0 for i = 0, . . . , r , in the inner product (2), then

lim
n→∞

(−1)n

n!nα
Qn,r

 x

n


= (−1)r+1x−α/2 Jα+2r+2(2

√
x),

uniformly on compact subsets of the complex plane, where {Qn,r }n≥0 is the sequence of monic
orthogonal polynomials with respect to (2) and Jα is the Bessel function of the first kind of
order α.

In Theorem 1 we prove that the conjecture is true. In [4], the authors benefit from the fact that
there are explicit formulas for the connection coefficients. In fact,

Qn,1(x) = B0(n)Lα
n (x) + B1(n)x Lα+2

n−1(x) + B2(n)x2Lα+4
n−2(x)

where the coefficients Bi (n) are given explicitly in [9]. For a general Laguerre–Sobolev inner
product, we only know that the Bi (n) are a non trivial solution of a system of r + 1 equations on
r + 2 unknowns. If the system is solved, you get an intricate expression with which it is difficult
to work. So we must follow general arguments. Our approach is new in the framework of Sobolev
orthogonal polynomials.

Mehler–Heine type formulas are interesting twofold: they provide the scaled asymptotics
for Qn,r on compact sets of the complex plane, and supply information on the location and
asymptotic distributions of the zeros of these polynomials in terms of the zeros of known special
functions. In particular, applying Hurwitz’s theorem, we prove that there exists an acceleration
of the convergence of r + 1 zeros of these Sobolev polynomials to the origin.

In the paper, we also deal with the situation when some Mi = 0. We say that such Sobolev
inner products have gaps. For example, consider the inner product

( f, g)r,s =
1

Γ (α + 1)

∫
∞

0
f (x)g(x)xαe−x dx

+

r−
i=0

Mi f (i)(0)g(i)(0) + Ms f (s)(0)g(s)(0),

where s ≥ r + 2 and Mi > 0 for i = 0, . . . , r and i = s.
In this situation, we also establish Mehler–Heine type formulas. We wish to remark that this

case has qualitative differences with respect to the case without gaps. For example, concerning
the convergence acceleration to 0 of the zeros of the polynomials, the result does not depend on
the number of terms in the discrete part, but it depends on the position of the gap. So, despite
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the presence of the mass Ms , there only exists an acceleration of the convergence of r + 1 zeros,
such as that occurs in the case of the inner product without the gap.

From the previous results, using a symmetrization process, we prove in Proposition 2 the
Mehler–Heine type formulas for generalized Hermite–Sobolev type polynomials.

The structure of the paper is as follows. In Section 2 we introduce the notation, the basic tools,
and remind some properties of classical Laguerre polynomials. In Section 3 we obtain some new
results for Laguerre–Sobolev type orthogonal polynomials that we use to establish our main
results in Sections 4 and 5. More precisely, Section 4 is devoted to obtain the Mehler–Heine type
formulas for the orthogonal polynomials with respect to a discrete Sobolev inner product with
positive masses, and in Section 5 we get the corresponding ones for orthogonal polynomials with
respect to an inner product with a gap. In Section 4, we give the size of coefficients appearing in
the connection formula between the Laguerre–Sobolev type and the Laguerre polynomials. The
exterior strong asymptotics for the sequences of Sobolev orthogonal polynomials considered in
Sections 4 and 5 are easily deduced from the relative asymptotics obtained in Section 3.

2. Notation and basic results

Throughout this work we will deal with classical Laguerre polynomials; that is, polynomials
orthogonal with respect to the inner product in the space of all polynomials with real coefficients

(p, q) =
1

Γ (α + 1)

∫
∞

0
p(x)q(x)xαe−x dx, α > −1.

We will denote by Lα
n the nth monic Laguerre polynomial.

Many of the properties of Laguerre polynomials can be seen, for example, in Szegő’s
book [17]. In what follows we summarize those properties which will be used in this paper.

It is known that the monic Laguerre polynomials are defined by

Lα
n (x) = (−1)nn!

n−
k=0


n + α

n − k


(−1)k xk

k!
,

and their L2-norm is

‖Lα
n ‖

2
=

1
Γ (α + 1)

∫
∞

0
(Lα

n (x))2xαe−x dx =
Γ (n + α + 1)

Γ (α + 1)
n!. (3)

The evaluation at x = 0 of the polynomial Lα
n and its successive derivatives are given by

(Lα
n )(k)(0) =

(−1)kn!

(n − k)!

Γ (α + 1)

Γ (α + k + 1)
Lα

n (0) =
(−1)n+kn!

(n − k)!

Γ (n + α + 1)

Γ (α + k + 1)
. (4)

A useful tool for some estimates is the Stirling formula:

Γ (x + 1) ∼ x x e−x
√

2πx (x → +∞),

where the symbol f (x) ∼ g(x) (x → a) stands for limx→a
f (x)
g(x)

= 1. In particular,

Γ (n + α + 1) ∼ n!nα. (5)

As a consequence, from (3)–(5), we get

lim
n

(Lα
n (0))2

‖Lα
n ‖2nα

=
1

Γ (α + 1)
. (6)



464 M. Alfaro et al. / Journal of Approximation Theory 163 (2011) 460–480

The following asymptotic results are known. They can be deduced from Perron’s formula in
Szegő’s book [17],

lim
n

nLα
n−1(x)

Lα
n (x)

= −1, (7)

lim
n

n1/2Lα
n (x)

Lα+1
n (x)

=
√

−x . (8)

In both formulas, convergence is uniform on compact subsets of C \ [0, ∞).

The nth kernel for the Laguerre polynomials Kn(x, y) =
∑n

i=0
Lα

i (x)Lα
i (y)

‖Lα
i ‖2 satisfies the

Christoffel–Darboux formula

Kn(x, y) =
1

‖Lα
n ‖2

Lα
n+1(x)Lα

n (y) − Lα
n+1(y)Lα

n (x)

x − y
.

As usual, we denote the derivatives of the kernels by

K (k,s)
n (x, y) =

∂k+s

∂xk∂ys Kn(x, y) =

n−
i=0

(Lα
i )(k)(x)(Lα

i )(s)(y)

‖Lα
i ‖2

with k, s ∈ N ∪ {0} and the convention K (0,0)
n (x, y) = Kn(x, y).

In the next lemma, we show some formulas for the derivatives of the kernels, that we will
need throughout the paper.

Lemma 1. The derivatives of the kernels of the Laguerre polynomials, for k, s ∈ N ∪ {0}, satisfy

(a)

K (0,s)
n−1 (x, 0) =

1

‖Lα
n−1‖

2

s!

x s+1


Ps(x, 0; Lα

n−1)Lα
n (x) − Ps(x, 0; Lα

n )Lα
n−1(x)


where Ps(x, 0; f ) is the sth Taylor polynomial of f at 0.

(b)

K (k,s)
n−1 (0, 0) =

k!s!

‖Lα
n−1‖

2

s−
j=0

k + s + 1 − 2 j

n − j

(Lα
n−1)

( j)(0)(Lα
n )(k+s+1− j)(0)

j !(k + s + 1 − j)!
,

K (k,0)
n−1 (0, 0) = (−1)k Γ (α + n + 1)

(n − (k + 1))!Γ (α + k + 2)
.

Proof. (a) The result follows from the Christoffel–Darboux formula and Leibniz’s rule.
(b) Observe that, according to Taylor’s formula, 1

k!
K (k,s)

n−1 (0, 0) is precisely the coefficient of

xk in K (0,s)
n−1 (x, 0), therefore

K (k,s)
n−1 (0, 0)

=
k!s!

‖Lα
n−1‖

2

s−
j=0

(Lα
n−1)

( j)(0)(Lα
n )(k+s+1− j)(0) − (Lα

n )( j)(0)(Lα
n−1)

(k+s+1− j)(0)

j !(k + s + 1 − j)!
.

In particular, for s = 0, straightforward computations lead us to conclude this lemma. �

Throughout the paper we work with sequences of monic orthogonal polynomials, and we use
the acronym SMOP for them.
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3. Auxiliary results

From now on {Qn,r }n≥0 denotes the sequence of monic Laguerre–Sobolev orthogonal
polynomials with respect to an inner product of the form

(p, q)r =
1

Γ (α + 1)

∫
∞

0
p(x)q(x)xαe−x dx +

r−
i=0

Mi p(i)(0)q(i)(0), (9)

where α > −1 and Mi > 0, i = 0, . . . , r . Notice that all the masses in the discrete part of this
inner product are positive.

We write Kn,r for the corresponding nth kernel, that is Kn,r (x, y) =
∑n

j=0
Q j,r (x)Q j,r (y)

(Q j,r ,Q j,r )r
, and

K (k,s)
n,r for the derivatives of the kernels.
Observe that, in fact, (., .)r , Qn,r , Kn,r and K (k,s)

n,r also depend on the parameter α but for
simplicity we have omitted it in the notations.

In the next lemma, we obtain an asymptotic estimation for Q(k)
n,r (0), k ≥ 0, that will play an

important role along this paper. To do this, we need to know the “size” of the kernels of Qn,r and
their derivatives.

Lemma 2. Let Qn,r be the monic polynomials orthogonal with respect to the inner product (9).
Then the following statements hold:

(a) For 0 ≤ k ≤ r ,

Q(k)
n,r (0)

(Lα
n )(k)(0)

∼
Cr,k

nα+2k+1 ,

where Cr,k is a nonzero real number independent of n.
For k ≥ r + 1,

lim
n

Q(k)
n,r (0)

(Lα
n )(k)(0)

=
k!

(k − (r + 1))!

Γ (α + k + 1)

Γ (α + r + k + 2)
.

(b)

lim
n

(Qn,r , Qn,r )r

‖Lα
n ‖2 = 1.

Proof. We use mathematical induction on r ∈ N ∪ {0}.
If r = 0, the Fourier expansion of the polynomial Qn,0 in the orthogonal basis {Lα

n }n≥0
leads to

Qn,0(x) = Lα
n (x) − M0 Qn,0(0)Kn−1(x, 0),

and therefore

Qn,0(x) = Lα
n (x) −

M0Lα
n (0)

1 + M0 Kn−1(0, 0)
Kn−1(x, 0). (10)

As a consequence of (4) and Lemma 1 (b), we obtain (a) for r = 0.
Using (10), we have

(Qn,0, Qn,0)0 = ‖Lα
n ‖

2
+

M0(Lα
n (0))2

1 + M0 Kn−1(0, 0)
.

Thus, from (6) and Lemma 1 (b), it follows (b) for r = 0.
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Suppose now that (a) and (b) hold for the SMOP {Qn,r }n≥0 with r > 0, then we are going to
deduce that they are also true for the sequence {Qn,r+1}n≥0. To do this, we observe that

(p, q)r+1 = (p, q)r + Mr+1 p(r+1)(0)q(r+1)(0) (11)

and therefore

Qn,r+1(x) = Qn,r (x) − Mr+1 Q(r+1)
n,r+1(0)K (0,r+1)

n−1,r (x, 0). (12)

Taking derivatives r + 1 times in (12) and evaluating at x = 0, we obtain

Q(r+1)
n,r+1(0) =

Q(r+1)
n,r (0)

1 + Mr+1 K (r+1,r+1)
n−1,r (0, 0)

. (13)

Taking now derivatives k times in (12), evaluating at x = 0, and using (13) we get

Q(k)
n,r+1(0)

(Lα
n )(k)(0)

=
Q(k)

n,r (0)

(Lα
n )(k)(0)

−
Mr+1 K (k,r+1)

n−1,r (0, 0)

1 + Mr+1 K (r+1,r+1)
n−1,r (0, 0)

Q(r+1)
n,r (0)

(Lα
n )(k)(0)

. (14)

Before taking limits in the last expression, we need to estimate K (k,r+1)
n−1,r (0, 0). Applying the

Stolz criterion (see e.g. [8]) the induction hypothesis for {Qn,r }n≥0, (4) and (6), we obtain for
k ≥ r + 1

lim
n

K (k,r+1)
n−1,r (0, 0)

nα+k+r+2 = lim
n

Q(k)
n−1,r (0)Q(r+1)

n−1,r (0)

‖Lα
n−1‖

2(α + k + r + 2)nα+k+r+1

=
(−1)k+r+1Γ (α + 1)

(α + k + r + 2)Γ (α + k + 1)Γ (α + r + 2)

× lim
n


Q(k)

n−1,r (0)

(Lα
n−1)

(k)(0)

Q(r+1)
n−1,r (0)

(Lα
n−1)

(r+1)(0)



=
k!(r + 1)!

(k − (r + 1))!

(−1)k+r+1Γ (α + 1)

Γ (α + k + r + 3)Γ (α + 2r + 3)
, (15)

and therefore, from (14), we get (a) for k ≥ r + 1.

Now, if 0 ≤ k ≤ r , to estimate the size of K (k,r+1)
n−1,r (0, 0), we use the Stolz criterion again and

thus, we obtain

lim
n

K (k,r+1)
n−1,r (0, 0)

nr+1−k
= (−1)r+1+k (r + 1)!

r + 1 − k

Cr,kΓ (α + 1)

Γ (α + k + 1)Γ (α + 2r + 3)
.

Using the induction hypothesis and substituting all these results in the right-hand side of (14)
we get

Q(k)
n,r+1(0)

(Lα
n )(k)(0)

∼
Cr+1,k

nα+2k+1 ,

where Cr+1,k = −
α+k+r+2

r+1−k Cr,k ≠ 0. Therefore the proof of (a) is complete.
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To finish we only need to deduce (b) for {Qn,r+1}n≥0. As in the case r = 0, from (11) and
(13), we get

(Qn,r+1, Qn,r+1)r+1 = (Qn,r , Qn,r )r +
Mr+1(Q(r+1)

n,r (0))2

1 + Mr+1 K (r+1,r+1)
n−1,r (0, 0)

.

Using (a) for k = r + 1, (3), (4) and (15) we achieve the result. �

Observe that both Laguerre and Laguerre–Sobolev type polynomials have asymptotically the
same global size from the point of view of the norm, while the size of the successive derivatives
at the point x = 0 is affected by the discrete part of the inner product, but only when the order of
the derivatives corresponds to a positive mass.

We can also establish the following relative asymptotics.

Proposition 1. Let {Qn,r }n≥0 be the SMOP with respect to the inner product defined by (9).
Then, for k ≥ 0,

lim
n

Q(k)
n,r (x)

(Lα
n )(k)(x)

= 1,

uniformly on compact subsets of C \ [0, ∞).

Proof. From the Fourier expansion of the polynomial Qn,r in terms of the Laguerre polynomials
and Lemma 1 (a) we get

Qn,r (x)

Lα
n (x)

= 1 −

r−
i=0

Mi i !Q
(i)
n,r (0)Pi (x, 0; Lα

n−1)

‖Lα
n−1‖

2x i+1


1 −

Pi (x, 0; Lα
n )

Pi (x, 0; Lα
n−1)

Lα
n−1(x)

Lα
n (x)


.

Since

lim
n

Pi (x, 0; Lα
n )

(Lα
n )(i)(0)

=
x i

i !
, (16)

from (4) and (7), we have, for i = 0, . . . , r ,

lim
n


1 −

Pi (x, 0; Lα
n )

Pi (x, 0; Lα
n−1)

Lα
n−1(x)

Lα
n (x)


= 0,

uniformly on compact subsets of C \ [0, ∞).
Moreover, taking into account (4), (16), and Lemma 2 (a), there exists

lim
n

Mi i !Q
(i)
n,r (0)Pi (x, 0; Lα

n−1)

‖Lα
n−1‖

2x i+1 ∈ C.

Therefore, each one of the terms in the sum tends to 0 uniformly on compact subsets of C\[0, ∞)

and the result for k = 0 follows.
From this result, since the functions Qn,r/Lα

n are analytic in C \ [0, ∞), we have

lim
n


Q′

n,r (x)

(Lα
n )′(x)

−
Qn,r (x)

Lα
n (x)


(Lα

n )′(x)

Lα
n (x)

= lim
n


Qn,r

Lα
n

′

(x) = 0,

uniformly on compact subsets of C\[0, ∞). Therefore, the result holds for k = 1, and, for k > 1
it suffices to use an induction procedure. �
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4. Main results

As we have mentioned in the introduction, if we consider a general discrete Sobolev
inner product, the key used to obtain some results is the possibility to transform the Sobolev
orthogonality into a standard quasi-orthogonality.

Now, in our particular case, the sequence {Qn,r }n≥0 orthogonal with respect to the inner
product defined by (9) is quasi-orthogonal of order r + 1 with respect to the Laguerre weight
xα+r+1e−x , that is,∫

+∞

0
p(x)Qn,r (x)xα+r+1e−x dx = 0,

for every polynomial p with deg p ≤ n − (r + 1) − 1. Therefore, as an immediate consequence
we have a connection formula of the form

Qn,r (x) =

r+1−
j=0

a j
n,r Lα+r+1

n− j (x), a0
n,r = 1. (17)

We have just shown that both sequences of orthogonal polynomials, {Qn,r }n≥0 and {Lα
n }n≥0,

are asymptotically identical on compact subsets of C \ [0, ∞). In this section, our main aim is to
establish their differences through Mehler–Heine type formulas which describe the asymptotic
behavior around the origin.

4.1. Mehler–Heine type formulas

First of all, we recall the corresponding formula for the monic Laguerre polynomials,
(see [17, Th.8.1.3]):

lim
n

(−1)n

n!nα
Lα

n

 x

n


= x−α/2 Jα(2

√
x), (18)

uniformly on compact subsets of C, where Jα is the Bessel function of the first kind of order
α (α > −1), defined by

Jα(x) =

∞−
n=0

(−1)n

n!Γ (n + α + 1)

 x

2

2n+α

.

To get the Mehler–Heine type formulas for {Qn,r }n≥0, we focus on the problem in a different
way than in the bounded case. As we will see later, it is worth noticing that the knowledge of
the asymptotic behavior of the connection coefficients is not enough to obtain directly these
asymptotic formulas.

Write the Taylor expansion of the polynomial Qn,r

(−1)n

n!nα
Qn,r

 x

n


=

n−
k=0

(−1)n

n!nα

Q(k)
n,r (0)

(Lα
n )(k)(0)

(Lα
n )(k)(0)

k!

xk

nk .

Then, to calculate the limit, we use Lebesgue’s dominated convergence theorem. For this

purpose, we need to find a uniform bound for the ratios Q(k)
n,r (0)

(Lα
n )(k)(0)

. As a first step, using the

connection formula (17), in the next lemma, we obtain a new algebraic expression with a nice
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structure which relates the derivative of order k + 1 of the polynomials Qn,r to the derivative of
order k.

Lemma 3. Fixed r ≥ 1, let {Qn,r }n≥0 be the SMOP with respect to the inner product (9). Then,
we have for 0 ≤ k ≤ n − 1,

Q(k+1)
n,r (0)

(Lα
n )(k+1)(0)

=
α + k + 1

α + r + k + 2
Q(k)

n,r (0)

(Lα
n )(k)(0)

+
Γ (α + r + 2)

Γ (α + r + k + 3)

k+1−
i=1


k

i − 1


Γ (α + k + 2)

Γ (α + i + 1)

Ai
n,r

(Lα
n )(i)(0)

, (19)

where

Ai
n,r =

r+1−
j=i

j !

( j − i)!
a j

n,r Lα+r+1
n− j (0), i = 1, . . . , r + 1,

and the coefficients a j
n,r are those of (17). By convention, Ai

n,r = 0, when i > r + 1. Besides,

lim
n

Ai
n,r

(Lα
n )(i)(0)

=


0 if 1 ≤ i ≤ r,
(r + 1)! if i = r + 1.

(20)

Proof. Taking derivatives k + 1 times in (17), evaluating at x = 0, and using (4) several times
we get, for k ≥ 0,

Q(k+1)
n,r (0) =

r+1−
j=0

a j
n,r (Lα+r+1

n− j )(k+1)(0) = −

r+1−
j=0

a j
n,r

n − j − k

α + r + k + 2
(Lα+r+1

n− j )(k)(0)

= −
n − k

α + r + k + 2
Q(k)

n,r (0) +
1

α + r + k + 2

r+1−
j=1

ja j
n,r (Lα+r+1

n− j )(k)(0)

= −
n − k

α + r + k + 2
Q(k)

n,r (0) +
(−1)kΓ (α + r + 2)

Γ (α + r + k + 3)

r+1−
j=1

ja j
n,r

(n − j)!

(n − j − k)!
Lα+r+1

n− j (0).

According to formula (5) in page 8 of [16],

(n − j)!

(n − j − k)!
= k!

k−
i=0

(−1)i


j − 1
i

 
n − 1 − i

k − i


,

and therefore

(n − j)!

(n − j − k)!
=

( j − 1)!

(n − (k + 1))!

k+1−
i=1

(−1)i−1


k
i − 1


(n − i)!

( j − i)!
.

Thus, the above expression can be written in the form

Q(k+1)
n,r (0) = −

n − k

α + r + k + 2
Q(k)

n,r (0) +
(−1)kΓ (α + r + 2)

Γ (α + r + k + 3)

k+1−
i=1

(−1)i−1

×


k

i − 1


(n − i)!

(n − (k + 1))!
Ai

n,r ,
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which leads to

Q(k+1)
n,r (0)

(Lα
n )(k+1)(0)

= −
n − k

α + r + k + 2
(Lα

n )(k)(0)

(Lα
n )(k+1)(0)

Q(k)
n,r (0)

(Lα
n )(k)(0)

+
(−1)kΓ (α + r + 2)

Γ (α + r + k + 3)

k+1−
i=1

(−1)i−1


k
i − 1



×
(n − i)!

(n − (k + 1))!

(Lα
n )(i)(0)

(Lα
n )(k+1)(0)

Ai
n,r

(Lα
n )(i)(0)

=
α + k + 1

α + r + k + 2
Q(k)

n,r (0)

(Lα
n )(k)(0)

+
Γ (α + r + 2)

Γ (α + r + k + 3)

k+1−
i=1


k

i − 1



×
Γ (α + k + 2)

Γ (α + i + 1)

Ai
n,r

(Lα
n )(i)(0)

,

where we have used expression (4). So, the first part of the lemma is proved.
To deduce (20) for i = 1, we apply (19) for k = 0, that is

Q(1)
n,r (0)

(Lα
n )(1)(0)

=
α + 1

α + r + 2
Qn,r (0)

(Lα
n )(0)

+
1

α + r + 2

A1
n,r

(Lα
n )(1)(0)

and by Lemma 2(a), we get

lim
n

A1
n,r

(Lα
n )(1)(0)

= 0.

Now, to deduce the result for i ≥ 2, it is enough to apply a recursive procedure. �

The above lemma, although quite technical, will be very useful in what follows. In the next
subsection, we will use formula (20) to estimate the size of the connection coefficients, while (19)

leads us to obtain a uniform bound for the ratios Q(k)
n,r (0)

(Lα
n )(k)(0)

.

Lemma 4. Let {Qn,r }n≥0 be the SMOP with respect to the inner product (9). Then, fixed r ≥ 1
there exists a positive integer n0 such that, for all n ≥ n0 and for all k with r + 1 ≤ k ≤ n, the
inequality Q(k)

n,r (0)

(Lα
n )(k)(0)

 ≤ 2(r + 1)
k!

(k − r)!
(k − (r − 1))

Γ (α + k + 1)

Γ (α + r + k + 2)
,

holds. Furthermore, for r ≥ 0, there exists n0 ∈ N such that, Q(k)
n,r (0)

(Lα
n )(k)(0)

 ≤ 2(r + 1), ∀n ≥ n0 0 ≤ k ≤ n. (21)

Proof. We prove the lemma using mathematical induction on k, i.e., on the order of the
derivative.
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Keeping in mind Lemma 2(a) for k = r + 1 and Lemma 3, there exists a positive integer n0,
independent of k, such that for all n ≥ n0, the following formulas hold, Q(r+1)

n,r (0)

(Lα
n )(r+1)(0)

 ≤ 4(r + 1)(r + 1)!
Γ (α + r + 2)

Γ (α + 2r + 3)
, (22)

Γ (α + r + 2)

Γ (α + i + 1)

 Ai
n,r

(Lα
n )(i)(0)

 ≤ 1, i = 1, . . . , r, (23)

and  Ar+1
n,r

(Lα
n )(r+1)(0)

 ≤ 2(r + 1)!. (24)

Notice that formula (22) is the required bound for k = r + 1. Now, we assume that the result
holds for a fixed k, with k ≥ r + 1, and then we will deduce that it holds for k + 1.

Taking absolute values in (19) and using induction hypothesis, (23) and (24), we get for
n ≥ n0 and k + 1 ≤ n Q(k+1)

n,r (0)

(Lα
n )(k+1)(0)

 ≤
α + k + 1

α + r + k + 2

 Q(k)
n,r (0)

(Lα
n )(k)(0)

 +
Γ (α + k + 2)

Γ (α + r + k + 3)

×


r−

i=1


k

i − 1


+


k
r


2(r + 1)!



≤


2(r + 1)

k!(k − (r − 1))

(k − r)!
+ 2(r + 1)

k!

(k − r)!
+

r−
i=1


k

i − 1


×

Γ (α + k + 2)

Γ (α + r + k + 3)

≤

[
2(r + 1)

k!

(k − r)!
(k + 1 − (r − 1)) + r

k!

(k + 1 − r)!

]
×

Γ (α + k + 2)

Γ (α + r + k + 3)

≤

[
2(r + 1)

(k + 1)!

(k − r)!
+

(k + 1)!

(k + 1 − r)!

]
Γ (α + k + 2)

Γ (α + r + k + 3)

≤ 2(r + 1)
(k + 1)!

(k + 1 − r)!
(k + 1 − (r − 1))

Γ (α + k + 2)

Γ (α + r + k + 3)
.

So, the first part of lemma is proved. For the second part, using (4), (10) and Lemma 1 (b), we
deduce for every n ≥ k the explicit expression

Q(k)
n,0(0)

(Lα
n )(k)(0)

= 1 −
M0 Kn−1(0, 0)

1 + M0 Kn−1(0, 0)

α + 1
α + k + 1

n − k

n
.

Then,

0 <
Q(k)

n,0(0)

(Lα
n )(k)(0)

< 1,

holds for all k with 0 ≤ k ≤ n. According to this fact and the first part of Lemma 4, we
have (21). �
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Next, we show how the presence of the masses in the inner product changes the asymptotic
behavior around the origin. This result proves the conjecture posed in [4].

Theorem 1. Let {Qn,r }n≥0 be the SMOP with respect to the inner product (9). Then,

lim
n

(−1)n

n!nα
Qn,r

 x

n


= (−1)r+1x−α/2 Jα+2r+2(2

√
x),

uniformly on compact subsets of C.

Proof. Using the Taylor expansion of the polynomial Qn,r we can write

(−1)n

n!nα
Qn,r

 x

n


=

n−
k=0

(−1)n

n!nα

Q(k)
n,r (0)

k!

xk

nk .

To obtain the asymptotic behavior of the above expression when n → ∞, we use Lebesgue’s
dominated convergence theorem. Indeed, given a compact set K ⊂ C, from (4), (5) and (21) in
Lemma 4, there exists a positive integer n0 such that for all n ≥ n0, for all j ≥ 0 and for all
x ∈ K ,

1
n!nα

 Q(k)
n,r (0)

k!

xk

nk

 ≤
Γ (α + 1)|Lα

n (0)|

n!nα

n!

(n − k)!nk

2(r + 1)

Γ (α + k + 1)

|x |
k

k!

≤
4(r + 1)

Γ (α + k + 1)

Mk

k!
,

for each k ≥ 0, where M is a positive constant depending on K . As
∑

∞

k=0
1

Γ (α+k+1)
Mk

k!

converges, the assumptions of Lebesgue’s dominated convergence theorem are satisfied. Then,
using Lemma 2 (a), (4) and (5), we have

lim
n

n−
k=0

(−1)n

n!nα

Q(k)
n,r (0)

k!

xk

nk =

∞−
k=r+1

(−1)k

(k − (r + 1))!

1
Γ (α + k + r + 2)

xk

= (−1)r+1x−α/2 Jα+2r+2(2
√

x),

uniformly on compact subsets of C. Thus, the result follows. �

We will show a remarkable difference between the zeros of the orthogonal polynomials Lα
n

and the ones of Qn,r concerning the convergence acceleration to 0.
Before analyzing this, recall (see [17]) that the zeros of the Laguerre polynomials are real,

simple and they are located in (0, ∞). We denote by (xn,k)
n
k=1 the zeros of Lα

n in an increasing
order. It is worth pointing out that they satisfy the interlacing property 0 < xn+1,1 < xn,1 <

xn+1,2 < · · ·, and that xn,k →
n

0 for each fixed k.

Let ( jα,k)k≥1 be the positive zeros of the Bessel function Jα in an increasing order. Then,
formula (18) and Hurwitz’s theorem lead us to

nxn,k →
n

jα,k, k ≥ 1,

and therefore

xn,k ∼
Ck

n
, k ≥ 1,

where Ck is a positive constant depending on k.
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Concerning the zeros of Qn,r , standard arguments (see for instance [5]) allow us to establish
that Qn,r has at least n−(r+1) zeros with odd multiplicity in (0, +∞), or equivalently n−(r+1)

changes of sign. Moreover, since M0 > 0 and the mass point in the discrete part of the inner
product belongs to the boundary of (0, +∞), then the number of zeros with odd multiplicity is
at least n − r (see [2]).

From Theorem 1, Hurwitz’s theorem, and taking into account the multiplicity of 0 as a zero
of the limit function in Theorem 1, we achieve

Corollary 1. Let (ξ r
n,k)

n
k=1 be the zeros of Qn,r . Then

nξ r
n,k →

n
0, 1 ≤ k ≤ r + 1,

nξ r
n,k →

n
jα+2r+2,k−r−1, k ≥ r + 2.

Remark 1. The presence of the positive masses Mi , i = 0, . . . , r , in the inner product produces
a convergence acceleration to 0 of r + 1 zeros of the polynomials Qn,r .

4.2. Connection coefficients

In this subsection, we deduce from Lemma 3 a nice result having his own interest; concretely,
we obtain the size of the connection coefficients a j

n,r .

Theorem 2. Let a j
n,r be the connection coefficients which appear in (17). Then, we have

lim
n

a j
n,r

n j =


r + 1

j


, 0 ≤ j ≤ r + 1.

Proof. From (20) and the expression

Ar+1
n,r = (r + 1)!ar+1

n,r Lα+r+1
n−r−1(0) =

(r + 1)!ar+1
n,r

n(n − 1) · · · (n − r)
(Lα

n )(r+1)(0),

it follows easily

lim
n

ar+1
n,r

nr+1 = 1.

A recurrence procedure leads to the result. Indeed, we assume that the result holds for
k + 1 ≤ j ≤ r + 1, and we will show that it is true for j = k. From (20), for i = k, we
can obtain

lim
n

r+1−
j=k

j !

k!( j − k)!

a j
n,r

nr+1−k

Lα+r+1
n− j (0)

(Lα
n )(k)(0)

= 0.

From (4) and (5), we get

lim
n

r+1−
j=k

(−1)k− j


j
k


a j

n,r

n j = 0.
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From the assumption

lim
n

a j
n,r

n j =


r + 1

j


, k + 1 ≤ j ≤ r + 1,

we have

lim
n

ak
n,r

nk =

r+1−
j=k+1

(−1)k+1− j


j
k

 
r + 1

j



=


r + 1

k

 r+1−
j=k+1

(−1)k+1− j


r + 1 − k
j − k


=


r + 1

k


. �

Remark 2. As we have claimed before, the Mehler–Heine type formulas for polynomials Qn,r
cannot be directly deduced as a consequence of the connection formula.

4.3. Generalized Hermite–Sobolev polynomials

As a consequence of the previous results, we are going to establish asymptotic properties for
the orthogonal polynomials associated with the following inner product

(p, q) =
1

Γ (µ + 1/2)

∫
R

p(x)q(x)|x |
2µe−x2

dx +

2r+1−
i=0

Mi p(i)(0)q(i)(0), (25)

with µ > −1/2 and Mi > 0, i = 0, . . . , 2r + 1. We denote by Sµ
n,r their monic orthogonal

polynomials.
The polynomials Hµ

n orthogonal with respect to the weight |x |
2µe−x2

(µ > −1/2) are called
generalized Hermite polynomials.

Notice that in this case the polynomials Sµ
n,r are symmetric, that is, Sµ

n,r (−x) = (−1)n Sµ
n,r (x),

and because of this symmetry, we can transform this inner product (25) into an inner product
like (9), and so we can establish a simple relation between the polynomials Sµ

n,r and the
polynomials Qn,r considered before. This technique is known as a symmetrization process.
In fact, in [5] this process is considered for standard inner products associated with positive
measures. The simplest case of this situation is the relation between monic Laguerre polynomials
and Hermite polynomials, that is (see [5] or [17]),

H2n(x) = L−1/2
n (x2), H2n+1(x) = x L1/2

n (x2), n ≥ 0.

As a consequence we have

Sµ
2n,r (x) = Qµ−1/2

n,r (x2), Sµ
2n+1,r (x) = x Qµ+1/2

n,r (x2)

where {Qµ−1/2
n,r }n≥0 (respectively, {Qµ+1/2

n,r }n≥0) is the SMOP with respect to an inner product
like (9) with α = µ − 1/2 (respectively, α = µ + 1/2).

Therefore, taking into account Proposition 1, the relative asymptotics

lim
n

(Sµ
n,r )

(k)(x)

(Hµ
n )(k)(x)

= 1,

uniformly on compact subsets of C \ R, k ≥ 0, easily follows.
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Also, applying Theorem 1 in a straightforward way, we obtain

Proposition 2. Let {Sµ
n,r }n≥0 be the SMOP with respect to the inner product (25). Then,

lim
n

(−1)n√
n

n!nµ
Sµ

2n,r


x

2
√

n


= (−1)r+1

 x

2

−µ+1/2
Jµ+2r+3/2(x),

lim
n

(−1)n

n!nµ
Sµ

2n+1,r


x

2
√

n


= (−1)r+1

 x

2

−µ+1/2
Jµ+2r+5/2(x),

uniformly on compact subsets of C.

Remark 3. These results generalize some of the ones in [3] and solve the conjecture posed there.

5. Inner products with gaps

In this section, we are concerned with inner products such that in their discrete part at least
one of the masses vanishes:

(p, q)r,s = (p, q)r + Ms p(s)(0)q(s)(0), s ≥ r + 2, (26)

where Ms > 0, and (., .)r is defined in (9) if r ≥ 0, and, for r = −1 is the classical Laguerre
inner product, and therefore in this case, the polynomials Qn,r are the Laguerre polynomials Lα

n .
So, roughly speaking, there is a “gap” in the discrete part of the inner product (., .)r,s . We denote
by {Tn,r,s}n≥0 the sequence of monic polynomials orthogonal with respect to the inner product
(., .)r,s .

The Fourier expansion of the polynomial Tn,r,s in the orthogonal basis {Qn,r }n≥0 gives

Tn,r,s(x) = Qn,r (x) −
Ms Q(s)

n,r (0)

1 + Ms K (s,s)
n−1,r (0, 0)

K (0,s)
n−1,r (x, 0). (27)

Using similar arguments as in Lemma 2, it can be proved.

Lemma 5. Let {Tn,r,s}n≥0 be the SMOP with respect to the inner product (26). Then the
following statements hold:

(a) For either 0 ≤ k ≤ r or k = s,

T (k)
n,r,s(0)

(Lα
n )(k)(0)

∼
Cr,s,k

nα+2k+1 ,

where Cr,s,k is a nonzero real number independent of n.
For k ≥ r + 1 and k ≠ s

lim
n

T (k)
n,r,s(0)

(Lα
n )(k)(0)

=
k!

(k − (r + 1))!

k − s

α + s + k + 1
Γ (α + k + 1)

Γ (α + r + k + 2)
.

(b)

lim
n

(Tn,r,s Tn,r,s)r,s

‖Lα
n ‖2 = 1.
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The above lemma also allows to deduce the relative asymptotics for these orthogonal polyno-
mials, that is, for k ≥ 0, we have

lim
n

T (k)
n,r,s(x)

(Lα
n )(k)(x)

= 1,

uniformly on compact subsets of C \ [0, ∞).
Now, we obtain the Mehler–Heine type formula for the polynomials {Tn,r,s}n≥0.

Theorem 3. Let {Tn,r,s}n≥0 be the SMOP with respect to the inner product (26). Then,

lim
n

(−1)n

n!nα
Tn,r,s

 x

n


= (−1)r+1x−

α
2


−(s − (r + 1))

α + r + s + 2
Jα+2r+2(2

√
x)

+

s−r+1−
i=2

λi Jα+2r+2i (2
√

x)


, (28)

where λi are nonzero real numbers. The limit holds uniformly on compact subsets of C.

Proof. From (27),

(−1)n

n!nα
Tn,r,s

 x

n


=

(−1)n

n! nα
Qn,r

 x

n


−

Ms Q(s)
n,r (0)

1 + Ms K (s,s)
n−1,r (0, 0)

×
(−1)n

n!nα

n−1−
k=0

K (k,s)
n−1,r (0, 0)

k!

 x

n

k
. (29)

To estimate the kernels K (k,s)
n−1,r (0, 0), we apply the Stolz criterion, Lemma 2, (4) and (6),

obtaining

lim
n

K (k,s)
n−1,r (0, 0)

nα+k+s+1

=


0 if 0 ≤ k ≤ r,

k!

(k − (r + 1))!

s!

(s − (r + 1))!

(−1)k+sΓ (α + 1)

(α + k + s + 1)Γ (α + k + r + 2)Γ (α + s + r + 2)
if k ≥ r + 1.

Moreover, it is not difficult to check that

lim
n

(−1)nns+1

n!

Q(s)
n,r (0)

K (s,s)
n−1,r (0, 0)

= (−1)s (s − (r + 1))!

s!

(α + 2s + 1)Γ (α + s + r + 2)

Γ (α + 1)
.

According to the two above results, we get the asymptotic behavior of the coefficients in the
sum appearing in (29),

lim
n

(−1)n

n!nα+k

Ms Q(s)
n,r (0)K (k,s)

n−1,r (0, 0)

1 + Ms K (s,s)
n−1,r (0, 0)

=


0 if 0 ≤ k ≤ r,

(−1)kk!

(k − (r + 1))!

(α + 2s + 1)

(α + k + s + 1)Γ (α + k + r + 2)
if k ≥ r + 1.
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On the other hand, from (21), there exists n0 ∈ N such that for all n ≥ n0, and for every
k, s ≥ 0, we haveK (k,s)

n−1,r (0, 0)

 ≤ 4(r + 1)2
K (k,s)

n−1 (0, 0)

 .
Now, to obtain a bound for the kernels K (k,s)

n−1 (0, 0), we consider the expression which appears
in Lemma 1 (b). Then, when k ≥ s − 1, it is easy to check that j !(k + s + 1 − j)! ≥ s!(k + 1)!,
and Γ (α + j + 1)Γ (α + k + s + 2 − j) ≥ Γ (α + s + 1)Γ (α + k + 2) for 0 ≤ j ≤ s. Therefore,K (k,s)

n−1 (0, 0)

 ≤ Cs
nα+k+s+1

Γ (α + k + 2)
.

Indeed, given a compact set K ⊂ C, from (4), (5) and (21), there exists a positive integer n0,
such that for all n ≥ n0, for all k ≥ s − 1, for all j ≥ 0 and for all x ∈ K ,

1

nα+s+1

 K (k,s)
n−1,r (0, 0)

k!

xk

nk

 ≤ Cs
4(r + 1)2

Γ (α + k + 2)

Mk

k!
,

where M is a positive constant depending on K . As
∑

∞

k=0
1

Γ (α+k+2)
Mk

k!
converges, we can apply

Lebesgue’s dominated convergence in the last term of (29). Then, using Theorem 1, we obtain

lim
n

(−1)n

n!nα
Tn,r,s

 x

n


= (−1)r+1x−α/2 Jα+2r+2(2

√
x)

−

∞−
k=r+1

(−1)k(α + 2s + 1)

(α + k + s + 1)Γ (α + k + r + 2)

xk

(k − (r + 1))!
. (30)

If we write s = r + 1 + h with h ≥ 1, then the above series is read as

(−1)r+1xr+1(α + 2r + 2h + 3)

∞−
k=0

Γ (α + k + 2r + h + 3)

Γ (α + k + 2r + 3)Γ (α + k + 2r + h + 4)

(−1)k xk

k!
.

Observe that Γ (α + k + 2r + h + 3)/Γ (α + k + 2r + 3) is a polynomial in k of degree h
(the number of gaps) and so we can write

Γ (α + k + 2r + h + 3)

Γ (α + k + 2r + 3)
=

Γ (α + 2r + h + 3)

Γ (α + 2r + 3)
+

h−
l=1

βlk
l

where βl , l = 1, . . . , h are positive coefficients. Thus, the above series can be expressed as

Γ (α + 2r + h + 3)

Γ (α + 2r + 3)

∞−
k=0

1
Γ (α + k + 2r + h + 4)

(−1)k xk

k!

+

h−
l=1

βl

∞−
k=0

kl

Γ (α + k + 2r + h + 4)

(−1)k xk

k!
.

For the first one, using the recurrence relation repeatedly (see [17]),

Jα−1(2
√

x) + Jα+1(2
√

x) = αx−
1
2 Jα(2

√
x),
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we get

Γ (α + 2r + h + 3)

Γ (α + 2r + 3)

∞−
k=0

1
Γ (α + k + 2r + h + 4)

(−1)k xk

k!

=
Γ (α + 2r + h + 3)

Γ (α + 2r + 3)
x−

α+2r+h+3
2 Jα+2r+h+3(2

√
x)

= x−
α+2r+2

2


1

α + 2r + h + 3
Jα+2r+2(2

√
x) +

h+2−
i=2

µi Jα+2r+2i (2
√

x)


,

where µi are real numbers which can be computed explicitly.
Moreover, for the remaining series, using the same arguments, it can be seen that each one of

the terms can be written as a combination of Bessel functions of order bigger than α + 2r + 2.
More precisely, for l = 1, . . . , h

∞−
k=0

kl

Γ (α + k + 2r + h + 4)

(−1)k xk

k!

= −x
∞−

k=0

(k + 1)l−1

Γ (α + k + 2r + h + 5)

(−1)k xk

k!

= x−
α+2r+2

2


−

Γ (α + 2r + 5)

Γ (α + 2r + h + 5)
Jα+2r+4(2

√
x) +

h+2−
i=3

µ∗

i Jα+2r+2i (2
√

x)


,

where µ∗

i are again real numbers which can be computed explicitly.
Finally, taking these results into account in (30), we achieve

lim
n

(−1)n

n!nα
Tn,r,s

 x

n


= (−1)r+1x−α/2

[
1 −

α + 2r + 2h + 3
α + 2r + h + 3

]
Jα+2r+2(2

√
x)

+ (−1)r+1x−α/2
h+2−
i=2

λi Jα+2r+2i (2
√

x),

and the proof is concluded. �

For the particular case s = r + 2 in the inner product (26), i.e., when there is a gap of “length
one”, the result established in the above theorem generalizes the one obtained in [4]. In fact,
handling the right-hand side of expression (30) and using the recurrence relation of the Bessel
functions, we obtain:

lim
n

(−1)n

n!nα
Tn,r,r+2

 x

n


= (−1)r+1x−α/2


Jα+2r+2(2

√
x) −

(α + 2r + 5)(α + 2r + 3)

x
Jα+2r+4(2

√
x)

+
α + 2r + 5

√
x

Jα+2r+5(2
√

x)



= (−1)r+1x−α/2


Jα+2r+2(2

√
x) −

(α + 2r + 5)(α + 2r + 3)

(α + 2r + 4)
√

x
Jα+2r+3(2

√
x)
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+
α + 2r + 5

(α + 2r + 4)
√

x
Jα+2r+5(2

√
x)



= (−1)r+1x−α/2


−1

α + 2r + 4
Jα+2r+2(2

√
x) − Jα+2r+4(2

√
x)

+
1

α + 2r + 4
Jα+2r+6(2

√
x)


.

Concretely, we recover the corresponding result in [4] taking r = −1 in the above formula.
We also generalize other asymptotic results. For example, very recently in [6], the authors

consider the inner product

(p, q)−1,s =
1

Γ (α + 1)

∫
∞

0
p(x)q(x)xαe−x dx + Ms p(s)(0)q(s)(0)

= (p, q) + Ms p(s)(0)q(s)(0), (31)

where s ≥ 1. Notice that the inner product (31) is a particular case of the inner product (26)
taking r = −1. Thus, we recover some asymptotic results obtained in [6].

On the other hand, as a consequence of the above theorem, we present the situation about
the acceleration of the convergence towards the origin of the zeros of the polynomials Tn,r,s .
The quasi-orthogonality of order s + 1 of the sequence {Tn,r,s}n≥0 with respect to the positive
measure xα+s+1e−x assures that Tn,r,s has at least n − (s + 1) changes of sign in (0, +∞).
However, in [2], the authors proved that the number of zeros in (0, +∞) does not depend on the
order of the derivatives, but on the number of terms in the discrete part of the inner product. So,
Tn,r,s has at least n − (r + 1) zeros with odd multiplicity in (0, +∞).

The situation is quite different if we are concerned with the study of the acceleration
convergence to 0 of the zeros of the polynomials. So, from Theorem 3 and Hurwitz’s theorem
and taking into account that x = 0 is a zero of multiplicity r + 1 of the limit function in (28), we
achieve the following result:

Corollary 2. Let (ζ
r,s
n,k)

n
k=1 be the zeros of Tn,r,s . Then

nζ
r,s
n,k →

n
0, 1 ≤ k ≤ r + 1,

nζ
r,s
n,k →

n
hα,r,k−r−1, k ≥ r + 2,

where hα,r,k−r−1 is the (k − r − 1)-th zero of the limit function in (28).

Again, using a symmetrization process, we can also obtain the Mehler–Heine type formulas,
as well as the relative asymptotics for generalized Hermite–Sobolev polynomials with gaps in
the discrete part of the inner product.

Remark 4. We wish to highlight that the convergence acceleration to 0 of the zeros of the
polynomials Qn,r and Tn,r,s is the same. That is, the addition of a mass Ms after a gap in the
inner product does not affect the convergence acceleration to 0. So the breakpoint is given by the
position of the gap.
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