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Abstract 

For polynomials orthogonal with respect to a discrete Sobolev product, we prove that, for each n, Q, has at least n - m 
zeros on the convex hull of the support of the measure, where m denotes the number of terms in the discrete part. 
Interlacing properties of zeros are also described. 
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Zeros 
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1. Introduction 

(1) During the last years several authors studied polynomials orthogonal with respect to the 
so-called Sobolev-type (or discrete Sobolev) inner products, that is, inner products of the form 

( fg)  = f fg d# + ~ M,f'i)(c)g")(c), (1) 
J i  /=o 

where/~ is a finite positive Borel measure supported on an interval I = ~, c¢I  (the interior of I), 
r/> 1, Mi >~ 0 for i = 0, . . . ,  r - 1 and Mr > 0 (see for instance [1, 2, 5, 6, 8, 10]). The location of 
zeros of the polynomials Q. orthogonal with respect to the product (1) has been considered in them, 
among other questions. 

It is known that Q. has at least n - (r + 1) zeros with odd multiplicity in L whenever n >/r + 1. 
Moreover in the following particular situations, we have: 
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(a) Suppose that Mi = 0 for i = 1 , . . . , r  - 1 and Mo > 0, then whenever n ~> r + 1, Q. has at 
least n - 2 zeros with odd multiplicity in ~?. Moreover  if c ~ c?I (the boundary  of I), Q, has at 
least n - 1 zeros with odd multiplicity in z? (see [2, 11, 13]). 

(b) When the inner product  (1) is 

( f g )  = JI fg  dl~ + Mrf~r)(c)gIr)(c) + M=f~=)(c)g~=)(c), 

where 1 ~< r < s and Mr, M= > 0, then for every n ~> s + 1, Q, has at least n - 2 zeros with odd 
multiplicity in/9 (see [3]). 

These last two results seem to suggest that the number  of zeros of Q. in [ does not depend on the 
order of the derivatives in (1) but on the number  of terms in the discrete part of the inner product. 

In Section 2, we prove that this conjecture is true. Furthermore, we shall prove that the coefficients 
Mi may well be negative numbers, although in this case the product ceases to be positive definite. 

In what follows we shall be concerned with the discrete Sobolev product 

( f , 9 )  = fgdl~ + ~ Mif~)(c)o~')(c), (2) 
~ i = 1  

with # a finite positive Borel measure whose support, S~,, contains an infinite set of po!nts, S, c ~, 
0 ~< vl < ... < v,, and M~ e ~\{0}.  We will denote by A the convex hull ofS u and by A the interior 

o 

of A. We will suppose that A ~ ~ and c e ~ \A.  
Let 7/+ be the set of positive integers. By Q,, n E 7/+, we will denote the nth monic polynomial of 

least degree, not identically equal to zero, such that 

( p , Q , )  = 0, p ~ ~ , - 1 ,  

where ~ , _  ~ denotes the linear space of all polynomials of degree ~< n - 1. 
Such a polynomial does exist. In fact it is deduced solving a homogeneous linear system with 

n equations and n + 1 unknowns. Uniqueness follows from the minimality of the degree for the 
polynomial solution. If the product is positive definite then deg Q, = n and thus all the Q,'s are 
distinct. In general this is not so and for different values of n the same polynomial Q. can appear. 

It is easy to see that the sequence (Q,) is quasi-orthogonal of order d = v,, + 1 on S u with respect 
to the measure ( x - c ) a d l  z, that is ~s, P Q , ( x - c ) a d p  = 0 for every polynomial P with 
degP <<, n - d -  1. 

In the sequel, for every n e 7/+, h denotes the number  of terms in the discrete part  of the product 
(2) whose order of derivative is less than n. 

The main results of this paper are given in the next two theorems, which will be proved in 
Sections 2 and 3 (see Theorems 2.2 and 3.3, respectively). 

Theorem. For every n ~ 77 +, Q, has at least n - h changes of siyn in the interior of the convex hull of 
the support of the measure kt. 

(2) Another  interesting question is that connected with the interlacing property of the zeros of 
such orthogonal  polynomials. When there is no discrete part we have the classical definition of 
orthogonali ty and all the zeros of Q, + ~ interlace with those of Q,. For  Sobolev-type inner products 
with M~/> 0, the polynomials Q, and Q,+ 1 can have common zeros (see [1]). If the coefficients 
M~ are allowed to be real numbers, it is easy to see that it may  occur that Q, - Q. + x. 
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In Sect ion 3, we give an es t imate  of  the n u m b e r  of  consecut ive  zeros of  Q, which have in be tween  
a zero of  Q,+ 1 (for a par t icu lar  p ro d u c t  (2), a part ia l  result appears  in [-14]). 

Let  ~x ~N, be  the points  in A where  Q, changes  sign. Let  x,  be the n u m b e r  of  intervals nhlh=l 

Inh = (Xnh, Xn, h+ 1), h = 1, . . . ,  N ,  - 1, conta in ing  at least one  poin t  where  Q,+I  changes  sign, then 

Theorem.  For n such that 2v~ + 3 <~ n < v~ +~, then one of  two cases occurs: 
(a) ~:./> n - 2v~ - 3, or 
(b) Q. and Q.+ I have at least [-2tz(n + 1 - v~ + N . + I ) ]  common zeros in 71. 

2. Location of  zeros 

We assume the condi t ions  imposed  above  and  we a re  going to ob ta in  a lower  b o u n d  for the 
n u m b e r  of  zeros of  Q. with o d d  mult ipl ici ty loca ted  in A. 

L e m m a  2.1. Let  Q be a polynomial whose zeros are located in an interval I ~ ~ (I ~ ~) and c ~ N \ I .  
G i v e n  (yi)k=l ~ 7~+k..){0} such that 0 <<. v~ < 1) 2 < " ' "  < Yk, /f d e g Q  > Yk - -  k there exists a poly- 
nomial ~p with deg q~ = k such that 

(Qqg)t~,)(c) = O, i = 1 . . . .  ,k ,  (3) 

holds. Moreover, all the zeros of  q~ are out o f  I (the interior of  I). 

Proof. Firs t  of  all, no te  tha t  such a po lynomia l  ¢ exists; it is the solu t ion  of  a sys tem of 
k h o m o g e n e o u s  linear equa t ions  with k + 1 u n k n o w n s  (the coefficients of  ~). Fu r the rmore ,  ~o is not  
identical ly zero and  deg ~p ~< k. 

Suppose  that  deg ~o = r ~< k - 1. If  we deno te  n = deg Q, the po lynomia l  Q~0 has at least n zeros 
in I, then by  Rolle 's  t heo rem (Qtp) %) has at least n - vl zeros in I and  one  extra zero in c, because  of  
(3). Therefore  (Q~0) tv,) has at least n - vl + 1 zeros in the convex hull of  Iw{c} ,  co(Iw{c}).  

N o w  we p roceed  by  induct ion.  As (Q~p)tv,+O(x) = [(Qtp)tV,)] t~,+l-~r)(x), again by  Rolle 's  t heo rem 
we have that  (Qtp)t~,+~) has at least n + r - vr - (vr+l - v~) -- n - V,+l + r zeros in co( Iw{c})  and 
one  extra  zero in c because  of(3);  that  is, (Qtp)t~,+l) has at least n - v~+l + (r + 1) zeros in R, which 
cont rad ic t s  the fact tha t  d e g ( Q q ~ ) t v , + O = n + r - v ~ + v  (Not ice  that,  since Q ~ 0 ~ 0  and 
n ~> vk - k + 1 ~> vr+l - r, we have (Q~p)~,+0 ~ 0.) Therefore  we deduce  that  d e g ~  = k. 

If  ~ has at least one  zero in/~, (Q~p)t~l) has at least n + 2 - vl zeros in co(Iw{c}).  Repea t ing  the 
same a rgumen t  as a b o v e  it fol lows that  (Q~0) tw is a po lynomia l  not  identically zero with degree 
n + k - Vk and  at least n + k + 1 - Vk zeros in R; hence all the zeros of  ~0 are ou t  of  L [ ]  

Remark .  The  same conclus ion  as in the preceding l emma is t rue if c belongs  to the b o u n d a r y  of  I, 
vl > 0 and  c is at mos t  a simple zero of  Q. 

Theorem 2.2. Let  (Qn) be the sequence o f  monic orthogonal polynomials with respect to the product 
(2). Then the polynomial Q,, for  each n e Z +, has at least n - h changes of  sign in A, where fi is the 
number o f  terms in the discrete part of  the product whose order o f  derivative is less than n. 
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Proof.  The result of  the theorem is derived f rom the following: 

Claim. I f  vj + 1 <<. n ~ Vj+l, j = 1, . . .  ,m ,  then Q, has at least n - j  changes of sign in .4. 

Proof of the Claim. 
L changes of  sign in z~ with L ~< n j 1. 

If c s E \A,  we can define a po lynomia l  Q such tha t  

degQ = n - j -  1 and  all the of Q belong to A, zeros 

QQ, does not  change sign in A. 

Indeed,  we take  Qo 
changes its sign in A 
interval  A. 

F o r  vj + 1 ~< n ~< D+ 1, f rom (2), we get tha t  

L 0 = pQ. dl~+ ~ Mip(~')(c)Q~)(c) 
u i = 1  

holds  for every p e ~ , _  1. 

F o r  n = j the result is trivial, so we assume n ~> j + 1. Suppose tha t  Q, has 

(4) 

the po lynomia l  with a simple root  at each one of the L points  where Q, 
and  one zero of mult ipl ic i ty  n - j  - 1 - L at one of  the (finite) endpoin ts  of the 

(s) 

Now,  we have to consider  several cases according to whether  the orders of  derivatives are 
consecutive or not. 

(a) Case n = v i + 1. (i) Let  n = vj + 1 = vj-1 + 2 . . . . .  vl + j .  Since S~ conta ins  an infinite 
set, pu t t ing  in (5) p = Q and  taking into account  (4) we have a cont rad ic t ion  and  the result follows. 
Not ice  tha t  this is the only  s i tuat ion for j = 1. I f j  > 1, then j - 1 more  s i tuat ions can occur. 

(ii) Let  n = D + l = v j _ a + 2  . . . . .  v ~ + j + l - l > V z _ l + j + 2 - 1 > > . . . .  >~vl+j ,  with 
l =  2, . . . , j .  

By applying L e m m a  2.1 with k = l - 1 ,  as degQ = n - j - 1  > v ~ - i - ( l - 1 ) ,  there exists 
a po lynomia l  q~, with deg ~0 = l - 1, which satisfies (q~Q)~,)(c) = 0, i = 1 , . . . ,  1 - 1, and  with no 
zeros in A. Then,  deg q~Q = n - j - 1 + l - 1 = v~ - 1, hence taking p = q~Q, (5) leads to a contra-  
diction, because ~oQQ, has cons tan t  sign in S u. 

Notice  tha t  the claim has a l ready been proved whenever  vj + 1 = v j+ 1. It remains  to consider: 
(b) Case n > vj + 1. Since deg Q = n - j  - 1 > vj - j ,  again by applying the l emma with k = j 

and  taking  p = q~Q in (5), the claim follows. 
Eventual ly  if c ~ 0A, we const ruct  a po lynomia l  Q satisfying (4) and  such tha t  it has at most  

a simple zero at c. If  Vl # 0, we proceed as before, by  using the remark  instead of  the lemma.  When  
vl = 0, one has to dist inguish the case Q(c) # O, which is deduced  in the same way as when c ~ ~ \ A ,  
f rom the case Q(c) = 0, where the remark  should  be applied only for i = 2 , . . . ,  k. (Observe tha t  if 
vl = 0 and  M1 > 0, it can be deduced  tha t  Q, has at least n - j  + 1 changes of  sign in A.) 

Thus  the claim is proved and  we are ready  to deduce the theorem. []  

Deno te  Vo = 0 and  v,,+l = + oo. If Vo + 1 ~< n ~< vl, then Q, coincides with the nth monic  
o r thogona l  po lynomia l  with respect to the p roduc t  

(f,,g)o = fs  fgdlg. 
i i  
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I f j  = 1, ... ,m and D + 1 ~< n ~< D+I, Q, coincides with the nth monic orthogonal  polynomial 
with respect to the product  

( f  g)j = fs fg dp + i=, ~ Mif'~')(c)g'V')(c)" (6) 

Now it suffices to apply the claim and the theorem follows. []  

Remark.  F rom the preceding theorem and Theorem 4 in [9], it follows that, for n large enough and 
special types of measures for which ratio asymptotics of the sequence (Q,) can be obtained (for 
instance, measures such that p' > 0 a.e. in A), there are precisely n - m simple zeros of Q, in A while 
the m remaining zeros are attracted by the point c. 

Now, using that (Q,) is quasi-orthogonal of order d with respect to the measure (x - c) ~ d#, we 
o 

give another  result about  the location of the zeros in A. 
Let C~ denote the open connected components  of z]\Su and we write [x] for the integer 

part of x. 

Proposition 2.3. (a) The number o f  zeros o f  the polynomial Q, (n > d) located in each component 
C, is less than or equal to either d + 1 or d, whenever d is even or odd, respectively. 
Moreover, if a component C, has the maximum number o f  zeros, the remaining zeros are 
simple. 

(b) Let  j be a positive integer, j > 1. I f  j is even (respectively odd), there are at most [(d + 1)/j] 
components C, (respectively [(d + 1)/(j - 1)]), each one containing at least j zeros. (Notice that there 
are at most [½(d + 1)] components C,, each one containing more than one zero of  Q,.) 

Proofi (a) Suppose d is even and let C~ = (a,, b,) be a component  with r zeros of Q, (r ~> d + 2). We 
can construct  a polynomial Q such that QQ, does not  change sign on S,; indeed, if r is even, it 
suffices to take Q the polynomial with the rest of the roots of Q, and if r is odd, we add to Q one 
more zero taken among the rest of the zeros of Q, in C,. So Ss QQ,(x - c) ddp ~ 0 and, by 
quasi-orthogonality, we have deg Q > n - d - 1 which leads to a con"tradiction. The case d odd can 
be proved in a similar way. 

Besides, if a component  C~ has the maximum number  of zeros, then bYo an argument  of 
quasi-orthogonality, it follows that Q, has at least n - (d + 1) changes of sign in A \C, .  Since Q, has 
at most n - d zeros in E \C , ,  the remaining zeros are simple. 

(b) Let C, (a = 1, . . . ,  k) be the components  each one containing precisely j zeros of Q, (j > 1). 
There is a polynomial  Q such that QQ. does not change sign on S u with 

d e g Q < < { ~ - k j  if j even, 
k ( j -  1) if j odd. 

Now, using again the quasi-orthogonali ty of the sequence (Q,) we have k < (d + 1)/j for j  even and 
k < (d + 1)/(j - 1) for j odd and the result follows. []  
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3. Interlacing properties of the zeros 

The separation property of the zeros of standard orthogonal  polynomials can be deduced from 
the Gauss-Jacobi  quadrature  formula (for example, see 114, Theorem 6.2, p. 34]). We will use this 
technique to study this property for Sobolev-type orthogonal  polynomials. 

Let x . b . . . ,  x,N. be the points where Q, changes sign in A; so because of Theorem 2.2, we have 
N. />  n - fi I> n - d (d = v,, + 1). The polynomial Q, can be represented in the form Q, = Q,~ Q,2 
where Q.1 has simple zeros at (X,k)~:l with deg Q,1 = N, and the sign of Q,2 is constant in A; hence 
degQ.2 ~< n -  N,  ~< d. We can suppose, without loss of generality, that Q , 2 ( x ) ( x -  c)ddp is 
a positive measure. Next, we study the separation of the zeros for the polynomials Q,~. 

By using the quasi-orthogonali ty of (Q,) with respect to the measure (x - c) a d/~ it is easy to 
obtain the following analog of the Gauss-Jacobi  quadrature  formula (see [-7, Lemma 3]). 

Lemma 3.1. For every n > d and every polynomial P with deg P ~< n - d + N,  - 1 the formula 

with 

fS Nn PQ,z(X - c)ddp = ~', 2,kP(X,k) (7) 
u k = l  

t" Q.(x) 
2.k | c)ddP 

= As. x . k )  ( x  - 

holds. 

Proof. Let P be an arbitrary polynomial with d e g P  ~< n -  d + N , -  1 and denote by L the 
Lagrange polynomial  interpolating P at the points x,1, . . . ,  x,N. (deg L < N,). Then, P - L = Q, lq 
where deg q ~< n - d - 1. Integrating with respect to the measure Q,z(X)(x - c) a d#, because of the 
quasi-orthogonali ty of the sequence (Q,), the result follows. []  

Note  that formula (7) is true whenever deg P ~< 2(n - d) - 1. 

Lemma 3.2. For every n > d, the number of  positive coefficients in formula (7) is greater than or equal 
to [-½(n - d + N,  + 1)]. 

Proof. Suppose that the number  of positive coefficients 2,k, k = 1,. . . ,  N, ,  is less than or equal to 
[½(n - d + N,  + 1)] - 1. Let P(x) = I-I + (x - X,k) 2, where I] + denotes the product  over all indices 
k for which 2,k > 0. Since deg P ~< n - d + N.  - 1, formula (7) applied to P leads to a contradic- 
tion. []  

Remark. Note that the number  of nonpositive coefficients in (7) is less than or equal to 
[-½(N, + d - n)] ~< ½d. 

Concerning the number  of positive coefficients in a mechanical quadrature  formula, see also 
117, 15]. More recent references related to this subject are [12, 16]. 

Now, we use the above results to deduce: 
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Theorem 3.3. Let  (Q.) be a sequence o f  monic orthogonal polynomials with respect to the product (2). 
Let  (X.h) N" 1 be the points in the interior o f  the convex hull of  the support o f  p where Q. changes sign. h= 
Assume that they are indexed so that x.a < x.2 < "-" < x. ,n. .  By K. denote the number o f  intervals 
I.h = (X.h, X.,h+ 1), h = 1 , . . . ,  N .  - 1, containing at least one point where Q.+ 1 changes sign. For 
n such that 2vj + 3 <<. n < vj+l (j  = O, . . . ,m) ,  one of  two cases occurs: 

(a) ~c. >>. n - 2vj - 3, or 
(b) Q. and Q.+ I have at least [½(n + 1 - vj + N.+I ) ]  common zeros in ~1. 

Proof. As above, Vo = 0 and  Vm+ 1 = ~ TO begin with let vj <<. n < vj+ 1, j  ---- 0, . . . ,  m. Obviously,  for 
such n's, Q,+ 1 coincides with the (n + 1)th monic  o r thogona l  po lynomia l  with respect to the 
p roduc t  (6). Therefore,  in regards to those indices, d = vj + 1. 

Fo r  n + 1, fo rmula  (7) adopts  the form 

fS Nn+l PQ.+l ,2 (x - -c )dd#= ~ 2.+I,kP(X.+I,k), (8) 
k = l  

where P is any  po lynomia l  with 

deg P ~< n + N.  + 1 - -  d. (9) 

Take  P(x)  = [ l - ( x  - x .  + 1,h) 2 Q.(x)q(x),  where [ [ -  denotes  the p roduc t  over those indices h such 
tha t  2. + 1,h ~< 0 and  q is a polynomial .  We wish to place this P in (8). 

We k n o w  tha t  Q. is o r thogona l  to all po lynomia ls  of degree ~< n - d - 1 with respect to the 
measure  (x - c) a d/~. If  q is a po lynomia l  of  degree ~< n - 2d - 1, then f rom the remark  of L e m m a  
3.2 we have deg ( [ [ - (x  - x.+ 1,h)ZqQ.+ 1,2) ~< n - d - 1 and  hence the lef t-hand side of (8) is equal  
to 0. 

In order  tha t  such a po lynomia l  q exists (degq >~ 0), we mus t  restrict our  a t ten t ion  to those 
indices n such tha t  (d = vj + 1) 

2vj + 3 <<. n < Vj+ l. (10) 

Given j,  if there is no  n for which such inequali t ies hold,  we have no th ing  to prove and  we consider  
a different j. Obviously,  at least for j = m, such n's are possible. Moreover ,  because of  (9) and  the 
remark  to L e m m a  3.2, formula  (8) holds for the above po lynomia l  P whenever  q is of de- 
gree ~< n - 2d + 1. 

Therefore,  if n satisfies (10), f rom (8) we obta in  tha t  

0 = Z + 2.+l,k(l--[-(X.+a,k -- X.+I,n))Z(qQ.)(X.+I,k), (11) 

where q is any  po lynomia l  with degree ~< n - 2d - 1 and  Z + denotes  the sum over those indices 
k such tha t  2. + 1,k > 0. 

If  X. >>- n -- 2d - 1 = n - 2vj - 3 we have no th ing  to prove. Therefore,  let us assume that  
~c. ~< n - 2d - 2. We shall const ruct  a po lynomia l  q, whose zeros are conta ined  in the set of zeros of 
Q.1, such tha t  

(qQnl)(Xn+l,k) >/0 for all k. (12) 
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In order  to const ruct  q, we follow the fol lowing rule. We analyze the intervals I.h f rom h = N .  - 1 
d o w n  to h = 0 where I .o = (a, x.1) and  a is the left endpoin t  of A (possibly - oe). If I.h contains  
a zero of Q. + 1,1 we assign to q one zero at x., h + 1 and  move  to the next interval  I.,  h- 1; if I.h has no 
zero of  Q.+ 1,1, then nei ther  x.h nor  X.,h+ 1 are to be zeros of  q, we skip the interval I . ,h_ 1 and  
consider  next the interval  I . ,h_ 2. 

Not ice  that  each t ime tha t  I.h, h = 0 , . . . ,  N .  - 1, has no zero of Q.+ 1,1 we save at  least one 
degree for q. The worst  s i tuat ion occurs when  all the intervals I.h tha t  do  not  con ta in  zeros of 
Q. + 1,1 are consecutive. 

It is no t  hard  to see tha t  q satisfies degq  ~< x.  + 1 and  (12). Since q divides Q.x (and thus  Q.), 
2.+1,k > 0 and  ( lq-(x.+ 1,k - X.+l,h)) 2 > 0, f rom (11), we conclude tha t  Q.(x.+l ,k)  = 0 for all k. 

A lower b o u n d  for the number  of  terms in (11) is given by L e m m a  3.2 f rom which follows (b). 
Wi th  this we conclude the proof. []  

Not ice  tha t  in (b), Q. + 1 m a y  be subst i tu ted by Q.+ 1,1. 
We wish to under l ine  tha t  the p roof  of  Theorem 3.3 is based only on propert ies of quasi- 

o r thogonal i ty .  Therefore,  for quas i -o r thogona l  po lynomia ls  a version of this result is immediate .  

Remark .  An interest ing case arises when 

m - 1  

( f , g )  = fg  dl~ + ~, Mif(i)(c)g(i)(c), 
u i = O  

where c e ~ \ A ,  Mi e N\{0} and  p' > 0 a.e. in A. F r o m  the remark  to Theorem 2.2, we k n o w  that  for 
all sufficiently large n, Q. has exactly n - m simple zeros in zt and  the rest are outside of A. 
Therefore,  (b) in Theorem 3.3 canno t  occur  (notice tha t  d = m and  N .  + 1 = n + 1 - m) and  f rom (a) 
we ob ta in  tha t  x, ~> n - 2m - 1 for all large n. 
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