Some properties of zeros of Sobolev-type orthogonal polynomials

${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
${ }^{\mathrm{b}}$ Faculdad de Matemática y Cibernética, Universidad de La Habana, La Habana 4, Cuba

Received 3 October 1994; revised 14 March 1995

Abstract

For polynomials orthogonal with respect to a discrete Sobolev product, we prove that, for each n, Q_{n} has at least $n-m$ zeros on the convex hull of the support of the measure, where m denotes the number of terms in the discrete part. Interlacing properties of zeros are also described.

Keywords: Orthogonal and quasi-orthogonal polynomials; Sobolev-type products; Gauss-Jacobi quadrature formula; Zeros

AMS classification: 33 C 45

1. Introduction

(1) During the last years several authors studied polynomials orthogonal with respect to the so-called Sobolev-type (or discrete Sobolev) inner products, that is, inner products of the form

$$
\begin{equation*}
\langle f, g\rangle=\int_{I} f g \mathrm{~d} \mu+\sum_{i=0}^{r} M_{i} f^{(i)}(c) g^{(i)}(c) \tag{1}
\end{equation*}
$$

where μ is a finite positive Borel measure supported on an interval $I \subset \mathbb{R}, c \notin I$ (the interior of I), $r \geqslant 1, M_{i} \geqslant 0$ for $i=0, \ldots, r-1$ and $M_{r}>0$ (see for instance $[1,2,5,6,8,10]$). The location of zeros of the polynomials Q_{n} orthogonal with respect to the product (1) has been considered in them, among other questions.

It is known that Q_{n} has at least $n-(r+1)$ zeros with odd multiplicity in $\stackrel{\circ}{I}$, whenever $n \geqslant r+1$. Moreover in the following particular situations, we have:

[^0](a) Suppose that $M_{i}=0$ for $i=1, \ldots, r-1$ and $M_{0}>0$, then whenever $n \geqslant r+1, Q_{n}$ has at least $n-2$ zeros with odd multiplicity in I. Moreover if $c \in \partial I$ (the boundary of I), Q_{n} has at least $n-1$ zeros with odd multiplicity in I (see $[2,11,13]$).
(b) When the inner product (1) is
$$
\langle f, g\rangle=\int_{I} f g \mathrm{~d} \mu+M_{r} f^{(r)}(c) g^{(r)}(c)+M_{s} f^{(s)}(c) g^{(s)}(c)
$$
where $1 \leqslant r<s$ and $M_{r}, M_{s}>0$, then for every $n \geqslant s+1, Q_{n}$ has at least $n-2$ zeros with odd multiplicity in I (see [3]).

These last two results seem to suggest that the number of zeros of Q_{n} in I does not depend on the order of the derivatives in (1) but on the number of terms in the discrete part of the inner product.

In Section 2, we prove that this conjecture is true. Furthermore, we shall prove that the coefficients M_{i} may well be negative numbers, although in this case the product ceases to be positive definite.

In what follows we shall be concerned with the discrete Sobolev product

$$
\begin{equation*}
\langle f, g\rangle=\int_{S_{\mu}} f g \mathrm{~d} \mu+\sum_{i=1}^{m} M_{i} f^{\left(v_{i}\right)}(c) g^{\left(v_{i}\right)}(c), \tag{2}
\end{equation*}
$$

with μ a finite positive Borel measure whose support, S_{μ}, contains an infinite set of points, $S_{\mu} \subset \mathbb{R}$, $0 \leqslant v_{1}<\cdots<v_{m}$ and $M_{i} \in \mathbb{R} \backslash\{0\}$. We will denote by Δ the convex hull of S_{μ} and by $\Delta 0$ the interior of Δ. We will suppose that $\Delta \neq \mathbb{R}$ and $c \in \mathbb{R} \backslash \dot{\Delta}$.

Let \mathbb{Z}_{+}be the set of positive integers. By $Q_{n}, n \in \mathbb{Z}_{+}$, we will denote the nth monic polynomial of least degree, not identically equal to zero, such that

$$
\left\langle p, Q_{n}\right\rangle=0, \quad p \in \mathscr{P}_{n-1}
$$

where \mathscr{P}_{n-1} denotes the linear space of all polynomials of degree $\leqslant n-1$.
Such a polynomial does exist. In fact it is deduced solving a homogeneous linear system with n equations and $n+1$ unknowns. Uniqueness follows from the minimality of the degree for the polynomial solution. If the product is positive definite then $\operatorname{deg} Q_{n}=n$ and thus all the Q_{n} 's are distinct. In general this is not so and for different values of n the same polynomial Q_{n} can appear.

It is easy to see that the sequence $\left(Q_{n}\right)$ is quasi-orthogonal of order $d=v_{m}+1$ on S_{μ} with respect to the measure $(x-c)^{d} \mathrm{~d} \mu$, that is $\int_{S_{\mu}} P Q_{n}(x-c)^{d} \mathrm{~d} \mu=0$ for every polynomial P with $\operatorname{deg} P \leqslant n-d-1$.

In the sequel, for every $n \in \mathbb{Z}_{+}, \bar{n}$ denotes the number of terms in the discrete part of the product (2) whose order of derivative is less than n.

The main results of this paper are given in the next two theorems, which will be proved in Sections 2 and 3 (see Theorems 2.2 and 3.3, respectively).

Theorem. For every $n \in \mathbb{Z}_{+}, Q_{n}$ has at least $n-\bar{n}$ changes of sign in the interior of the convex hull of the support of the measure μ.
(2) Another interesting question is that connected with the interlacing property of the zeros of such orthogonal polynomials. When there is no discrete part we have the classical definition of orthogonality and all the zeros of Q_{n+1} interlace with those of Q_{n}. For Sobolev-type inner products with $M_{i} \geqslant 0$, the polynomials Q_{n} and Q_{n+1} can have common zeros (see [1]). If the coefficients M_{i} are allowed to be real numbers, it is easy to see that it may occur that $Q_{n} \equiv Q_{n+1}$.

In Section 3, we give an estimate of the number of consecutive zeros of Q_{n} which have in between a zero of Q_{n+1} (for a particular product (2), a partial result appears in [14]).

Let $\left(x_{n h}\right)_{n=1}^{N_{n}}$ be the points in \AA where Q_{n} changes sign. Let κ_{n} be the number of intervals $I_{n h}=\left(x_{n h}, x_{n, h+1}\right), h=1, \ldots, N_{n}-1$, containing at least one point where Q_{n+1} changes sign, then

Theorem. For n such that $2 v_{\tilde{n}}+3 \leqslant n<v_{1+\tilde{n}}$, then one of two cases occurs:
(a) $\kappa_{n} \geqslant n-2 v_{\bar{n}}-3$, or
(b) Q_{n} and Q_{n+1} have at least $\left[\frac{1}{2}\left(n+1-v_{\bar{n}}+N_{n+1}\right)\right]$ common zeros in $\grave{4}$.

2. Location of zeros

We assume the conditions imposed above and we are going to obtain a lower bound for the number of zeros of Q_{n} with odd multiplicity located in $\grave{\Delta}$.

Lemma 2.1. Let Q be a polynomial whose zeros are located in an interval $I \subset \mathbb{R}(I \neq \mathbb{R})$ and $c \in \mathbb{R} \backslash I$. Given $\left(v_{i}\right)_{i=1}^{k} \subset \mathbb{Z}_{+} \cup\{0\}$ such that $0 \leqslant v_{1}<v_{2}<\cdots<v_{k}$, if $\operatorname{deg} Q>v_{k}-k$ there exists a polynomial φ with $\operatorname{deg} \varphi=k$ such that

$$
\begin{equation*}
(Q \varphi)^{\left(_{i}\right)}(c)=0, \quad i=1, \ldots, k \tag{3}
\end{equation*}
$$

holds. Moreover, all the zeros of φ are out of $I($ the interior of I).
Proof. First of all, note that such a polynomial φ exists; it is the solution of a system of k homogeneous linear equations with $k+1$ unknowns (the coefficients of φ). Furthermore, φ is not identically zero and $\operatorname{deg} \varphi \leqslant k$.

Suppose that $\operatorname{deg} \varphi=r \leqslant k-1$. If we denote $n=\operatorname{deg} Q$, the polynomial $Q \varphi$ has at least n zeros in I, then by Rolle's theorem $(Q \varphi)^{\left(v_{1}\right)}$ has at least $n-v_{1}$ zeros in I and one extra zero in c, because of (3). Therefore $(Q \varphi)^{\left(v_{1}\right)}$ has at least $n-v_{1}+1$ zeros in the convex hull of $I \cup\{c\}, \operatorname{co}(I \cup\{c\})$.

Now we proceed by induction. As $(Q \varphi)^{\left(v_{r+1}\right)}(x)=\left[(Q \varphi)^{\left(v_{r}\right)}\right]^{\left(v_{r+1}-v_{r}\right)}(x)$, again by Rolle's theorem we have that $(Q \varphi)^{\left(v_{r+1}\right)}$ has at least $n+r-v_{r}-\left(v_{r+1}-v_{r}\right)=n-v_{r+1}+r$ zeros in $\operatorname{co}(I \cup\{c\})$ and one extra zero in c because of (3); that is, $(Q \varphi)^{\left(v_{r+1}\right)}$ has at least $n-v_{r+1}+(r+1)$ zeros in \mathbb{R}, which contradicts the fact that $\operatorname{deg}(Q \varphi)^{\left(v_{r+1}\right)}=n+r-v_{r+1}$. (Notice that, since $Q \varphi \not \equiv 0$ and $n \geqslant v_{k}-k+1 \geqslant v_{r+1}-r$, we have $(Q \varphi)^{\left(v_{r+1}\right)} \not \equiv 0$.) Therefore we deduce that $\operatorname{deg} \varphi=k$.

If φ has at least one zero in $I,(Q \varphi)^{\left(v_{1}\right)}$ has at least $n+2-v_{1}$ zeros in $\operatorname{co}(I \cup\{c\})$. Repeating the same argument as above it follows that $(Q \varphi)^{\left(v_{k}\right)}$ is a polynomial not identically zero with degree $n+k-v_{k}$ and at least $n+k+1-v_{k}$ zeros in \mathbb{R}; hence all the zeros of φ are out of \dot{I}.

Remark. The same conclusion as in the preceding lemma is true if c belongs to the boundary of I, $v_{1}>0$ and c is at most a simple zero of Q.

Theorem 2.2. Let $\left(Q_{n}\right)$ be the sequence of monic orthogonal polynomials with respect to the product (2). Then the polynomial Q_{n}, for each $n \in \mathbb{Z}_{+}$, has at least $n-\bar{n}$ changes of sign in $\dot{\Delta}$, where \bar{n} is the number of terms in the discrete part of the product whose order of derivative is less than n.

Proof. The result of the theorem is derived from the following:
Claim. If $v_{j}+1 \leqslant n \leqslant v_{j+1}, j=1, \ldots, m$, then Q_{n} has at least $n-j$ changes of sign in $\dot{\Delta}$.
Proof of the Claim. For $n=j$ the result is trivial, so we assume $n \geqslant j+1$. Suppose that Q_{n} has L changes of sign in \AA with $L \leqslant n-j-1$.

If $c \in \mathbb{R} \backslash \Delta$, we can define a polynomial Q such that

$$
\left\{\begin{array}{l}
\operatorname{deg} Q=n-j-1 \text { and all the zeros of } Q \text { belong to } \Delta, \tag{4}\\
Q Q_{n} \text { does not change sign in } \Delta .
\end{array}\right.
$$

Indeed, we take Q_{0} the polynomial with a simple root at each one of the L points where Q_{n} changes its sign in Δ and one zero of multiplicity $n-j-1-L$ at one of the (finite) endpoints of the interval Δ.

For $v_{j}+1 \leqslant n \leqslant v_{j+1}$, from (2), we get that

$$
\begin{equation*}
0=\int_{S_{\mu}} p Q_{n} \mathrm{~d} \mu+\sum_{i=1}^{j} M_{i} p^{\left(v_{i}\right)}(c) Q_{n}^{\left(v_{i}\right)}(c) \tag{5}
\end{equation*}
$$

holds for every $p \in \mathscr{P}_{n-1}$.
Now, we have to consider several cases according to whether the orders of derivatives are consecutive or not.
(a) Case $n=v_{j}+1$. (i) Let $n=v_{j}+1=v_{j-1}+2=\cdots=v_{1}+j$. Since S_{μ} contains an infinite set, putting in (5) $p=Q$ and taking into account (4) we have a contradiction and the result follows. Notice that this is the only situation for $j=1$. If $j>1$, then $j-1$ more situations can occur.
(ii) Let $n=v_{j}+1=v_{j-1}+2=\cdots=v_{l}+j+1-l>v_{l-1}+j+2-l \geqslant \cdots \geqslant v_{1}+j$, with $l=2, \ldots, j$.

By applying Lemma 2.1 with $k=l-1$, as $\operatorname{deg} Q=n-j-1>v_{l-1}-(l-1)$, there exists a polynomial φ, with $\operatorname{deg} \varphi=l-1$, which satisfies $(\varphi Q)^{\left(v_{i}\right)}(c)=0, i=1, \ldots, l-1$, and with no zeros in Δ. Then, $\operatorname{deg} \varphi Q=n-j-1+l-1=v_{l}-1$, hence taking $p=\varphi Q$, (5) leads to a contradiction, because $\varphi Q Q_{n}$ has constant sign in S_{μ}.

Notice that the claim has already been proved whenever $v_{j}+1=v_{j+1}$. It remains to consider:
(b) Case $n>v_{j}+1$. Since $\operatorname{deg} Q=n-j-1>v_{j}-j$, again by applying the lemma with $k=j$ and taking $p=\varphi Q$ in (5), the claim follows.

Eventually if $c \in \partial \Delta$, we construct a polynomial Q satisfying (4) and such that it has at most a simple zero at c. If $v_{1} \neq 0$, we proceed as before, by using the remark instead of the lemma. When $v_{1}=0$, one has to distinguish the case $Q(c) \neq 0$, which is deduced in the same way as when $c \in \mathbb{R} \backslash \Delta$, from the case $Q(c)=0$, where the remark should be applied only for $i=2, \ldots, k$. (Observe that if $v_{1}=0$ and $M_{1}>0$, it can be deduced that Q_{n} has at least $n-j+1$ changes of sign in \dot{d}.)

Thus the claim is proved and we are ready to deduce the theorem.
Denote $v_{0}=0$ and $v_{m+1}=+\infty$. If $v_{0}+1 \leqslant n \leqslant v_{1}$, then Q_{n} coincides with the nth monic orthogonal polynomial with respect to the product

$$
\langle f, g\rangle_{0}=\int_{S_{\mu}} f g \mathrm{~d} \mu .
$$

If $j=1, \ldots, m$ and $v_{j}+1 \leqslant n \leqslant v_{j+1}, Q_{n}$ coincides with the nth monic orthogonal polynomial with respect to the product

$$
\begin{equation*}
\langle f, g\rangle_{j}=\int_{\mathbf{S}_{\mu}} f g \mathrm{~d} \mu+\sum_{i=1}^{j} M_{i} f^{\left(v_{i}\right)}(c) g^{\left(v_{i}\right)}(c) . \tag{6}
\end{equation*}
$$

Now it suffices to apply the claim and the theorem follows.
Remark. From the preceding theorem and Theorem 4 in [9], it follows that, for n large enough and special types of measures for which ratio asymptotics of the sequence (Q_{n}) can be obtained (for instance, measures such that $\mu^{\prime}>0$ a.e. in Δ), there are precisely $n-m$ simple zeros of Q_{n} in Δ while the m remaining zeros are attracted by the point c.

Now, using that $\left(Q_{n}\right)$ is quasi-orthogonal of order d with respect to the measure $(x-c)^{d} \mathrm{~d} \mu$, we give another result about the location of the zeros in \dot{d}.

Let C_{α} denote the open connected components of $\dot{\Delta} \backslash S_{\mu}$ and we write $[x]$ for the integer part of x.

Proposition 2.3. (a) The number of zeros of the polynomial $Q_{n}(n>d)$ located in each component C_{α} is less than or equal to either $d+1$ or d, whenever d is even or odd, respectively. Moreover, if a component C_{α} has the maximum number of zeros, the remaining zeros are simple.
(b) Let j be a positive integer, $j>1$. If j is even (respectively odd), there are at most $[(d+1) / j]$ components $C_{\alpha}($ respectively $[(d+1) /(j-1)])$, each one containing at least j zeros. (Notice that there are at most $\left[\frac{1}{2}(d+1)\right]$ components C_{α}, each one containing more than one zero of Q_{n}.)

Proof. (a) Suppose d is even and let $C_{\alpha}=\left(a_{\alpha}, b_{\alpha}\right)$ be a component with r zeros of $Q_{n}(r \geqslant d+2)$. We can construct a polynomial Q such that $Q Q_{n}$ does not change sign on S_{μ}; indeed, if r is even, it suffices to take Q the polynomial with the rest of the roots of Q_{n} and if r is odd, we add to Q one more zero taken among the rest of the zeros of Q_{n} in C_{α}. So $\int_{S_{\mu}} Q Q_{n}(x-c)^{d} \mathrm{~d} \mu \neq 0$ and, by quasi-orthogonality, we have $\operatorname{deg} Q>n-d-1$ which leads to a contradiction. The case d odd can be proved in a similar way.

Besides, if a component C_{α} has the maximum number of zeros, then by an argument of quasi-orthogonality, it follows that Q_{n} has at least $n-(d+1)$ changes of sign in $\Delta \backslash C_{\alpha}$. Since Q_{n} has at most $n-d$ zeros in $\mathbb{R} \backslash C_{\alpha}$, the remaining zeros are simple.
(b) Let $C_{\alpha}(\alpha=1, \ldots, k)$ be the components each one containing precisely j zeros of $Q_{n}(j>1)$. There is a polynomial Q such that $Q Q_{n}$ does not change sign on S_{μ} with

$$
\operatorname{deg} Q \leqslant \begin{cases}n-k j & \text { if } j \text { even } \\ n-k(j-1) & \text { if } j \text { odd }\end{cases}
$$

Now, using again the quasi-orthogonality of the sequence $\left(Q_{n}\right)$ we have $k<(d+1) / j$ for j even and $k<(d+1) /(j-1)$ for j odd and the result follows.

3. Interlacing properties of the zeros

The separation property of the zeros of standard orthogonal polynomials can be deduced from the Gauss-Jacobi quadrature formula (for example, see [4, Theorem 6.2, p. 34]). We will use this technique to study this property for Sobolev-type orthogonal polynomials.

Let $x_{n 1}, \ldots, x_{n N_{n}}$ be the points where Q_{n} changes sign in $\dot{\Delta}$; so because of Theorem 2.2, we have $N_{n} \geqslant n-\bar{n} \geqslant n-d\left(d=v_{m}+1\right)$. The polynomial Q_{n} can be represented in the form $Q_{n}=Q_{n 1} Q_{n 2}$ where $Q_{n 1}$ has simple zeros at $\left(x_{n k}\right)_{k=1}^{N_{n}}$ with $\operatorname{deg} Q_{n 1}=N_{n}$ and the sign of $Q_{n 2}$ is constant in $\dot{0}$; hence $\operatorname{deg} Q_{n 2} \leqslant n-N_{n} \leqslant d$. We can suppose, without loss of generality, that $Q_{n 2}(x)(x-c)^{d} \mathrm{~d} \mu$ is a positive measure. Next, we study the separation of the zeros for the polynomials $Q_{n 1}$.

By using the quasi-orthogonality of $\left(Q_{n}\right)$ with respect to the measure $(x-c)^{d} \mathrm{~d} \mu$ it is easy to obtain the following analog of the Gauss-Jacobi quadrature formula (see [7, Lemma 3]).

Lemma 3.1. For every $n>d$ and every polynomial P with $\operatorname{deg} P \leqslant n-d+N_{n}-1$ the formula

$$
\begin{equation*}
\int_{S_{\mu}} P Q_{n 2}(x-c)^{d} \mathrm{~d} \mu=\sum_{k=1}^{N_{n}} \lambda_{n k} P\left(x_{n k}\right) \tag{7}
\end{equation*}
$$

with

$$
\lambda_{n k}=\int_{S_{k}} \frac{Q_{n}(x)}{Q_{n 1}^{\prime}\left(x_{n k}\right)\left(x-x_{n k}\right)}(x-c)^{d} \mathrm{~d} \mu
$$

holds.
Proof. Let P be an arbitrary polynomial with $\operatorname{deg} P \leqslant n-d+N_{n}-1$ and denote by L the Lagrange polynomial interpolating P at the points $x_{n 1}, \ldots, x_{n N_{n}}\left(\operatorname{deg} L<N_{n}\right)$. Then, $P-L=Q_{n 1} q$ where $\operatorname{deg} q \leqslant n-d-1$. Integrating with respect to the measure $Q_{n 2}(x)(x-c)^{d} \mathrm{~d} \mu$, because of the quasi-orthogonality of the sequence $\left(Q_{n}\right)$, the result follows.

Note that formula (7) is true whenever $\operatorname{deg} P \leqslant 2(n-d)-1$.
Lemma 3.2. For every $n>d$, the number of positive coefficients in formula (7) is greater than or equal to $\left[\frac{1}{2}\left(n-d+N_{n}+1\right)\right]$.

Proof. Suppose that the number of positive coefficients $\lambda_{n k}, k=1, \ldots, N_{n}$, is less than or equal to $\left[\frac{1}{2}\left(n-d+N_{n}+1\right)\right]-1$. Let $P(x)=\Pi^{+}\left(x-x_{n k}\right)^{2}$, where Π^{+}denotes the product over all indices k for which $\lambda_{n k}>0$. Since $\operatorname{deg} P \leqslant n-d+N_{n}-1$, formula (7) applied to P leads to a contradiction.

Remark. Note that the number of nonpositive coefficients in (7) is less than or equal to $\left[\frac{1}{2}\left(N_{n}+d-n\right)\right] \leqslant \frac{1}{2} d$.

Concerning the number of positive coefficients in a mechanical quadrature formula, see also $[7,15]$. More recent references related to this subject are [12, 16].

Now, we use the above results to deduce:

Theorem 3.3. Let $\left(Q_{n}\right)$ be a sequence of monic orthogonal polynomials with respect to the product (2). Let $\left(x_{n h}\right)_{h=1}^{N_{n}}$ be the points in the interior of the convex hull of the support of μ where Q_{n} changes sign. Assume that they are indexed so that $x_{n 1}<x_{n 2}<\cdots<x_{n, N_{n}}$. By κ_{n} denote the number of intervals $I_{n h}=\left(x_{n h}, x_{n, h+1}\right), h=1, \ldots, N_{n}-1$, containing at least one point where Q_{n+1} changes sign. For n such that $2 v_{j}+3 \leqslant n<v_{j+1}(j=0, \ldots, m)$, one of two cases occurs:
(a) $\kappa_{n} \geqslant n-2 v_{j}-3$, or
(b) Q_{n} and Q_{n+1} have at least $\left[\frac{1}{2}\left(n+1-v_{j}+N_{n+1}\right)\right]$ common zeros in \AA.

Proof. As above, $v_{0}=0$ and $v_{m+1}=\infty$. To begin with let $v_{j} \leqslant n<v_{j+1}, j=0, \ldots, m$. Obviously, for such n 's, Q_{n+1} coincides with the $(n+1)$ th monic orthogonal polynomial with respect to the product (6). Therefore, in regards to those indices, $d=v_{j}+1$.

For $n+1$, formula (7) adopts the form

$$
\begin{equation*}
\int_{S_{\mu}} P Q_{n+1,2}(x-c)^{d} \mathrm{~d} \mu=\sum_{k=1}^{N_{n+1}} \lambda_{n+1, k} P\left(x_{n+1, k}\right), \tag{8}
\end{equation*}
$$

where P is any polynomial with

$$
\begin{equation*}
\operatorname{deg} P \leqslant n+N_{n+1}-d \tag{9}
\end{equation*}
$$

Take $P(x)=\Pi^{-}\left(x-x_{n+1, h}\right)^{2} Q_{n}(x) q(x)$, where Π^{-}denotes the product over those indices h such that $\lambda_{n+1, h} \leqslant 0$ and q is a polynomial. We wish to place this P in (8).

We know that Q_{n} is orthogonal to all polynomials of degree $\leqslant n-d-1$ with respect to the measure $(x-c)^{d} \mathrm{~d} \mu$. If q is a polynomial of degree $\leqslant n-2 d-1$, then from the remark of Lemma 3.2 we have $\operatorname{deg}\left(\Pi^{-}\left(x-x_{n+1, h}\right)^{2} q Q_{n+1,2}\right) \leqslant n-d-1$ and hence the left-hand side of (8) is equal to 0 .

In order that such a polynomial q exists $(\operatorname{deg} q \geqslant 0)$, we must restrict our attention to those indices n such that $\left(d=v_{j}+1\right)$

$$
\begin{equation*}
2 v_{j}+3 \leqslant n<v_{j+1} . \tag{10}
\end{equation*}
$$

Given j, if there is no n for which such inequalities hold, we have nothing to prove and we consider a different j. Obviously, at least for $j=m$, such n 's are possible. Moreover, because of (9) and the remark to Lemma 3.2, formula (8) holds for the above polynomial P whenever q is of degree $\leqslant n-2 d+1$.

Therefore, if n satisfies (10), from (8) we obtain that

$$
\begin{equation*}
0=\sum^{+} \lambda_{n+1, k}\left(\Pi^{-}\left(x_{n+1, k}-x_{n+1, h}\right)\right)^{2}\left(q Q_{n}\right)\left(x_{n+1, k}\right), \tag{11}
\end{equation*}
$$

where q is any polynomial with degree $\leqslant n-2 d-1$ and Σ^{+}denotes the sum over those indices k such that $\lambda_{n+1, k}>0$.

If $\kappa_{n} \geqslant n-2 d-1=n-2 v_{j}-3$ we have nothing to prove. Therefore, let us assume that $\kappa_{n} \leqslant n-2 d-2$. We shall construct a polynomial q, whose zeros are contained in the set of zeros of $Q_{n 1}$, such that

$$
\begin{equation*}
\left(q Q_{n 1}\right)\left(x_{n+1, k}\right) \geqslant 0 \quad \text { for all } k \tag{12}
\end{equation*}
$$

In order to construct q, we follow the following rule. We analyze the intervals $I_{n h}$ from $h=N_{n}-1$ down to $h=0$ where $I_{n 0}=\left(a, x_{n 1}\right)$ and a is the left endpoint of Δ (possibly $\left.-\infty\right)$. If $I_{n h}$ contains a zero of $Q_{n+1,1}$ we assign to q one zero at $x_{n, h+1}$ and move to the next interval $I_{n, h-1}$; if $I_{n h}$ has no zero of $Q_{n+1,1}$, then neither $x_{n h}$ nor $x_{n, h+1}$ are to be zeros of q, we skip the interval $I_{n, h-1}$ and consider next the interval $I_{n, h-2}$.

Notice that each time that $I_{n h}, h=0, \ldots, N_{n}-1$, has no zero of $Q_{n+1,1}$ we save at least one degree for q. The worst situation occurs when all the intervals $I_{n h}$ that do not contain zeros of $Q_{n+1,1}$ are consecutive.

It is not hard to see that q satisfies $\operatorname{deg} q \leqslant \kappa_{n}+1$ and (12). Since q divides $Q_{n 1}$ (and thus Q_{n}), $\lambda_{n+1, k}>0$ and $\left(\Pi^{-}\left(x_{n+1, k}-x_{n+1, h}\right)\right)^{2}>0$, from (11), we conclude that $Q_{n}\left(x_{n+1, k}\right)=0$ for all k.

A lower bound for the number of terms in (11) is given by Lemma 3.2 from which follows (b). With this we conclude the proof.

Notice that in (b), Q_{n+1} may be substituted by $Q_{n+1,1}$.
We wish to underline that the proof of Theorem 3.3 is based only on properties of quasiorthogonality. Therefore, for quasi-orthogonal polynomials a version of this result is immediate.

Remark. An interesting case arises when

$$
\langle f, g\rangle=\int_{S_{\mu}} f g \mathrm{~d} \mu+\sum_{i=0}^{m-1} M_{i} f^{(i)}(c) g^{(i)}(c)
$$

where $c \in \mathbb{R} \backslash \Delta, M_{i} \in \mathbb{R} \backslash\{0\}$ and $\mu^{\prime}>0$ a.e. in Δ. From the remark to Theorem 2.2, we know that for all sufficiently large n, Q_{n} has exactly $n-m$ simple zeros in \AA and the rest are outside of Δ. Therefore, (b) in Theorem 3.3 cannot occur (notice that $d=m$ and $N_{n+1}=n+1-m$) and from (a) we obtain that $\kappa_{n} \geqslant n-2 m-1$ for all large n.

References

[1] M. Alfaro, F. Marcellán, H.G. Meijer and M.L. Rezola, Symmetric orthogonal polynomials for Sobolev-type inner products, J. Math. Anal. Appl. 184 (1994) 360-381.
[2] M. Alfaro, F. Marcellán, M.L. Rezola and A. Ronveaux, On orthogonal polynomials of Sobolev type: algebraic properties and zeros, SIAM J. Math. Anal. 23 (1992) 737-757.
[3] M.G. de Bruin, A tool for locating zeros of orthogonal polynomials in Sobolev inner product spaces, J. Comput. Appl. Math. 49 (1993) 27-35.
[4] T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978).
[5] R. Koekoek, Generalizations of the classical Laguerre polynomials and some q-analogues, Doctoral Dissertation, Techn. Univ. of Delft, Netherlands, 1990.
[6] R. Koekoek and H.G. Meijer, A generalization of Laguerre polynomials, SIAM J. Math. Anal. 24 (1993) 768-773.
[7] G. López, On the convergence of the Pade approximants for meromorphic functions of Stieltjes type, Math. USSR Sb. 39 (1981) 281-288.
[8] F. Marcellán, M. Alfaro and M.L. Rezola, Orthogonal polynomials on Sobolev spaces: old and new directions, J. Comput. Appl. Math. 48 (1993) 113-131.
[9] F. Marcellán, G. López and W. Van Assche, Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product, Constr. Approx. 11 (1995) 107-137.
[10] F. Marcellán, T.E. Pérez and M. Piñar, On zeros of Sobolev type orthogonal polynomials, Rend. Mat. Appl. (7) 12 (1992) 455-473.
[11] H.G. Meijer, Laguerre polynomials generalized to a certain discrete Sobolev inner product space, J. Approx. Theory 73 (1993) 1-16.
[12] F. Peherstorfer, Linear combinations of orthogonal polynomials generating positive quadrature formulas, Math. Comp. 55 (1990) 231-241.
[13] T.E. Pérez and M. Piñar, Global properties of the zeros for Sobolev-type orthogonal polynomials, J. Comput. Appl. Math. 49 (1993) 225-232.
[14] M. Piñar, Polinomios ortogonales tipo Sobolev: Aplicaciones, Doctoral Dissertation, Univ. de Granada, Spain, 1992.
[15] J. Shohat, On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc. 42 (1937) 461-496.
[16] Y. Xu, A characterization of positive quadrature formulae, Math. Comp. 62 (1994) 703-718.

[^0]: * Corresponding author. E-mail: alfaro@cc.unizar.es.
 ${ }^{1}$ This research was partially supported by Diputación General de Aragón P CB-12/91 and by Comisión Interministerial de Ciencia y Tecnología (CICYT-Spain) PB93-0228-C02-02.
 ${ }^{2}$ This research was carried out while visiting the Departamento de Matemáticas, Universidad de Zaragoza, Spain.

