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Abstract Let {Pn}n≥0 and {Qn}n≥0 be two monic polynomial systems in several
variables satisfying the linear structure relation

Qn = Pn +MnPn−1, n ≥ 1,

where Mn are constant matrices of proper size and Q0 = P0. The aim of our work is
twofold. First, if both polynomial systems are orthogonal, characterize when that lin-
ear structure relation exists in terms of their moment functionals. Second, if one of the
two polynomial systems is orthogonal, study when the other one is also orthogonal.
Finally, some illustrative examples are presented.
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1 Introduction

Linear combinations of two families of orthogonal polynomials of one (real or com-
plex) variable have been a subject of great interest for a long time. For instance, it is
well known that some families of classical orthogonal polynomials can be expressed
as linear combinations of polynomials of the same family with different values of
their parameters, the so–called relations between adjacent families (e.g. see formu-
las in Chapter 22 in [1] for Jacobi polynomials, or (5.1.13) in [29] for Laguerre
polynomials).

The study of such type of linear combinations is related with the concept of
quasi–orthogonality introduced by M. Riesz in 1921 (see [9, p. 64]) as the basis of
his analysis of the moment problem. J. A. Shohat (see [28]) used this notion in con-
nection with some aspects of numerical quadrature; the behaviour of the zeros is also
of relevance for problems of approximation theory and interpolation by polynomials,
among others.

Likewise, linear combinations of families of multivariate orthogonal polynomials
are related with the concept of quasi–orthogonality and they also play an important
role in the study of quadrature formulas. Recall the well known results of Gaussian
quadrature formulas in the case of one variable (see, e.g. [9]): If {pn} is a sequence
of orthogonal polynomials with respect to either a weight or a definite positive linear
functional, then the roots of pn + ρ pn−1 with ρ ∈ R are the nodes of a minimal
quadrature formula of degree 2n−2. Moreover, for ρ = 0 one even obtains a formula
of degree 2n − 1. A straightforward extension of these results for higher dimension
is not possible. The study of Gaussian cubature started with the classical paper of J.
Radon in 1948. The Gaussian cubature formulas of degree 2n−1 were characterized
by Mysovskikh [24] in terms of the dimension of common zeros of the multivariate
orthogonal polynomials. However, these formulas only exist in very special cases and
it is the case of degree 2n−2 that becomes interesting. Here, the linear combinations
of multivariate orthogonal polynomials play an important role; again the existence
of a Gaussian cubature, now of degree 2n− 2, is given in terms of the dimension of
the distinct real common zeros of them, see [23, 26]. Moreover the nodes of these
cubatures formulas are the common zeros of these quasi–orthogonal polynomials.
Some progress in this area can be seen in [7, 27, 30, 31].

In recent years there has been a growing interest in linear relations in one variable
because of its relationship with several problems, for example:

– The Sobolev orthogonal polynomials, in particular in connection with the notion
of coherent pair of measures [17, 20, 22] and its generalizations.

– The so–called inverse problem in the constructive theory of orthogonal polyno-
mials: Given two families of polynomials linearly related, find necessary and
sufficient conditions in order to one of them be orthogonal when the other one is
orthogonal; see [2, 3, 5, 20].

– Spectral transformations of moment functionals: Christoffel, Geronimus,
Uvarov,...; see [19, 21, 33].

– Different properties related to the interlacing of the zeros of particular linear
combinations of orthogonal polynomials; see, for instance, [6, 8, 13].
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The interest on the orthogonal polynomials of several variables has also increased
in recent years. Some problems in which linear relations of multivariate orthogonal
polynomials play an important role, are the following: Sobolev orthogonal polyno-
mials (see, e.g. [25, 32]), and the so–called Uvarov and Geronimus modifications of
multivariate moment functionals (see, e.g. [10–12, 15]).

In this context, the multivariate inverse problem in the sense described above
appears in a natural way and, as far as we know, it has not been considered in the
literature.

Our purpose in this paper is to study polynomial systems in several variables
{Pn}n≥0 and {Qn}n≥0 satisfying a linear structure relation

Qn = Pn +MnPn−1, n ≥ 1,

where Mn are constant matrices of appropriate size, and Q0 = P0. When both
polynomial systems are orthogonal, then we prove that only two cases occur, either
Mn ≡ 0, n ≥ 1, or all the matrices Mn have full rank. For these kind of non triv-
ial linear relations, we analyze two inverse problems according to either {Pn}n≥0 or
{Qn}n≥0 be orthogonal systems. In the case of one variable the study of these two
inverse problems is similar (see [20]), however for multivariate orthogonal polynomi-
als, the non–commutativity of the matrices product leads to a quite different situation.
Thus, this study is not a simple generalization of the one variable case.

The article is organized as follows. In Section 2 we introduce the basic back-
ground that will be needed in the paper. The main results will be stated and developed
in Section 3. First part of this section is devoted to study the rank of the matri-
ces Mn in terms of the rank of M1, when both polynomial systems are orthogonal.
Moreover, we give a characterization of the existence of such linear combination
in terms of the relation between the moment functionals. Second part of this sec-
tion focuses on the study of the multivariate inverse problem. So in Theorems 3
and 4, assuming that one of the polynomial systems is orthogonal we analyze when
the other one is also orthogonal. In Section 4 we present a wide set of examples of
orthogonal polynomial systems linearly related as above, giving the explicit expres-
sions of the matrices Mn. We show particular linear combinations of some bivariate
orthogonal polynomial systems introduced by Koornwinder which provide Gaussian
cubature formulas of degree 2n − 2 and besides these quasi–orthogonal polynomial
systems are also orthogonal. On the other hand, using the well known Koornwinder’s
method, we give an example that involves orthogonal polynomials in two variables
on the unit disk. Also we include two examples, namely Krall Laguerre–Laguerre
and Krall Jacobi–Jacobi, where the families are orthogonal with respect to quasi–
definite moment functionals. Finally, we deduce relations between adjacent families
of classical orthogonal polynomials in several variables, that is, we express some
polynomials as linear combinations of polynomials of the same family with different
values of their parameters. In particular we show that these formulas hold for Appell
polynomials on the simplex, multiple Jacobi polynomials on the d–cube, and multi-
ple Laguerre polynomials on R

d+. These relations can be seen as a generalization of
the ones for Jacobi and Laguerre polynomials in one variable.
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2 Definitions and tools

Through this paper, we will denote by �d the linear space of polynomials in d vari-
ables with real coefficients, and by �d

n its subspace of polynomials of total degree
not greater than n.

Let us denote by Mh×k(R) the linear space of h × k real matrices, and by
Mh×k(�

d) the linear space of h× k matrices with polynomial entries. If h = k, we
will denote Mh×k ≡ Mh, and, in particular, Ih will represent the identity matrix of
order h. When the dimension of the identity matrix is clear from the context, we will
omit the subscript. Given a matrix M ∈ Mh we denote by Mt its transpose, and by
det(M) its determinant. As usual, we say that M is non–singular if det(M) �= 0. On
the other side, if M1, · · · ,Md are matrices of the same size h × k, we define their
joint matrix M by [14, p. 76]

M =

⎛
⎜⎜⎜⎝

M1
M2
...

Md

⎞
⎟⎟⎟⎠ = (

Mt
1,M

t
2, · · · ,Mt

d

)t
, M ∈ Mdh×k.

Next, we will review some basic definitions and properties about multivariate orthog-
onal polynomials that we will need along this paper. Most of them can be found in
[14] which is the main reference in this work.

Let N0 denote the set of nonnegative integers. For a multi–index ν =
(ν1, . . . , νd) ∈ N

d
0 , and x = (x1, . . . , xd) ∈ R

d we define a monomial in d variables
as

xν = x
ν1
1 · · · xνdd .

The nonnegative integer |ν| = ν1 + · · · + νd is called the total degree of xν .
For a fixed total degree n ≥ 0, the cardinal rdn of the set of independent monomials

of total degree n is

rdn =
(
n+ d − 1
d − 1

)
.

It is known that there is no natural order for the monomials. In this work, we will use
the graded lexicographical order, that is, we order the monomials by the total degree,
and within the monomials of the same total degree, we use the reverse lexicographical
order.

For n ≥ 0, let

{
Pn
α1
(x), P n

α2
(x), . . . , P n

α
rdn

(x)

}
,
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be rdn polynomials of total degree n independent modulus �d
n−1, where

α1, α2, . . . , . . . , αrdn
are the elements in

{
α ∈ N

d
0 : |α| = n

}
arranged according to

the reverse lexicographical order. Then we use the column vector notation

Pn = Pn(x) =

⎛
⎜⎜⎜⎜⎝

Pn
α1
(x)

P n
α2
(x)
...

P n
α
rdn

(x)

⎞
⎟⎟⎟⎟⎠

=
(
Pn
α1
(x), P n

α2
(x), . . . , P n

α
rdn

(x)

)t

.

The sequence of polynomial column vectors {Pn}n≥0 will be called a polynomial
system (PS).

Observe that a PS is a sequence of vectors whose dimension and total degree are
increasing: P0 is a constant, P1 is a column vector of dimension rd1 of multivariate
independent polynomials of total degree 1, P2 is a column vector of dimension rd2
whose elements are multivariate independent polynomials of total degree 2, and so
on. The simplest case of polynomial system is the so–called canonical polynomial
system, defined as

{Xn}n≥0 =
{(
xα1,xα2, . . . ,x

α
rdn

)t : |αi| = n

}

n≥0
.

Using the vector notation, for a given polynomial system {Pn}n≥0, the vector
polynomial Pn can be written as

Pn(x) = Gn,n Xn +Gn,n−1 Xn−1 + · · · +Gn,0 X0,

where Gn = Gn,n is called the leading coefficient of Pn, which is a square matrix of
size rdn . Moreover, since {Pm}nm=0 form a basis of �d

n, then Gn is invertible.
We will say that two PS {Pn}n≥0 and {Qn}n≥0 have the same leading coefficient

if Pn and Qn have the same leading coefficient for n ≥ 0, that is, if the entries of the
vector Pn −Qn are polynomials in �d

n−1, for n ≥ 1.
In addition, a polynomial system is called monic if every polynomial contains only

one monic term of higher degree, that is, for n ≥ 0,

Pn
αk
(x) = xαk + R(x), 0 ≤ k ≤ rdn ,

where |αk| = n, and R(x) ∈ �d
n−1. Equivalently, a monic polynomial system is

a polynomial system such that its leading coefficient is the identity matrix, i. e.,
Gn = Irdn

, for n ≥ 0.
Let s = (sα)α∈Nd

0
be a multi–sequence of real numbers. We define a linear

functional u on �d by means of the moments

〈u,xα〉 = sα,
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and extend it by linearity. The linear functional u will be called a moment functional.
Recall some operations acting over a moment functional u:

• the action of u over a polynomial matrix

〈u,M〉 := (〈u,mi,j (x)〉
)h,k
i,j=1 ∈ Mh×k(R),

where M = (mi,j (x))
h,k
i,j=1 ∈ Mh×k(�

d).

• the left product of a polynomial p ∈ �d times u

〈p u, q〉 := 〈u, p q〉, ∀q ∈ �d.

• the left product of a matrix of polynomials M times u

〈M u, q〉 := 〈u,Mt q〉, ∀q ∈ �d, ∀M ∈ Mh×k(�
d).

• the left product of a matrix of constants M times u acting over a polynomial
matrix

〈M u,N〉 := 〈u,Mt N〉 = Mt 〈u,N〉, ∀M ∈ Mh×k(R), ∀N ∈ Mh×l(�
d).

We say that a polynomial p ∈ �d
n is orthogonal with respect to u if

〈u, p q〉 = 0, ∀q ∈ �d
n−1.

The orthogonality can be expressed in terms of a PS {Pn}n≥0 as

〈u,Pn P
t
m〉 =

{
0 ∈ Mrdn×rdm

, if n �= m,

Hn ∈ Mrdn×rdn
, if n = m,

where Hn is a symmetric and non–singular matrix. We shall call {Pn}n≥0 an
orthogonal polynomial system (OPS).

A moment functional u is called quasi–definite [14, p. 79] if there is a basis B of
�d such that for any polynomials p, q ∈ B ,

〈u, p q〉 = 0, if p �= q, and 〈u, p2〉 �= 0.

The moment functional u is quasi–definite if and only if there exists an OPS
with respect to u. If u is quasi–definite, then there exists a unique monic orthogonal
polynomial system (MOPS) with respect to u.

Moreover, u is positive definite if 〈u, p2〉 > 0, for all p �= 0, p ∈ �d . If
u is positive definite, then it is quasi–definite, and it is possible to construct an
orthonormal polynomial system, that is, an orthogonal polynomial system such that〈
u,Pn P

t
n

〉 = Irdn
.

As in the scalar case, orthogonal polynomials in several variables are character-
ized by a vector–matrix three term relation (see Theorem 3.2.7 in [14], p. 79). More
precisely,

Theorem 1 ([14]) Let {Pn}n≥0 = {Pn
α (x) : |α| = n, n ∈ N0},P0 = 1, be an

arbitrary sequence in �d . Then the following statement are equivalent.

(1) There exists a linear functional u which defines a quasi–definite moment
functional on �d and which makes {Pn}n≥0 an orthogonal basis in �d .
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(2) For n ≥ 0, 1 ≤ i ≤ d , there exist matrices An,i , Bn,i and Cn,i of respective
sizes rdn × rdn+1, r

d
n × rdn and rdn × rdn−1, such that

(a) the polynomials Pn satisfy the three term relation

xiPn = An,iPn+1 + Bn,iPn + Cn,iPn−1, 1 ≤ i ≤ d, (1)

with P−1 = 0 and C−1,i = 0,
(b) for n ≥ 0 and 1 ≤ i ≤ d , the matrices An,i and Cn+1,i satisfy the rank

conditions
rank An,i = rank Cn+1,i = rdn , (2)

and, for the joint matrix An of An,i , and the joint matrix Ct
n+1

of Ct
n+1,i ,

rank An = rank Ct
n+1 = rdn+1. (3)

The version of this theorem for orthonormal polynomial systems {Pn}n≥0 is
obtained by changing Cn+1,i by At

n,i , 1 ≤ i ≤ d, n ≥ 0.
When the orthogonal polynomial system {Pn}n≥0 is monic, comparing the highest

coefficient matrices at both sides of (1), it follows that An,i = Ln,i , for n ≥ 0, and
1 ≤ i ≤ d , where Ln,i are matrices of size rdn × rdn+1 defined by

Ln,i x
n+1 = xi x

n, 1 ≤ i ≤ d .

These matrices verify Ln,iL
t
n,i = Irdn

, and rank Ln,i = rdn ; moreover, the rank of the

joint matrix Ln of Ln,i is rdn+1 [14, p. 77].
For the particular case d = 2, we have that Ln,i , i = 1, 2, are the (n+1)× (n+2)

matrices defined as

Ln,1 =

⎛
⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎠

(n+1)×(n+2)

and Ln,2 =

⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1

⎞
⎟⎟⎟⎠

(n+1)×(n+2)

.

3 Main results

In this section we consider two monic polynomial systems {Pn}n≥0 and {Qn}n≥0
related by

Qn = Pn +MnPn−1, n ≥ 0, (4)

where Mn ∈ Mrdn×rdn−1
, n ≥ 1, are constant matrices and Q0 = P0. For convenience,

through the paper, we adopt the convention M0 ≡ 0. From now on, we will say that
{Pn}n≥0 and {Qn}n≥0 are linearly related by means of (4).

The monic character of the polynomial systems in (4) is superfluous. In fact, for
n ≥ 0, let En, Fn be non–singular matrices of size rdn , and define the new polynomial
systems {P̂n}n≥0, {Q̂n}n≥0 by means of

P̂n = En Pn, Q̂n = Fn Qn, n ≥ 0.
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Since Pn and Qn are monic, then En and Fn are the leading coefficients of P̂n and
Q̂n, respectively.

Multiplying (4) by Fn, we get

Q̂n = FnQn = Fn Pn + FnMn Pn−1

= Fn E
−1
n EnPn + FnMn E

−1
n−1 En−1 Pn−1

= Fn E
−1
n P̂n + Fn Mn E

−1
n−1 P̂n−1.

Then

Q̂n = K̂n P̂n + M̂n P̂n−1, (5)

that is, {P̂n}n≥0 and {Q̂n}n≥0 are linearly related by the above expression, where
K̂n = Fn E

−1
n and M̂n = FnMn E

−1
n−1. When both polynomial systems have the

same leading coefficients then K̂n = Irdn
, but, in general, K̂n is a non–singular matrix.

Moreover, rank M̂n = rank Mn, n ≥ 0, since the rank is unchanged upon left or right
multiplication by a non–singular matrix [16, p. 13].

Since the definition of linearly related does not depend on particular bases, it is
often more convenient to work with monic polynomial systems.

First of all, we analyze the case when both monic polynomial systems are orthog-
onal, and we deduce some properties about the rank of all matrices Mn in relation (4)
in terms of the rank of M1.

Lemma 1 Let {Pn}n≥0 and {Qn}n≥0 be two monic orthogonal polynomial systems
linearly related by (4). Then

(i) If rank M1 = 0, then rank Mn = 0 for every n ≥ 1,
(ii) If rank M1 = 1, then rank Mn = rdn−1 for every n ≥ 1.

Proof Because of

{Qm : m ≥ 0} =
{
Qm

β (x) : β = (b1, . . . , bd) ∈ N
d
0 , |β| = m, m ≥ 0

}
,

is an algebraic basis in �d , we can associate to it the corresponding dual basis on the
algebraic dual space of �d

{
f n
α : α = (a1, . . . , ad) ∈ N

d
0 , |α| = n, n ≥ 0

}
,

where f n
α is the linear functional defined as

〈
f n
α ,Q

m
β

〉
= δn,mδa1,b1 · · · δad,bd .

If f is an arbitrary linear functional in the dual space of �d , then it can be written as
a linear combination of the elements of the basis, that is,

f =
+∞∑
n=0

∑
|α|=n

εnα f
n
α , where εnα = 〈f,Qn

α〉. (6)
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This dual basis can be written as a sequence of row vectors of functionals

	n =
(
f n
α1
, . . . , f n

α
rdn

)

1×rdn

, n ≥ 0,

where α1, . . . , αrdn
are the elements in

{
α ∈ N

d
0 : |α| = n

}
arranged according to the

reverse lexicographical order. Obviously, we can express the duality as follows

〈
	n,Q

t
m

〉 =
{

0 ∈ Mrdn×rdm
, n �= m,

Irdn
, n = m,

and expression (6) can be written in a vector form as

f =
+∞∑
n=0

	n En, En = 〈f,Qn〉 ∈ Mrdn×1.

Let u and v be the respective quasi–definite moment functionals associated with the
orthogonal polynomial systems {Pn}n≥0 and {Qn}n≥0. Since H̃n = 〈

v,QnQ
t
n

〉
is an

invertible matrix for n ≥ 0, we deduce
〈
Q

t
n H̃

−1
n v,Qt

m

〉
=

〈
H̃−1

n v,QnQ
t
m

〉

= H̃−1
n

〈
v,QnQ

t
m

〉 =
{

0 ∈ Mrdn×rdm
, n �= m,

Irdn
, n = m,

that is, the row linear functionals 	n and Q
t
n H̃

−1
n v coincide over the basis {Qn}n≥0,

and then 	n = Q
t
n H̃

−1
n v. Thus, there exist column vectors of constants En ∈

Mrdn×1 for n ≥ 0, such that we can express u in terms of this dual basis as

u =
+∞∑
n=0

Q
t
n H̃

−1
n En v.

Observe that

〈
u,Qt

k

〉 =
+∞∑
n=0

Et
n H̃

−1
n

〈
v,QnQ

t
k

〉 = Et
k.

Now, taking into account relation (4), we have
〈
u,Qt

k

〉 = 〈
u,Pt

k + P
t
k−1 M

t
k

〉 = 0, k ≥ 2,

and then

u =
(
Q

t
1 H̃

−1
1 E1 +Q

t
0 H̃

−1
0 E0

)
v,

where Et
0 = 〈

u,Qt
0

〉 = H0, and Et
1 = 〈

u,Qt
1

〉 = 〈
u,Pt

1 + P
t
0 M

t
1

〉 = H0 M
t
1.
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Therefore, we can write

u =
(
Q

t
1 H̃

−1
1 M1 + H̃−1

0

)
H0 v = λ(x) v. (7)

(i) If rankM1 = 0, that is M1 ≡ 0, then by (7), u =
(
H̃−1

0 H0

)
v. Thus Pn = Qn,

for all n ≥ 0, and again from (4) we obtain Mn ≡ 0.
(ii) If rankM1 = 1, that is M1 has full rank, then from (7), u = λ(x)v where λ(x)

is a polynomial of exact total degree one, namely

λ(x) =
d∑

i=1

ai xi + b, with
d∑

i=1

|ai | �= 0.

Using (4) and the three term relation (1), we get

Mn Hn−1 = Mn

〈
u,Pn−1P

t
n−1

〉 = 〈
u,Qn P

t
n−1

〉 = 〈
λ(x)v,QnP

t
n−1

〉

=
d∑

i=1

ai
〈
v,Qn xi P

t
n−1

〉 =
d∑

i=1

ai
〈
v,Qn P

t
n

〉
Lt
n−1,i = H̃n

d∑
i=1

ai L
t
n−1,i ,

in summary,

Mn Hn−1 = H̃n

(
d∑

i=1

ai L
t
n−1,i

)
. (8)

The special shape of the matrices Ln−1,i described in the above section, allows to

deduce that the rank of the matrix
(∑d

i=1 ai L
t
n−1,i

)
is rdn−1. Then

rank Mn = rank Mn Hn−1 = rank H̃n

(
d∑

i=1

ai L
t
n−1,i

)
= rank

(
d∑

i=1

ai L
t
n−1,i

)
= rdn−1,

since H̃n and Hn−1 are non–singular matrices and the rank condition is invariant
through non–singular matrices [16, p. 13].

Next, we characterize when two monic orthogonal polynomial systems {Pn}n≥0
and {Qn}n≥0 are related by a formula as (4) in terms of the relation between their
respective moment functionals.

Theorem 2 Let {Pn}n≥0 and {Qn}n≥0 be two monic orthogonal polynomial systems,
and let u and v be their quasi–definite moment functionals, respectively. Then the
following conditions are equivalent:

(i) There exist real matrices Mn ∈ Mrdn×rd
n−1

with M1 �≡ 0, such that {Pn}n≥0 and

{Qn}n≥0 are related by (4).
(ii) There exists a polynomial λ(x) of degree one such that

u = λ(x) v,

and P1 �= Q1.
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Proof

(i) ⇒ (ii) From (4) and M1 �≡ 0 we have P1 �= Q1, and from (7) there exists a
polynomial λ(x) of degree one such that u = λ(x)v where

λ(x) =
(
Q

t
1 H̃

−1
1 M1 + H̃−1

0

)
H0.

(ii) ⇒ (i) Consider the Fourier expansion of Qn in terms of the polynomials Pn,

Qn = Pn +
n−1∑
j=0

Mn,j Pj .

Then

Mn,j =
〈
u,QnP

t
j

〉
H−1

j =
〈
λ(x) v,QnP

t
j

〉
H−1

j =
〈
v,Qn λ(x)P

t
j

〉
H−1

j = 0,

0 ≤ j ≤ n− 2.

Thus
Qn = Pn +MnPn−1, n ≥ 1,

where we denote Mn ≡ Mn,n−1.
Observe that if the explicit expression for the polynomial λ is λ(x) = ∑d

i=1 ai xi+
b, with

∑d
i=1 |ai | �= 0, as in Lemma 1, we get formula (8).

Thus, for n = 1, it follows

M1 = H̃1

⎛
⎜⎜⎜⎝

a1
a2
...

ad

⎞
⎟⎟⎟⎠ H−1

0 �≡ 0.

In the sequel, we will consider two polynomial systems {Pn}n≥0 and {Qn}n≥0,
and we will use the three term relation (1) in the adequate conditions. Whenever the
system {Qn}n≥0 be orthogonal in its corresponding three term relation, we will use
the tilde notation:

xi Qn = Ãn,i Qn+1 + B̃n,i Qn + C̃n,i Qn−1, n ≥ 0, (9)

and assume that conditions (2) and (3) for Ãn,i and C̃n,i are satisfied.
Now, let us analyze the following problem: assuming one of the two polynomial

systems related by (4) is orthogonal, characterize when the other is also orthogonal.
As a consequence of Lemma 1 the case when the matrix M1 in the relation (4) has
full rank is the only case to be considered, so the condition rank M1 = 1 will be
imposed in what follows.

We obtain the following two characterizations.

Theorem 3 Let {Qn}n≥0 be a system of monic orthogonal polynomials satisfying
(9). Define recursively a polynomial system {Pn}n≥0 by (4) with rank M1 = 1. Then
{Pn}n≥0 is a monic orthogonal polynomial system satisfying the three term relation
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(1) if and only if

Mn Cn−1,i = C̃n,i Mn−1, n ≥ 2, (10)

and

An,i = Ãn,i = Ln,i, (11)

Bn,i = B̃n,i −MnAn−1,i + Ãn,iMn+1, (12)

Cn,i = C̃n,i −MnBn−1,i + B̃n,iMn. (13)

Proof Inserting (4) in (9), we have for every i ∈ {1, . . . , d}, and n ≥ 1,

(xi I − B̃n,i)
[
Pn +MnPn−1

]− Ãn,i

[
Pn+1 +Mn+1Pn

]

− C̃n,i

[
Pn−1 +Mn−1Pn−2

] = 0.

Assume that {Pn}n≥0 is an OPS. Then by (1), we get

(An,i − Ãn,i)Pn+1 + (Bn,i − B̃n,i +MnAn−1,i − Ãn,iMn+1)Pn

+ (Cn,i − C̃n,i +MnBn−1,i − B̃n,iMn)Pn−1

+ (Mn Cn−1,i − C̃n,i Mn−1)Pn−2 = 0.

Using the fact that {Pn}n≥0 is a basis of �d we obtain (10)–(13).
Conversely, first of all, we are going to use an induction procedure to verify that

{Pn}n≥0 satisfies a three term relation as (1). Take the matrices An,i, Bn,i , and Cn,i

given by (11), (12), and (13), respectively. Multiplying (4) for n = 1 by Ã0,i , it is
easy to see that

xi P0 = Ã0,i P1 + (B̃0,i + Ã0,iM1)P0,

and so the first step for the induction procedure is obtained. Now, we suppose that
(1) holds for n− 1 and we are going to prove it for n.

Multiplying Pn+1 by An,i in the relation given in (4), and using the three term
relation for {Qn}n≥0 and again (4), we get

An,iPn+1 = xiQn − B̃n,iQn − C̃n,iQn−1 − An,iMn+1Pn

= xiPn +MnxiPn−1 − (B̃n,i +An,iMn+1)Pn

−(C̃n,i + B̃n,iMn)Pn−1 − C̃n,iMn−1Pn−2,

and by the induction hypothesis for xiPn−1, we obtain

An,iPn+1 = xiPn − (B̃n,i −MnAn−1,i +An,iMn+1)Pn

−(C̃n,i −MnBn−1,i + B̃n,iMn)Pn−1

−(C̃n,iMn−1 −MnCn−1,i )Pn−2.

Then taking into account (10) we achieve the three term relation for {Pn}n≥0.
Also, we have

rank An,i = rank Ãn,i = rank Ln,i = rdn , 1 ≤ i ≤ d,

and, for the joint matrix An, we get

rank An = rank Ãn = rank Ln = rdn+1.
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To conclude, consider the linear functional u defined by

〈u, 1〉 = 1, 〈u,Pn〉 = 0, n ≥ 1,

which is well–defined since {Pn : n ≥ 0} is a basis of �d . We have just proved that
{Pn}n≥0 satisfies a three term relation (1) and An has full rank, then using the same
arguments as in [14, p. 80], we obtain that

〈
u,Pk P

t
j

〉
= 0, k �= j. (14)

Next, we show that, for every n ≥ 0, the symmetric and square matrix Hn =〈
u,Pn P

t
n

〉
is invertible, that is, it has full rank. Taking into account (4) and (14) we

have 〈
u,Qt

n

〉 = 0, n ≥ 2,

and expanding the linear functional u in terms of the dual basis of {Qn}n≥0, and
handling as in the proof of Lemma 1, we can deduce that formula (8) holds, that is

Mn Hn−1 = H̃n

(
d∑

i=1

ai L
t
n−1,i

)
, n ≥ 1.

We know that rank
(∑d

i=1 ai L
t
n−1,i

)
= rdn−1. Since the matrix H̃n is non–singular

and the rank condition is invariant through non–singular matrices, we get

rank H̃n

(
d∑

i=1

ai L
t
n−1,i

)
= rank

(
d∑

i=1

ai L
t
n−1,i

)
= rdn−1,

and then

rdn−1 = rankMnHn−1 ≤ min{rankMn, rankHn−1} ≤ rankHn−1 ≤ rdn−1.

Therefore rankHn−1 = rdn−1, n ≥ 2. Moreover, for n = 0,

H0 = 〈
u,P0 P

t
0

〉 = 〈u, 1〉 = 1,

is an invertible matrix, and so for every n ≥ 0, Hn is invertible. Thus, {Pn}n≥0 is an
OPS with respect to u and the proof is completed.

Now, we study the case when the monic polynomial system {Pn}n≥0 is orthogonal.

Theorem 4 Let {Pn}n≥0 be a monic orthogonal polynomial system satisfying the
three term relation (1). Define the polynomial system {Qn}n≥0 by means of (4) with
rank M1 = 1. Then {Qn}n≥0 is a monic orthogonal polynomial system satisfying (9)
if and only if formula (10) holds and

rank C̃n+1,i = rdn , 1 ≤ i ≤ d,

rank C̃t
n+1 = rdn+1,
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where

Ãn,i = An,i = Ln,i,

B̃n,i = Bn,i +MnAn−1,i − Ãn,iMn+1,

C̃n,i = Cn,i +MnBn−1,i − B̃n,iMn.

Proof The necessary condition has already been proved in Theorem 3. Conversely,
writing (4) for n + 1, multiplying by An,i , and using the three term relation for Pn,
we get

An,iQn+1 = xiPn −
(
Bn,i −An,iMn+1

)
Pn − Cn,iPn−1.

Using again (4), we have

An,iQn+1 = xiQn −
(
Bn,i −An,iMn+1

)
Qn

−MnxiPn−1 −
[
Cn,i −

(
Bn,i − An,iMn+1

)
Mn

]
Pn−1.

Now, inserting (4) in (1), we obtain

xiPn−1 = An−1,i (Qn −MnPn−1)+ Bn−1,iPn−1 + Cn−1,iPn−2,

and therefore

An,iQn+1 = xiQn −
(
Bn,i − An,iMn+1 +MnAn−1,i

)
Qn

− [
Cn,i +MnBn−1,i −MnAn−1,iMn −

(
Bn,i −An,iMn+1

)
Mn

]
Pn−1

−MnCn−1,iPn−2.

In order to finish the proof, it is enough to replace Pn−1 by Qn−1 −Mn−1Pn−2 and
take into account the hypothesis (10) and the expressions of Ãn,i , B̃n,i , and C̃n,i .

It is worth to observe an essential difference between Theorems 3 and 4. In The-
orem 3, starting from the orthogonality of Qn, the conditions of full rank for the
matrices Cn+1,i , i = 1, . . . , d and the joint matrix Ct

n+1 are deduced from (10).
However the situation is quite different if we assume the orthogonality of Pn. So
in Theorem 4, although the condition which appears in the characterization of the
orthogonality of Qn is the same (10), it can not be deduced from it the requirements
about the full rank of the matrices C̃n+1,i , i = 1, . . . , d and the joint matrix C̃t

n+1.
Next, we give an example with d = 2 to show that the required conditions of full

rank for the corresponding matrices in Theorem 4 are not superfluous. Indeed, for
i = 1, 2, consider the matrices

An,i = Ln,i , Cn,i = −(Ln−1,i )
t , Bn,i = Ln,iCn+1,i − Cn,iLn−1,i .

Observe that Bn,i are (n + 1) × (n + 1) symmetric matrices with entries equal to 0
up to the entry (n + 1, n + 1) of Bn,1, and the entry (1, 1) of Bn,2 which are equal
to −1. Obviously, An,i and Cn+1,i for i = 1, 2, and the joint matrices An and Ct

n+1
have full rank. Then by Theorem 1, there exists a unique MOPS {Pn}n≥0 with three
term relation coefficients An,i, Bn,i and Cn,i , i = 1, 2.

Consider Mn = Cn,1, and define a monic polynomial system {Qn}n≥0 by

Qn = Pn +Mn Pn−1, n ≥ 1.
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Taking

Ãn,i = An,i, n ≥ 0,

B̃n,i = Bn,i +MnAn−1,i − Ãn,iMn+1, n ≥ 0,

C̃n,i = Cn,i +MnBn−1,i − B̃n,iMn, n ≥ 1,

straightforward computations lead to

Ãn,i = Ln,i, n ≥ 0,

B̃n,1 = 0n+1,n+1, B̃n,2 = Bn,2, n ≥ 0,

C̃n,1 = Cn,1(In + Bn−1,1), C̃n,2 = Cn,2, n ≥ 1.

Moreover,

C̃n,1 Mn−1 = Cn,1 (In + Bn−1,1) Cn−1,1 = Cn,1 Cn−1,1 = Mn Cn−1,1, n ≥ 2,

and
C̃n,2 Mn−1 = Mn Cn−1,2, n ≥ 2.

Then by the previous results, the system {Qn}n≥0 satisfies a three term relation with
matrix coefficients Ãn,i, B̃n,i and C̃n,i , i = 1, 2. However rank C̃n,1 = n − 1, that
is the matrix C̃n,1 does not have full rank and therefore the system {Qn}n≥0 is not
orthogonal.

Note that concerning to the orthogonality of the linearly related polynomials,
the above observation shows an important difference between the cases of several
variables and one variable, and so the case of several variables is not a simple
generalization of the case of one variable (see for instance [20, Theorems 1 and 2]).

4 Examples

In this section we present several particular cases of orthogonal polynomial systems
{Pn}n≥0 and {Qn}n≥0 related by (4), or equivalently (5), giving the explicit expression
of the involved matrices.

4.1 Bivariate orthogonal polynomials related to Gaussian cubature formulas

Linear combinations of orthogonal polynomials (quasi–orthogonal polynomials)
in several variables have been considered in connection with Gaussian cubature
formulas. We apply our previous results to some examples developed by Schmid
and Xu [27] based on some bivariate orthonormal polynomials introduced by
Koornwinder in [18]: Let w(x) be a positive weight on an interval of R. Let {pn}n≥0
be the sequence of orthonormal polynomials with respect to w(x). It is well known
that these polynomials satisfies the three-term recurrence formula

xpn(x) = anpn+1(x)+ bnpn(x)+ an−1pn−1(x), n ≥ 0 ,

where p0 = 1 and p−1 = 0. Denote by {Pn}n≥0 the sequence of bivariate orthonor-
mal polynomials with respect to the weight function (u2 − 4v)−1/2W(u, v) where
W(u, v) = w(x)w(y), and u = x + y, v = xy.



540 Numer Algor (2014) 66:525–553

In [27] the authors give an specific linear combination of the form Qn = Pn +
Mn,ρ Pn−1 with

Mn,ρ = Mn = ρ

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 0 0
...
. . .

...
...

0 · · · 1 0
0 · · · 0

√
2

0 · · · 0 −ρ

⎞
⎟⎟⎟⎟⎟⎠

(n+1)×n

, ρ ∈ R\{0},

in order to get explicit Gaussian cubature formulas of degree 2n− 2.
Concerning to the orthogonality of the system {Qn}n≥0, taking into account that

{Pn}n≥0 is an orthonormal polynomial system, Theorem 4 yields the following
characterization:

{Qn}n≥0 is an orthogonal polynomial system if and only if

C̃n,i Mn−1 = Mn A
t
n−2,i, n ≥ 2, i = 1, 2, (15)

and

rank C̃n,i = n, n ≥ 1, i = 1, 2,

rank C̃t
n = n+ 1, n ≥ 1,

with

Ãn,i = An,i, n ≥ 0, i = 1, 2,

B̃n,i = Bn,i +MnAn−1,i −An,iMn+1, n ≥ 1, i = 1, 2,

C̃n,i = At
n−1,i +MnBn−1,i − B̃n,iMn, n ≥ 1, i = 1, 2.

Using the explicit expressions for Mn and for the matrices involved in the three–
term relations satisfied by Pn given in [27], it is not too difficult to check that

C̃n,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λn,ρ 0 · · · 0 0
0 λn,ρ · · · 0 0
...

...
. . .

...
...

0 0 · · · λn,ρ 0
0 0 · · · ρ an−2

√
2λn,ρ

0 0 · · · −√
2 ρ2 an−2 −2 ρ λn,ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(n+1)×n

, n ≥ 2,

with

λn,ρ = an−1 − ρ2 (an−1 − an)+ ρ (bn−1 − bn).

Moreover, (15) for i = 1 holds if and only if

(an−1 − an−2)+ ρ(bn−1 − bn)+ ρ2(an − an−1) = 0, n ≥ 2.
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In particular, we analyze the orthogonality of the system {Qn}n≥0 when w(x) =
w(α,β)(x) is a Chebyshev weight. Recall,

a) Chebyshev of the first kind: α = β = −1/2, w(−1/2,−1/2)(x) = 1

π
√

1−x2
,

a0 = 1/
√

2, an = 1/2, n ≥ 1, and bn = 0, n ≥ 0.

b) Chebyshev of the second kind: α = β = 1/2, w(1/2,1/2)(x) = 2
π

√
1 − x2,

an = 1/2, n ≥ 0, and bn = 0, n ≥ 0.

c) Chebyshev of the third kind: α = −β = 1/2, w(1/2,−1/2)(x) = 1
π

√
1−x
1+x

,

an = 1/2, n ≥ 0, b0 = −1/2 and bn = 0, n ≥ 1.

d) Chebyshev of the fourth kind: α = −β = −1/2, w(−1/2,1/2)(x) = 1
π

√
1+x
1−x

,

an = 1/2, n ≥ 0, b0 = 1/2 and bn = 0, n ≥ 1.

Observe that (15) for i = 1 does not work if w(x) is the Chebyshev weight of the
first kind while for the remainder Chebyshev weights it holds. Thus, {Qn}n≥0 is not
an orthogonal polynomial system for w(x) = w(−1/2,−1/2)(x).

Moreover for the Chebyshev weights of the second, third and fourth kind, it is not
difficult to verify that (15) holds for i = 2 since the matrix C̃n,2 takes the following
form

C̃n,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 a a2 · · · 0 0 0
a2 0 · · · 0 0 0
...

. . .
. . .

. . .
...

...

0 0 · · · 0 a2 0
0 0 · · · a2 ρ a2

√
2 a2

0 0 · · · 0 (1 − ρ2) a2 −√
2 ρ a2

0 0 · · · 0
√

2ρ3 a2 (1 + 2ρ2) a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n+1)×n

, n ≥ 2,

where a = 1/2.
Also, it is easy to check that for n ≥ 2 rank C̃n,i = n, i = 1, 2, and rank C̃t

n =
n+ 1.

Finally, taking into account that for n = 1 the expressions of the matrices C̃1,i , i =
1, 2 are

C̃1,1 =
(√

2 a +√
2 b0 ρ

−2b0 ρ
2 − 2 a ρ

)

2×1

,

and

C̃1,2 =
(√

2 a b0 +
√

2 ρ
(
b2

0 − a2
)−√

2 a b0 ρ
2

a2 + ρ2
(
a − b2

0

)+ b0 ρ
3

)

2×1

,

we have
rank C̃1,i = 1, i = 1, 2, and rank C̃t

1 = 2,

for the following values of ρ (ρ �= 0): For all values of ρ in the case of Chebyshev
of the second kind, for any ρ �= 1 in the case of third kind and for any ρ �= −1 in the
case of fourth kind.
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Summarising, if w(x) is a Chebyshev weight, the system {Qn}n≥0 defined by

Qn = Pn +Mn,ρ Pn−1

is an orthogonal polynomial system if and only if:

a) ρ = 0 for Chebyshev of the first kind,
b) ρ ∈ R for Chebyshev of the second kind,
c) ρ ∈ R\{1} for Chebyshev of the third kind,
d) ρ ∈ R\{−1} for Chebyshev of the fourth kind.

4.2 Koornwinder orthogonal polynomials

We present some special examples of bivariate orthogonal polynomials generated by
orthogonal polynomials of one variable satisfying a linear relation. To do this, we use
the well known Koornwinder’s method [14, 18]. More precisely, let wi(x), i = 1, 2,
be two weight functions in one variable defined on the intervals [ai, bi], respectively,
and let ρ(x) be a positive function in [a1, b1] verifying either ρ(x) is a polynomial
of degree 1 or w2(x) is a symmetric weight function and ρ2(x) is a polynomial of
degree ≤ 2.

For k ≥ 0, we denote by
{
q
(k)
n (x)

}
n≥0

the sequence of univariate monic

orthogonal polynomials with respect to the weight function ρ(x)2k+1 w1(x), and by
{rn(y)}n≥0 the sequence of monic orthogonal polynomials with respect to w2(y).
Consider the polynomials of two variables of total degree n given by

Qn−k,k(x, y) = q
(k)
n−k(x) ρ(x)

k rk

(
y

ρ(x)

)
, 0 ≤ k ≤ n,

which are orthogonal with respect to the weight function

W(x, y) = w1(x)w2

(
y

ρ(x)

)
,

on the region
{
(x, y) ∈ R

2 : a1 < x < b1, a2 ρ(x) < y < b2 ρ(x)
}

(see [14], p. 55).
Suppose that there exists a sequence of monic polynomials in one variable

{pn(x)}n≥0 orthogonal with respect to the weight w̃1(x) satisfying the relation

(x − ξ)w1(x) = w̃1(x),

where ξ ∈ R \ [a1, b1] is a fixed real number. Then for k ≥ 0, the two following
weight functions

w
(k)
1 (x) = ρ(x)2k+1 w1(x),

w̃
(k)
1 (x) = ρ(x)2k+1 w̃1(x),

are related by

(x − ξ)w
(k)
1 (x) = w̃

(k)
1 (x).
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Therefore (see [20]), for a fixed k ≥ 0, the polynomials
{
q
(k)
n (x)

}
n≥0

and the

polynomials {p(k)
n (x)}n≥0 orthogonal with respect to the weight function w̃

(k)
1 (x),

satisfy the linear relation

q(k)n (x) = p(k)
n (x)+ a(k)n p

(k)
n−1(x), n ≥ 1,

where a
(k)
n ∈ R, for k ≥ 0.

Using this fact, the orthogonal polynomials in two variables Qn−k,k(x, y) satisfy
the linear relation

Qn−k,k(x, y) = Pn−k,k(x, y)+ a
(k)
n−k Pn−1−k,k(x, y),

where

Pn−k,k(x, y) = p
(k)
n−k(x) ρ(x)

k rk

(
y

ρ(x)

)

are bivariate polynomials orthogonal with respect to the weight function

W̃ (x, y) = λ(x, y)W(x, y),

with λ(x, y) = (x − ξ). In this way, the orthogonal polynomial systems

{Pn(x, y)}n≥0 = {
(Pn,0(x, y), Pn−1,1(x, y), . . . , P0,n(x, y))

t
}
n≥0 ,

{Qn(x, y)}n≥0 = {
(Qn,0(x, y),Qn−1,1(x, y), . . . ,Q0,n(x, y))

t
}
n≥0 ,

satisfy the matrix linear relation

Qn(x, y) = Pn(x, y)+Mn Pn−1(x, y), (16)

where Mn is given by

Mn =

⎛
⎜⎜⎜⎜⎜⎜⎝

a
(0)
n 0 · · · 0
0 a

(1)
n−1 · · · 0

...
...

. . .
...

0 0 · · · a(n−1)
1

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(n+1)×n

.

Using this procedure, we can deduce relations between some families of well
known orthogonal polynomials in two variables. As far as we know, these relations
are new.

4.2.1 Orthogonal polynomials on the unit disk

Orthogonal polynomials in two variables on the unit disk B2 ={
(x, y) ∈ R

2 : x2 + y2 ≤ 1
}
, (the so–called disk polynomials) are associated with

the inner product

(f, g)μ = cμ

∫
B2

f (x, y)g(x, y)W(μ)(x, y)dx dy,

where
W(μ)(x, y) = (1 − x2 − y2)μ, μ > −1,
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is the weight function, and cμ is the normalization constant in order to have
(1, 1)μ = 1.

Using Koornwinder’s tools, disk polynomials can be defined from Jacobi polyno-
mials as

Q
(μ)
n−k,k(x, y) = P

(
μ+ 1

2+k,μ+ 1
2+k

)

n−k (x)
(

1 − x2
) k

2
P

(μ,μ)
k

((
1 − x2

)− 1
2
y

)
,

0 ≤ k ≤ n,

taking

w1(x) = (1 − x2)μ, x ∈ [−1, 1], μ > −1,

w2(y) = (1 − y2)μ, y ∈ [−1, 1], μ > −1,

ρ(x) =
√

1 − x2.

Since monic Jabobi polynomials satisfy the relation (see [1, Chapter 22])

P (α,α)
n (x) = P (α+1,α)

n (x)− n

2n+ 2α + 1
P

(α+1,α)
n−1 (x),

we can write

Q
(μ)
n−k,k(x, y) = P

(μ+1)
n−k,k (x, y)−

n− k

2n+ 2μ+ 2
P

(μ+1)
n−1−k,k(x, y),

where

P
(μ+1)
n−k,k (x, y) = P

(
μ+ 3

2+k,μ+ 1
2+k

)

n−k (x)
(

1 − x2
) k

2
P

(μ,μ)
k

((
1 − x2

)− 1
2
y

)

are Koornwinder polynomials associated with the weight function on the unit disk

W̃ (μ)(x, y) = (1 − x)W(μ)(x, y).

Then relation (16) holds, where the matrix Mn is given by

Mn = −1

2n+ 2μ+ 2

⎛
⎜⎜⎜⎜⎜⎝

n 0 · · · 0
0 n− 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

(n+1)×n

.

4.3 Tensor product of polynomials in one variable

When ρ(x) = 1, Koornwinder’s method leads to tensor product of orthogonal poly-
nomials in one variable. This case can be rewritten for moment functionals in the
following way. Let vx and wy be two quasi–definite moment functionals (acting on
variables x and y, respectively) and let {qn(x)}n≥0 and {rn(y)}n≥0 be their respective
sequences of orthogonal polynomials in the variables x and y.

The polynomials

Qn−k,k(x, y) = qn−k(x) rk(y), 0 ≤ k ≤ n,
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are orthogonal with respect to the composition moment functional v

〈v, f (x, y)〉 := 〈vx, 〈wy, f (x, y)〉〉 = 〈wy, 〈vx, f (x, y)〉〉, ∀f ∈ �2,

namely v = vx ◦wy = wy ◦ vx .
Suppose that there exists a quasi–definite moment functional ux related with vx by

(x − ξ) vx = ux,

where ξ is a fixed real number. Then the orthogonal polynomials {qn(x)}n≥0 are lin-
early related with the monic orthogonal polynomials {pn(x)}n≥0 associated with the
quasi–definite moment functional ux . In this way [20], there exist non zero constants
{an}n≥1 such that

qn(x) = pn(x)+ an pn−1(x), n ≥ 1.

Then the polynomials Qn−k,k(x, y) satisfy a linear relation of the form

Qn−k,k(x, y) = Pn−k,k(x, y)+ an−k Pn−1−k,k(x, y), n ≥ 1, 0 ≤ k ≤ n− 1,

where
Pn−k,k(x, y) = pn−k(x) rk(y),

are bivariate orthogonal polynomials associated with the moment functional u =
ux ◦ wy .

Moreover, both moment functionals are related by

λ(x, y) v = u,

with λ(x, y) = (x − ξ), and besides relation (16) holds where the matrices Mn are
given by

Mn =

⎛
⎜⎜⎜⎜⎜⎝

an 0 · · · 0
0 an−1 · · · 0
...

...
. . .

...

0 0 · · · a1
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

(n+1)×n

. (17)

Obviously, an analogous situation occurs when {rk(y)}k≥0 is linearly related with
other orthogonal polynomial sequence.

Next we present two new examples of orthogonal polynomial systems in two
variables generated from tensor products of polynomials in one variable which are
orthogonal with respect to quasi–definite moment functionals.

4.3.1 Krall Laguerre–Laguerre orthogonal polynomials

Consider the classical Laguerre moment functional

ux = xα e−x, α > −1,

and the modification given by

vx = x−1 ux + (α + 1)

α + 1 − a1
δ0,

where a1 �= 0 is a real constant such that α + 1 − a1 �= 0.
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Recall that the action of the functional (x − c)−1 u over a polynomial is defined
by (see [21]) 〈

(x − c)−1 u, p
〉
:=

〈
u,

p(x) − p(c)

x − c

〉
.

The moment functional vx is quasi–definite if and only if (see [5, p. 896]) either

αn := (n)(α + 1) (α + 1 − a1)+ (a1 − 1) (n + α) �= 0, n ≥ 2, for α �= 0,

or

α̃n := (a1 − 1) (1 + 1/2 + · · · + 1/(n− 1))+ 1 �= 0, n ≥ 2, for α = 0.

Let
{
L
(α)
n

}
n≥0

and {Qn}n≥0 be the sequences of monic polynomials orthogonal

with respect to the functionals ux and vx , respectively. Since the following relation

xvx = ux

holds, we have
Qn(x) = L(α)

n (x)+ an L
(α)
n−1(x), n ≥ 1.

In [5], it was obtained the explicit expression of the coefficients an, n ≥ 2,

an =

⎧⎪⎨
⎪⎩

αn+1

αn
, α �= 0,

n
α̃n+1

α̃n
, α = 0.

Let wy be any quasi–definite moment functional, and define

v = vx ◦wy, u = ux ◦ wy.

These moment functionals satisfy the relation λ(x, y)v = u where λ(x, y) = x.
If both moment funcionals are quasi–definite, the respective bivariate orthogonal
polynomials satisfy the relation (16) and the matrix Mn is given by (17).

4.3.2 Krall Jacobi–Jacobi orthogonal polynomials

In Section 4 of [4], the authors consider the classical Jacobi moment functional

ux = (1 − x)α(1 + x)β, α, β > −1,

and the modification

vx = (1 − x)−1 ux + 〈ux, 1〉 α + β + 2

2(α + 1)+ a1(α + β + 2)
δ1,

where 〈ux, 1〉 = ∫ 1
−1(1 − x)α(1 + x)β dx, and a1 �= 0 is a parameter satisfying

2(α + 1)+ a1(α + β + 2) �= 0.

As it was proven in [4], the moment functional vx is quasi–definite if and only if
either

αn := (α+1)(α+β+2)(n)(n+β)+M(β+1)(n+α)(n+α+β) �= 0, n ≥ 2,
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for α �= 0, and M := −2(β + 1)+ a1(α + β + 1)(α + β + 2)
2(α + 1)+ a1(α + β + 2) , or

α̃n := 2(β + 2)

2 + a1(β + 2)
− (β + 1)

n−1∑
i=1

(
1

i
+ 1

β + i

)
�= 0, n ≥ 2, for α = 0.

Let
{
P

(α,β)
n

}
n≥0

and {Qn}n≥0 be the sequences of monic polynomials orthogonal

with respect to the functionals ux and vx , respectively. Since

(1 − x) vx = ux

then

Qn(x) = P (α,β)
n (x)+ an P

(α,β)

n−1 (x), n ≥ 1.

In [4], the authors give an explicit expression of the parameters an, n ≥ 2, in terms
of the free parameter a1

an =

⎧⎪⎪⎨
⎪⎪⎩

−2

(2n+ α + β)(2n+ α + β − 1)

αn+1

αn
, α �= 0,

−2n(n+ β)

(2n+ β)(2n+ β − 1)

α̃n+1

α̃n
, α = 0.

Then for any quasi–definite moment functional wy , the two quasi–definite
moment functionals v = vx ◦wy and u = ux ◦wy satisfy the relation

λ(x, y)v = u,

where λ(x, y) = 1 − x. Thus, the bivariate orthogonal polynomials associated with
u and v satisfy the relation (16), where the matrix Mn is given explicitly by (17).

4.4 Adjacent families of classical orthogonal polynomials in several variables

This subsection is devoted to deduce relations between adjacent families of classical
orthogonal polynomials in several variables, that is, to give some polynomials as
linear combinations of polynomials of the same family with different values of their
parameters. These relations can be seen as a generalization of the ones for Jacobi and
Laguerre polynomials in one variable.

4.4.1 Classical orthogonal polynomials on the simplex (Appell polynomials)

Classical polynomials on the simplex (see [14], p. 46) are orthogonal with respect to
the inner product

(f, g)κ = ωκ

∫
T d

f (x)g(x)W(κ)(x)dx,

on the simplex in R
d ,

T d =
{
x = (x1, x2, . . . , xd) ∈ R

d : x1, x2, . . . , xd ≥ 0, 1 − |x|1 ≥ 0
}
,
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where the weight function is given by

W(κ)(x) = x
κ1−1/2
1 x

κ2−1/2
2 · · · xκd−1/2

d (1 − |x|1)κd+1−1/2, κi > −1

2
,

for x ∈ T d and |x|1 = x1 + · · · + xd is the usual �1 norm. Denoting
κ = (κ1, κ2, . . . , κd+1), the normalization constant ωκ is taken in order to have
(1, 1)κ = 1, and it is given by

ωκ =


(
|κ| + d + 1

2

)


(
κ1 + 1

2

)
· · · 

(
κd+1 + 1

2

) ,

with |κ| = κ1 + · · · + κd+1.
We will use the following notation. For x = (x1, . . . , xd) ∈ R

d , we define the
truncation of x as

x0 = 0, xj = (x1, . . . , xj ), 1 ≤ j ≤ d.

Observe that xd = x. Associated with ν = (ν1, . . . , νd), we define

νj = (νj , . . . , νd), 1 ≤ j ≤ d.

Moreover, we denote by e1 = (1, 0, . . . , 0) the first vector of the canonical basis.
For a multi–index ν = (ν1, . . . , νd) ∈ N

d
0 , a basis of orthonormal polynomials on

the simplex is given by [14, p. 47]1

P (κ)
ν (x) = [h(κ)ν ]−1

d∏
j=1

(
1 − |xj |1

1 − |xj−1|1
)|νj+1|

p
(aj ,bj )
νj

(
2 xj

1 − |xj−1|1 − 1

)

=
[
h(κ)ν

]−1
(1 − x1)

|ν2|p(a1,b1)
ν1

(2 x1 − 1)

×
d∏

j=2

(
1 − |xj |1

1 − |xj−1|1
)|νj+1|

p
(aj ,bj )
νj

(
2 xj

1 − |xj−1|1 − 1

)
, (18)

where aj = |κj+1|+2|νj+1|+ d−j−1
2 , bj = κj − 1

2 , the polynomials
{
p
(a,b)
m (t)

}
m≥0

are the orthonormal Jacobi polynomials in one variable,

[
h(κ)ν

]2 =
∏d

j=1

(
|κj | + 2|νj+1| + d−j+2

2

)
2νj(

|κ| + d+1
2

)
2|ν|

,

and (a)n = a(a+1) · · · (a+n−1) denotes the usual Pochhammer symbol for a ∈ R

and n ≥ 0, with the convention (a)0 = 1.

1The formula that appears in this Subsection has been rewritten using the document published by the
author in http://pages.uoregon.edu/yuan/paper/Errata.pdf

http://pages.uoregon.edu/yuan/paper/Errata.pdf
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The following relation between orthonormal families of Jacobi polynomials with
different parameters can be easily deduced from formula (22.7.19) in [1]:

p(a,b)
m (t) = c(a,b)m p(a,b+1)

m (t)+ d(a,b)m p
(a,b+1)
m−1 (t), m ≥ 0 (19)

where

c(a,b)m =
[

2(m+ b + 1)(m+ a + b + 1)

(2m+ a + b + 2)(2m+ a + b + 1)

]1/2

,

d(a,b)m =
[

2m(m+ a)

(2m+ a + b + 1)(2m+ a + b)

]1/2

.

Then, substituting in (18), we get

P (κ)
ν (x) =

[
h(κ)ν

]−1
(1 − x1)

|ν2| [c(a1,b1)
ν1

p(a1,b1+1)
ν1

(2x1 − 1)

+ d(a1,b1)
ν1

p
(a1,b1+1)
ν1−1 (2x1 − 1)

]

×
d∏

j=2

(
1 − |xj |1

1 − |xj−1|1
)|νj+1|

p
(aj ,bj )
νj

(
2 xj

1 − |xj−1|1 − 1

)

= h
(κ+e1)
ν

h
(κ)
ν

c(a1,b1)
ν1

P (κ+e1)
ν (x)+ h

(κ+e1)
ν−e1

h
(κ)
ν

d(a1,b1)
ν1

P
(κ+e1)
ν−e1

(x), (20)

where the second summand vanishes for ν1 = 0. Observe that{
P

(κ+e1)
ν (x) : |ν| = n, n ≥ 0

}
are the orthonormal polynomials defined by (18),

associated with the inner product

(f, g)κ+e1 = ωκ+e1

∫
T d

f (x)g(x)W(κ+e1)(x)dx,

and

W(κ+e1)(x) = x1 W
(κ)(x) = x

κ1+1/2
1 x

κ2−1/2
2 · · · xκd−1/2

d (1 − |x|1)κd+1−1/2.

Next, we represent relation (20) in matrix form like (5) using the orthonormal

polynomial systems on the simplex
{
P
(κ)
n

}
n≥0

and
{
P
(κ+e1)
n

}
n≥0

.

Let n ≥ 1, and let α1, α2, . . . , αrdn
be the elements in

{
α ∈ N

d
0 : |α| = n

}
arranged

according to the reverse lexicographical order. We will denote the components of the
multi–index αi as

αi = (αi,1, αi,2, . . . , αi,d), i = 1, 2, . . . , rdn .

Observe that αi,1 ≥ 1 for i = 1, 2, . . . , rdn−1 and αi,1 = 0 for rdn−1 < i ≤ rdn .
Moreover α1−e1, α2−e1, . . . , αrd

n−1
−e1 are the elements in

{
β ∈ N

d
0 : |β| = n− 1

}
arranged again according to the reverse lexicographical order.
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For n ≥ 1, we define the matrices

K̂(1)
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(1)
α1 ©

c
(1)
α2

. . .

c
(1)
α
rd
n−1

. . .

© c
(1)
α
rdn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̂(1)
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
(1)
α1 ©

d
(1)
α2

. . .

© d
(1)
α
rd
n−1

© · · · · · · ©

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

of respective sizes rdn × rdn and rdn × rdn−1, where

c(1)αi
= h

(κ+e1)
αi

h
(κ)
αi

c(a1,b1)
αi,1

, i = 1, 2, . . . , rdn ,

d(1)αi
= h

(κ+e1)
αi−e1

h
(κ)
αi

d(a1,b1)
αi,1

, i = 1, 2, . . . , rdn−1.

Then, (20) reads as

P
(κ)
n (x) = K̂(1)

n P
(κ+e1)
n (x)+ M̂(1)

n P
(κ+e1)
n−1 (x), n ≥ 1.

Notice that K̂(1)
n is non singular and M̂

(1)
n has full rank.

Likewise we could have replaced formula (19) in (18) for every Jacobi polynomial

p
(aj ,bj )
νj (t), for 1 ≤ j ≤ d fixed. Then, a similar procedure shows that

P
(κ)
n (x) = K̂

(j)
n P

(κ+ej )
n (x)+ M̂

(j)
n P

(κ+ej )

n−1 (x), n ≥ 1,

holds for the matrices

K̂
(j)
n = diag

{
c(j)αi

: i = 1, 2, . . . , rdn
}
,

M̂
(j)
n = Lt

n−1,jdiag
{
d(j)αi

: i = 1, 2, . . . , rdn , s.t.αi,j ≥ 1
}
,

with

c(j)αi
= h

(κ+ej )
αi

h
(κ)
αi

c
(aj ,bj )
αi,j , d(j)αi

= h
(κ+ej )

αi−ej

h
(κ)
αi

d
(aj ,bj )
αi,j ,

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth vector of the canonical basis.

4.4.2 Multiple Jacobi polynomials on the d–cube

Multiple Jacobi polynomials on the cube [14, p. 37] are orthogonal with respect to
the multiple Jacobi weight function

W
(a,b)
J (x) =

d∏
i=1

(1 − xi)
ai (1 + xi)

bi ,



Numer Algor (2014) 66:525–553 551

on the cube [−1, 1]d of Rd , where x = (x1, . . . , xd), and

a = (a1, . . . , ad), b = (b1, . . . , bd), ai , bi > −1.

According to [14], an orthogonal basis is given in terms of standard Jacobi polyno-
mials by

Pν

(
x;W(a,b)

J

)
= P (a1,b1)

ν1
(x1) · · ·P (ad,bd )

νd
(xd), |ν| = n. (21)

The following relations between adjacent families of Jacobi polynomials can be
found in [1, Chapter 22]:

P (a,b)
m (t) = f (a,b)

m P (a+1,b)
m (t)− g(a,b)m P

(a+1,b)
m−1 (t), m ≥ 0 (22)

P (a,b)
m (t) = f (a,b)

m P (a,b+1)
m (t)+ g(b,a)m P

(a,b+1)
m−1 (t), m ≥ 0 (23)

where

f (a,b)
m = m+ a + b + 1

2m+ a + b + 1
, g(a,b)m = m+ b

2m+ a + b+ 1
.

Let j be fixed with 1 ≤ j ≤ d . Then, we can substitute (22) in (21), and we obtain

Pν(x;W(a,b)
J ) = f

(aj ,bj )
νj P (a1,b1)

ν1
(x1) · · ·P (aj+1,bj )

νj (xj ) · · ·P (ad,bd)
νd

(xd)

−g
(aj ,bj )
νj P (a1,b1)

ν1
(x1) · · ·P (aj+1,bj )

νj−1 (xj ) · · ·P (ad ,bd)
νd

(xd)

= f
(aj ,bj )
νj Pν

(
x;W(a+ej ,b)

J

)
− g

(aj ,bj )
νj Pν−ej

(
x;W(a+ej ,b)

J

)
.

As in the above example, we denote by α1, α2, . . . , αrdn
the elements in{

α ∈ N
d
0 : |α| = n

}
arranged according to the reverse lexicographical order with

αi = (αi,1, αi,2, . . . , αi,d) for i = 1, 2, . . . , rdn , and by ej = (0, . . . , 0, 1, 0, . . . , 0)
the jth vector of the canonical basis.

In this way, if
{
Pn

(
x;W(a,b)

J

)}
n≥0

denotes the classical Jacobi polynomial

system on the cube defined as above, for 1 ≤ j ≤ d , and n ≥ 1, we get

Pn

(
x;W(a,b)

J

)
= K̂

(j)
n (a, b)Pn

(
x;W(a+ej ,b)

J

)
− M̂

(j)
n (a, b)Pn−1

(
x;W(a+ej ,b)

J

)
,

where

K̂
(j)
n (a, b) = diag

{
f
(aj ,bj )
αi,j : i = 1, 2, . . . , rdn

}
,

M̂
(j)
n (a, b) = Lt

n−1,j diag
{
g
(aj ,bj )
αi,j : i = 1, 2, . . . , rdn , s.t. αi,j ≥ 1

}
.

In a similar way, using relation (23) we obtain

Pn

(
x;W(a,b)

J

)
= K̂

(j)
n (a, b)Pn

(
x;W(a,b+ej )

J

)
+ M̂

(j)
n (b, a)Pn−1

(
x;W(a,b+ej )

J

)
,

where

M̂
(j)
n (b, a) = Lt

n−1,j diag
{
g
(bj ,aj )
αi,j ; i = 1, 2, . . . , rdn , s.t.αi,j ≥ 1

}
.
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4.4.3 Multiple Laguerre polynomials on R
d+

Multiple Laguerre polynomials are orthogonal with respect to the weight function
[14, p. 51]

W
(κ)
L (x) = xκ e−|x|1, x ∈ R

d+,
which is the product of Laguerre weights in one variable.

As in the above case, multiple Laguerre polynomials defined by

Pν

(
x;W(κ)

L

)
= L(κ1)

ν1
(x1) · · ·L(κd )

νd
(xd), |ν| = n,

form a mutually orthogonal basis associated with W
(κ)
L .

Using formula (5.1.13) in [29],

L(a)
m (t) = L(a+1)

m (t) − L
(a+1)
m−1 (t), m ≥ 0

we get the following relation between adjacent families of Laguerre polynomials

Pν

(
x;W(κ)

L

)
= Pν

(
x;W(κ+ej )

L

)
− Pν−ej

(
x;W(κ+ej )

L

)
,

and ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth vector of the canonical basis. In a matricial
form, we express above relation as

Pn

(
x;W(κ)

L

)
= Pn

(
x;W(κ+ej )

L

)
− Lt

n−1,j Pn−1

(
x;W(κ+ej )

L

)
,

where
{
Pn

(
x;W(κ)

L

)}
n≥0

denotes the Laguerre polynomial system on R
d+.
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orthogonaux semi–classiques. IMACS Ann. Comput. Appl. Math. 9, 95–130 (1991)
22. Meijer, H.G.: Determination of all coherent pairs. J. Approx. Theory 89, 321–343 (1997)
23. Morrow, C.R., Patterson, T.N.L.: Construction of algebraic cubature rules using polynomial ideal

theory. SIAM J. Numer. Anal. 15, 953–976 (1978)
24. Mysovskikh, I.P. Interpolation cubature formulas. (In Russian) Nauka, Moscow (1981)
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