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C. Markett proved a Cohen type inequality for the classical Laguerre expansions in the
appropriate weighted Lp spaces. In this paper, we get a Cohen type inequality for the
Fourier expansions in terms of discrete Laguerre–Sobolev orthonormal polynomials with an
arbitrary (finite) number of mass points. So, we extend the result due to B.Xh. Fejzullahu
and F. Marcellán.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and notations

Littlewood conjectured in 1948 that for any trigonometric polynomial F N (x) = ∑N
k=1 akeinkx where 0 < n1 < n2 <

· · · < nN , N � 2, and |ak| � 1 for 1 � k � N , there holds the estimate from below

2π∫
0

∣∣F N(x)dx
∣∣ � C log N

where C is an absolute constant (see [6]).
Cohen’s inequality [3] was the first result on the way to the solution of this conjecture. Later, inequalities of this type

have been established in various other contexts, e.g., on compact group (see [5]).
In [12] Markett proved such inequalities for classical orthogonal polynomial expansions in the appropriate weighted

L p spaces, here in terms of the highest coefficient. The main purpose of this paper is to extend these results to discrete
Laguerre–Sobolev expansions. More precisely, we obtain such inequalities, in the appropriate weighted L p spaces, for Fourier
expansions in terms of orthonormal polynomials with respect to an inner product of the form

〈p,q〉S = 1

Γ (α + 1)

∞∫
0

p(x)q(x)xαe−x dx +
N∑

j=0

M j p( j)(0)q( j)(0), (1)

where α > −1 and M j � 0, j = 0, . . . , N . Such inner products are called of discrete Sobolev type.
Recently in [4], the authors Fejzullahu and Marcellán obtained Cohen type inequalities for orthonormal expansions with

respect to the above inner product in the case N = 1, i.e. at most two masses in the discrete part. In this particular
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case, the authors benefit from the fact that there are explicit formulas for the connection coefficients which appear in the
representation of discrete Laguerre–Sobolev type polynomials in terms of three standard Laguerre polynomials (see [9]). For
a general discrete Laguerre–Sobolev inner product, we only know that these coefficients are a nontrivial solution of a system
of N + 1 equations on N + 2 unknowns (see [8]). If the system is solved, we get an intricate expression with which it is
difficult to work. Our contribution in this paper is that we can assure that there exists limit of these connection coefficients
and this is enough for our purpose.

Let {Lα
n (x)}n�0 be the sequence of Laguerre polynomials, orthogonal on [0,∞) with respect to the probability measure

dμ(x) = 1
Γ (α+1)

xαe−x dx where α > −1 and normalized by Lα
n (0) = ( n+α

n

)
. We denote the orthonormal Laguerre polynomial

of degree n by

lαn (x) = Lα
n (x)

‖Lα
n ‖

where ‖Lα
n ‖2 = ∫ ∞

0 Lα
n (x)2 dμ(x).

Let {Q α
n }n�0 be the sequence of discrete Laguerre–Sobolev orthogonal polynomials with respect to the inner product (1)

and such that Q α
n (x) and Lα

n (x) have the same leading coefficient. We denote by

qα
n (x) = 〈

Q α
n , Q α

n

〉−1/2
S Q α

n (x)

the orthonormal discrete Laguerre–Sobolev polynomials. From now on, for simplicity we write Q n(x) = Q α
n (x) and qn(x) =

qα
n (x).

Laguerre expansions have been investigated mainly in the following two sets of weighted Lebesgue spaces, namely in
the classical spaces [2,10]

Lp
(
xα dx

) =
{ { f ; ∫ ∞

0 | f (x)e−x/2|pxα dx < ∞}, if 1 � p < ∞;
{ f ;ess sup0<x<∞ | f (x)e−x/2| < ∞}, if p = ∞,

for α > −1 as well as in the spaces

Lp
(
xαp/2 dx

) =
{ { f ; ∫ ∞

0 | f (x)e−x/2xα/2|p dx < ∞}, if 1 � p < ∞;
{ f ;ess sup0<x<∞ | f (x)e−x/2xα/2| < ∞}, if p = ∞,

for α > − 2
p if 1 � p < ∞ and α � 0 if p = ∞.

In order to unify the two results we are going to prove, we introduce an auxiliary parameter β which means either α or
αp/2.

We consider the class Sβ
p , 1 � p � ∞, defined as the space of measurable functions f defined on [0,∞), such that there

exits f (k)(0) for k = 0, . . . , N and if 1 � p < ∞

‖ f ‖p

Sβ
p
= ‖ f ‖p

L p(xβ dx)
+

N∑
i=0

M j
∣∣ f j(0)

∣∣p
< ∞,

where

‖ f ‖p
L p(xβ dx)

=
∞∫

0

∣∣ f (x)e−x/2
∣∣p

xβ dx, 1 � p < ∞,

and if p = ∞
‖ f ‖

Sβ∞
= max

{‖ f ‖L∞(xβ dx),
∣∣ f (0)

∣∣, . . . , ∣∣ f (N)(0)
∣∣} < ∞,

where

‖ f ‖L∞(xβ dx) =
{

ess sup0<x<∞ | f (x)e−x/2|, if β = α;
ess sup0<x<∞ | f (x)e−x/2xα/2|, if β = αp/2.

(If some M j = 0 the corresponding derivative does not appear in the maximum.)

Let f ∈ Sβ
p , 1 � p � ∞, then the Fourier expansion in terms of orthonormal discrete Laguerre–Sobolev polynomials

{qn}n�0, is

∞∑
k=0

f̂ (k)qk(x)

where f̂ (k) = 〈 f ,qk〉S .
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In the following, [Sβ
p ] denotes the space of all bounded linear operators T from the space Sβ

p into itself, endowed with
the usual operator norm,

‖T ‖[Sβ
p ] = sup

0 �= f ∈Sβ
p

‖T f ‖
Sβ

p

‖ f ‖
Sβ

p

.

Let 1 � p � ∞. For a family of complex numbers {ck,n}n
k=0, n ∈ N ∪ {0}, with |cn,n| > 0 we define the operators T α,S

n :
Sβ

p → Sβ
p by

T α,S
n ( f ) =

n∑
k=0

ck,n f̂ (k)qk.

Let us denote q0 = 4α+4
2α+1 for β = α and q0 = 4 for β = pα/2, and let p0 be the conjugate of q0, i.e. 1/p0 + 1/q0 = 1.

Now, we can state our main theorem, which extends the ones given in [12] and [4].

Theorem 1. Let 1 � p � ∞. There exists a positive constant C , independent of n, such that:
For α > −1/2

∥∥T α,S
n

∥∥[Sα
p ] � C |cn,n|

⎧⎪⎪⎨⎪⎪⎩
n

2α+2
p − 2α+3

2 , if 1 � p < p0;
(log(n + 1))

2α+1
4α+4 , if p = p0, p = q0;

n
2α+1

2 − 2α+2
p , if q0 < p � ∞.

For α > −2/p if 1 � p < ∞ and α � 0 if p = ∞

∥∥T α,S
n

∥∥[S pα/2
p ] � C |cn,n|

⎧⎪⎪⎨⎪⎪⎩
n

2
p − 3

2 , if 1 � p < p0;
(log(n + 1))

1
4 , if p = p0, p = q0;

n
1
2 − 2

p , if q0 < p � ∞.

This theorem will be proved in Section 3. In Section 2, we obtain some new results for discrete Laguerre–Sobolev polyno-
mials, which we will use to establish Theorem 1. More concretely, we prove a technical lemma that will be used to deduce
a Mehler–Heine type formula for Laguerre–Sobolev polynomials and a sharp estimation for their norm in the appropriate
weighted L p spaces.

In the sequel we use the following notation, an ∼ bn means that there exist positive constants c1 and c2, such that
c1an � bn � c2an for n large enough, while an ∼= bn means that the sequence an

bn
converges to 1. Throughout the paper, the

values of the constants may change from line to line.

2. Estimates for discrete Laguerre–Sobolev polynomials

Consider the standard Laguerre polynomials Lα
n and the Laguerre–Sobolev polynomials Q n with the same leading coeffi-

cient.
Let us recall some properties of Laguerre polynomials for α > −1 (see [14]). The evaluation at x = 0 of the polynomials

Lα
n and its successive derivatives are given by

(
Lα

n

)(k)
(0) = (−1)kΓ (n + α + 1)

(n − k)!Γ (α + k + 1)
, k ∈ N ∪ {0},

and their L2-norm is

∥∥Lα
n

∥∥2 = 1

Γ (α + 1)

∞∫
0

(
Lα

n (x)
)2

xαe−x dx = Γ (n + α + 1)

n!Γ (α + 1)
. (2)

As usual, we denote the derivatives of the nth kernels of Laguerre polynomials by

K (k,h)
n (x, y) = ∂k+h

∂xk∂ yh
Kn(x, y) =

n∑
i=0

(Lα
i )(k)(x)(Lα

i )(h)(y)

‖Lα
i ‖2

with k,h ∈ N ∪ {0} and the convention K (0,0)
n (x, y) = Kn(x, y).
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In the next lemma, we obtain an asymptotic estimate for Q (k)
n (0), that will play an important role along this paper.

Lemma 1. Let Q n be the polynomials orthogonal with respect to the inner product (1). Then the following statements hold:

(a)

Q (k)
n (0)

(Lα
n )(k)(0)

∼=
{ Ck

nα+2k+1 , for k such that Mk > 0;
Ck, otherwise,

where Ck is a nonzero constant independent of n.

(b)

〈Q n, Q n〉S ∼= ∥∥Lα
n

∥∥2
.

Proof. If all the masses in the inner product (1) are zero the result is trivial because Q n = Lα
n . We will prove the result by

induction concerning the number of positive masses in the inner product (1).
We take the first mass which is positive, namely M j1 ( j1 � 0), and consider the sequence of polynomials {Q n,1}n�0

orthogonal with respect to the inner product

(p,q)1 = 1

Γ (α + 1)

∞∫
0

p(x)q(x)xαe−x dx + M j1 p( j1)(0)q( j1)(0).

The Fourier expansion of the polynomial Q n,1 in the orthogonal basis {Lα
n }n�0 leads to

Q n,1(x) = Lα
n (x) − M j1 Q ( j1)

n,1 (0)K (0, j1)
n−1 (x,0).

Therefore

Q n,1(x) = Lα
n (x) − M j1(Lα

n )( j1)(0)

1 + M j1 K ( j1, j1)
n−1 (0,0)

K (0, j1)
n−1 (x,0), (3)

and

(Q n,1, Q n,1)1 = ∥∥Lα
n

∥∥2 + M j1

((Lα
n )( j1)(0))2

1 + M j1 K ( j1, j1)
n−1 (0,0)

. (4)

These relationships are very well known in the literature of discrete Sobolev type orthogonal polynomials.
Taking derivatives k times in (3) and evaluating at x = 0, we obtain

Q (k)
n,1(0)

(Lα
n )(k)(0)

= 1 − M j1 K (k, j1)
n−1 (0,0)

1 + M j1 K ( j1, j1)
n−1 (0,0)

(Lα
n )( j1)(0)

(Lα
n )(k)(0)

. (5)

Applying the Stolz criterion (see, e.g. [7]), we have

lim
n

K (k, j1)
n−1 (0,0)

nα+k+ j1+1
= lim

n

(Lα
n−1)

(k)(0)(Lα
n−1)

( j1)(0)

‖Lα
n−1‖2(α + k + j1 + 1)nα+k+ j1

�= 0, (6)

and therefore

K (k, j1)
n−1 (0,0)

K ( j1, j1)
n−1 (0,0)

(Lα
n )( j1)(0)

(Lα
n )(k)(0)

∼= (α + 2 j1 + 1)

(α + k + j1 + 1)

(Lα
n−1)

(k)(0)

(Lα
n−1)

( j1)(0)

(Lα
n )( j1)(0)

(Lα
n )(k)(0)

∼= α + 2 j1 + 1

α + k + j1 + 1
. (7)

Thus, from (5), (6) and (7), we have

Q ( j1)
n,1 (0)

(Lα
n )( j1)(0)

= 1

1 + M j1 K ( j1, j1)
n−1 (0,0)

∼= C j1

nα+2 j1+1

and for k �= j1

Q (k)
n,1(0)

α (k)
∼= 1 − α + 2 j1 + 1 �= 0.
(Ln ) (0) α + k + j1 + 1
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So, we achieve (a) for Q n,1. Besides, taking limits in (4) and using again the size of derivatives of Laguerre polynomials, we
get (b) for the polynomials Q n,1.

If there are no more positive masses, since Q n,1 = Q n we have concluded the proof. Otherwise, suppose that the results
(a) and (b) hold for the sequence of polynomials {Q n,s−1}n�0 orthogonal with respect to the inner product

(p,q)s−1 = 1

Γ (α + 1)

∞∫
0

p(x)q(x)xαe−x dx + M j1 p( j1)(0)q( j1)(0) + · · · + M js−1 p( js−1)(0)q( js−1)(0),

where j1 < j2 < · · · < js−1 and all these masses are positive. Now, we have to prove the result for the polynomials Q n,s

orthogonal with respect to

(p,q)s = 1

Γ (α + 1)

∞∫
0

p(x)q(x)xαe−x dx + M j1 p( j1)(0)q( j1)(0) + · · · + M js p( js)(0)q( js)(0),

where M js > 0. Since (p,q)s = (p,q)s−1 + M js p( js)(0)q( js)(0) we can work as before. Then the Fourier expansion of the
polynomial Q n,s in the orthogonal basis {Q n,s−1}n�0 leads to

Q n,s(x) = Q n,s−1(x) − M js Q ( js)
n,s (0)K (0, js)

n−1,s−1(x,0),

where Kn,s−1 denotes the corresponding nth kernel for the sequence {Q n,s−1} and

K (k,h)
n,s−1(x, y) =

n∑
i=0

Q (k)
i,s−1(x)Q (h)

i,s−1(y)

(Q i,s−1, Q i,s−1)s−1
, k,h ∈ N ∪ {0}.

Therefore, in the same way as in (3) and (4), we get

Q n,s(x) = Q n,s−1(x) − M js Q ( js)
n,s−1(0)

1 + M js K ( js, js)
n−1,s−1(0,0)

K (0, js)
n−1,s−1(x,0), (8)

and

(Q n,s, Q n,s)s = (Q n,s−1, Q n,s−1)s−1 + M js

(Q n,s−1
( js)(0))2

1 + M js K ( js, js)
n−1,s−1(0,0)

. (9)

Taking derivatives k times in (8) and evaluating at x = 0, we obtain

Q (k)
n,s (0)

(Lα
n )(k)(0)

= Q (k)
n,s−1(0)

(Lα
n )(k)(0)

[
1 − M js K (k, js)

n−1,s−1(0,0)

1 + M js K ( js, js)
n−1,s−1(0,0)

Q ( js)
n,s−1(0)

Q (k)
n,s−1(0)

]
. (10)

Applying the Stolz criterion and the hypotheses (a) and (b) for {Q n,s−1}n�0, we can obtain

K (k, js)
n−1,s−1(0,0) ∼=

{
Cknα+k+ js+1, if k �= j1, . . . , js−1;
Ckn js−k, if k = j1, . . . , js−1,

(11)

where Ck is a nonzero constant. Indeed, for k �= j1, . . . , js−1,

lim
n

K (k, js)
n−1,s−1(0,0)

nα+k+ js+1
= lim

n

Q (k)
n−1,s−1(0)Q ( js)

n−1,s−1(0)

(Q n−1,s−1, Q n−1,s−1)s−1(α + k + js + 1)nα+k+ js

= lim
n

Q (k)
n−1,s−1(0)

(Lα
n−1)

(k)(0)
lim

n

Q ( js)
n−1,s−1(0)

(Lα
n−1)

( js)(0)
lim

n

(Lα
n−1)

(k)(0)(Lα
n−1)

( js)(0)

‖Lα
n−1‖2(α + k + js + 1)nα+k+ js

, (12)

and, for k = j1, . . . , js−1,

lim
n

K (k, js)
n−1,s−1(0,0)

n js−k
= lim

n

Q (k)
n−1,s−1(0)Q ( js)

n−1,s−1(0)

(Q n−1,s−1, Q n−1,s−1)s−1( js − k)n js−k−1

= lim
n

(Lα
n−1)

(k)(0)(Lα
n−1)

( js)(0)

‖Lα ‖2( js − k)nα+k+ js
lim

n
nα+2k+1

Q (k)
n−1,s−1(0)

(Lα )(k)(0)
lim

n

Q ( js)
n−1,s−1(0)

(Lα )( js)(0)
. (13)
n−1 n−1 n−1
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Then, from (10), (11) and the hypothesis for Q n,s−1, we have

Q ( js)
n,s (0)

(Lα
n )( js)(0)

= Q ( js)
n,s−1(0)

(Lα
n )( js)(0)

1

1 + M js K ( js, js)
n−1,s−1(0,0)

∼= C js

nα+2 js+1
,

with C js a nonzero constant. Moreover, for k �= js , taking into account (12), (13) and the hypothesis for Q n,s−1, we can
deduce

K (k, js)
n−1,s−1(0,0)

K ( js, js)
n−1,s−1(0,0)

Q ( js)
n,s−1(0)

Q (k)
n,s−1(0)

= K (k, js)
n−1,s−1(0,0)

K ( js, js)
n−1,s−1(0,0)

Q ( js)
n,s−1(0)

(Lα
n )( js)(0)

(Lα
n )(k)(0)

Q (k)
n,s−1(0)

(Lα
n )( js)(0)

(Lα
n )(k)(0)

∼= (Lα
n )( js)(0)

(Lα
n−1)

( js)(0)

(Lα
n−1)

(k)(0)

(Lα
n )(k)(0)

{ α+2 js+1
α+k+ js+1 , if k �= j1, . . . , js−1;
α+2 js+1

js−k , if k = j1, . . . , js−1,

∼=
{ α+2 js+1

α+k+ js+1 , if k �= j1, . . . , js−1;
α+2 js+1

js−k , if k = j1, . . . , js−1.

Thus, taking limits in (10) and (9), we get (a) and (b) for the polynomials Q n,s , i.e.

Q (k)
n,s (0)

(Lα
n )(k)(0)

∼=
{ Ck

nα+2k+1 , if k = j1, . . . , js;
Ck, otherwise,

and

(Q n,s, Q n,s)s ∼= ∥∥Lα
n

∥∥2
.

Hence the result follows. �
Observe that the part (a) of Lemma 1 is also true for the ratio of the corresponding orthonormal polynomials, and

therefore there exists

lim
n

q(k)
n (0)

(lαn )(k)(0)
=

{
0, for k such that Mk > 0;

Ck �= 0, otherwise.
(14)

Consider the following representation of the orthonormal polynomials qn in terms of the orthonormal Laguerre polyno-
mials lαn (see [8, Section 9])

qn(x) =
N+1∑
j=0

b j(n)x jlα+2 j
n− j (x). (15)

For the inner product (1) with N = 1, the coefficients b j(n) was explicitly obtained in [9], and their estimation was
essential to obtain the result in [4].

Now in the general case, using Lemma 1, we can prove that there is always limit of the connection coefficients b j(n) for
an arbitrary N .

Lemma 2. Let {b j(n)}N+1
0 be the coefficients in formula (15). Then, there exists

lim
n

b j(n) = b j ∈ R, j ∈ {0, . . . , N + 1}.
Moreover, the first index j such that b j �= 0 corresponds with the first j such that M j = 0 in the inner product (1). (We understand
that if all the masses are positive, then the unique coefficient b j different from zero is the last one.)

Proof. Taking derivatives k times in (15) and evaluating at x = 0, we deduce

q(k)
n (0)

(lαn )(k)(0)
=

k∑
j=0

b j(n)

(
k

j

)
j!A j(k,n), k ∈ {0, . . . , N + 1}, (16)

where A0(k,n) = 1 and

A j(k,n) = (lα+2 j
n− j )(k− j)(0)

α (k)
∼= (−1) jΓ (α + k + 1)

(
Γ (α + 2 j + 1)

)1/2

. (17)

(ln ) (0) Γ (α + k + j + 1) Γ (α + 1)
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Since there exists limn A j(k,n) �= 0, applying recursively (14) and (16) we can assure there exists limn b j(n) = b j , j ∈
{0, . . . , N + 1}. More precisely, for k = 0 we have

lim
n

b0(n) = lim
n

qn(0)

lαn (0)
= b0 =

{
0, if M0 > 0;
C �= 0, if M0 = 0.

Now, from (16) for k = 1, (14) and (17) we get

lim
n

b1(n) = lim
n

1

A1(1,n)

(
q′

n(0)

(lαn )′(0)
− b0(n)

)
= b1.

Observe that

b1 =
{

0, if M0 > 0 and M1 > 0;
C �= 0, if M0 > 0 and M1 = 0.

In this way, recursively, if M0M1 . . . Mi > 0 and Mi+1 = 0 we can assure that

b j =
{

0, if 0 � j � i;
C �= 0, if j = i + 1,

and we obtain the result. �
As a consequence of the above lemma, we can establish a Mehler–Heine type formula for general discrete Laguerre–

Sobolev orthonormal polynomials. This formula shows how the presence of the masses in the discrete part of the inner
product changes the asymptotic behavior around the origin. Moreover, it supplies information on the location and asymp-
totic distribution of the zeros of the polynomials in terms of the zeros of known special functions.

We recall the corresponding formula for orthonormal Laguerre polynomials (see [14])

lim
n

lαn (x/(n + k))

nα/2
= √

Γ (α + 1)x−α/2 Jα(2
√

x ) (18)

uniformly on compact subsets of C and uniformly for k ∈ N ∪ {0}, where Jα is the Bessel function of the first kind.

Proposition 1. The polynomials qn satisfy the following Mehler–Heine type formula:

lim
n

qn(x/n)

nα/2
= √

Γ (α + 1)

N+1∑
j=0

b jx
−α/2 Jα+2 j(2

√
x ) (19)

uniformly on compact subsets of C.

Proof. The proof is a straightforward consequence of formula (15), Lemma 2 and (18). �
Remark. According to Lemma 2, the first Bessel function which appears in (19) corresponds with the first index j such
that M j = 0, in the inner product (1). We want to highlight that this result generalizes the one obtained in [1, Theorem 3],
where the authors only deal with inner products with a unique “gap” in the discrete part.

The above proposition allows us to deduce a lower estimate of ‖qn‖Lp(xβdx) , for β = α and β = αp/2, that will play an
important role in the proof of Theorem 1.

Proposition 2. Let 1 � p � ∞. Then, the following statements hold:
For α > −1/2

‖qn‖L p(xαdx) � C

{
n−1/4(log(n + 1))1/p, if p = 4α+4

2α+1 ;
nα/2−(α+1)/p, if 4α+4

2α+1 < p � ∞,

and for α > −2/p if 1 � p < ∞ and α � 0 if p = ∞

‖qn‖L p(xαp/2dx) � C

{
n−1/4(log(n + 1))1/p, if p = 4;
n−1/p, if 4 < p � ∞,

where C is an absolute positive constant.
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Proof. Assume 1 � p < ∞. Then,

‖qn‖p
L p(xβ dx)

=
∞∫

0

∣∣qn(x)e−x/2
∣∣p

xβ dx >

1/
√

n∫
0

∣∣qn(x)e−x/2
∣∣p

xβ dx � Cn−β−1

√
n∫

0

∣∣qn(t/n)
∣∣p

tβ dt.

According to formula (19), ∃n0 ∈ N such that ∀n � n0

√
n∫

0

∣∣qn(t/n)
∣∣p

tβ dt � Cnpα/2

√
n∫

0

∣∣∣∣∣
N+1∑
j=0

b jt
−α/2 Jα+2 j(2

√
t )

∣∣∣∣∣
p

tβ dt

and therefore ∀n � n0

‖qn‖p
L p(xβ dx)

� Cnpα/2−β−1

2n1/4∫
0

u2β−pα+1

∣∣∣∣∣
N+1∑
j=0

b j Jα+2 j(u)

∣∣∣∣∣
p

du.

Working as Stempak in [13, Lemma 2.1], we can prove that for α > −1, and λ > −1 − αp

2n1/4∫
0

uλ

∣∣∣∣∣
N+1∑
j=0

b j Jα+2 j(u)

∣∣∣∣∣
p

du ∼
{

1, if λ < p/2 − 1;
log(n + 1), if λ = p/2 − 1.

Thus, if 1 � p < ∞, we obtain the first and the second result for β = α and β = pα/2 respectively. The results for p = ∞
can be deduced from the previous one by passing to the limit when p goes to ∞. �

It is worth to noticing that these lower bounds are sharp in the following sense.

Proposition 3. Let 1 � p � ∞. Then:
For α � 0,

‖qn‖L p(xα dx) ∼
{

n−1/4(log(n + 1))1/p, if p = 4α+4
2α+1 ;

nα/2−(α+1)/p, if 4α+4
2α+1 < p � ∞,

and for α > −2/p if 1 � p < ∞ and α � 0 if p = ∞,

‖qn‖L p(xαp/2dx) ∼
{

n−1/4(log(n + 1))1/p, if p = 4;
n−1/p, if 4 < p � ∞.

Proof. From Lemma 1 of [11] it can be deduced that for α � 0

∞∫
0

∣∣x jlα+2 j
n (x)e−x/2

∣∣p
xα dx ∼

{
n−p/4 log(n + 1), if p = 4α+4

2α+1 ;
nαp/2−(α+1), if 4α+4

2α+1 < p � ∞,

and for α > −2/p if 1 � p < ∞ and α � 0 if p = ∞
∞∫

0

∣∣x jlα+2 j
n (x)e−x/2xα/2

∣∣p
dx ∼

{
n−p/4 log(n + 1), if p = 4;
n−1, if 4 < p � ∞.

Thus, using the representation formula for the polynomials qn (see (15)), and the fact that the connection coefficients are
bounded (see Lemma 2), we get one of the two inequalities. The other one has been proved in Proposition 2 and therefore
the result follows. �
3. A Cohen type inequality

In this section we prove a Cohen type inequality for the Fourier expansions in terms of discrete Laguerre–Sobolev
orthonormal polynomials with an arbitrary (finite) number of mass points. So we extend the result due to Fejzullahu
and Marcellán which deals with a discrete Laguerre–Sobolev inner product with at most two masses in the discrete part
(see [4]).
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Proof of Theorem 1. Let us consider the following test functions which were already used in [12] and later in [4]

gα, j
n (x) = x j

[
Lα+ j

n (x) −
√

(n + 1)(n + 2)

(n + α + j + 1)(n + α + j + 2)
Lα+ j

n+2 (x)

]
,

with j ∈ N \ {1, . . . , N}. Notice that(
gα, j

n
)(i)

(0) = 0, i = 0, . . . , N. (20)

These functions can be written as (see formula (2.15) in [12])

gα, j
n (x) =

j+2∑
m=0

am, j(α,n)Lα
n+m(x) (21)

with

a0, j(α,n) = Γ (n + α + j + 1)

Γ (n + α + 1)
∼= n j .

From (20), (21), and 0 � k � n, we have

ĝα, j
n (k) = 〈

gα, j
n ,qk

〉
S = 1

Γ (α + 1)

∞∫
0

gα, j
n (x)qk(x)e−xxα dx

= 1

Γ (α + 1)

j+2∑
m=0

am, j(α,n)

∞∫
0

Lα
n+m(x)qk(x)e−xxα dx.

By the orthogonality of Laguerre polynomials, we obtain

ĝα, j
n (k) =

{
0, if 0 � k � n − 1;

1
Γ (α+1)

a0, j(α,n)
∫ ∞

0 Lα
n (x)qn(x)e−xxα dx, if k = n.

Thus, from Lemma 1(b), the estimate of a0, j(α,n) and the value of the norm of Laguerre polynomials (see (2)), we can
deduce

ĝα, j
n (n) = 1

Γ (α + 1)
a0, j(α,n)

∞∫
0

Lα
n (x)

Q n(x)

〈Q n, Q n〉1/2
S

e−xxα dx

= a0, j(α,n)
‖Lα

n ‖2

〈Q n, Q n〉1/2
S

∼= a0, j(α,n)
∥∥Lα

n

∥∥ ∼= n j+α/2

√
Γ (α + 1)

.

Observe that Q n and Lα
n have always equivalent norms, and, therefore this estimation does not depend neither on the

number of positive masses, nor on the existence or non-existence of any gap in the inner product.
Applying the operator T α,S

n to the functions gα, j
n , we get

T α,S
n

(
gα, j

n
) = cn,n ĝα, j

n (n)qn,

and therefore∥∥T α,S
n

∥∥[Sβ
p ] �

(∥∥gα, j
n

∥∥
Sβ

p

)−1∥∥T α,S
n

(
gα, j

n
)∥∥

Sβ
p
= (∥∥gα, j

n

∥∥
Sβ

p

)−1|cn,n|
∣∣ĝα, j

n (n)
∣∣‖qn‖Sβ

p

�
(∥∥gα, j

n

∥∥
Sβ

p

)−1|cn,n|
∣∣ĝα, j

n (n)
∣∣‖qn‖L p(xβ dx).

On the other hand, for j > α − 1/2 − 2(α + 1)/p we have

∥∥gα, j
n

∥∥
Sβ

p
� c

{
n j−1/2+(α+1)/p, if β = α;
nα/2+ j−1/2+1/p, if β = pα/2

(see formula (3.3) and formula (1.19), (2.12) in [12] respectively). Thus, by Proposition 2 we get:
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For β = α with α > −1/2

∥∥T α,S
n

∥∥[Sα
p ] � C |cn,n|

{
(log(n + 1))

2α+1
4α+4 , if p = q0;

nα+1/2−2(α+1)/p, if q0 < p � ∞.

For β = pα/2 with α > −2/p if 1 � p < ∞ and α � 0 if p = ∞,∥∥T α,S
n

∥∥[S pα/2
p ] � C |cn,n|

{
(log(n + 1))1/4, if p = 4;
n1/2−2/p, if 4 < p � ∞.

Hence, by duality the theorem follows. �
Remark. In particular, for Mi = 0, i = 0, . . . , N , the above theorem extends Theorem 1 in [12] to negative values of α.

In the particular case of ck,n = 1, k = 0, . . . ,n, the operator T α,S
n is the nth partial sum of the Fourier expansion, so, we

can assure the following result.

Corollary 1. If p is outside the Pollard interval (p0,q0), we have

‖Sn‖[Sβ
p ] → ∞, n → ∞

where Sn denotes the nth partial sum of the Fourier expansion.
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