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1 Introduction

The theory of orthogonal polynomials is a very interesting field in mathematics with

important applications to numerical analysis, physics, probability, and statistics among

other ones. Orthogonal polynomials are connected with topics like moment problems,

mechanical quadratures, continued fractions, spectral methods, quantum mechanics and

many other concepts.

Usually, in this theory, the orthogonality is considered with respect to a positive

linear functional defined on the linear space of polynomials or, according to the Riesz

representation theorem, with respect to a positive measure. Let µ be a finite positive

Borel measure supported on an interval I in the real line, we say that the sequence of

polynomials {Pn}n≥0 is a sequence of orthogonal polynomials (o.p.) with respect to either

the measure µ or the inner product (f, g) =
∫

I
f gdµ if, for all n ≥ 0, degPn = n and

(i) (Pn, Pm) = 0 , n 6= m,

(ii) (Pn, Pn) > 0, n ≥ 0.
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Along the paper such a kind of inner products will be called standard inner products.

They have the following remarkable property: (xp, q) = (p, xq), for all polynomials p, q.

As a consequence, the corresponding standard orthogonal polynomials have nice proper-

ties such as the three–term recurrence relation, the summation formula, the interlacing

properties of the zeros, etc. From a numerical point of view, a useful consequence is that

a Gaussian mechanical quadrature formula has exact precision when we take as nodes the

zeros of appropriate standard o.p..

Nonstandard inner products have also been considered in the literature. In particular,

the so–called Sobolev inner products that are of the form

(f, g) =

∫

f gdµ0 +
r
∑

i=1

∫

f (i) g(i)dµi,

where {µi}ri=0 are finite positive Borel measures supported on the real line and the func-

tions f and g belong to the Sobolev space:

W 2,r(µ0, µ1, . . . , µr) := {f :

∫

|f |2dµ0 +
r
∑

i=1

∫

|f (i)|2dµi < +∞}.

Studied by the first time in the forties of the last century, the Sobolev orthogonal poly-

nomials have been object of an increasing interest, approximately, in the last 20 years.

Obviously, Sobolev inner products are nonstandard and therefore Sobolev o.p. loose the

“good” properties of the standard o.p. However, it is interesting to study these “strange”

polynomials that supply us with situations different from the standard ones: no three–

term recurrence relation, zeros out of the convex hull of the support of the orthogonality

measure including, some times, complex zeros, and so one.

Furthermore, some applications of the Sobolev orthogonality in the theory of standard

o.p. are known, for instance, classical polynomials (Jacobi or Laguerre polynomials) with

nonclassical parameters are not orthogonal in the usual sense but they are orthogonal

with respect to Sobolev inner products (see among others [1] or [17]) and also, Sobolev

o.p. in two real variables are solutions of some partial differential equations (see [9], [14],

[19] or [24]).

In this paper we are concerned with the so–called Sobolev type (or discrete Sobolev)

orthogonal polynomials, that is, polynomials orthogonal with respect to a Sobolev in-

ner product in which {µi}ri=1 are Dirac’s deltas or, in general, discrete measures. More

concretely, we consider an inner product of the form

(f, g) =

∫

f(x)g(x)dµ(x) +
r
∑

i=0

Mif
(i)(c)g(i)(c),

where µ is a finite positive Borel measure, c ∈ R and Mi ≥ 0 for i = 0, 1, ..., r. In the

sequel, we denote by {Qn,r}n≥0 the corresponding sequence of o.p. with the same leading

coefficient as the standard o.p. with respect to µ.
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More general products where cross–product terms appear in the discrete part (the

non–diagonal case) have also been studied. But, recently in [18] the authors prove that

every symmetric bilinear form can be reduced to a diagonal case, that is, an inner product

without cross–product terms.

In some sense, Sobolev type o.p. are not so far than the standard o.p. since there

is the possibility to transform the Sobolev type orthogonality into the standard quasi–

orthogonality. As a consequence, several properties of the standard o.p. are partially

recovered for the Sobolev type o.p.: they satisfy a 2r + 3 term recurrence relation (see,

[13]) and have partial interlacing properties of the zeros ([2]).

Since the polynomialQn,r is quasi–orthogonal of order r+1 with respect to the measure

µ it can be expressed as a linear combination (with a fixed number of terms: r + 2) of

standard orthogonal polynomials Rn corresponding to the modified measure (x−c)r+1dµ,

that is,

Qn,r(x) =

r+1
∑

j=0

ajnRn−j(x) . (1)

One of the topics in the theory is to compare the Sobolev type o.p. with the stan-

dard o.p. (with respect to µ) to investigate how the addition of the discrete part in the

inner product influences the orthogonal system. Many formal results are known for the

polynomials Qn,r: recurrence relation, differential formulas, location of zeros, and so on.

However, little is known about the asymptotic properties and most of the general results

have been obtained when the support of µ (suppµ) is a bounded set. For instance, in

[20], the authors assume that µ is a measure of bounded support for which the asymptotic

behaviour of the corresponding o.p. is known; the most relevant class of this type is the

Nevai class M(0, 1) of o.p. with appropriately converging recurrence coefficients. There,

the relative asymptotics is studied when the mass point c /∈ suppµ. The case c ∈ supp µ

has been considered in [22].

What happens is that in the bounded case, all the connexion coefficients ajn in (1) are

bounded and the orthogonal polynomials Rn have an adequate finite ratio asymptotics:

these two facts allow us to study each term of (1) separately, in order to get the relative

asymptotics for Qn,r (see [20] and [22] where this technique is developed). However, the

situation is quite different if we deal with the unbounded case because when we try to

obtain the relative asymptotics with the techniques used for the bounded case and we

take into account the ratio asymptotics for the polynomials Rn, we come across a serious

problem. Indeed, we find that the idea that each term of (1) has a finite limit could not

work now, in fact, as we will see later, for the Laguerre–Sobolev type o.p. each term of

(1) tends to infinity, all of them being the same order, but with an alternating sign.

The aim of this paper is to describe the current state of the asymptotic properties for

Sobolev type polynomials when suppµ is unbounded. Mainly we will analyze the case
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when µ is the Laguerre probability measure (dµ(x) = xαe−x

Γ(α+1)
dx with α > −1) and c = 0,

that is, the Laguerre–Sobolev o.p. This choice for c is due to the fact that the point x = 0

is a singularity of the differential equation satisfied by the classical Laguerre polynomials.

Therefore, we will deal with classical Laguerre polynomials, that is, polynomials or-

thogonal with respect to the inner product

(p, q) =
1

Γ(α + 1)

∫ ∞

0

p(x)q(x) xαe−x dx , α > −1.

in the space of all polynomials with real coefficients. We will denote by Lα
n the nth La-

guerre polynomial with (−1)n/n! as leading coefficient. Although many of the properties

of Laguerre polynomials can be seen, for example, in the books of Chihara [10] and Szegő

[23], we remind that the classical Laguerre polynomials with the normalization above

quoted are defined by

Lα
n(x) =

n
∑

k=0

(

n+ α

n− k

)

(−1)kxk

k!
,

and their derivatives satisfy

(Lα
n)

(k)(x) = (−1)kLα+k
n−k(x) . (2)

The evaluations at x = 0 of the polynomial Lα
n and its successive derivatives are given

by

(Lα
n)

(k)(0) =
(−1)k n!

(n− k)!

Γ(α + 1)

Γ(α + k + 1)
Lα
n(0) =

(−1)k

(n− k)!

Γ(n + α+ 1)

Γ(α + k + 1)
. (3)

¿From Perron’s formula in Szegő’s book [23], the following asymptotic results can be

deduced:
Lα
n−1(x)

Lα
n(x)

⇉ 1, x ∈ C \ [0,∞) , (4)

n1/2Lα
n(x)

Lα+1
n (x)

⇉
√
−x, x ∈ C \ [0,∞) . (5)

where the symbol fn(x) ⇉ f(x), x ∈ A , denotes that the sequence {fn} converges to f

uniformly on compact subsets of A.

Later on we will use the symbol f(x) ∼ g(x) (x → a) if lim
x→a

f(x)

g(x)
= 1.

2 Laguerre–Sobolev type polynomials

¿From now on {Qn,r}n≥0 denotes the sequence of polynomials orthogonal with respect

to an inner product of the form

(p, q)r =
1

Γ(α + 1)

∫ ∞

0

p(x)q(x) xαe−x dx+

r
∑

i=0

Mip
(i)(0)q(i)(0), (6)
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where α > −1 and Mi > 0, i = 0, . . . , r, with leading coefficient (−1)n/n!. Notice that

all the masses in the discrete part are positive.

Observe that, in fact, (., .)r and Qn,r also depend on the parameter α but for simplicity

we have omitted it in the notations.

These families of o.p. were considered by the first time by Koekoek and Meijer (see,

among others, [15] and [16]) although no asymptotics were studied. The first asymptotic

results for Laguerre–Sobolev type o.p. appear in [8]: exterior asymptotics, asymptotics on

compact subsets of (0,+∞), exterior Plancherel–Rotach type asymptotics, Mehler–Heine

type formulas and convergence of their zeros are obtained, but only for r = 0 and r = 1.

Concerning the Mehler–Heine type formulas, with r = 1 and M0,M1 > 0 the authors

found a behaviour pattern and they established a conjecture. A survey including these

results can be seen in [21]. Some of these properties where proved for the non–diagonal

case with r = 1 in [6] and [7], and later on in [11].

In all these papers the basic tool was the algebraic expression

Qn,1(x) = B0(n)L
α
n(x) +B1(n)xL

α+2
n−1(x) +B2(n)x

2Lα+4
n−2(x)

where the coefficients Bi(n) were given explicitly in [16].

In a discrete Laguerre–Sobolev inner product with an arbitrary number of terms, the

problem is that we only have an algebraic expression given in [15], but not the explicit

expression of the coefficients Bi(n), of which we only know that they are a non trivial

solution of a system with r + 1 equations and r + 2 unknowns.

Asymptotic properties of Sobolev orthogonal polynomials with respect to a general

inner product as (6), that is, with an arbitrary number of masses, have been studied in [5]

where, in particular, the conjecture established in [8] is proved to be true. In the sequel

we summarize the results obtained there.

As we have already said, the interest lies in knowing the differences in the asymptotic

behaviour between the Laguerre polynomials and the Sobolev polynomials Qn,r. Intu-

itively one can imagine that these differences in the complex plane should be around the

perturbation of the standard inner product involved in the Sobolev inner product, that

is, around the origin and therefore we cannot expect that the addition of a finite number

of masses to the inner product produces a modification in the global behaviour of the

polynomials. A result which supports this intuition is Lemma 2 in [5] where it has been

proved:

Lemma 1 Let Qn,r be the polynomials orthogonal with respect to (6) with leading coeffi-

cients (−1)n/n!. Then the following statements hold:

(a) For 0 ≤ k ≤ r,

Q(k)
n,r(0) ∼

Cr,k

nα+2k+1
(Lα

n)
(k)(0),
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where Cr,k is a nonzero real number independent of n.

(b) For k ≥ r + 1,

Q(k)
n,r(0) ∼

k!

(k − (r + 1))!

Γ(α + k + 1)

Γ(α + r + k + 2)
(Lα

n)
(k)(0) .

(c)

(Qn,r, Qn,r)r ∼ ‖Lα
n‖2 .

Remark 1. Observe that both Laguerre and Laguerre–Sobolev type polynomials have

asymptotically the same global size (from the point of view of the norm), while the size of

the successive derivatives at the point x = 0 is affected by the discrete part of the inner

product but only whenever the order of the derivatives corresponds to a positive mass.

Now we analyze two other asymptotics of the polynomials Qn,r: the relative asymp-

totics, which assures that both families Qn,r and Lα
n are identical asymptotically on com-

pact subsets of C\ [0,∞), and the so–called Mehler–Heine type formula which shows how

the presence of the masses in the inner product changes the asymptotic behaviour around

the origin.

As we have mentioned before, for a discrete Sobolev inner product when supp µ is

bounded, a tool to obtain some results is the relation between the Sobolev orthogonality

and the standard quasi–orthogonality.

Now, in our particular case, the sequence {Qn,r}n≥0 is quasi–orthogonal of order r+1

with respect to the Laguerre weight xα+r+1e−x, that is,

∫ +∞

0

p(x)Qn,r(x)x
α+r+1e−xdx = 0,

for every polynomial p with deg p ≤ n − (r + 1) − 1. Therefore, we have a connexion

formula of the form

Qn,r(x) =
r+1
∑

j=0

ajn,rL
α+r+1
n−j (x) , a0n,r = 1. (7)

In order to deduce properties of Qnr it is convenient to know the size of the connexion

coefficients ajn,r. In [5], it has been introduced a fruitful and new technique which leads

to determine their asymptotic behaviour.

Using (7), it can be obtained a new algebraic expression which relates
Q

(k+1)
n,r (0)

(Lα
n)

(k+1)(0)
to

Q
(k)
n,r(0)

(Lα
n)

(k)(0)
(see [5, Lemma 3]) and allows to prove:

Theorem 1 Let ajn,r be the connexion coefficients which appear in (7). Then, we have

lim
n

ajn,r = (−1)j

(

r + 1

j

)

, 0 ≤ j ≤ r + 1 . (8)
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As a token of the interest of this result we use it to deduce an asymptotics of the

Laguerre–Sobolev polynomials on compact subsets of (0,+∞).

Proposition 1 The sequence {n−(2α+2r+1)/4Qn,r}n≥1 is uniformly bounded on compact

subsets of (0,+∞).

Proof. The sequence {n−α/2+1/4Lα
n}n≥1 is uniformly bounded on compact subsets of

(0,+∞) (see Theorem 8.22.1 in [23]), and then, for all j = 0, 1, . . . , r + 1, the sequences

{n−(2α+2r+1)/4Lα+r+1
n−j }n≥1 are uniformly bounded on compact subsets of (0,+∞). ¿From

(8) and the connexion formula the result follows. 2

However, it is worth noticing that the knowledge of the asymptotic behaviour of the

connexion coefficients is not enough to deduce other asymptotic properties. Indeed, con-

cerning the relative asymptotics, from (7) we have

Qn,r(x)

Lα
n(x)

=

r+1
∑

j=0

ajn,r
Lα+r+1
n−j (x)

Lα
n(x)

.

Applying Theorem 1, and (4) and (5) each term in the above sum tends to infinity with

the same order but with an alternating sign, that is,

ajn,r
Lα+r+1
n−j (x)

Lα
n(x)

∼ (−1)j

(

r + 1

j

)

(

1√
−x

)r+1

n
r+1
2 ,

uniformly on compact subsets of C \ [0,∞).

Since the techniques used in the bounded case do not work when suppµ is an un-

bounded set we proceed in a different way to prove:

Theorem 2 Let {Qn,r}n≥0 be the sequence of polynomials orthogonal with respect to the

inner product (6) with (−1)n/n! as leading coefficient. Then, for k ≥ 0,

lim
n

Q
(k)
n,r(x)

(Lα
n)

(k)(x)
= 1,

uniformly on compact subsets of C \ [0,∞).

Proof. From the Fourier expansion of the polynomial Qn0 in terms of Laguerre poly-

nomials, using Lemma 1, (3) and (4) the result follows for k = 0. (For more details see

Theorem 1 in [5]).

The functions Qn,r/L
α
n are analytic in C \ [0,∞) and Qn,r(x)

Lα
n(x)

⇉ 1, x ∈ C \ [0,∞), then
(

Qn,r

Lα
n

)′

(x) ⇉ 0 , x ∈ C \ [0,∞). Therefore,

(

Q′
n,r(x)

(Lα
n)

′(x)
− Qn,r(x)

Lα
n(x)

)

(Lα
n)

′(x)

Lα
n(x)

⇉ 0 , x ∈ C \ [0,∞).
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¿From (2), (4) and (5), we get (Lα
n)

′(x)
Lα
n(x)

⇉ ∞ and then

lim
n

Q′
n,r(x)

(Lα
n)

′(x)
= lim

n

Qn,r(x)

Lα
n(x)

= 1

uniformly on compact subsets of C \ [0,∞). So, the result holds for k = 1.

Using this technique, by an induction procedure, the result follows for all k ≥ 0. 2

Once we know that both sequences of orthogonal polynomials, {Qn,r}n≥0 and {Lα
n}n≥0,

are asymptotically identical on compact subsets of C\[0,∞), we establish their differences.

To do this, we consider Mehler–Heine type formulas because they are nice tools to

describe the polynomials around the origin. These kind of formulas are interesting twofold:

they provide the scaled asymptotics forQn,r on compact sets of the complex plane and they

supply us with asymptotic information about the location of the zeros of these polynomials

in terms of the zeros of other known special functions. More precisely, applying Hurwitz’s

Theorem in a straightforward way, the existence of an acceleration of the convergence of

r + 1 zeros of these Sobolev polynomials towards the origin can be proved.

First of all, we recall the corresponding formula for the classical Laguerre polynomials,

(see [23, Th.8.1.3]):

n−αLα
n

(x

n

)

⇉ x−α/2Jα(2
√
x), x ∈ C , (9)

where Jα is the Bessel function of the first kind of order α (α > −1).

As it occurs in the study of the relative asymptotics, the Mehler–Heine type formulas

cannot be deduced as a consequence of the connexion formula. Indeed, from (7) we have

n−αQn,r

(x

n

)

=

r+1
∑

i=0

ain,rn
−αLα+r+1

n−i

(x

n

)

.

and, applying Theorem 1 and (9), we have that each term tends to infinity with the same

order but with an alternating sign.

Thus, to get the result for {Qn,r}n≥0, the problem should be focused on in a different

way. An approach consists in to write the Taylor expansion of the polynomial Qn,r

n−αQn,r

(x

n

)

=

n
∑

k=0

Q
(k)
n,r(0)

(Lα
n)

(k)(0)

(Lα
n)

(k)(0)

k!

xk

nα+k
,

and to calculate the limit applying the Lebesgue’s dominated convergence theorem. So,

we need to prove that the ratios Q
(k)
n,r(0)/(Lα

n)
(k)(0) are uniformly bounded. It is clear

that taking derivatives k times in (7) the connexion coefficients do not change. Then, it

could be thought about the possibility to obtain this uniform bound from this formula.

But again we come across the same problem, each term of
r+1
∑

i=0

ain,r
(Lα+r+1

n−i )(k)(0)

(Lα
n)

(k)(0)
, tends

to infinity with order nr+1, but with an alternating sign. To solve this problem, taking
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into account the expression relating Q
(k+1)
n,r (0)/(Lα

n)
(k+1)(0) and Q

(k)
n,r(0)/(Lα

n)
(k)(0), (see [5,

Lemma 3]), the neccessary uniform bound for the ratios could be derived (see [5, Lemma

4]). Then we have

Theorem 3 Let {Qn,r}n≥0 be the sequence of polynomials orthogonal with respect to the

inner product (6) with (−1)n/n! as leading coefficient. Then,

lim
n

n−αQn,r

(x

n

)

= (−1)r+1x−α/2Jα+2r+2(2
√
x),

uniformly on compact subsets of C.

This result gives a positive answer to the conjecture posed in [8]. We would like to

note that the approach is totally new and the techniques used in [5] to prove the above

Theorem are not a simple generalization of the ones used in [8].

Next, we will show a remarkable difference between the zeros of Lα
n and the ones of

Qn,r concerning the convergence acceleration to 0. First, we recall (see [23]) that the

zeros of the Laguerre polynomials are real, simple and they are located in (0,∞). Denote

by (xn,k)
n
k=1 the zeros of Lα

n in an increasing order, they satisfy the interlacing property

0 < xn+1,1 < xn,1 < xn+1,2 < . . . , and xn,k →
n
0 for each fixed k.

Let (jα,k)k≥1 be the positive zeros of the Bessel function Jα writing in an increas-

ing order. Then, formula (9) and Hurwitz’s theorem lead us to nxn,k →
n

jα,k , k ≥
1 , and therefore xn,k ∼ Ck

n
, k ≥ 1, where Ck is a positive constant depending on k.

Concerning the zeros of Qn,r, standard arguments (see for instance [10]) allow to

establish that Qn,r has at least n − (r + 1) zeros with odd multiplicity in (0,+∞), or

equivalently n − (r + 1) changes of sign. Moreover, since M0 > 0 and the mass point

in the discrete part of the inner product belongs to the boundary of (0,+∞) then the

number of zeros with odd multiplicity is at least n− r (see [2]).

¿From Theorem 3 and Hurwitz’s theorem, taking into account the multiplicity of 0 as

a zero of the limit function in Theorem 3, we achieve

Corollary 1 Let (ξrn,k)
n
k=1 be the zeros of Qn,r. Then

n ξrn,k →
n
0, 1 ≤ k ≤ r + 1,

n ξrn,k →
n
jα+2r+2,k−r−1, k ≥ r + 2.

Remark 2. The presence of the positive masses Mi, i = 0, . . . , r, in the inner product

produces a convergence acceleration to 0 of r + 1 zeros of the polynomials Qn,r.
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3 Laguerre–Sobolev inner products with holes

Until now, we have assume that all the masses Mi in the discrete part of the Sobolev

inner product are positive. The possibility of some Mi = 0 has been also dealed in the

literature. For instance, the case M0 = 0,M1 > 0 ([8]) and similar situations in the non–

diagonal case ([7] and [11]) have been analyzed. Very recently, in [12], the authors study

the particular case Mi = 0, i = 0, . . . , r − 1 , for the Laguerre–Sobolev type polynomials.

The results obtained in all these papers have been generalized in [5], where such a kind

of inner products have been called Sobolev inner products with holes.

More concretely, we consider the inner product

(f, g)r,s = (10)

1

Γ(α+ 1)

∫ ∞

0

f(x)g(x)xαe−xdx+

r
∑

i=0

Mif
(i)(0)g(i)(0) +Msf

(s)(0)g(s)(0),

where s ≥ r + 2 and Mi > 0 for i = 0, . . . , r and i = s.

Observe that we are concerned with inner products of the form

(p, q)r,s = (p, q)r +Msp
(s)(0)q(s)(0), s ≥ r + 2,

where Ms > 0, and in (., .)r all the masses are positive. That is, roughly speaking, there

is a “hole” in the discrete part of the inner product (., .)r,s. We denote by {Tn,r,s}n≥0 the

sequence of polynomials orthogonal with respect to the inner product (., .)r,s with leading

coefficients (−1)n/n!.

For this situation, the relative asymptotics and the Mehler-Heine type formulas have

been established in [5]. We want to remark that this case has qualitative differences with

respect to the case without holes. For example, concerning the convergence acceleration

to 0 of the zeros of the polynomials, as we will below.

Arguing as in Lemma 1 it can be proved

Lemma 2 Let {Tn,r,s}n≥0 be the sequence of polynomials orthogonal with respect to the

inner product (10) with (−1)n/n! as leading coefficient . Then the following statements

hold:

(a) For either 0 ≤ k ≤ r or k = s,

T (k)
n,r,s(0) ∼

Cr,s,k

nα+2k+1
(Lα

n)
(k)(0) ,

where Cr,s,k is a nonzero real number independent of n.

(b) For k ≥ r + 1 and k 6= s

T (k)
n,r,s(0) ∼

k!

(k − (r + 1))!

k − s

α + s+ k + 1

Γ(α + k + 1)

Γ(α+ r + k + 2)
(Lα

n)
(k)(0) .
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(c)

(Tn,r,sTn,r,s)r,s ∼ ‖Lα
n‖2 .

Observe that, as in the complete case (without holes), the addition of the discrete

part of the inner product modifies the size of the derivative of order k only when the

corresponding mass Mk is positive.

Using this lemma the relative asymptotics for these orthogonal polynomials can be

deduced:

Theorem 4 Let {Tn,r,s}n≥0 be the sequence of o.p. with respect to the inner product (10)

with (−1)n/n! as leading coefficient . Then

Tn,r,s(x)

Lα
n(x)

⇉ 1 , x ∈ C \ [0,∞).

The Mehler–Heine type formula adopts the form

Theorem 5 Let {Tn,r,s}n≥0 be the sequence of polynomials orthogonal with respect to the

inner product (10) with (−1)n/n! as leading coefficient . Then,

n−αTn,r,s

(x

n

)

⇉ (−1)r+1x−α/2 (11)

×
[

−(s− (r + 1))

α + r + s+ 2
Jα+2r+2(2

√
x) +

s−r+1
∑

l=2

λiJα+2r+2l(2
√
x)

]

, x ∈ C ,

where λi are nonzero real numbers.

For the particular case s = r+2 , i.e., when there is a hole of “length one”, the above

result generalizes the one obtained in [8]. Theorem 5 also generalizes the corresponding

result in [12].

Now, we comment the acceleration of the convergence towards the origin of the zeros of

the polynomials Tn,r,s. The quasi–orthogonality of order s+ 1 of the sequence {Tn,r,s}n≥0

with respect to the positive weight xα+s+1e−x assures that Tn,r,s has at least n − (s + 1)

changes of sign in (0,+∞). However, in [2] the authors proved that the number of zeros

in (0,+∞) does not depend on the order of the derivatives but on the number of terms

in the discrete part of the inner product. So, Tn,r,s has at least n− (r+1) zeros with odd

multiplicity in (0,+∞). Proceeding as in Corollary 1, we get:

Corollary 2 Let (ζr,sn,k)
n
k=1 be the zeros of Tn,r,s. Then

n ζr,sn,k →n 0, 1 ≤ k ≤ r + 1,

n ζr,sn,k →n jα+2r+2,k−r−1, k ≥ r + 2.
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Remark 3. We want to highlight that this result is in a way surprising since it does not

depend on the number of terms in the discrete part, but on the position of the hole. So,

despite the presence of the mass Ms, there only exists an acceleration of the convergence

of r + 1 zeros such as it occurs in the case of the inner products without holes. That is,

the convergence acceleration to 0 of the zeros of the polynomials Qn,r and Tn,r,s is the

same and the addition of a mass Ms after a hole in the inner product does not affect the

convergence acceleration to 0.

4 Generalized Hermite–Sobolev type polynomials

As a consequence of the previous results, asymptotic properties for the orthogonal

polynomials Sµ
n,r associated with the inner product

(p, q) =

∫

R

p(x)q(x)|x|2µ e−x2

dx+

2r+1
∑

i=0

Mi p
(i)(0) q(i)(0), (12)

with µ > −1/2 and Mi > 0, i = 0, . . . , 2r + 1, can be established. We assume that the

leading coefficient of Sµ
n,r is 2

n.

Remind that the polynomials Hµ
n orthogonal with respect to the weight |x|2µ e−x2

(µ >

−1/2) are called generalized Hermite polynomials. So, we are concerned with generalized

Hermite–Sobolev type orthogonal polynomials.

Notice that in this case the polynomials Sµ
n,r are symmetric, that is, Sµ

n,r(−x) =

(−1)n Sµ
n,r(x), and because of this symmetry, we can transform the inner product (12)

into an inner product like (6) and so we can establish a simple relation between the

polynomials Sµ
n,r and the polynomials Qn,r considered before. This technique is known

as a symmetrization process. In fact, in [10] this process is considered for standard

inner products associated with positive measures. The simplest case of this situation is

the relation between Laguerre polynomials and Hermite polynomials, that is (see [10] or

[23]), for n ≥ 0,

H2n(x) = (−1)n 22n n!L−1/2
n (x2), H2n+1(x) = (−1)n 22n+1 n! xL1/2

n (x2) .

Later in [3] the authors generalize the symmetrization process in the framework of Sobolev

type orthogonal polynomials, (see Theorem 2 in [3]). Thus,

Sµ
2n,r(x) = (−1)n 22n n!Qµ−1/2

n,r (x2), Sµ
2n+1,r(x) = (−1)n 22n+1 n! xQµ+1/2

n,r (x2)

where {Qµ−1/2
n,r }n≥0 (respectively, {Qµ+1/2

n,r }n≥0) is the sequence of polynomials orthogonal

with respect to an inner product like (6) with α = µ − 1/2 (respectively, α = µ + 1/2)

and leading coefficient (−1)n/n!.

Using this symmetrization process, the relative asymptotics and the Mehler–Heine

type formulas for generalized Hermite-Sobolev type polynomials can be proved.
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Proposition 2 Let {Sµ
n,r}n≥0 be the sequence of polynomials orthogonal with respect to

the inner product (12) with 2n as leading coefficient . Then,

(a)
Sµ
n,r(x)

Hµ
n(x)

⇉ 1, x ∈ C \ R.

(b)

n−µ+1/2 Sµ
2n,r

(

x

2
√
n

)

⇉ (−1)r+1
(x

2

)−µ+1/2

Jµ+2r+3/2(x), x ∈ C

n−µ+1/2 Sµ
2n+1,r

(

x

2
√
n

)

⇉ (−1)r+1
(x

2

)−µ+1/2

Jµ+2r+5/2(x), x ∈ C.

Remark 4. These results generalize some of the results in [4] and solve the conjecture

posed there.

Using a symmetrization process, relative asymptotics and Mehler–Heine type formulas

for generalized Hermite–Sobolev polynomials with holes in the discrete part of the inner

product can be deduced.

Finally, we hope this method can be used with other measures with unbounded support

for which we have quite less explicit information about the corresponding orthogonal

polynomials.
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[2] M. Alfaro, G. López and M.L. Rezola, Some properties of zeros of Sobolev-type orthogonal

polynomials, J. Comput. Appl. Math. 69 (1996), 171–179.

[3] M. Alfaro, F. Marcellán, H.G. Meijer and M.L. Rezola, Symmetric orthogonal polynomials

for Sobolev–type inner products, J. Math. Anal. Appl. 184 (1994), 360–381.
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[7] R. Álvarez–Nodarse and F. Marcellán, A generalization of the classical Laguerre polynomials:

asymptotic properties and zeros, Appl. Anal. 62 (1996), 349–366.
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[20] G. López, F. Marcellán and W. Van Assche, Relative asymptotics for polynomials orthogonal

with respect to a discrete Sobolev inner product, Constr. Approx. 11 (1995), 107–137.

222
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