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ABSTRACT 

 

This paper examines, both theoretically and through Monte Carlo analysis, the 

implications of applying the HEGY seasonal root tests to a process that is periodically 

integrated. As an important special case, the random walk process is also considered. 

It is established that, when the regression is not augmented, the asymptotic 

distribution of the zero frequency test statistic is shifted to the right in the periodic 

integration case, but not for the random walk. In practice, however, the HEGY zero 

frequency statistic performs quite well in terms of capturing the single unit root of the 

periodic process, but there may be a high probability of incorrectly concluding that 

the process is periodically integrated. 
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1.- Introduction. 

 

Periodic autoregressive (PAR) models can arise naturally from the application of 

economic theory when the underlying economic driving forces, such as preferences or 

technologies, vary seasonally, as shown in Gersovitz and McKinnon (1978), Osborn 

(1988) or Hansen and Sargent (1993). These PAR models account for seasonality by 

allowing the parameters of the autoregressive process to change with the seasons of 

the year. As such, they are generalizations of the dummy variable approach that is 

widely applied in empirical analyses for seasonal economic data. In recent years a 

number of papers have contributed to the development of a statistical-kit for inference 

in PAR models and also to the exploration of their usefulness for the analysis of 

observed macroeconomic time series (mainly at the quarterly frequency); see Ghysels 

and Osborn (2001) and Franses (1996) for surveys. 

 

Despite the attraction of PAR models from the perspective of economic decision-

making in a seasonal context, the more prominent approach of empirical workers is to 

assume that the autoregressive coefficients, except for the intercept, are constant over 

the seasons of the year. These can be referred to as nonperiodic models, in contrast 

with the periodic case. Tiao and Grupe (1980) and Osborn (1991) study the properties 

of stationary PAR processes when analyzed as conventional nonperiodic ARMA 

processes, showing that a PAR process is (in general) converted into a process with 

seasonal autoregressive dynamics and a high order moving average component.  

 

However, observed macroeconomic time series are typically nonstationary. Following 

the dominant use of the nonperiodic approach for empirical analyses, a stream of 
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important research has examined the nature of nonstationarity in a seasonal context 

through the so-called seasonal unit root tests; see for example, Dickey, Hasza and 

Fuller (1984), Hylleberg, Engle, Granger and Yoo [HEGY] (1990), Smith and Taylor 

(1998). These tests take as their null hypothesis the proposition that nonstationary unit 

root behavior exists not only at the longrun (or zero) frequency, but also at all the 

seasonal frequencies. Although not always acknowledged in the seasonal unit root 

literature, the implication of these seasonal unit roots is that the seasons of the year 

are not cointegrated with each other, and hence “summer may become winter”; see 

Osborn (1991) or Ghysels and Osborn (2001). From an economic perspective, this 

implication may be unattractive.  

 

An alternative type of seasonal nonstationary process is the so-called periodically 

integrated, or PI, process. This may be more plausible than the seasonally integrated 

process studied by HEGY and others, because it allows nonstationarity in conjunction 

with cointegration between the seasons of the year (Osborn, 1991, Franses, 1994). 

There is, however, an important gap in the literature, as little attention have been paid 

to the implications of testing for seasonal unit root when the underlying data 

generating process is of the PI type. To our knowledge, only the works of Boswijk 

and Franses (1996), Franses (1994, 1996) and Sanso et al. (1997) are partially related 

to this issue. Boswijk and Franses (1996) derive the distributions of Dickey, Hasza 

and Fuller (1984) test statistics for a PI(1) process, while Franses (1994, 1996) and 

Sanso et al. (1996) present Monte Carlo results for the performance of the HEGY test 

when applied to  PAR processes.  
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The purpose of this paper is to analytically study the implications of applying the 

HEGY seasonal unit root testing procedure to a PI(1) data generating process. We 

obtain the asymptotic distributions of the normalized bias test and t-ratio statistics for 

the nonseasonal root in the HEGY tests. As a particular, but crucially important, 

special case of the PI(1) process when all the autoregressive coefficients are equal to 

one, the distributions of these statistics are obtained for a random walk process. In 

addition, we provide finite sample Monte Carlo results that support our analytical 

findings and allow us to examine the impact of different PI parameter values on the 

performance of the HEGY test.  

 

The paper is organized as follows, in Section 2 we introduce preliminaries concerning 

PI(1) processes and the HEGY test needed for our analysis. The distribution of the 

statistics are obtained in Section 3, while Section 4 provides Monte Carlo results. 

Finally, Section 5 concludes. 

 

 

2. Preliminaries. 

 

2.1 Periodic Processes 

A comprehensive survey on seasonal unit roots and PAR models can be found in 

Ghysels and Osborn (2001). Further, Osborn and Rodrigues (2002) provide a unifying 

approach for the asymptotics of seasonal unit root tests. Therefore, in the present 

section we do not repeat this background, but instead focus on the main points needed 

for the subsequent. Our notation follows that of Ghysels and Osborn (2001) and 

Osborn and Rodrigues (2002). 

 5



 

For simplicity of exposition, we assume a quarterly series with mean zero. We also 

restrict our attention to the PAR(1) case, since this keeps the analysis as simple as 

possible without losing any essential features. The PAR(1) process for this case is 

given by 

 

 ysτ = αsys-1,τ + τε s ,   s = 1, 2, 3, 4, τ = 1, 2, …  (1) 

 

where, for observation ysτ, the first subscript refers to the season (s) and the second 

subscript to the year (τ). When s = 1, it is understood that ys-1,τ = y4,τ-1. Also for ease of 

exposition, we assume that observations are available for precisely N years, so that the 

total sample size is T = 4N. The PAR disturbance process τε s  is a zero mean iid 

process that may be heteroscedastic over seasons, but here we assume 

homoscedasticity with .  22 )( σε τ =sE

 

The stationarity properties of the PAR(1) process are determined by the product 

α1α2α3α4. Specifically, the process is stationary when │α1α2α3α4│ < 1 and is 

periodically integrated when α1α2α3α4 = 1. A periodic process that is integrated of 

order 1 is referred to as a PI(1) process (Osborn, Chiu, Smith and Birchenhall, 1988). 

Again for simplicity, the PI(1) process is assumed to have a zero starting value, so 

that y04 = 0. 

 

Franses (1994) exploits the VAR representation of a periodic process, referring to it as 

the Vector of Quarters [VQ] representation. The VQ representation of the PAR(1) in 

(1) is:  
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  Φ0Yτ = Φ1Yτ-1 + U τ      (2) 

where Yτ = (y1τ, y2τ, y2τ, y4τ)', Uτ = ( τε1 , τε 2 , τε 3 , τε 4 )', E(Uτ Uτ') = σ2I and 
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As discussed by Ghysels and Osborn (2001), the key to the type of integration 

exhibited by a PAR process is the final equation representation  

( ττ UBadjYB 1010 Φ−Φ=Φ−Φ ) ,      (3) 

where adj(.) indicates the adjoint matrix for the expression in parentheses and B is the 

annual backshift (or lag) operator such that BYτ = Yτ-1.  

 

When the PAR(1) is integrated of order 1, PI(1), (3) becomes 

   (1 – B)Yτ = (Θ0 + Θ1B) U τ     (4) 

with 
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Note that (4) is a Vector MA [VMA] in the annual difference (1 - B)Yτ = Yτ - Yτ-1. 

This VMA process is noninvertible, because the matrix C(B)= (Θ0+Θ1B) has three 

unit roots. Therefore, the rank of C(1) is one and it is possible to write: 

    C(1) = Θ0 + Θ1 = ab'     (5) 

where 
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It follows that there are three cointegration relationships between the four quarterly 

series of the PI(1) process, or equivalently there is a single common trend between 

values corresponding to the four quarters of the year (Boswijk and Franses, 1996, 

Franses, 1994, Ghysels and Osborn, 2001, Osborn, 1991). An important special case 

is the random walk process, with αs = 1 (s = 1, 2, 3, 4), which has a = b = (1, 1, 1, 1)'. 

 

To summarize the main characteristics of a PI(1) process, we use a particular case of 

Lemma 1 in Boswijk and Franses (1996): 

 

LEMMA 1. Consider Yτ in (3) with α1α2α3α4 = 1. Assuming Uτ  is vector white noise 

with E(Uτ Uτ') = σ2I4, then as N = T/4 → ∞: 

( )

( )
( )
( )
( )

]1,0[1

4

3

2

1

][ ∈



















=⇒ r

rB
rB
rB
rB

rBY
N rN

 (6) 

where [rN] is the integer part of rN and the 4×1 vector Brownian motion process B(r) 

satisfies 

  B(r) = ab'W(r) = ωa w(r)      (7) 

with W(r) being 4×1 vector Brownian motion with variance matrix σ2I4, ω = σb'b and 

w(r) is scalar standard Brownian motion. Finally ⇒ means convergence in 

distribution.  
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For a proof of this Lemma, see Boswijk and Franses (1996). 

 

To conclude the preliminaries of PAR processes, we present the constant parameter 

representation of a PAR(1) obtained by Osborn (1991) from results initially due to 

Tiao and Grupe (1980). This constant parameter representation is the one that applies 

if the PAR(1) process is analyzed as a conventional ARMA one and is obtained from 

the final equation representation of (3). For quarter s, equation (3) is: 

 ττττττ εαααεααεαεαααα ,3s2s1ss,2s1ss,1sss1,s3s2s1sss yy −−−−−−−−−− ++++=  (8) 

which can also be obtained directly from (1) by repeated substitution. As seen from 

(8), the (annual lag) autoregressive coefficient is α1α2α3α4 for all four quarters, but the 

MA(3) term is seasonally varying. In effect, the constant parameter representation 

averages these processes over s = 1, 2, 3, 4, resulting in a time invariant 

SAR(1)×MA(3) representation.  

 

When the PAR(1) is integrated, then α1α2α3α4 = 1 and (8) becomes 

 τττττ εαααεααεαε ,321,21,14 −−−−−− +++=∆ sssssssssssy , (9) 

which is equivalent to (4). The constant parameter representation is then an MA(3) in 

∆4ysτ. Although the annual difference autoregressive operator suggests the presence of 

four unit roots (that is, the zero frequency and all three seasonal unit roots), this is not 

the case because the VMA of (4) has three noninvertible unit roots, as noted above. 

The purpose of the analysis of the present paper is to clarify the consequences of 

applying the HEGY seasonal unit root tests to such a PI(1) process. 
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2.2 The HEGY Test 

The basic regression for the HEGY test, with no deterministic terms and no 

augmentation, is: 

  (10) ττττττ εππππ ssssss yyyyy ++++=∆ −−−−
)3(
14

)3(
23

)2(
12

)1(
114

where, as in (9) above, ∆4 = 1 - L4 with L the usual lag operator (Lysτ = ys-1,τ), and 

 are the auxiliary variables associated with the roots of (1 - L), (1 + L) 

and (1 + L

)3()2()1( ,, τττ sss yyy

2) of the seasonal difference operator ∆4 = 1 - L4 = (1 - L)(1 + L)(1 + L2). 

Specifically,  

  (11)
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(Note the distinction made between L operating on the quarter here and B in (3)/(4) 

above that operates on the year for the vector Yτ or Uτ.)  

 

The overall HEGY null hypothesis of seasonal integration, ysτ ~ SI(1), implies the 

presence of unit roots at the zero frequency (captured through π1) and at the seasonal 

frequencies (captured through π2, π3 and π4), so that π1 = π2 = π3 = π4 = 0. Hence, in 

this simple case, the null hypothesis implies the seasonal random walk ∆4ysτ = τε s

( )r

, 

with the asymptotic distribution of the vector Yτ therefore given by , 

where W(r) is the 4×1 vector Brownian motion process of Lemma 1; see, for example, 

Ghysels and Osborn (2001). Thus, the principal difference between a PI(1) and an 

SI(1) process is that there are three cointegrating relationships between the four 

quarters for the PI(1) and no contegration between the quarters for the SI(1) process. 

[ ] WYN rN ⇒− 5.0
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As discussed by HEGY, the regressors in (10) are, by construction, asymptotically 

orthogonal under the seasonal integration null hypothesis. Thus, the associated 

asymptotic distributions of the HEGY test statistics can be obtained considering the 

three factors of ∆4 one by one. Under the overall HEGY null hypothesis, the 

normalized bias and t-ratio statistics for testing the null of a unit root at the zero 

frequency, namely π1 = 0, are given by: 

  
( )∑∑
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− ∆
= 4
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ˆtπ  (12.2) 

   

where  is the degrees of freedom corrected OLS estimator of σ2σ̂ 2. Osborn and 

Rodrigues (2002) show that the asymptotic distributions for these statistics under the 

HEGY null hypothesis can be written as 

 
( ) ( )
( ) ( )

( ) ( )
( )∫

∫
∫
∫ =⇒

drrw
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drrWCrW

rdWCrW
T
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drrw

rdwrw
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t

2
1

1
ˆ

'

'
1π  (13.2) 

  

where W(r) are w(r) are as defined in Lemma 1 above and C1 is a 4 × 4 matrix with all 

elements equal to one. 
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3. Asymptotic Distributions  

 

In the section we derive the asymptotic distributions of the HEGY normalized bias 

and t-ratio statistics. Before turning to the HEGY regression (10) when the true DGP 

is PI(1), we analyse (in subsection 3.1) the distributions of the normalized bias and t-

ratio statistics in the regression 

 . (14) τττ π sss vyy +=∆ −
)1(
114

The regression in (10) provides a test of the zero frequency unit root, while 

maintaining the presence of all seasonal unit roots. The orthogonality of the regressors 

in (10) under the seasonal integration null hypothesis implies that, under that null, the 

same asymptotic distributions apply whether (10) or (14) is used; see, for example, 

the discussion in Ghysels and Osborn (2001). Therefore, an applied researcher 

analysing seasonal data may use the regression (14) in an attempt to side-step 

seasonality issues and concentrate on the zero frequency unit root properties of the 

data. 

 

Subsequently (subsection 3.2), we consider the important special case of a random 

walk DGP, where ysτ ~ I(1), in the context of the complete HEGY regression (10). 

The general case of ysτ ~ PI(1) is discussed in subsection 3.3. We find that it is 

important to distinguish the random walk and PI(1) cases, because the distributions of 

the test statistics T 1π̂ and  are the same for a PI(1) process whether (10) or (14) is 

used, but this situation does not hold in the random walk special case. Therefore, 

although a random walk can be considered as a special case of the PI(1) process of (3) 

with all coefficients equal to unity, this special case has distinctive implications when 

testing for seasonal unit roots.  

1π̂t
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3.1 The Zero Frequency Unit Root Test Regression 

For ysτ ~ PI(1), the distribution of T 1π̂  in (14) is summarized in the following 

theorem, with details of the proof given in the appendix. 

 

THEOREM 1. Assuming α1α2α3α4 = 1 in (1), the asymptotic distribution of  the 

normalized bias and t-ratio test statistics for a unit root test in (14) are given by: 

   
( ) ( ) ( )

( )∫
∫ ′Γ+

⇒
drrw

aCardwrw
T

2

1
2

1

/4
ˆ

ω
π           (15) 

and 

  
∫

∫ Γ+
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aCardwrwaCa
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1
2
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)](['

)'(/4)()()'(
1

ω

ωω
π           (16) 

where ∑∑
=

−

=

=Γ
4

1

1

1
)(

4
1

s

s

k
s kγ and γs(j) =E(∆4ysτ ∆4ys-j,τ) is the periodic autocovariance of  

∆4ysτ for season s and lag j. 

 

We discuss first the result (15) for the normalized bias. An immediate consequence of 

(15) is that the distribution of T 1π̂  in (14) when ysτ ~ PI(1) differs from the usual 

Dickey-Fuller distribution of  the normalized bias by the additional term 

 that appears in the numerator. This term arises from the correlation 

between ∆

( aCa 1
2/4 ′Γ ω )

4ysτ and the disturbance νsτ of (14), and is a function of the autocovariances 

of ∆4ysτ and the parameters of the PI(1) process .  

 

Table 1 collects the parameters and the corresponding values of Γ and ω2a´C1a for the 

PI(1) processes used in our Monte Carlo experiments below. With positive PI(1) 
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coefficients, the term 4  is always positive, hence shifting the distribution 

of T

( aCa 1
2/ ′Γ ω )

1π̂  to the right in relation to the distribution of T 1π̂  in (13.1), where the latter is 

also the asymptotic Dickey-Fuller distribution for the normalized bias in a unit root 

test. To illustrate this effect, Figure 1 shows the empirical distributions of T 1π̂  in (14) 

and (10), denoted Tpi1_PI(1)* and Tpi1_PI(1) respectively1, for the DGPs of Table 1. 

In addition, the distribution of the normalized bias for a conventional Dickey-Fuller 

test is shown, with this denoted in the figure as T_pi1_DF. It can be seen that the shift 

to the right in the empirical distributions of Tpi1_PI(1)* is substantial, compared with 

the distribution of the for the zero frequency unit root statistic in the HEGY regression 

(10). However, the distribution for the normalized bias statistics from the full HEGY 

regression and a DF regression are effectively identical for all cases, except DGP 6.  

                   

 

Thus, if T 1π̂  from (14) is used to test the null hypothesis of a unit root at the zero 

frequency when ysτ ~ PI(1), with the test statistic compared to the corresponding 

asymptotic Dickey-Fuller distribution, then the null will be rejected less frequently 

than indicated by the nominal size of the test. This continues to be true if the DGP is a 

random walk, which is shown as DGP 6 of the figure. In this latter situation, the unit 

root null hypothesis is clearly true, so that the test will be substantially undersized in 

relation to a conventional nominal size of, say, 1 or 5 percent. 

 

However, it is also notable from Figure 1 that the random walk case differs from the 

PI(1) processes in that the distributions obtained from (14) and (10), Tpi1_PI(1)* and 

Tpi1_PI(1) respectively, do not coincide. Therefore, applying the full HEGY test 

                              
1 These figure show histograms of the empirical distributions, based in 20 points and obtained with a 
sample size of T=1000 and s = 4, using 15,000 replications. 
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regression has an asymptotically non-trivial effect on the distribution of the unit root 

test for a random walk process, compared with applying a simple Dickey-Fuller test 

after taking moving seasonal sums in order to account for presumed seasonality. We 

consider this issue in the next subsection. 

 

The t-ratio for 1π̂  from the OLS estimation of (14) is given by 

( )∑∑

∑∑

= =
−

−

= =
−

− ∆
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where  is the OLS estimator of the disturbance variance.  As shown in the 

Appendix, 

2ˆ vσ

4
')(ˆ

2

4
22 aayVar svv

ωσσ τ =∆=→ , leading to the result for the t-ratio given 

in (16).  

 

In the particular case of a random walk,  and (16) becomes  aaaCa ′=′ 41
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t
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2

ˆ

/
2

1

ω
π  (17) 

 

Although this result in (17) formally holds only for the random walk case, in practice 

it provides an approximation to (16) because the relationship  is quite 

good for many PAR(1) processes that are periodically integrated, as the examples of 

Table 1 show.  

aaaCa ′≈′ 41

 

Both Boswijk and Franses (1996) and Taylor (2003) separately obtain the asymptotic 

distributions of the Dickey, Hasza and Fuller (1984) [DHF] seasonal integration test 
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statistics when the underlying process is a random walk. Note that their distribution is 

the same as the one in (17) except for the term , this term do not appear in 

the case of the DHF distribution, because even that is serially correlated is 

uncorrelated with , as it is pointed out by Boswijk and Franses (1996). 

( aa′Γ 2/ ω

4∆

)

                                                

τsy

14 −∆ τsy

 

Figure 2 investigates the nature of the distribution of the t-ratio in (16) in comparison 

with the DF distribution, once again taking the example DGPs of Table 1. This figure 

shows the empirical distribution of from (14) (denoted t_pi1_PI(1)*), from (10) 

(t_pi1_PI(1)) and from a Dickey-Fuller regression (t_pi1_DF), where the latter is 

effectively identical to the distribution for the t-ratio in a conventional Dickey-Fuller 

distribution

1π̂t

2. From the results collected in Figure 2, it is evident that (like the 

distribution of the normalized bias) the distribution of (16) is shifted to the right 

compared to the Dickey-Fuller one, so that the null hypothesis of a unit root at the 

zero frequency will be rejected substantially fewer times that the nominal size, when 

this nominal size corresponds to the use of the full HEGY regression (14).  

 

As in the corresponding distributions in Figure 1, the empirical distributions for 

t_pi1_DF and t_pi1_PI(1) in Figure 2 are coincident for the periodic DGPs of Table 1. 

However, this AGAIN does not hold for the random walk  (DGP 6). Therefore, the 

next two subsections investigate the asymptotic distributions of the normalized bias 

and t-ratio statistics in the context of the HEGY regression for the random walk and 

periodically integrated cases, respectively.  

 

 
2 The number of points used in the histograms for the empirical distributions, the sample size and the 
number of replications are the same as for Figure 1.  
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3.2 The Random Walk DGP in the complete HEGY regression 

Lemma 2 examines the nature of the variables used in the HEGY regression for a 

random walk DGP. 

 

LEMMA 2. Assume αs = 1 (s = 1, 2, 3, 4) in (1), so that ysτ = ys-1,τ  + τε s . Then the 

variables in HEGY test regression (10) are given by: 

( )( )( )( ) ( )( ) ( ) ττ
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τ εεε
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where S(L) = 1 + L + L2  + L3 . Consequently,  ~ I(1), while are 

stationary. 

)1(
τsy )3()2(

4 ,, τττ sss yyy∆

 

To establish this, note that these expressions for the variables in the HEGY regression 

follow immediately from the assumption that ysτ is a random walk, together with the 

factorization ∆4 = (1 - L)(1 + L)(1 + L2). It immediately follows that  contains a 

zero frequency unit root, due to the presence of the autoregressive factor (1 – L). On 

the other hand, each of  is a simple linear transformation of the white 

noise disturbances 

)1(
τsy

)3()2(
4 ,, τττ sss yyy∆

τε js−  (j = 0, 1, 2, 3) and hence are stationary.  
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Due to the I(1) property of  and the stationarity of the vector 

, the coefficients corresponding to these variables converge at 

different rates when (10) is estimated. To reflect this, it is useful to define the 4 × 4 

scaling matrix M, where 

)1(
τsy
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It is then straightforward to see that the scaled OLS estimators for the HEGY 

regression (10) are given by 
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          (18) 

where Π . )ˆ,ˆ,ˆ(ˆ
4322 ′= πππ

 

Our results relating to the distribution of the OLS estimators for the HEGY regression 

applied to a random walk are contained in Theorem 2. 

 

THEOREM 2. Assume αs = 1 (s = 1, 2, 3, 4) in (1), so that ysτ = ys-1,τ  + τε s . Then: 

(i) The covariances between  and each of  satisfy )1(
τsy )3(

,1
)3()2( ,, τττ −sss yyy
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(ii) The appropriately scaled OLS estimator 1π̂  is asymptotically orthogonal to ; 2Π̂

(iii) The asymptotic distribution of 1π̂T  is given by: 

    
( ) ( )
( )∫

∫⇒
drrw

rdwrw
T

21 4
1π̂  ;   (19) 

(iv) The asymptotic distribution of the t-ratio for 1π̂ is given by 

    
( ) ( )

( )∫
∫⇒

drrw

rdwrw
t

2ˆ1π ;    (20) 

(v) The OLS estimator of Π2 converges to (-0.5, -0.5, -0.5)'. 

 

Using the properties of the HEGY regressors established in Lemma 2 for a random 

walk process, (i) follows from standard results on the convergence rates properties of 

integrated and stationary processes (for example, Hamilton, 1994). This leads 

immediately to the asymptotic orthogonality result in (ii), when the estimators are 

scaled by M.  

 

The proof of (iii) is given in the appendix. It is important to note from Theorem 2, 

specifically equation (19), that the distribution of the HEGY normalized bias statistic 

for the zero frequency unit root leads to a scaling of the distribution of Dickey and 

Fuller (1984) when the process is a random walk. In this case there is no bias term Γ, 

which appears in (15), because the additional regressors included in (10), namely 
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)2(
1τ−sy

a2 ′ω

, and , effectively act in the same way as the augmentation in the ADF 

test. Part (iv) then follows by using part (iii) of Theorem 2, together with the fact that 

in regression (10) the perturbation term ε

)3(
2τ−sy

aC1

)3(
1τ−sy

sτ is white noise; this latter statement is 

established in the appendix. We also use the fact that, in the random walk case, 

= 64. It is important to appreciate that the distribution in (20) is the usual 

Dickey-Fuller distribution for the t-ratio, implying that this distribution remains valid 

for testing a zero frequency unit root within the context of the HEGY regression, even 

though no seasonal unit roots are present in the DGP. 

 

Part (v), which is proved in the appendix, implies that the scaled estimator T jπ̂  for 

j = 2, 3, 4 diverges to - ∞ as T  when the HEGY regression (10) is applied to a 

random walk process. This divergence has also been obtained by Rodrigues (2001) 

and Taylor (2002), by considering local alternatives to the HEGY seasonal integration 

null hypothesis.  

∞→

 

Therefore, our results can now explain what it has been observed in Figures 1 and 2 

for the random walk case. The previous subsection derived the asymptotic distribution 

of the normalized bias and t-ratio unit root test statistics for regression (14), whereas 

this subsection has considered them in the context of the HEGY regression (14). 

These are now seen to be different distributions, with the use of the full HEGY 

distribution delivering the familiar Dickey-Fuller distributions, whereas the 

application of unit tests in (14) after taking moving seasonal sums does not. 
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 3.3 The PI(1) DGP in the complete HEGY regression 

We now turn attention to the more general DGP of a PI(1) process. From (9), we can 

write 

 
( ) ττ εα sss Ly =∆ 4  

and hence 
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where αs(L) = 1 + αsL +αsαs-1L2 + αsαs-1αs-2L3. The polynomial αs(L) gives the moving 

average coefficients of the VMA representation in (4), which we have already noted 

contains three noninvertible unit roots. Unlike the special case of the random walk, no 

simple cancellation applies in the equations for the HEGY regressors in (10), so that 

the HEGY regressors of (21) are nonstationary. 

 

As shown in Lemma 1, asymptotically all elements ysτ (s = 1, 2, 3, 4) can be written in 

terms of a single common trend, which can be (arbitrarily) identified with y1τ. Thus, 

from Lemma 1, we can write  

       (22) 
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and the only stationary linear combinations of ysτ (s = 1, 2, 3, 4) are those that reduce 

the coefficient on y1τ to zero. This does not apply to the HEGY regressors, which are 
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consequently nonstationary. Indeed, it is clear from (21) that the HEGY variables for 

a PI(1) process contain the same unit roots as for a seasonally integrated case, so that 

the HEGY regressors retain the asymptotic orthogonality as under the seasonal 

integration null hypothesis. This is the reason why, in Figures 1 and 2, the empirical 

distributions of the normalized bias and t-ratio test statistics are the same for 

regressions (10) and (14). Indeed, in contrast to the random walk case discussed in 

subsection 3.2, the results obtained in subsection 3.1 for π1 in regression (14) also 

hold for the complete HEGY regression. 

 
 
To examine the tests associated with remaining variables of the HEGY regression, we 

use the constant parameter representation of the PAR process, studied by Tiao and 

Grupe (1980) and Osborn (1991). More particularly, when a periodic MA process is 

analyzed as a constant parameter one, the parameters of the constant parameter 

representation correspond to a process with autocovariances equal to the periodic 

autocovariances averaged over the four quarters. That is, the constant parameter 

representation of the MA(3) in (9) has autocovariances  

  3,2,1,0)(
4
1)(

4

1
== ∑

=

jjj
j

sγγ     (23) 

where γs(j) = E(∆4ysτ ∆4ys-j,τ), and γ(j) = 0, j > 3. The periodic autocovariances can be 

obtained from (8), with the autocovariance generating function then applied to the 

resulting average autocovariances from (23) in order to obtain the constant parameter 

representation. 

 

In Table 2 we collect the polynomials associated with the roots of the constant 

parameter MA(3) for each DGP of Table 1. Since the HEGY regression treats the 
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process as being nonperiodic, the proximity of the roots in Table 2 to the roots –1, ±i, 

of the seasonal random walk process, the closer to cancellation between the factors in 

(21) when the periodic MA polynomial αs(L) is replaced by the corresponding 

constant parameter one.  

 

Therefore, despite the fact that the variables associated with the seasonal unit roots in 

the HEGY regression are nonstationary, these variables typically exhibit near 

cancellation of these nonstationary roots with nearly-noninvertible moving average 

roots. From a practical point of view, the distribution of the tests associated with the 

seasonal frequencies when the DGP is a PI(1) may be very close to those reported in 

the random walk case in the previous subsection, due to the near cancellation at the 

seasonal frequencies. The next section employs Monte Carlo methods to examine this 

further. 

 

4.  Monte Carlo Results 

 

As already noted, Table 1 shows the DGPs used in the Monte Carlo experiment. This 

table also shows the ratio between the maximum and minimum value of αj (over j = 1, 

2, 3, 4) as a measure of the extent of periodic variation for each DGP, as well as the 

values of  and Γ (see Lemma 1 and Theorem 1) for each DGP. It can be seen 

that DGP 4 has the largest periodic variation in its coefficients, followed by DGP 1 

and 2. Finally DGP 5 has the least periodic variation, apart from the random walk 

case of DGP 6. 

aB'a 1
2ω
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As already discussed, Table 2 presents the polynomials associated with the periodic 

moving average polynomials αs(L) for each DGP of Table 1. It can be seen that DGP 

3 has a constant parameter representation with factor (1 + θ1L) = (1 + .994L), which  

therefore is very close to cancellation with the biannual seasonal AR root of –1. On 

the other hand, whereas DGP 4 has the lowest value of θ1, its factor (1 + a ± biL) is 

close to cancellation with annual AR unit root of (1 ± iL). Finally, DGP 1 has the 

largest value of a and the smallest b, and hence is furthest from cancellation with the 

annual seasonal unit root of the processes considered. Taking into account both 

moving average factors (1 + θ1L) and (1 + a ± biL), DGP 5 is the closest PI(1) process 

to the random walk case of DGP 6. 

 

For each of the DGP, we generate 5000 replications of 100 observations 

(corresponding to N = 25 years of data), and then apply the HEGY procedure to test 

for unit roots at the zero and seasonal frequencies. Specifically, we separately 

consider the null three hypotheses π1 = 0, π2 = 0 and π3 = π4 = 0, corresponding to the 

presence of unit roots at the zero, biannual and annual frequencies, respectively. The 

first two hypothesis tests are conducted using the relevant t-ratios (tπ1 and tπ2), while 

the last uses the joint F34 statistic proposed by HEGY. It is relevant to note that 

Burridge and Taylor (2001) emphasize the use of this F34 statistic rather than separate 

t-ratios on these coefficients, since the asymptotic distributions of these t-statistics 

under the unit root null hypothesis are affected by the presence of stationary serial 

correlation, whereas the F-statistic is not. In addition, we undertake joint tests of the 

hypothesis of unit roots at all seasonal frequencies (π2 = π3 = π4 = 0) and at the zero 

frequency and all the seasonal frequencies (π1 = π2 = π3 = π4 = 0) using the joint F234 

and F1234 tests respectively, as proposed by Ghysels, Lee and Noh (1994). All results 

 24



are presented as the proportion of times that the relevant null hypothesis is rejected, 

using a nominal significance level of 5 percent3. 

 

Tables 3.1 and 3.2 show the results when initial values are set to zero and no seasonal 

dummies are included in the test regression. For the results in Tables 4.1 and 4.2, 

initial values are obtained from a standard normal distribution and seasonal dummies 

are included in the HEGY regression. Tables 3.1 and 4.1 show results for the five 

PI(1) processes of Table 1, whereas Tables 3.2 and 4.2 show results for the random 

walk case (DGP 6 of Table 1) and the seasonal random walk, referred to as DGP 7. 

Results are presented with both fixed augmentation and augmentation selected on the 

basis on the specific sample. The fixed augmentations considered are no lags, together 

with augmentation by 4, 8 and 12 lags (that is, one, two and three years, respectively) 

of ∆4ysτ. The other procedures select the maximum lag based on the AIC criteria and 

the sequential method recently proposed by Ng and Perron (1995). 

 

Our results in Section 3 show that the zero frequency unit root statistic does not 

follow the usual Dickey-Fuller distribution for PI(1) processes in a HEGY regression 

without augmentation, due to the term Γ in (16) that shifts the distribution to the right. 

Therefore, we anticipate empirical rejection frequencies tπ1 in Tables 3.1 and 4.1 to be 

lower than the nominal 5 percent. This is indeed the case when no augmentation is 

applied, with the single exception of DGP 1 in Table 4.1. Especially in the zero 

starting value case of Table 3.1, as the order of the augmentation increases the 

proportion of rejections tends to 0.05. Thus, the augmentation here takes account of 

                                                 
3 Critical values for tests of π1 = 0 and π2 = 0 are taken from the Dickey-Fuller critical values presented 
for a sample size of 100 observations in Hamilton (1994). The joint test of π3 = π4 = 0 uses the critical 
values for this sample size in HEGY. Finally, the remaining joint tests use critical values presented by 
Ghysels et al. (1994).  
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the correlation between and τsy4∆ τε s , so the term Γ became less important. It is also 

worth noting that this test generally has rejection frequency greater than the nominal 

level of significance when lags are selected according to AIC, with the Ng-Perron 

procedure resulting in a better performance in this respect.  

 

We also show in Section 3 that the zero frequency unit root statistic asymptotically 

follows the Dickey-Fuller distribution for a random walk DGP, and from HEGY this 

is also known to be the case for a seasonally integrated process. The results in Tables 

are compatible with these theoretical results, although augmentation leads to some 

undersizing.  

 

Turning to the tests for seasonal unit roots, the proportion of times that the relevant 

null is rejected when there is no augmentation is close to unity in all tables. The most 

marked exception is tπ2 for DGP 4, which has relatively low rejection frequencies in  

both Tables 3.1 and 4.1. Increasing the order of augmentation leads to dramatic 

declines in the proportion of rejections of seasonal unit roots by all the test statistics 

(tπ2, F34, F234, F1234). For DGPs 1, 2 and 3, these tests are more likely to find evidence 

of unit roots at the annual frequency π/2 that at the biannual frequency π, whereas the 

reverse is true for DGPs 4 and 5. 

 

It is not surprising that the probability of finding evidence of unit roots in these 

periodic processes depends on the specific parameter values αj and the corresponding 

constant parameter moving average components shown in Table 2. Nevertheless, it is 

also clear that the HEGY test procedure will frequently lead to the wrong conclusion 

that the PI(1) process is seasonally integrated. For example, basing lag selection on 
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AIC, Table 4.1 shows that the F1234 statistic rejects the seasonal integration null 

hypothesis only 40 percent of the time  for DGP 1. Although this rejection frequency 

rises to 90 percent for DGP 5, the use of the Ng-Perron lag selection procedure would 

reduce the rejection frequency for this DGP to 40 percent. 

 

The AIC criterion is frequently used for lag selection by applied researchers. In the 

present case, this tends to result in rejection frequencies similar to those obtained with 

an augmentation by 4 lags. On the other hand, the Ng-Perron procedure tends to select 

a higher order of augmentation and to result in a lower rejection frequency for the null 

hypothesis. AIC performs particularly well in the random walk case (DGP 6), with the 

Ng-Perron procedure having less power for rejecting the presence of seasonal unit 

roots, especially in Table 4.2. 

 

The overall conclusion is that the single unit root of a PI(1) process will be associated 

with the test for a zero frequency root in the HEGY test, with the corresponding test 

statistic having size close to the 5 percent nominal level of significance if the test 

regression is sufficiently augmented. However, depending on the specific parameter 

values of the DGP and the criterion used for selecting the order of augmentation, the 

probability can be high that the incorrect conclusion is drawn that the process has unit 

roots at one or more of the seasonal frequencies. 

 

5. Concluding Remarks 

 
 
This paper has tackled the consequences of testing for seasonal unit roots in a process 

that is, in fact, either a random walk or a periodic integrated process. The true process 
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under consideration therefore has a single unit root, with no seasonal unit roots. We 

show theoretically that the zero frequency unit root test statistics do not follow the 

usual asymptotic Dickey-Fuller distributions in this case, as the distribution is shifted 

to the right. However, the Monte Carlo analysis indicates that the size of this test in a 

sample of 100 observations is relatively close to the nominal size of 5 percent when 

the HEGY regression is augmented. In other words, therefore, in practice the zero 

frequency unit root test detects not only a unit root at this frequency in a nonperiodic 

process, but also the single unit root in a periodic integrated process. 

 

Periodic integrated processes do not contain seasonal unit roots. However, the 

transformed variables used in the HEGY seasonal unit root test do not remove the 

nonstationarity in a periodic process. Consequently, the use of these variables in a 

seasonal unit root test regression may lead to the conclusion that seasonal unit roots 

are present in the process.  

 
 
In contrast to the periodic case, we show that the asymptotic Dickey-Fuller 

distribution continues to apply for the zero frequency unit root test statistic in the 

important special case of a random walk. Further, the seasonal unit root test statistics 

diverge to infinity. Therefore, although the HEGY seasonal unit root test regression 

has been developed under the null hypothesis of a seasonally integrated process, it 

continues to be applicable when only the zero frequency unit root is present.  
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Appendix 
 

Proof of Theorem 1: 
 
Asymptotically, the distribution of 1π̂T  in (14) is given by  
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The numerator of this expression is equal to 
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where vsτ = ∆4ysτ = ysτ – ys,τ-1 and Vτ = (v1τ, v2τ, v3τ, v4τ)'.  
 
Asymptotically 
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where γs(k) = E(vsτvs-k,τ) is the autocovariance of vsτ at lag k. This autocovariance is, in 
general, periodic. Returning to (A.2) and noting that Vτ is autocorrelated, Theorem 2.6 of 
Phillips (1988) implies that 
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and we have used the fact that vsτ is an MA(3). Notice that Γ1 is equal to the sum of the intra-
year covariances between the elements of Vτ, while Γ2 captures the corresponding inter-year 
covariances. The sum of these, namely the term Γ = Γ1 + Γ2 arises from (A.2) due to the 
covariance between the regressor  and the dependent variable ∆)1(

,1 τ−sy 4ysτ; Γ here plays a 
similar role to Ω1 in Theorem 2.6 of Phillips (1988). 
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From (A.2) to (A.4), and using Lemma 1,  
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where, as before, ω2 = σ2(b'b), while  
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The denominator of (A.1) is  
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where we have used Lemma 1 to substitute for B(r).  
 
 
Therefore, the asymptotic distribution of the normalized bias is 
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The general results in (A.6) to (A.9) hold for any PI(1) process. Specific expressions can then 
be obtained for any given set of PI(1) coefficients. For the special (nonperiodic) case of the 
random walk, b'b = 4 while a'C1a = 16 so that (A.6) becomes 
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with Γ = {γ(1) + γ(2) + γ(3)} = 6σ2. Using the corresponding special case of (A.8), the 
required distribution for the normalized unit root test statistic for the random walk can be 
seen to be 
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Proof of Theorem 2 (iii): 
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and it can be seen that Q  are the residuals of the regression: Y4∆
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It follows from theorem 1 (iv) that in (A.14) the estimates of the parameters are 
asymptotically equal to –0.5. then using  lemma 2 it can be seen that the residuals of (A.14) 
and hence Q follows a white noise process. Y4∆
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The denominator of  (A.12) is then 
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while the numerator is 
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where U is a 4N*1 vector with generic elements τε s .Finally as in theorem 1 and knowing that  
now Γ is zero because τε s  is white noise, we have  
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where Uτ = (ε1τ, ε2τ, ε3τ, ε4τ)', and in the last step we use  from the definition 
of in lemma 1, and in this particular case we have b’a=C
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Proof of Theorem 2(v): 
 
Using asymptotic orthogonality between the estimators of π1 and Π2, it can be seen that  

converges to 
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Figure 1. Simulated asymptotic distributions of the HEGY normalized bias statistic for a 
unit root at the zero frequency for the DGPs of Table 1 
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Figure 2. Simulated asymptotic distributions of the HEGY t- statistic for a zero 
frequency unit root for the DGPs of Table 1 
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Table 1. Data Generating Processes Considered 
 

DGP α1 α2 α3 α4 αmax/ αmin ω2a'C1a Γ 

1 0.500 0.900 1.500 1.481 3.000 83.604 7.557 

2 1.200 0.600 1.000 1.389 2.315 73.568 6.783 

3 1.250 0.800 0.900 1.111 1.563 66.730 6.224 

4 2.000 0.500 1.500 0.667 4.000 81.507 7.410 

5 1.000 0.800 1.200 1.042 1.500 65.705 6.114 

6 1.000 1.000 1.000 1.000 1.000 64.000 6.000 
Note: αj (j = 1, 2, 3, 4) are the coefficients of the PAR(1) process of (1) used in 
the Monte Carlo analysis; αmax/αmin is the ratio of the largest to smallest of 
these coefficients; see text for definitions of ω2a'C1a and Γ. 

 
 
 
 

Table 2. Moving Average Components of Constant Parameter Representation 
 

 Real factor Complex conjugate root factor 
DGP (1 + θ1L) 1 + (a ± bi)L 1 + 2aL + (a2 + b2)L2 

1 1 + 0.985L 1 + (0.12 ± 0.805i)L 1 + 0.239L + 0.662L2 

2 1 + 0.984L 1 + (0.068 ± 0.9i)L  1 + 0.135L + 0.815L2 

3 1 + 0.994L 1 + (0.026 ± 0.973i)L  1 + 0.053L + 0.947L2 

4 1 + 0.589L 1 + (0.018 ± 0.989i)L  1 + 0.036L + 0.979L2 

5 1 + 0.983L 1 + (0.012 ± 0.987i)L  1 + 0.024L + 0.973L2 

6 1 + L 1 ± iL 1 + L2 
Note: Constant parameter representation derives from equation (9). All 
DGPs considered have one real factor and one factor with a pair of 
complex roots in the moving average component of this constant 
parameter representation. 
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Table 3.1. Rejection Frequency for HEGY Null Hypothesis and PI(1) DGPs 
with Zero Starting Values 

 

DGP AUG 1πt  
2πt  F34 F234 F1234 

1 0 0.018 0.886 0.732 0.863 0.927 
 4 0.038 0.196 0.153 0.231 0.217 
 8 0.050 0.070 0.082 0.125 0.138 
 12 0.055 0.038 0.065 0.090 0.112 
 NP 0.047 0.090 0.106 0.136 0.151 
 AIC 0.061 0.279 0.203 0.279 0.278 
2 0 0.023 0.995 0.877 0.986 1.000 
 4 0.038 0.510 0.253 0.450 0.411 
 8 0.042 0.196 0.112 0.207 0.198 
 12 0.039 0.095 0.072 0.122 0.131 
 NP 0.051 0.172 0.125 0.179 0.187 
 AIC 0.065 0.517 0.322 0.462 0.441 
3 0 0.038 1.000 0.997 1.000 1.000 
 4 0.035 0.732 0.534 0.717 0.690 
 8 0.036 0.365 0.239 0.390 0.349 
 12 0.041 0.184 0.124 0.218 0.205 
 NP 0.056 0.272 0.199 0.286 0.283 
 AIC 0.060 0.676 0.575 0.661 0.643 
4 0 0.024 0.187 0.991 0.981 0.999 
 4 0.039 0.052 0.502 0.441 0.408 
 8 0.041 0.040 0.231 0.214 0.201 
 12 0.045 0.035 0.128 0.133 0.136 
 NP 0.054 0.053 0.207 0.207 0.212 
 AIC 0.056 0.099 0.604 0.573 0.550 
5 0 0.039 0.998 1.000 1.000 1.000 
 4 0.038 0.596 0.782 0.811 0.793 
 8 0.037 0.274 0.425 0.482 0.446 
 12 0.040 0.145 0.223 0.290 0.261 
 NP 0.047 0.220 0.310 0.355 0.333 
 AIC 0.045 0.655 0.723 0.734 0.715 

 
Note: Based on 5000 replications, with T=100 (N = 25 years) for periodic DGPs 
of Table 1 with zero starting values. t and are tests for π

1π 2πt 1 = 0 and π2 = 0 
respectively, F34, F234 and F1234 are joint tests for π3 = π4 = 0, π2 = π3 = π4 = 0 and 
π1 = π2 = π3 = π4 = 0 respectively, all in HEGY regression (10). AUG is the order 
of augmentation, where NP indicates use of the Ng and Perron (1995) sequential 
procedure (maximum 12 lags) and AIC the Akaike Information Criterion 
(maximum 12 lags). 
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Table 3.2. Rejection Frequency for HEGY Null Hypothesis and Nonperiodic DGPs 
with Zero Starting Values 

DGP AUG 1πt  
2πt  F34 F234 F1234 

6 0 0.048 1.000 1.000 1.000 1.000 
 4 0.040 0.998 1.000 1.000 1.000 
 8 0.041 0.901 0.994 1.000 0.999 
 12 0.033 0.667 0.890 0.981 0.961 
 NP 0.044 0.802 0.922 0.980 0.970 
 AIC 0.049 0.999 1.000 1.000 1.000 
7 0 0.043 0.043 0.044 0.048 0.050 
 4 0.043 0.043 0.044 0.047 0.046 
 8 0.039 0.037 0.042 0.046 0.044 
 12 0.034 0.038 0.041 0.038 0.042 
 NP 0.045 0.049 0.053 0.054 0.058 
 AIC 0.047 0.058 0.055 0.061 0.058 

 
Notes: As for Table 3.1, except that the DGPs considered are the random walk 
(DGP 6) and seasonal random walk (DGP 7). 
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Table 4.1. Rejection Frequency for HEGY Null Hypothesis and PI(1) DGPs 
with Random Starting Values 

 

DGP AUG 1t π  2t π  F34 F234 F1234 
1 0 0.065 0.961 0.865 0.961 0.949 
 4 0.065 0.155 0.161 0.279 0.258 
 8 0.071 0.046 0.082 0.138 0.150 
 12 0.067 0.022 0.061 0.097 0.114 
 NP 0.038 0.097 0.125 0.173 0.196 
 AIC 0.052 0.344 0.290 0.387 0.395 
2 0 0.038 0.999 0.960 0.999 0.998 
 4 0.040 0.446 0.271 0.540 0.480 
 8 0.044 0.125 0.107 0.224 0.216 
 12 0.042 0.050 0.058 0.116 0.130 
 NP 0.049 0.182 0.146 0.229 0.240 
 AIC 0.066 0.630 0.461 0.623 0.600 
3 0 0.035 1.000 1.000 1.000 1.000 
 4 0.029 0.636 0.586 0.818 0.753 
 8 0.033 0.204 0.202 0.398 0.350 
 12 0.034 0.076 0.084 0.170 0.168 
 NP 0.049 0.248 0.233 0.336 0.332 
 AIC 0.071 0.802 0.767 0.844 0.825 
4 0 0.030 0.139 1.000 0.997 0.994 
 4 0.033 0.030 0.586 0.513 0.455 
 8 0.033 0.023 0.230 0.230 0.222 
 12 0.039 0.019 0.105 0.128 0.139 
 NP 0.051 0.059 0.280 0.275 0.289 
 AIC 0.087 0.138 0.784 0.731 0.693 
5 0 0.047 1.000 1.000 1.000 1.000 
 4 0.042 0.513 0.846 0.916 0.860 
 8 0.042 0.172 0.376 0.519 0.443 
 12 0.040 0.060 0.157 0.229 0.214 
 NP 0.044 0.210 0.346 0.398 0.394 
 AIC 0.060 0.806 0.903 0.917 0.905 

 
Notes: As Table 3.1, except that initial values are selected randomly from the 
standard normal distribution and seasonal dummy variables are included in the 
HEGY regression. 
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Table 4.2. 
Proportion of times that the null is reject. 

DGP  AUG  1πt  
2πt  F34 F234 F1234

6.000 0.000 0.052 1.000 1.000 1.000 1.000 
  4.000 0.045 0.867 0.998 1.000 1.000 
  8.000 0.043 0.428 0.786 0.958 0.895 
  12.000 0.034 0.186 0.383 0.614 0.501 
  np 0.041 0.466 0.669 0.787 0.746 
  I 0.052 0.986 0.999 1.000 0.999 

7.000 0.000 0.045 0.047 0.047 0.046 0.044 
  4.000 0.037 0.040 0.045 0.043 0.043 
  8.000 0.032 0.035 0.037 0.036 0.035 
  12.000 0.026 0.028 0.040 0.035 0.028 
  np 0.033 0.034 0.054 0.048 0.047 
  I 0.047 0.044 0.065 0.066 0.066 

 
Based in 5000 replications T=25, s=4. Original DGP PAR(1): ( )1,0~01 Nyyy sssss τττ εα += − . 

1πt and tests for 
2πt 0: 10 =πH  and 0: 20 =πH  in HEGY. 

 F 34, F 234 and F 1234 joint tests for 0: 430 == ππH , 0: 4320 === πππH  and 
 0: 43210 ==== ππππH  in HEGY. 
AUG: Lag truncation in the HEGY augmentation.  
NP: Sequential determination of the truncation lag Ng and Perron (1995). maximum lag 12. 
AIC: Akaike Information Criterium used to choose the lag truncation, maximum lag 12. 
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