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Abstract 

Marcelhin, F., M. Alfaro and M.L. Rezola, Orthogonal polynomials on Sobolev spaces: old and new directions, 
Journal of Computational and Applied Mathematics 48 (1993) 113-131. 

During the last years, orthogonal polynomials on Sobolev spaces have attracted considerable attention. 
Algebraic properties, distribution of their zeros and Fourier expansions as well as their relevance in the 
analysis of spectral methods for partial differential equations provide a very large field to explore and to 
compare with the standard case. In this paper we present an introductory survey about the subject. The origin 
of the problems and their development show the interest and the promising future of this field. 
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1. Introduction 

The interest in the study of orthogonal polynomials with respect to the inner product 

(f, g), = 2 j?‘i’(x)s’i’(x) d/-+ (1) 
j=(J a 

where (~.~~)ip,~ are positive finite Bore1 measures whose support is contained in the interval 
(a, b), is justified by several reasons. 
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(a) The comparison with the standard theory of orthogonal polynomials in L2-spaces (see 
[8,14,35] as classical references in the subject). 

(b) The spectral theory for ordinary differential equations (see [12,13]). 
(c) The analysis of spectral methods in the numerical treatment of partial differential 

equations (see [7,31]). 
(d) The search of algorithms for computing Fourier-Sobolev series as well as the approxima- 

tion to both a function and its derivative in terms of Sobolev orthogonal polynomials. For 
instance, the standard Legendre projection produces poor approximation to the derivative, 
which might be pointwise worse by orders of magnitude than the underlying approximation to 
the function (see [16]). 

(e) The extension of Gauss quadrature formulas. In [17] a framework for this question is 
provided, but apparently without connection with orthogonal polynomials of Sobolev-type. As 
we will analyze below, the recurrence relation [17, (2.4)] is intimately connected with such kind 
of orthogonal polynomials. 

In this paper we consider several cases of the inner product (1) which appear in the 
literature. We intend to provide a general framework for the theory, taking into account some 
basic ideas concerning the representation of polynomials from different points of view. 
Moreover, some open questions are presented. 

2. A motivation from data fitting 

Let po, h...,~~ be p + 1 positive finite Bore1 measures supported on an interval 
I = [a, b] in IR. Let f be a function in %? “-l(J) where J is an interval such that J 2 I. We 
suppose that the pth derivative f”‘) exists pp-almost everywhere and belongs to LL61). We 
will denote by Yti the linear space of polynomials with complex coefficients and degree less 
than or equal to it. Also, 9 means U, E N gE. 

The main problem in smooth data fitting is to find the best approximant to f in Pn with 
respect to the norm 

\i=OdU I 

induced by the inner product (1). This problem was considered in [22], but nothing is said about 
the corresponding sequence of orthonormal polynomials (4,) defined in 9 using the Gram- 
Schmidt process for the basis (x”)~=,. In terms of this sequence we can reformulate some 
results of [22] in the following way. 

Proposition 2.1. The best polynomial approximant P,,<x; f > is given by 

P,(G f) = i jhf(“(y)S!p+, Y) hi(y), 
i=O ll 

(2) 

where SA’,‘)(x, y) = C~,oqj(x)q~‘)(y). 

Proof. The best polynomial approximant to f in 9n is P,<x; f > = Ci”,o(Y,jqj(X) with “nj = 
(f, qj>,. Using (l), equation (2) follows immediately. 0 
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It is possible to compare this best 
of f in b, where p <rn i rz. In fact, 
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approximant with the mth Taylor polynomial 7”(x; b; f) 
the following result is deduced in [22]. 

Proposition 2.2. Let f be a function of class %‘m-l. We suppose also that f(“‘) exists almost 
everywhere, is of bounded variation, continuous at x = b and f (‘n-‘) is absolutely continuous. Then 

T,,(x; b; f) 4=,(x; f) = -j$G;(x, t) df”“‘(t) (3) 
. a 

holds for x E J, where G,“( x, t) EP,, is the best polynomial approximant to the function 

&n(x) = 
(X-ty, ifxa, 
0, otherwise. 

(In the case m =p, we assume that fCp) and pLI, have no points of discontinuity in common). 
From (31, if G,” is uniformly bounded and G,” + g, a.e. with respect to df(“), then 

P,<x; f> +f(x> uniformly on J. 
This result has obvious connections with some well-known results concerning the conver- 

gence of series of general orthogonal polynomials. 
The paper [22] is the origin of several contributions [2,15,21], among others, in more specific 

situations. 
Basically, their approach corresponds to some particular measures connected 

orthogonal polynomials in the case p = 1. In this situation, more information for 
(9,) is obtained. 

with classical 
the sequence 

3. Classical Sobolev orthogonal polynomials 

The first example of a Sobolev inner product (1) is given by Althammer [2]. He considers 
dpO=dx, dpi=Ad x and I = [ - 1, I]. Then, a link with manic Legendre orthogonal polyno- 
mials (P,) appears in a natural way. Let (Q,) denote the sequence of manic orthogonal 
polynomials (SMOP) with respect to (11, and let Z,(x) = /5 ,Q,< t > dt be the primitive function 
Q,(x) such that Z,( - 1) = 0. 

From <Q,, l), = /klQ,<t> dt = 0, it follows that Z,(l) = 0 for n 2 1. But if r 6PR_,, 

0 = (Q,z, r)w = I1 [Q,(t)+> f ~Q,Xt)r'(t)] dt. 
-1 

Integration by parts gives 

0 = I’ [-Z,(t) +hZz(t)]r’(t) dt, 
-1 

and so AZl( t> - Z,( t> belongs to the orthogonal complement of the subspace gn_* in 9,,+ 1 
with respect to the standard inner product associated to the Lebesgue measure in [ - 1, 11. 

As the polynomials Q, are even or odd, depending on the parity of n, 

Zn( -x) - Z,(O) = (- l)n+l[ Z,(x) - Z,(O)] 7 
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and 

A-W) - -G(t) = %??+,P) + I%~,-&) 

follows, where the parameters Q,, p, are given by 

1 
a,= -- n+l’ 

p = (Qro QA 

a nl?,P,2_&) dt ’ 

Moreover, 

AQ,“W - Q,(t) = sC+dt) + P,L(G 

and as an immediate consequence, 

[n/21 
Q,(t) = - c hk[cr,f’;;‘;l)(t) + &f’;?;l)(f)]. 

k=O 

But taking into account that 

(b) Pn(2k+2) (x) = n(n - 1) . . . (n - 2k - 1)P,(?k&?;k+2)(~) 

(P,‘*,P)(x) denotes the nth manic Jacobi polynomial), 

iZ+CI 

(c) Pn(U,P)( 1) = ( 1 n 

( 

2n+(Y+p 
1 

2”, 

n 

(4 (Q,, QJ, = (Q,, J’J, = ~~l~,?~~, dt + 2Wdl)QXl), 

(4 

1 Kn - o/21 Kn - o/21 - I 

Q;(l) = n+l c Akf’,tk:2)(1) - P, c AkF’;Tk;*‘(l), 
k=O k=O 

p, in (4) becomes 

12 2”A 
p,= 

(2n - l)!! (2n - 3)!! 

4n2- 
+---- 

1 n ( 2n 1 
n 

[(rz - l)!]’ 
QXl) > 

where (2~2 - l)!! = (212 - 1)(2n - 3) * * . 5 * 3 * 1. By straightforward calculation, 

(4) 

(5) 

a rc~;l)/21(fA)k (n + 2k + I>! 

P, = 

(n - 2k + l)! (2k)! 

(4n2-1)Ciin_;1”21(~A)*(nln2tk2_kl),l:z!k), * 
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Remark 3.1. From (5) a Rodrigues-type formula for the SMOP (Q,) is obtained in the following 
way: 

(AD2 - ~)QnW =&G’n+df) + PnLW] 

=D[ Antl(Y,Dn+l(l - t*)“+’ +A,_,/3,IY-‘(1 - II,“-‘I 

= D”[(l - t*)ll-l[ A,_#, - 2A,+,((2n + 1)t” - l)]] 

with 

=D”[(l -t2)n1(A,t”+M,,)], (6) 

?Z! 
A4, =A+lPn + 2A,+1, A, = (-q- 

(2n)! * 

Proposition 3.2. The following are valid. 
(a) Q,(l) > 0 for euery y1 E N; 

(b) (n +2)&+,(x) = Q:+2(4 - “;;+;1’:’ Q;(X). 
n 

(7) 

Proof. Let R n+2(~) = /“,(n + 2)P,+,(t) dt. As the polynomials R, are even or odd, depending 
on the parity of II, we can write 

n 

Rn+~(x) = Q,+,(x) + C "n+2,jQj(x)* (8) 
j=O 

1 

P 
a 

n+2, Qj), = / -lRn+’ (X)Qj(X) dx 
n+2~j = (Qj, Q,), 

(Qjy Qj), 

-1’ Cn + 2)p~+l(x)zj(x) dx 
= -’ (Qj, Qj), 

This last expression is zero for 0 < j G n - 1. Then, from (81, 

Rn+2W= Q.+,W +~ln+z,nQnW 
and 

/ 

1 n+2 
- _1 n+lC+1(x) dx 

a n+*,n = (Q,, Q,), <” 

(9) 

But 

RI+*(l) = /_‘,( n + 2)P,+,(t) dt = 0, (10) 
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and thus Q,+,(l)= -(Y,+~~ Q,(l). Using the fact that Q&l> = Q,(l) = 1, we deduce that 
Q,(l) > 0 and (7) follows. b 

Remark 3.3. Let us consider the Fourier expansion of R, in terms of the polynomials P,,: 

Rn+2(~) =Pn+2(~> + 2 Pn+2,jq(X)* 
j=O 

As 

1 

/ 

P 

_1Rn+2(~)q(~) dx -/~I~p~+~(x)Rj+r(X) dx 
Z = = 

n+2.i 1 1 0, 

Q34 dx 

for 0 <j G n - 1, we obtain 

R,+,(x) = f’,+,(x) + Pn+2,nPn(+ 

BY using (1% Pn+2,n = -P, +2( l)/P,( 1) and therefore 

Rn+2(~) = Pn+2(x) - ‘;+;;(i P,(x) = (x2 - l)P,“,“(x). 
n 

Finally, from (9), the next formula is satisfied: 

(x2 - l)Pn”,‘)(x) = Q,+,(x) - “;-;i:’ Q,(x). 
n 

Thus, we can deduce the following corollary. 

Corollary 3.4. The formulas 

(4 
Q,+,(x) Q,(x) P,+,(l) P,+,(x) 

( 

P,(x) ----= -- 
Q,+,(l) Q,U> Qn+2(1) P,+,(l) P,(l) 

(b) 
Q,+,(x) Pn+2(~) [n’z1 Pn-2j(X) 

Q,+,(l) = Q,+,(l) 
+ Cr. 

j=o ‘I Pn-2j(l) ’ 

with 

pn-2j(1) pn-2j+2(1) 

yny,i = Q,_,,(l) - Qn_2j+2(l) ’ “j’ [‘nl’ 

are true. 

Concerning the zeros of the SMOP (Q,), several authors (see [2,9,33]) have obtained quite a 
few results. Some of them are given in what follows. 
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Proposition 3.5. (a) The zeros of the polynomials Q,(x) are real, simple and belong to ( - 1, 1). 
(bl The zeros of the polynomials Q,(x) are interlaced with the zeros of P,, _ ,( x) whenever 

h > 2/n. 

Proof. See [2,33] for (a> and [9] for (b). 0 

However, some questions remain open. 

Problem 3.6. Do the zeros of the polynomial Q,(X) interlace with the zeros of Q,+,(X)? 

Problem 3.7. Are the positive zeros of the polynomial Q,(X) monotone functions of A? 

From another set of ideas, concerning differential properties, it is well known that classical 
orthogonal polynomials (Jacobi, Laguerre, Hermite) are eigenfunctions for certain second-order 
linear differential operators. 

In particular, Legendre polynomials are eigenfunctions of the differential operator (1 - 
t2)D2 - 2tD. This property can be easily deduced from the so-called structure relation (see 
[26,351) 

(x2 - W,+,(x) = (n + %+2(x) +5,&(x). 
In our case, from (51, 

(I-hD2)Q,(x) =P~““(x) - (n - 1)/3,P,‘?L)(x). 

Then, using Corollary 3.4, we get 

(x2 - l)(Z - AD2)Q,(x) 

Qn+dl> 
= Qn+,G> - Q,(l) Q,(x) - (n - l)P, ,“1’;i, QnA-4 

n 2 

that is, 

(x2 - l)V -AD2)Q,z(4 = Q,+,(x) + sQ,Cd + hQA-4. 
This expression leads to an analog of the structure relation and in a natural way we can 

formulate the following problem. 

Problem 3.8. Are Legendre-Sobolev orthogonal polynomials (Q,) the eigenfunctions of some 
linear differential operator? 

Finally, in the framework of asymptotics for sequences of standard orthogonal polynomials it 
seems natural to compare <Q,> and <P,> when n tends to infinity. In fact, the following result is 
valid. 

Proposition 3.9. (see [33]). Let q, denote the orthonormal polynomial associated to Q,. The 
formula 

q;(x) = ;P”_‘(X) + 0(n-“‘*), 

where kz = (Q,, L?,;,, holds for x E (- 1, 1). 
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Problem 3.10. What about lim n +mQ,<~>/Pn(x) for x E C\[ - 1, 11 if such a limit exists (relative 
asymptotics)? 

Problem 3.11. What about lim. ,,Q,<x)/Q,_ ,(x> f or x E C \ [ - 1, l] if such a limit exists (ratio 
asymptotics)? 

Problem 3.12. Extend the above questions to the case dp, = (1 -x)?l + xjp dx and dpi = Ml 
- x)“(l +x)P dx, CX, p > - 1, i.e., consider Jacobi-Sobolev orthogonal polynomials. 

In the same order of ideas, a study of Laguerre-Sobolev orthogonal polynomials was 
developed by Brenner in 1969 (see [6]). His approach is very different from the Althammer one. 
He uses a characterization of such kind of orthogonal polynomials in terms of the minimization 
problem 

CI, = inf/ae-‘[ y:(t) + Ayes] dt, 
0 

(11) 

with the constraint y:)(t) = n!. Using the method of Lagrange multipliers, Brenner reduces the 
problem to the minimization of the expression 

Lrn ept[ y”(t) + my’*] + 2a(t)[ y’“‘(t) -n!] dt. 

From Euler’s condition 

e-“[Ay”(x) -Ay’(x) -y(x)] = (-l)“&“)(x) 

and boundary values 

a(O) = a’(O) = . . . = &-2’(O) = 0, 

lima(x) = 0.. = lim Q(“-~)(x) = 0, 
X’m x-m 

Ay’(0) + (- 1)“~‘&-i’(0) = 0, 

lim [ Ae-“y’(x) + (- ~)“-‘a(~-~)(x)] = 0, 
.r+m 

we can deduce that 

a(x) = -eex(xn +a,x”-‘). 

Then, 

(I + AD - AD*)-I[( -l)nP1e”D’,a(x)] 

(12) 

gives a Rodrigues-type representation for the Laguerre-Sobolev orthogonal polynomials in the 
same sense as (6) for the Legendre-Sobolev orthogonal polynomials. 

Proposition 3.13. (see [6]). Let CL,) be the sequence of manic Laguerre polynomials. Then the 
following results are true. 

(a) Q,(O) f 0; 
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With respect to 
known about them 

- Q;(x)] - Q,(x) = - (n : 1> G+,(x) + rJ’,(-+ 

the zeros of Q,, they are real, simple and positive. But nothing more is 
as interlacing properties and monotone character in terms of A. 

Problem 3.14. Extend the above questions to the case dpu,, =xLueeX dx, dpl = hx”e-” dx, 
(Y > - 1, i.e., consider Sonin-Laguerre-Sobolev orthogonal polynomials. 

Finally, a more general study for Sobolev orthogonal polynomials with respect to (1) with 
dpi = Ai dx is given in [21]. The basic tool is the variational problem 

inf 5 /h[y”‘(~)]2h, dx. 
y?t)=n! k-0 a 

A Rodrigues-type formula is deduced, but the constraint linked with the integration by parts in 
the linear functional does not allow to consider the general situation for positive measures. 

As a final remark it seems very difficult to consider inner products (1) when the measures 
are not classical measures, at least for the study of algebraic properties and zeros. The 
approach presented in this section is conditioned by the “good” behaviour of classical 
orthogonal polynomials with respect to the derivative operator. In fact, the character of 
preserving orthogonality for such an operator plays a very important role in the above study. 

4. Coherent pairs of measures 

A more general attempt concerning orthogonal polynomials with respect to an inner product 
as (1) with p = 1 is investigated in [16]. 

They consider two positive finite Bore1 measures pO, p1 and introduce a real parameter A 
such that (1) becomes 

(f> s), = @x)&x) dE.L” + A/-Y(x)R’(x) d/-+ (13) 

The parameter h can be absorbed into dpcLI but the analysis of the dependence of the SMOP 
(Q,) with respect to (13) in terms of A is the key idea in the investigation by the authors. 

Another important remark is the fact that the supports of pCj and p1 are infinite sets. Then 
there exist two sequences of manic orthogonal polynomials (P,) and CR,) associated with pu 
and EL, respectively. 

Since the sequence <P,> spans 9, there exist functions r,,(h), r,,(A), . . . , r,,(h) such that 

Q,(x; 4 = i G,(W’&)- (14) 
k=O 

Remark that 

r,,(h) = 1 and Y,~(A) = 
(Qn, PO),,, (Qw &I>, 
(PO7 CJCL,, = (PIN PO), = O7 

for nal. 
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Then, (14) becomes 
n-1 

Q,(G 4 =Jx4 + c %k(WkW 
k=l 

(15) 

Since (Q,, I’,>,+ = 0, for 1 G m f y1- 1, we have 
n-1 

0 = rnm(A)ll P, II:, + A 
i 

c rnk@)(% %)w, + (‘,‘y ‘iz),, ’ 

k=l I 

If we write cij = (Pi’, Pj’)p, and di = (1 Pi II& then (mk)tZl are the solutions of the linear system 

‘d, + AC,, AC,, 
\ 1 \ 

. . . AC n-l,1 r nl (PL P&L, ’ 

AC,, d, + AC,, . . . AC n-1,2 r n2 (Pn’7 p&L1 
= 

-A . > 

that is, 

AC l,n-1 AC2,n-I * *. 4-1 + AC,-I,,-I , rn,,-I, \ v;‘, i-l),, , 

(D,_, +AC,_,)r(“)= -AC(“), (16) 
where D,_1 = diag{d,, d,, . . . , d,_ll, C,_, is the symmetric matrix (c~~>~,~~~, c(“) = 
(c TZl, c,~,. . . , c, ,_l)T and rcn) = (ml, r,,,, ...,Y~,~-~ jT. 

Operating in’(16) and taking into account (IS), we get 

Q,(x; A) =P,(x) - (P,(x),...,P,_,(x))(D,_, +AC,,_I)-lAc(“) 

AGIl 

1 D n-l fAC,-1 

= det(D,_, + AC,-,) AC n,n-1 

PI(X) *.a P,-,(4 Pn(4 

. (17) 

As such, this formula is not very useful for arbitrary Bore1 measures, but if we can write 
cij = a,in(i,jI/AiAj for all i, j = 1, 2,. . . and we denote dl! = Afd,, then (17) can be reduced to 

(A,A, . *. A,_, )2A, det(D,_, + AC,_,)Q,(x; A) 
d; + Au, ha, ha, 0.. A% 

Aa, di +Aa, ha, **. Aa, 

Aa, Aa d; +Aa, * .. Aa, 

Aa1 Aa2 Aa, .a* Aa,_l 

4P,(x) A,P,(x) 4Pdx) *** 4PM 

d; 0 . . . 0 

A(% -a2) 4 ..* 0 
Aa1 
Aa2 

9 

Ah -a,-1 ) A(a,-a,_,) s.0 d;_, A&-l 

p’,(x) fi,(x) **. fin&) 4P,(x) 
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where, for the sake of simplicity, in the last determinant we have written pj(X) instead of 
AjPj(X) -A,P,W. 

To evaluate this determinant we expand it from the nth row and thus we obtain 

(A& ..-A M_1)2A, det(D,-, +AC,-,)Q,(.G A) 

L 

n-1 

=A, d; . *. d;_, - C aj(h) ‘ntx> + C Aj(.yj(A>P,(x>7 
j=l 1 

n-l 

j=l 

where cuj(h) are polynomials in h of degree j and independent of n, provided that aj # ai+, for 
every j. 

The leading coefficient of this polynomial is a polynomial in A of degree y1 - 1; we will 
denote it by /3,_,(h), that is, P,_,(h) = (A,A, a. * A,_1)2A, det(D,_, + AC,_,). 

Comparing the leading coefficients in the above formula, we conclude that p,_,(A) = 
A,[d; . . . d;_, - Cj”,,laj(h>]. 

So, the final representation for Q,(x; A) is 
n-l 

The above arguments justify the following definition. 

Definition 4.1. We say that the pair {pO, ~~1 is a coherent pair if there exist constants A,, a, 
with A, # 0 and a,, #a,+, 
where csj = (Pi’, Pj’Ip,. 

for every II such that cij = a,,,inti,jl/AiAj for all i, j = 1, 2,. . . , 

From (181, we can state the following. 

Corollary 4.2. If {puo, pl} is a coherent pair, the relation 

P,(A)&,+,(x) -P,-,(h)Q,(x)=P,(*)P,+,(x)+ [A,~Y,(h>-P,-l(h)lP,(x) 
holds. 

The condition of coherence may seem very difficult to verify. However, it is possible to give a 
condition far less technical. 

Proposition 4.3 (see [16]). Let (PJ and (R,) be, respectively, the SMOP with respect to p. and 
pl. The pair { po, pl) is coherent if and only if there exist nonzero constants A,, such that 

c+ l(X) 4 CT-4 
R(x)= n+l -A-- 

n+l n 

holds. 

Problem 4.4 Given po, describe all positive finite Bore1 measures pl such that {po, pII is a 
coherent pair. 
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If pLo is a classical measure (Jacobi, Laguerre, Hermite), then <Pi+,/<n + 1)) is a SMOP. 
Thus, according to our last proposition, (R,) is a SMOP which is quasi orthogonal of order 1 
with respect to Pi+r/(. + 1). The framework of this problem is the theory of orthogonal 
polynomials with respect to a regular (or quasi definite) inner product. 

Let u be a classical linear functional and let (P,) denote the corresponding sequence of 
classical manic orthogonal polynomials. It is well known that <P,‘+,/(n + 1)) is a SMOP with 
respect to the functional $(x)u where 4(x) is a polynomial of degree at most 2 such that 
D[$(x)u] = kP,(x)u (see [27]). 

Using a result of [26], there exists a polynomial of degree 1, h(x) = N(x - c), such that 
h(x)u = $4x>u where u is the linear functional whose associated SMOP is (R,). Then, 

u=M6(x-c)+ [N(x-c)]-‘~(X)U 

is the general solution. Among these functionals, all the positive definite functionals are the 
solutions to the coherent pairs. 

Remarks 4.5. (1) In [16], the concept of symmetric coherent pairs is introduced as follows. For 
symmetric measures pO, pr, the pair {pu,, pr} is called symmetrically coherent (from now on 
s-coherent) if cij = amin(i,jl/AiAj, when i + j is an even number, and cij = 0, otherwise. A 
characterization of the s-coherent pairs is also obtained in [161. The pair &, pr) is s-coherent 
if and only if there exist nonzero constants A,, such that 

K+1(4 An-1 eL(x) 
KY(x)= n+ 1 -A 

n-t1 n-1 
holds. 

In the Hermite case, that is, dpO = eeXZ dx, the set of symmetric measures p, such that 
{p,,, pr} is s-coherent is contained in the set of linear functionals u such that there exists a 
polynomial h(x) of degree 2 satisfying the functional equation h(x)u = u, where (u, p(x)) = 
/Rp(x)e-X2 dx. Then th e solution is completely determined. 

Also, if d,uO = (1 -x2)” dx (the Gegenbauer case), the solutions are included in the set of 
linear functionals u such that there exists a polynomial h(x) of degree 2 such that h(x)u = (x2 
- 1)~ where (u, p(x)) = /?,p(x)(l -x2Y’ dx. 

(2) Another interesting aspect of coherent pairs is the efficient calculation of Sobolev-Four- 
ier coefficients for functions f~ W,l(rW; dFO, dpr) (see [16]). 

5. Sobolev-type orthogonal polynomials 

If we consider an inner product as (1) with p = 1 and p1 an atomic measure, some recent 
contributions have shown a more realistic approach to the problems considered in Section 3. 

Bavinck and Meijer [3] studied the inner product 

(f, & = Q(x)g(r)(l -x2)” dx +Nf(l)g(l) +f( - l)g( - 91 

+N[f’(l)g’(l) +f’(-l)g’(-l)], M, N>O, cr> - 1. 
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The connection with Gegenbauer polynomials is obtained in terms of differential operators 
as follows. 

Proposition 5.1. Let (Q,) be the SMOP with respect to the above inner product. There exist 
constants a,, b,, c,, d,, e, such that the formula 

Q,(x) = (a,x2D2 + b,xD + c~)P,(“,~)(x) 

= (a,(1 -x”)~D~ + d,(l -x2)D2 +e,)P,‘a,“)(x) 

holds. 

Moreover, a representation in terms of hypergeometric functions 4F3 is given. For such a 
family of orthogonal polynomials, a recurrence relation appears and represents some perfor- 
mance with respect to the classical Sobolev orthogonal polynomials. Using the fact that the 
multiplication operator by (x2 - l)* in 9 is self-adjoint, 

n+4 

(x2 - l)‘Q,b) = c qcQ,(x)> 
k=n-4 

with Q!n,n + 4 = 1 and a)n,n_4 # 0, holds. But this recurrence relation is not minimal in the sense 
of the number of elements involved. Indeed, Bavinck and Meijer show that the recurrence 
relation 

n+3 

(x3 - WQ&> = c Pn,Qd4 
k=n-3 

also holds. 
Recently, in [ill is shown that this last one is minimal. 
With respect to the zeros of Q,, they are real and simple. If N + 0, Q, has exactly two real 

zeros +x0 outside (- 1, 11 for y1 sufficiently large, y1 >> 1. 

Problem 5.2. Consider the above questions for symmetric measures and masses located in the 
ends of the interval. 

A particular case of this problem was analyzed in [S]. 
In a natural way, and taking into account Laguerre polynomials as a limit situation for Jacobi 

polynomials, Koekoek [lSl has considered 

(f, s), = k?@)g(x)xaePX dx + ~~OM#k’(0)g’X’(O), 

with Mk 2 0 and (Y > - 1. In this situation a connection between Q, and Laguerre polynomials 
via a differential operator is given as 

QnW=( 2 ) 4,Pk CX-+ 
k=O 

where Y = {min(n, p + l)}. 
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In situation a of Q, a p+2Fp+2 hypergeometric function is obtained, as 
well as the fact that (Q,) satisfies the second-order linear differential equation 

A(x; n)Q:(x) +B(x; n)Q:(x) + C(-v n)Q,(x> = 0, 

where A, B, C are polynomials of degrees independent of IZ. 
Concerning the zeros, whenever p = 1, the main result is the following proposition. 

Proposition 5.3 (see [19]). (a) The polynomial Q, has n real zeros which are simple. At least II - 1 
of them belong to (0, + 03). 

(b) If M, > 0 and n z== 1, then Q, has a zero xnl in ( - cc, 01. Moreover, ifMO > 0, it is possible 
to give bounds for such a zero as -x,z <x,,~ < 0 and - +/mm <x,,~ < 0. For all M,, > 0, we 
have lim, +m~nl = 0. 

The interesting work [18] has been extended in two ways. The first one corresponds to a 
generalization for measures whose support is in (0, +a>. Meijer [29] considers the following 
inner product: 

(f, g), = /o(x)&) dpu, + i %J(“)(O)g@)(O). 
k=O 

The technique for the analysis of the sequence <Q,> is very different from [18]. The constraint 
about the hypergeometric character of the initial sequence with respect to p0 disappears and 
then a very elegant algebraic approach is provided. 

Proposition 5.4 (see [29]). The polynomials Q,(x) can be expressed as 

Q,(x) = ‘Y,$‘,(x; 64 + P,xp,-I( x; x2 d,u) + 3/,x*P,_,(x; x4 dp). 

The last representation plays a very important role in the study of the distribution of the 
zeros. 

In fact, the following proposition holds. 

Proposition 5.5 (see [29]). Let us suppose M, > 0. 
(a) The polynomial Q, has n real and simple zeros; at most one of them is outside (0, + m>. 
6) If Q,$x> h as a zero in ( - q 01, then QJx) has a zero in ( - a, 0) for all n with n > n,. 
Cc> Let ynel,] <y,_1,2 < . * . < y,_ l,n _ 1 denote the zeros of P,, _ 1(x; x2 dpL) being ordered by 

increasing size. If we suppose that Q, has a zero x,~ in ( - ~0, 01, then Q, has a zero in (0, y, _ 1,1> 
and a zero in every interval CY,_~,~, Y~_~,~+~), for i = 1, 2,. . . , n - 2. Moreover, -Y,_~,~ <xnl < 0. 

The second direction has been explored in [l]. There the inner product 

(f7 s), = ifs 44l +wlf(c)g(4 +M*f ‘(We 

where Mi 2 0, i = 0, 1, and c E R, is studied. 
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Algebraic properties as, for instance, recurrence relations or Christoffel-Darboux formulas 
are independent of the location of the point c with respect to the support of pO. As in [18], the 
main tool is the self-adjointness of multiplication by (X - c12. Then the recurrence relation is 

n+2 

(x -c)'Q,IW = c s,Q&L 
k=rz-2 

with CX,,_~ # 0. Such kind of relations appears in [17]. 
With’respect to the distribution of the zeros, the following result is deduced. 

Proposition 5.: (sze [I]). (a) If M, > 0 and n > 3, Q, has a least n - 2 different zeros with odd 
multiplicity in I (I denotes the interior of the interval I>. 

(b) Moreover, if c = $-if I or c = sup I, then the zeros of Q, are real and simple. At least n - 1 
of them are located in I. 

(c) If c = sup I and there exists a zero x,, outside I and x,, denotes the smallest zero of Q,, 
then 

c -x,1 
c<x,,<c+p 

n-l 

and Ix,, - cl < Ix,,,_~-c~. ZfM,#O, thenx,,-c<i/m holds. 

If c E I, some results have been obtained in [30], in terms of the so-called tangent property. 
Now, we consider the inner product 

(f > g>w = j-JIf.(xM4 h4-4 + Af ‘(c)g’(c), 

where c E [w, A > 0 and pr, belongs to Nevai’s class M(0, 11. Recall, if p0 E M(0, 11, then 
supp ~~ = [ - 1, l] u E where E is a bounded and countable set with E’ c { - 1, 1). 

In this situation, some results are obtained in 1251 about the asymptotic behaviour of the 
sequence (4,) with respect to the sequence (p,), where (p,>, (q,) are the corresponding 
orthonormal polynomials associated with p0 and the inner product ( *, . ), respectively. 

Proposition 5.7 (see [2.5]). (a) If c E aB\supp pO, 

. %l(-4 1 (,+JFi)-(c+Fi) 
- = 

,flz p,(x) lc+JP=T ( 

1_ JG- 

x+@T- x-c 

uniformly on compact sets in C\[supp pr, U {c)]. Moreover. 

%W 

,I% p,(C) 
’ - =0 and lim qi(c)pL(c) = 2h- 

n+m 

(b) Ifc E supp ,u~, lim,,,&)/pn(x) = I uniformly 
over, 

lim q;(c)pA(c) = 0. 
n+m 

on compact sets in C \ supp po. More- 
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Nevai’s class M(0, 1) can be characterized in terms of the asymptotic behaviour of the 
parameters which appear in the three-term recurrence relation satisfied by the orthonormal 
polynomials (see [32]). If 

V,(X) =a.+lP,+l (4 +&P,(x) + adn-dx)~ 

then lim,,,a, = i and lim_,b, = 0. 
Since the sequence (9,) satisfies a five-term recurrence relation as 

(x - &,(x) = %+2%+2(X) + Pn+l%+l(X) + WLl(4 + P&L-I(X) +%8&-*(x), 

the following proposition holds. 

Proposition 5.8 (see [25]). For every c E R, we have 

lima,=+, lim p, = -c, lim y, = +(l + 2c*). 
n+co n-m tl+m 

Problem 5.9. Discuss the asymptotic behaviour of the sequence (4,) for other kind of measures, 
for example, when the support is unbounded and p0 is a Freud’s weight function. 

Finally, some authors have considered the inner product 

(f, g>, = j$x)s(x) dE.L,, + U”‘(c)g”‘(c), 

where A > 0 and r 2 1 (see [24]). 
An explicit expression for Q, in terms of the polynomials P,, is obtained using its Fourier 

expansion with respect to this SMOP: 

hP,“‘(C) 
Q,(x) =Pn(x> - 1 + AKzl;‘(c ,,_) K:“J?(x, c), 7 

where 

From the 

with 

where 

n-1 Pp(x)Pp(y) 
K$q(x, y) = c 

1=0 llP,ll,2 . 

Christoffel-Darboux formula 

(x - c)“‘Q,(x) =M,+,(x; n)P,(x) +N,(x; n)P,-l(x), 

M,+,(x; rz) = (x - cy+l -&; qqx; c; p,-J, 

N,(x; n) =‘Y&; Jqqx; c; P,), 

AP,“‘(C) 
cx,(c; ‘> = ‘! tipd IliO* 1 + AK(‘_“(c c) ’ 

nl 7 

(19) 

and T,(x; c; P,) has been introduced in Section 2. 
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Moreover, from the self-adjointness of multiplication by (X - c)~+I, a (2~ + 3)-term recur- 

rence relation for the sequence (Q,) can be deduced: 
n+r+1 

(X -c)““Qn(x) = C YnjQj(X), (20) 

with yn,n-r_l + 0. 

j=n-r-l 

The parameters -ynj are easily computed using (19). They are solutions of an upper triangular 
system of linear equations. 

If the support of puo is contained in the interval [O, a), where a may be finite or infinite, then 
some results concerning to the location of zeros of Q, can be given. 

Proposition 5.10 (see [28]). Let us suppose A > 0 and c = 0. 
(a) The zeros of Q, are real and simple. At least n - 1 of them are in (0, a). If the polynomial 

Q, has a root x,,~ outside (0, a), then x,~ < 0 and n 2 r + 1. Moreover, if x,, < 0, then 

0 < -x,1 < mn,r+ 1) 

where x, ,.+ 1 denotes the rth positive zero of Q,. Besides, if a is finite, then -x,, < ar/(n - r). 
(b) S&pose n > r + 1; if (y,,) denotes the set of zeros of P,,, then xnl <Y,,~ and y,; <x,,~+ 1 < 

Yn,i+ 17 for i = 1, 2,. . . , n - 1. 

Problem 5.11 (see [28]). If (x,JA))y= I is the set of zeros of Q,(x; A), analyze its behaviour as a 
function of A. 

The case corresponding to r = 1 has been studied in [23]. The following result has been 
obtained. 

Proposition 5.12 (see [23]). Let us consider c outside 
(a) For every i, x,,(A) is an increasing function of 
(b) Let 

the interval of orthogonal@. 
A. 

be the limit polynomial when A + + ~0; then it has real and simple roots zni such that Y,,~ < x,,(A) 
<zni for i= l,...,n. 

On the other hand, from (20) it seems natural to consider an analog of Favard’s theorem. It 
is well known for standard polynomials (P,> satisfying a three-term recurrence relation 

x42(4 =Pn+dx) +&Jx4 + rnpn-d4 

with -yn # 0 for every n E N, that a linear functional u on 9 exists such that 

(u, P&> =MJ,,. 

For c = 0 we search symmetric bilinear forms B on LP XP such that the corresponding 
sequences of manic orthogonal polynomials satisfy (20). In fact the following characterization is 
obtained in [lo]. 
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Proposition 5.13. The following assertions are equivalent. 
(a> There exists a real function ,x0 and constant real numbers (Mk)L =, such that 

B(f, g) = /--f(x)g(x) +, + i M,f’k’(0)g(k)(O). 
k=l 

(b) The operator H: 9 -9 such that H(p) =x’+‘p(x) is self-adjoint with respect to B, 
B(x”‘f, xg> = B(xf, x’+‘g) and the Gram matrix of B with respect to (xk> is structured as 
follows: B(xk, xm> = B(1, x~+~) when 1 <k, m < r and k # m. 
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