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Abstract

Let Qn be the polynomials orthogonal with respect to the Sobolev inner product

(f; g)S =

∫
fg d�0 +

∫
f′g′ d�1;

being (�0; �1) a coherent pair where one of the measures is the Hermite measure. The outer relative asymptotics for Qn

with respect to Hermite polynomials are found. On the other hand, we consider the Sobolev scaled polynomials and we
obtain the Plancherel–Rotach asymptotics for those as well as a consequence about their zeros. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Let �0 and �1 be :nite positive Borel measures on the real line R and � ¿ 0, and consider the
Sobolev inner product

(f; g)S =
∫

fg d�0 + �
∫

f′g′ d�1:
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In the study of the Sobolev polynomials Qn, orthogonal with respect to (:; :)S , an interesting situation
occurs when the pair of measures (�0; �1) is a coherent pair (respectively, a symmetrically coherent
pair), which means that there exist non-zero constants �n such that the monic polynomials Tn and
Pn orthogonal with respect to �1 and �0, respectively, satisfy

Tn =
P′

n+1

n + 1
+ �n

P′
n

n
(n¿1)

(respectively, Tn = P′
n+1=(n + 1) + �nP′

n−1=(n − 1); (n¿2)).
Under this condition, it can be derived an algebraic relation between the polynomials Qn and

Tn, which has been the departure point to study some asymptotic properties of the polynomials Qn;
among them, the relative asymptotic behaviour of Qn with respect to either Pn or Tn. Many of these
results have been generalized for a more wide class of measures (see [4]).

Meijer has proved that if (�0; �1) is either a coherent or a symmetrically coherent pair, then at least
�0 or �1 is a classical measure (that is, Jacobi, Laguerre or Hermite measure), and has completely
classi:ed all the coherent and the symmetrically coherent pairs (see [5]).

For coherent pairs where one of the measures is the Jacobi one, the strong asymptotics for the
polynomials Qn have been found in [1,3]. More recently, the analogous result for the Laguerre case
has been obtained in [6]. Also, asymptotic properties have been studied in [2] for the nondiagonal
case, which recovers a type of Laguerre coherent pairs as a particular case. However, nothing has
been made when one of the measures is the Hermite one.

The aim of this paper is to :ll this gap. Note that, according to Meijer’s result, if (�0; �1) is
a symmetrically coherent pair being one of the measures the Hermite measure, only the following
cases can occur:

• Case I: d�0 = (x2 + �2)e−x2 dx with � ∈ R and d�1 = e−x2 dx,

• Case II: d�0 = e−x2 dx and d�1 = e−x2

x2+�2 dx with � ∈ R\{0}.
In both cases, we deduce the relative asymptotics and this is carried out in Section 2 (see Theorems

2.3 and 2.7). However, we obtain more information about the Sobolev polynomials in the unbounded
case if we scale the polynomials Qn. In this way, in Section 3, we obtain for scaled Qn properties
similar to those ones that verify the scaled Hermite polynomials (see [8]). First, we derive the
corresponding scaled relative asymptotics (Theorem 3.1) and we deduce from here the Plancherel–
Rotach asymptotics for Qn(

√
nx) in C\[−√

2;
√
2]. As an immediate consequence we get the location

of scaled zeros.
Along this paper, we will use the following notations: Hn denotes the Hermite polynomial with

the normalization Hn(x) = 2nxn + · · · ; and Qn the Sobolev polynomial orthogonal with respect to
(:; :)S normalized by Qn(x) = 2nxn + · · · . Also, ’ is the conformal mapping of C\[− 1; 1] onto the
exterior of the closed unit disk, that is, ’(x) = x +

√
x2 − 1 with

√
x2 − 1¿ 0 when x ¿ 1.

2. Relative asymptotics

Through this section, we denote kn =
∫
R H 2

n (x)e
−x2 dx = 2nn!

√
�.

2.1. Case I: (d�0 = (x2 + �2)e−x2 dx; � ∈ R, and d�1 = e−x2 dx).
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Lemma 2.1. The polynomials Hn and Qn satisfy the relation

Hn+2 = Qn+2 + anQn; (n¿0) (2.1)

being H1 = Q1; H0 = Q0 and

an =
kn+2

4(Qn; Qn)S
; (n¿0): (2.2)

Moreover; an are constants depending on � and � satisfying the nonlinear recurrence formula

an =
4(n + 1)(n + 2)

2[2(2� + 1)n + 1 + 2�2]− an−2
; (n¿2): (2.3)

Proof. Let us consider the Fourier expansion Hn+2 = Qn+2 +
∑n+1

i=0 aiQi. A suitable use of the
orthogonality of Qn and Hn shows that ai = 0 for i = 0; : : : ; n − 1; an = (Hn+2; Qn)S=(Qn; Qn)S and,
from the symmetrical character of Hn, we get an+1 = 0.
Using adequately (2.1) and the orthogonality of Qn,

(Qn; Qn)S = (Hn; Qn)S = (Hn; Hn − an−2Qn−2)S

= (Hn; Hn)S − an−2(Hn; Hn−2 − an−4Qn−4)S

= (Hn; Hn)S − an−2(Hn; Hn−2)S

and (Hn+2; Qn)S = (Hn+2; Hn)S . Hence,

an =
(Hn+2; Hn)S

(Hn; Hn)S − an−2(Hn; Hn−2)S
; (n¿2): (2.4)

Moreover,

(Hn+2; Hn)S =
∫
R

Hn+2Hn d�0 =
1
4
kn+2 = 2n(n + 2)!

√
�

and

(Hn; Hn)S =
∫
R

H 2
n d�0 + �4n2kn−1

=
1
4

∫
R
(2xHn)2e−x2dx + (�2 + 2�n)kn =

√
�2nn!

(
2�n + �2 + n +

1
2

)
;

where we have used the well known properties of the classical Hermite polynomials (see [7]).
Now (2.2) is immediate and substituting the above values in (2.4), formula (2.3) follows.

Lemma 2.2. The sequence (bn)n¿1 = (an=2(n + 2))n¿1 is bounded by 1=(1 + 2�) and converges to
b = 1=’(2� + 1).

Proof. From (2.2) we write bn = kn+2=[8(n + 2)(Qn; Qn)S].
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Let (Pn) be the sequence of polynomials orthogonal with respect �0, with Pn(x) = 2nxn + · · · .
Using the extremal property of the norm of the orthogonal polynomials, we have

(Qn; Qn)S =
∫
R

Q2
n d�0 + �

∫
R
(Q′

n)
2 d�1¿

∫
R

P2
n d�0 + 4�n2kn−1

=
∫
R
((x + �)Pn)2 d�1 + 4�n2kn−1¿

1
4
kn+1 + 4�n2kn−1

and thus bn61=(1 + 2�)¡ 1, for all n¿1.
Besides, from (2.3)

bn =
n + 1

2(2� + 1)n + 1 + 2�2 − nbn−2
; n¿2: (2.5)

Suppose that (bn) converges to b, then from (2.5), b2 − 2(2� + 1)b + 1= 0 and since b ¡ 1, one
has b = 1=’(2� + 1). But

|bn − b| =
∣∣∣∣∣n + 1− b[2(2� + 1)n + 1 + 2�2] + nb[bn−2 − b] + nb2

2(2� + 1)n + 1 + 2�2 − nbn−2

∣∣∣∣∣
6

|n[b2 − 2(2� + 1)b + 1] + 1− b(1 + 2�2)|
(4� + 1)n

+
b

4� + 1
|bn−2 − b|;

which implies

lim sup
n

|bn − b|6 b
4� + 1

lim sup
n

|bn−2 − b|
and the result follows.

As a consequence of Perron’s formula and the relation between Hermite and Laguerre polynomials
(see [7, p. 199]), we have

lim
n

nHn(x)
Hn+2(x)

=−1
2

(2.6)

uniformly on compact sets of C\R.
Now, we can derive the following result.

Theorem 2.3. The Sobolev orthogonal polynomials Qn satisfy

lim
n

Qn(x)
Hn(x)

=
’(2� + 1)

’(2� + 1)− 1
(2.7)

uniformly on compact sets of C\R.

Proof. With the notation

fn(x) =
Qn(x)
Hn(x)

; cn(x) =−an
Hn(x)

Hn+2(x)

formula (2.1) reads as

fn+2(x) = 1 + cn(x)fn(x); (2.8)
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where fn and cn are analytic functions in C\R and Lemma 2.2 and (2.6) give us limncn(x) =
1=’(2� + 1) = b uniformly on compact subsets of C\R.
If we put

gn(x) = fn(x)− 1
1− b

; (2.9)

then we can write (2.8) as

gn+2(x) = bgn(x) + �n(x); (2.10)

with

�n(x) = (cn(x)− b)
(

gn(x) +
1

1− b

)
:

Since 0¡ b ¡ 1 from (2.8), it is straightforward to deduce that (fn) and, consequently, (gn) are
uniformly bounded on compact subsets of C\R. Therefore, limn�n(x) = 0 uniformly on compact
subsets of C\R and from (2.10), we deduce the same behaviour for gn and the result follows.

2.2. Case II: (d�0 = e−x2 dx and d�1 = e−x2

x2+�2 dx; � ∈ R\{0}).
In what follows, (Tn) stands for the sequence of polynomials orthogonal with respect to �1, with

Tn(x) = 2nxn + · · ·, and we denote k ′
n =

∫
R T 2

n d�1.
From the coherence condition and the fact that H ′

n = 2nHn−1, we have

Tn =
H ′

n+1

2(n + 1)
+ �n−1

H ′
n−1

2(n − 1)
= Hn + �n−1Hn−2; (n¿2) (2.11)

and then

�n−1 =
k ′

n

4kn−2
; (n¿2): (2.12)

Lemma 2.4. The sequence (�n)n¿1 = (�n=2n)n¿1 converges to 1.

Proof. We will distinguish according to n be either even or odd.
In the :rst case, by a process of symmetrization, (2.11) becomes the coherence relation for one

of the Laguerre coherent pairs, being �2n the corresponding coherence parameters, and so, as it has
been proved in [6], �2n=4n tends to 1.
When n is odd, integrating (2.11) with respect to �1; �2n−1 = (− ∫R H2n d�1)=(

∫
R H2n−2 d�1) and it

suPces to estimate
∫
R H2n d�1. For that, using the relation between Hermite and Laguerre polynomials

(see [7, p. 106]), the Rodrigues formula for the Laguerre ones (see [7, p. 101]), after integration by
parts n times, we obtain∫

R
H2n d�1 = (−1)n22nn!

∫ +∞

0

L(−1=2)
n (x)
x + �2

e−xx−1=2 dx

= (−1)n22n
∫ +∞

0

1
x + �2

Dn(xn−1=2e−x) dx

= (−1)n22nn!
∫ +∞

0

xn−1=2e−x

(x + �2)n+1
dx =

(−1)n22nn!
|�|

∫ +∞

0

xn−1=2e−�2x

(1 + x)n+1
dx:
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Using the Laplace’s method as in Lemma 4:3 in [6], we :nd that

∫ +∞

0

xn−1=2e−�2x

(1 + x)n+1
dx ∼ e−�2MnM−1=2

n

(
Mn

1 + Mn

)n
√

Mn

n
�;

if n → +∞, where Mn =− 1
2 +

√
1
4 + (n + 1)=�2.

From this result, we conclude.

Lemma 2.5. The polynomials Hn and Qn satisfy the relation

Hn+2 + �n
n + 2

n
Hn = Qn+2 + anQn; (n¿1); (2.13)

where the co5cients an are given by

an = �n
n + 2

n
kn

(Qn; Qn)S
(2.14)

and satisfy the recurrence relation

an =
(n + 2)kn�n=n

kn + n2kn−2(�n−2=(n − 2))2 + 16�n2kn−3�n−2 − nkn−2(�n−2=(n − 2))an−2
; (2.15)

for all n ¿ 2.

Proof. Let Rn be the polynomials de:ned by Rn+2=Hn+2+�n((n+2)=n)Hn. Observe that the coherence
relation, implies that R′

n =2nTn−1. The expansion of Rn in terms of Qn leads to Rn+2 =Qn+2 + anQn.
Handling as in Lemma 2.1, it follows that

an =
(Rn+2; Rn)S

(Rn; Rn)S − an−2(Rn; Rn−2)S
; (n¿2): (2.16)

Now using the de:nition of the polynomials Rn, the relation of their derivatives with Tn and formula
(2.12), we can derive (2.14) and (2.15).

Lemma 2.6. The sequence (bn)n¿1 = (an=2(n + 2))n¿1 is bounded by (1 + �2)=(1 + �2 + 2�) and
converges to b = 1=’(2� + 1).

Proof. From (2.14) and (2.12),

bn =
k ′

n+1

8nkn−1

kn

(Qn; Qn)S
: (2.17)

Notice that, in (2.17), the :rst factor is bounded by 1 since

kn =
∫
R

H 2
n d�0 =

∫
R
(x2 + �2)H 2

n d�1 =
∫
R
[(x + �)Hn]

2 d�1¿
k ′

n+1

4
:

On the other hand, using again the extremal property of the norm of orthogonal polynomials,

(Qn; Qn)S¿kn + 4�n2k ′
n−1 (2.18)
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and then

bn6
kn

(Qn; Qn)S
6

1
1 + 2�nk ′

n−1=kn−1
:

Moreover, if we consider the Fourier expansion of Hn in terms of Tn, we have

4(x2 + �2)Hn = Tn+2 + 4
kn

k ′
n

Tn:

Multiplying by Hn both sides of the above formula, integrating with respect to �0 and using the
recurrence relation for Hn we can obtain

k ′
n+2

4kn
+

4kn

k ′
n

= 4(n + �2) + 2: (2.19)

Finally,

bn6
1

1 + 2�n=(n + �2 − 1=2)
6

1
1 + 2�n=(n + �2)

6
1

1 + 2�=(1 + �2)
¡ 1; for all n¿1:

In order to prove the convergence of the sequence (bn), observe that, from (2.15) and the expression
of �n in terms of �n,

bn =
�n

1 + [n=(n − 1)]�2
n−2 + 4�[n=(n − 1)]�n−2 − [n=(n − 1)]�n−2bn−2

(2.20)

holds.
Then, to conclude it suPces to proceed as in Lemma 2.2 taking in mind that

|bn − b|
6

|�n − b[1 + [n=(n − 1)]�2
n−2 + 4�[n=(n − 1)]�n−1] + [n=(n − 1)]�n−2b2|

1 + [n=(n − 1)]�2
n−2 + (4� − 1)[n=(n − 1)]�n−2

+
b

1 + 4�
|bn−2 − b|

and Lemma 2.4.

Theorem 2.7. The Sobolev orthogonal polynomials Qn satisfy

lim
n

Qn(x)
Hn(x)

= 0

uniformly on compact sets of C\R.

Proof. Working as in the Theorem 2.3, from (2.13), taking into account (2.6) and Lemmas 2.4 and
2.6, we can write

fn+2(x) = cn(x)fn(x) + dn; fn(x) =
Qn(x)
Hn(x)

;

where dn → 0 and limn cn(x) = 1=’(2�+ 1) uniformly on compact subsets of C\R. Then, the result
follows.
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3. Scaled relative asymptotics

Additional information about the polynomials Qn can be obtained from the relative asymptotics
for the scaled Sobolev polynomials with respect to the scaled Hermite polynomials.

A result we will need later is the ratio asymptotics for the scaled Hermite polynomials: for every
nonnegative integer i,

lim
n

√
2nHn−1(

√
n − i x)

Hn(
√

n − i x)
=

1

’(x=
√
2)

(3.1)

holds uniformly on compact subsets of C\[−√
2;
√
2], (see [8, p. 126]).

Theorem 3.1.
(i) In Case I;

lim
n

Qn(
√

n x)
Hn(

√
n x)

=
’(2� + 1)’2(x=

√
2)

’(2� + 1)’2(x=
√
2) + 1

holds uniformly on compact sets of C\[−√
2;
√
2].

(ii) In Case II;

lim
n

Qn(
√

n x)
Hn(

√
n x)

=
(’2(x=

√
2) + 1)’(2� + 1)

’(2� + 1)’2(x=
√
2) + 1

holds uniformly on compact sets of C\[−√
2;
√
2].

Proof. (i) From (2.1),

Qn = Hn − an−2Qn−2 = Hn − an−2(Hn−2 − an−4Qn−4):

Iteration yields

Qn = Hn +
[n=2]∑
i=1

(−1)i


 i∏

j=1

an−2j


Hn−2i ;

where [n] means the biggest integer less than or equal to n. So,

Qn(
√

n x)
Hn(

√
n x)

= 1 +
[n=2]∑
i=1

(−1)i


 i∏

j=1

an−2j

2n


 (2n)iHn−2i(

√
n x)

Hn(
√

n x)
=

[n=2]∑
i=0

fn; i(
√

n x);

where

fn; i(x) = (−1)i


 i∏

j=1

an−2j


 Hn−2i(x)

Hn(x)
for 0¡ i6[ n

2 ] and fn;0 ≡ 1:

As a consequence of Lemma 2.2 and (3.1), for every :xed nonnegative integer i,

lim
n

fn; i(
√

n x) = fi(x) =

(
−1

’(2� + 1)’2(x=
√
2)

)i

(3.2)
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holds uniformly on compact subsets of C\[−√
2;
√
2] and the sequence (fn; i(

√
n x))+∞

n=0 is uniformly
bounded on compact subsets of C\[−√

2;
√
2]. More precisely, for i=0; 1; : : : ; [n=2], given a compact

set K ⊂C\[−√
2;
√
2]

|fn; i(
√

nx)|6Mci (3.3)

holds for x ∈ K , where c = 1=(1 + 2�) and the constant M only depends on K .
Notice that, from (3.2) and (3.3), we :nd that

lim
n

[n=2]∑
i=0

fn; i(
√

n x) =
+∞∑
i=0

fi(x)

uniformly on compact subsets of C\[−√
2;
√
2] and the result follows.

(ii) As above, from the relation of polynomials Rn in terms of Qn (see Lemma 2.5), we get

Qn = Rn +
[n=2]∑
i=1

(−1)i


 i∏

j=1

an−2j


Rn−2i :

Recall that, Rn = Hn + �n−2[n=(n − 2)]Hn−2. Using Lemma 2.4 and (3.1) one easily shows that

lim
n

Rn(
√

n x)
Hn(

√
n x)

= 1 +
1

’2(x=
√
2)

holds uniformly on compact subsets of C\[−√
2;
√
2].

Now, it suPces to use the same techniques as in (i) and, taking in mind Lemma 2.6, we conclude.

Next, we give some consequences of the Theorem 3.1.

Corollary 3.2. The following analogues of Plancherel–Rotach asymptotics hold:

(i) Case I

lim
n

Qn(
√

n x)
(2nn!

√
�)1=2

∏n
k=1 ’(

√
n=2kx)

=

(
x2 − 2

x2

)−1=4
’(2� + 1)’2(x=

√
2)

’(2� + 1)’2(x=
√
2) + 1

(ii) Case II

lim
n

Qn(
√

n x)
(2nn!

√
�)1=2

∏n
k=1 ’(

√
n=(2k)x)

=

(
x2 − 2

x2

)−1=4
(’2(x=

√
2) + 1)’(2� + 1)

’(2� + 1)’2(x=
√
2) + 1

uniformly on compact subsets of C\[−√
2;
√
2].

Proof. Is an inmediate consequence of the Theorem 3.1 and the Plancherel–Rotach asymptotics for
Hermite polynomials, see [8].

Moreover, from Hurwitz’s theorem we get:

Corollary 3.3. In both cases; zeros of the polynomials Qn(
√

nx) accumulate on [−√
2;
√
2].
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polynomials for coherent pairs, J. Approx. Theory 92 (1998) 280–293.
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