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Abstract

This paper shows that the acceptance of the Zipf’s Law may some-
times be the result of a spurious artifact. By way of some Monte Carlo
exercises we provide evidence in favour of the fact that the Zipf’s law
can be spuriously accepted when the variable being studied is gen-
erated by a random distribution. This result is explained by taking
account the, so-called, spurious detrending problem.
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1 Introduction

Zipf’s law, named after the Harvard Professor of Linguistics, George Kingsley
Zipf (1902-1950), is the observation that the frequency of occurrence of some
event ( xi), as a function of the rank (ri), when that rank is determined by
the above frequency of occurrence, is a power-law function stated as rixi = A,
where A is a constant. This law can be generalized to rixai = A, where a is
now a positive constant. This more general version is often referred to as the
rank size rule. For the sake of simplicity, we will refer to this parameter a as
the Zipf parameter. Thus, we will consider that Zipf’s law holds whenever
this parameter is equal to 1.

Zipf’s law has been widely used in a signi…cant number of academic dis-
ciplines when seeking to explain the evolution of a variety of variables. In
this regard, the most famous example of its application can be found in the
analysis of the frequency with which English words appear in a text. We
can …nd other examples in a number of di¤erent disciplines, such as physics
(Marsilli and Zhang, 1998), bibliometrics (Silagadaze, 2000) or business stud-
ies (Ramsden and Kiss-Haypdl, 2000). However, arguably the most popular
use of Zipf’s law is in the …eld of urban economics1, where it has been used
to explain the evolution of the population of metropolitan areas in devel-
oped countries. Whilst the literature contains a number of papers devoted
to this issue, most of them pay particular attention to the US case. In this
regard, we can cite the papers of Krugman (1996), Gabaix (1999a, 1999b),
Dobkins and Ioannides (2000) or Ioannides and Overman (2000), which all
present some evidence in favor of the acceptance of this law. In addition
to this empirical support, Gabaix (1999b) has recently derived a statistical
explanation of Zipf’s law for cities or metropolitan areas, one that is based
on Gibrat’s law. Nevertheless, despite this body of evidence in favor of Zipf’s
law, some problems regarding the veri…cation of this hypothesis still remain,
as indicated in Ioannides and Overman (2000, pg 2).

Against this background, in this paper we raise the possibility of a fur-
ther potential problem, namely that the results obtained from applying Zipf’s
law may be the result of a spurious statistical artifact. Here, we should note
that the presence of a spurious relationship has been the subject of extensive
study in econometrics and is a concept that is intimately related to time
series analysis. Thus, ever since the work of Yule (1929), and up to the more
recent contributions of Granger and Newbold (1974) or Phillips (1986), it
has become well established that the existence of a high degree of correla-

1Although we will frequently use the Zipf’s law for cities as the benchmark, our dis-
cussion is not exclucisvely directed at this case, but it also valid for the rest of the cases
where the Zipf’s law is employed.
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tion between two economic variables may not necessarily be induced by the
presence of some kind of economic relationship, but rather by the statistical
properties of the series under analysis. In this latter case, the relationship
has no economic foundation, and consequently the relationship between the
variables should be considered as spurious. In this regard, we can cite Engle
and Granger (1986) or Banerjee et al (1990) which review the methods of-
fered in the literature for determining whether or not a relationship is indeed
spurious.

Thus, the central aim of this paper is to show that it is possible to …nd
spurious relationships when studying the application of Zipf’s law. A priori,
this might appear to be a somewhat surprising hypothesis in that, as we
have mentioned earlier, the presence of a spurious relationship is associated
to the use of time series data, whilst the studies that have analyzed Zipf’s
law have, in their majority, used cross-section data. However, and as we will
see later, account should be taken of the fact that, in such cases, the observed
variable is transformed in such a way that its behavior is imitating that of a
non-stationary time series variable. Consequently, the method for estimating
the Zipf’s law parameter is closely related to the spurious detrending case
studied in Durlauf and Phillips (1988), amongst others. The importance of
our hypothesis is that, if it can be shown to be true and, therefore, if it is
con…rmed that most of the evidence in favor of Zipf’s law has a spurious
nature, then this would imply that any conclusion in its favor would not be
accurate. At this point, we should place emphasis on the fact that we are
not challenging the law in itself, but rather questioning the methods that are
commonly used to determine whether it holds.

The rest of the paper is organized as follows. In Section 2 we interpret
Zipf’s law from a time series point of view. Section 3 is devoted to an analysis
of the results presented in Section 2 by way of some Monte Carlo simulations.
Here, we show that the methods commonly used to study Zipf’s law may
induce its erroneous acceptance in the circumstances where the variable being
studied is randomly generated. Section 4 illustrates the results from an
empirical point of view by considering the case of the US metropolitan areas
in 1998. The paper closes with a review of the most important conclusions.

2 Zipf’s Law and Spurious Regressions
The aim of this Section is to discuss, from a time series perspective, the
methods that have been commonly used to determine whether Zipf’s law
holds for a given variable. Even at the risk of repetition, we should again
emphasize that we are not questioning the appropriateness of the law in itself,
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which can be considered as an useful tool in many scenarios; rather, we are
focusing on the way it is habitually tested for in empirical analyses. We are
particularly interested in showing that the most commonly used methods
may sometimes be inappropriate and, therefore, that the results based on
such analyses are not accurate. Finally, although the analysis reported below
is not restricted to any particular scienti…c area, we will often particularize
our results to the discussion of Zipf’s law as it is applied to metropolitan
areas, given that this is an area in which it has received a signi…cant amount
of attention.

Let us consider that we dispose of an N-dimensional sample size of a
variable x, with this variable measuring a number of activities, for example,
the size of a city. If we order this sequence, we have that x(1) ¸ x(2) ¸ ¢ ¢ ¢ ¸
x(r) ¸ ¢ ¢ ¢ ¸ x(N ), where r is the rank and x(r) is the size of the variable.
Zipf’s law asserts that a graph of the rank against the size would render a
perfect rectangular hyperbola. This implies that, for some given c and all r,
it holds that:

r x(r) = c (1)

Since the seminal paper of Zipf (1949), a method that is frequently applied
to determine whether this result holds is simply to plot the natural logarithm
of the rank against the natural logarithm of the size. If this graph shows a
straight line with a slope equal to ¡1, then it is considered that Zipf’s law
holds. However, the simple visual inspection of this graph does not seem to
be an accurate and robust method for determining the appropriateness of
this law, and thus it seems advisable take a second route. Thus, if we take
natural logarithms in (1), it is simple to show that:

ln r = ¯1 + ¯2 lnx(r) + er; r = 1; 2; : : : ; N (2)

or, similarly, that

ln r = ¯1 + ¯2 zr + er; r = 1; 2; : : : ;N (3)

where, for the sake of simplicity, we refer to the natural logarithm of x(r)
as zr. As a consequence, the closer the estimation of ¯2 to ¡1, the greater
the evidence in favor of Zipf’s law. This is the route adopted by Krugman
(1996), Gabaix (1999a,1999b), Dobkins and Ioannides (2000) and Ioannides
and Overmann (2000), amongst others, to verify whether Zipf’s law holds
for cities. Whilst there are some alternative procedures, such as those of
Alperovitch (1989) or Urzúa (2000), we should recognize that most of the
analyses are simply based on a comparison of ^̄2 with respect to ¡1 and,
therefore, in what follows we will focus exclusively on this method.
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The …rst aspect of this standard approach that we wish to question is
that the use of the regression (3) implies a change in the type of data be-
ing considered. As mentioned earlier, we originally dispose of a cross-section
of variable x which, of course, should not show any type of autocorrelation
pattern. The inverse ranking of the variable x implictly implies that we
are indeed changing the properties of the variable, in the sense that its be-
havior may now imitate that of a time series. In order to give an intuitive
explanation of this change, let us consider that the variable x is generated
accordingly to model (1). Thus, it is straightforward to show that:

zr = c¡ ln r; r = 1; 2; : : : ; N (4)

We should now note that r can be interpreted as being a deterministic
trend. Consequently, it is clear that zr is indeed indexed with a time trend
and, therefore, is exhibiting a time series behavior.. Even more precisely,
and following the terminology proposed in Nelson and Plosser (1982), zr
can be characterized as a Trend Stationary variable (TS). This implies that
we should remove the deterministic trend component in order to achieve
stationarity; that is to say, zr is stationary around ln r . Thus, given this
…rst result, we can state that if it is not possible to characterize the variable
ln x(r) as being TS, then we should conclude that we have found evidence
against Zipf’s law. Nevertheless, we should recall that not all the shapes
of trend stationarity imply Zipf’s law. This is the case, for example, in the
model zr = c¡ r. Whilst it is obvious that zr and r are related and that zr is
TS, this model is not equivalent to model (1) and, therefore, Zipf’s law does
not hold in this case.

This …rst analysis has shown that although the sample used to analyze
Zipf’s law in the variable xt is, at least in spirit, a cross-section, we should
properly treat it by following a time series approach. Consequently, we should
take into account the problems which commonly appear in time series analy-
sis. As we have already indicated, time series researchers are well aware of a
problem that commonly appears in time series regressions, namely the pos-
sible existence of spurious relationships. In order to illustrate this, let us
consider that a variable wt is generated by the following model:

wt = ¹ + wt¡1 + ut (5)

where ¹ is a parameter and ut is an innovation that satis…es the conditions
stated in Phillips (1986), for example, which imply that the innovation of
the model may be generated by any stationary and invertible ARMA(p,q)
model. Thus, wt is an integrated or Di¤erence Stationary (DS) variable,
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again adopting the Nelson-Plosser terminology. Let us estimate the following
model:

wt = b1 + b2t+ et (6)

where t is a deterministic trend. This model implies that we are removing
a deterministic trend from variable zt. Given that the DGP of this variable
does not apparently reject any trend, we should expect the estimation of
(6) to exhibit a low degree of correlation and b̂2 to go towards 0. However,
the empirical results are quite di¤erent, in that we can easily show that the
estimation of model (6), when the variable being studied is generated by
(5), leads the researcher to …nd that the determination coe¢cient is close to
1:0, which implies that wt is highly correlated with the deterministic trend.
As a consequence, we should conclude that the parameter b2 is highly sig-
ni…cant when explaining the evolution of wt. These contra-intuitive results
are commonly known as spurious detrending and have been analyzed from
an analytical point of view in Durlauf and Phillips (1988). In order to bet-
ter understand the nature of this phenomenon, we should consider that the
variable wt can be represented as follows:

wt = ¹ t+ St (7)

where St =
tP
i=1

ui. Thus, wt shows a trend behavior.. However, its nature

is not deterministic, as in model (6), but rather stochastic. Consequently,
whilst the estimation of the model (6) has apparently good statistical proper-
ties, it is clearly misspeci…ed. Fortunately, we can detect this misspeci…cation
problem by simply considering that the Durbin-Watson statistic goes towards
0 in this kind of model, as Durlauf and Phillips (1988) show.

We should now note that similar problems would appear if, instead of
estimating model (6), the following model is estimated:

t = b
0
1 + b

0
2wt + e

0
t (8)

We can easily show that the estimation of this new model will su¤er
from the same problems as those mentioned earlier whenever wt is generated
by (5). Thus, given the direct similarity between models (8) and (3), it is
also straightforward to assume that whenever ln x(r) follows a drifted random
walk, there will necessarily be a high degree of correlation between lnx(r) and
ln r, with this being the consequence of a statistical artifact. In these cases,
it would be totally erroneous to conclude that there is evidence in favor of
any type of rank size rule. Therefore, it is necessary to distinguish between
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a spurious Zipf’s law and those cases where this law truly holds. We can
draw such a distinction by examining the time properties of the residuals.
Thus, if we cannot conclude that the values of the Durbin-Watson statistic
are statistically di¤erent from 0, we should interpret this result as evidence
against any type of rank size rule. By contrast, if we can admit the Durbin-
Watson statistic to be statistically di¤erent from 0, then it is possible to
conclude in favor of either the rank size rule or Zipf’s law.

Up to this point, we have questioned the results of Zipf’s law to the
extent that they may be founded on spurious regressions. In order to verify
whether or not our hypothesis is correct, let us now carry out a number of
Monte Carlo studies.

3 Spurious Zipf’s Law: A Monte Carlo analy-
sis.

In this Section we will use a number of Monte Carlo exercises to examine
whether the acceptance of Zipf’s law may sometimes be spurious in nature.
This would be the case, for example, in the circumstances where the obser-
vations of the variable being studied have been generated by a model which
does not show any connection to this law, but where the estimation of the
parameter ¯2 in model (3) is very close to ¡1.

Let us start by considering the existence of a variable ut, which has been
generated by a non-correlated random distribution. We could have consid-
ered a number of alternative distributions in order to generate the values
of this variable ut. However, if we take into account that the estimation of
model (3) implies the use of natural logarithms, it seems advisable to im-
pose the restriction that ut can only take values greater than 0. Given this
restriction, we have opted to generate the values of ut by way of a (positive)
truncated niid(0; 1). Nevertheless, we should note that qualitatively similar
results were obtained when a uniform iid(0; 1) distribution was used2.

As regards the DGP of the variable, we should expect the estimation of
model (3) to allow us to conclude that Zipf’s law does not hold. Further, we
should observe a value of the determination coe¢cient very close to 0 and,
therefore, the Zipf parameter ¯2 should go towards 0. However, we will verify
that these results do not appear in the case under study. Throughout this
section, zt denotes the natural logarithm of the variable ut, once this variable
is inversely ranked.

2These results are not reported here for the sake of brevity, but are available from the
authors upon request.
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At this point we should recall that, given the DGP of the variable ut, it
would seem reasonable to accept that zt should not exhibit any kind of auto-
correlation pattern and that the coe¢cients of the autocorrelation function
of this variable should go towards 0. Nevertheless, we …nd that this is not
true. Table 1 reports the simulated values of the …rst 9 coe¢cients of the
autocorrelation function of variable zt. These values have been obtained by
considering the mean and the standard deviation of the di¤erent autocorre-
lation coe¢cients of zt. We have considered di¤erent sample sizes and have
carried out 50; 000 replications for each of them. As we can see, the auto-
correlation function denotes the presence of a high degree of autocorrelation,
which is a contra-intuitive result if we bear in mind that the observations of
ut have been generated independently. Moreover, the simulated values of the
autocorrelation coe¢cients take values close to 1, which allows us to conclude
that they are exhibiting the typical performance of a non-stationary variable.

It is possible to o¤er an intuitive explanation of why this phenomenon
is occurring. First, we should remember that the ranking of the variable ut
indeed implies that zi is zi¡1 plus a quantity. This is equivalent to saying
that zt can be very well re‡ected by model (5). From this perspective, the
results reported in Table 1 can be perfectly understood. We have simply to
note that zt, the log of the inversely ranked values of the original variable
x, is imitating the performance of a non-stationary variable, although the
original values x have been generated by a process which has no connection
to time.

This …rst result is quite relevant. It would appear to con…rm our hypoth-
esis as stated in the previous Section, in the sense that the ranking process
of the original variable ut implies a change in its time properties and, thus,
we can regard this variable zt as being a time series.

This result opens the door to the possibility of considering the results of
Zipf’s law from a time series perspective. In particular, we should be aware of
the possible appearance of spurious evidence in its favor.. In order to verify
this possibility, we have carried a number of additional Monte Carlo simula-
tions, where the variable ut has again been generated by a (positive) trun-
cated niid(0; 1), with the sample sizes being T = f25; 50; 75; 100; 150; 200; 250; 300; 500; 1000g.
We have then estimated model (3), with the main results being reported in
Table 2.

The results set out in this Table show that the estimation of the parameter
¯2 goes towards a value of around ¡2=3. This is a very surprising result, in
that we could expect this estimator to go towards 0, given that the DGP of
ut does not show any deterministic trend pattern. Furthermore, the mean of
the determination coe¢cient is very close to 1, which allows us to conclude
in favor of the existence of a high degree of correlation between the variable
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zt and the log of the rank. This is another surprising result, in that we
should also expect this value to go towards 0. However, if we bear in mind
the discussion presented in the previous Section, we can easily explain these
results. In essence, the key to understanding this puzzle lies in the fact that
we are facing a spurious relationship. In order to overcome this problem,
we should simply recall that the Durbin-Watson statistic goes towards 0.
Consequently, and as is also the case in time series analysis, this statistic
should always accompany the results of Zipf’s law. Thus, if we ignore the
value of the Durbin-Watson statistic, the possibility of falling into the trap
of a spurious relationship is extremely high.

In order to provide an analytical explanation to the results obtained in
our simulation, we have derived the limit of the estimation of ¯2 in (3) when
the variable x is generated by a drifted random walk. Although is not possible
to o¤er an exact value for this limit, by taking approximation techniques, we
have been able to prove that this value is close to -2/3. Thus, this con…rms
our intuition, showing that the results obtained in the simulations are closely
related to those of a spurious detrending phenomenon.

The results presented up to this point alert us to the possible existence
of spurious relationships in the analysis of Zipf’s law. Fortunately, we have
observed that the estimation of the parameter ¯2 in model (3) is always
so far away from ¡1 that we are never going to conclude that Zipf’s law
holds, even in the circumstances where the researcher is not aware of the
existence of a spurious relationship. However, in other cases we may not be
so fortunate, and it is possible to …nd some situations where the value of
the Zipf parameter is very close to ¡1, although the variable being studied
clearly does not satisfy Zipf’s law. It is precisely in these cases where we can
appreciate the full extent of the damage that can be caused by the existence
of a spurious relationship, in that we could conclude in favor of this law
when, in reality, it is entirely false. In order to illustrate these cases, let us
consider that the variable being studied is again generated by a (positive)
truncated niid(0; 1) distribution. The di¤erence with respect to the previous
analysis is that now the model is not being estimated using all the available
information, but rather with some observations being excluded. This is a
particularly common situation in the empirical analysis of Zipf’s law. For
example, Gabaix (1999a, 1999b) and Krugman (1996) …nd evidence in favor
of Zipf’s law for the USA when only the 135 largest metropolitan areas are
taken into consideration: however, they cannot accept it when all the US
metropolitan areas are included.

Given that the habitual procedure is to consider only one part of the
sample, it seems to be appropriate to study the behavior of the estimator of
the parameter ¯2 when model (3) is recursively estimated. This implies that
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we …rst estimate this model for observations 1 to to and, subsequently, add
a new observation in each iteration. The procedure stops when to coincides
with the total number of observations. In this latter case, to = T , the results
would be those presented in Table 2.

Table 3 presents the results obtained from the application of the above-
mentioned procedure. This Table re‡ects the number of times (in %) that the
di¤erence between the estimator of the parameter ¯2 and ¡1 is lower than
a predetermined value ». The results are quite interesting, in that we can
conclude that it is always possible to …nd a sample size which guarantees an
approximation of ^̄2 towards a value as near to ¡1 as we wish. For example,
we can see that if we dispose of a total of 25 observations, the parameter »
is lower than 0:01 in 17:6% of the cases. This percentage increases to 76:1%
when T = 150 and to 100% when T = 1; 000. This might explain why the
use of one particular sample size could imply the acceptance of Zipf’s law,
whilst the increase (or decrease) of this sample may induce us to reject it.

Therefore, we can appreciate that Zipf’s law might be wrongly accepted in
a large number of situations. This acceptance, which is spurious in nature,
depends on the total number of observations. The larger the number of
observations available, the easier it is to approximate the Zipf parameter
towards a value as close to ¡1 as we wish. This …nding o¤ers the possibility
a very rich interpretation from the point of view of the analysis of Zipf’s
law when applied to cities. Thus, if we admit, as seems quite reasonable,
that the number of cities or metropolitan areas increases with the surface
area of a country, we could conclude that it is easier to approximate ^̄2 to
¡1 in a big country ( for example, the USA) than in a relatively small one
(any of the countries of the European Union, for instance). Accordingly, this
approach allows us to understand why the evidence in favor of Zipf’s law
for cities seems to be stronger for the USA than for the European countries.
However, in our view, the results presented in previous papers devoted to this
particular theme should be reworked in the light of our Monte Carlo results
in order to distinguish between the spurious and true evidence in favor of
Zipf’s law.

As we have mentioned earlier, there is a tool available to us, namely the
Durbin-Watson statistic, that we can use to overcome this problem. From
the values of this statistic, which are reported in the last column of Table 3,
we can observe that the minimization of the parameter », implies that the
Durbin-Watson goes towards 0, as occurs in the spurious relationship cases.
Thus, the value of the Durbin-Watson statistic can help us to discriminate
between spurious and true Zipf’s law. Thus, if this statistic goes to 0, we
should conclude that we are facing a spurious regression; by contrast, if it
takes a value that is statistically di¤erent from 0, then the relationship will
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not be spurious. If, furthermore, ^̄2 is close enough to ¡1, we can consider
this as being evidence in favor of Zipf’s law.

4 An empirical example: The US metropoli-
tan areas

In order to illustrate the problematic that we have discussed in the previous
Sections, let us study whether Zipf’s law is a valid instrument to explain the
evolution of the US metropolitan areas. At this point, we should recall that
a number of papers have previously studied this issue, with most of them
…nding evidence in favor of Zipf’s law. However, and taking into account the
results of our Monte Carlo exercise, it is our hypothesis that these results
should be interpreted with a degree of caution, given the possible presence
of some spurious relationships.

In our example, we have information on the population of the 276 largest
agglomerations in the USA. The largest is the metropolitan area of New
York, with a population of 20; 156; 150 inhabitants. This is followed by
the metropolitan areas of Los Angeles and Chicago with 15; 781; 273 and
8; 809; 846, respectively. By contrast, the smallest areas are Pocatello (ID),
Casper (WY) and Enid (OK) with 74; 866, 63; 341 and 56; 859 inhabitants,
respectively. All the data have been obtained from the US Census Bureau
and are related to the estimations for the year 1998.

In order to determine whether Zipf’s law holds, we have estimated the
model (2) for the whole sample, obtaining the following results:

ln t̂ = 15:48¡ 0:8536
(0:008)

ln
»

POP R2 = 0:97 DW = 0:06 (9)

where t is a deterministic trend, which represents the rank, and ln
»

POP
is the natural logarithm of the population of the di¤erent metropolitan areas,
once these have been inversely ranked. If we do not take into account the
value of the Durbin-Watson statistic, as has commonly been the cases in all
the previous studies related to Zipf’s Law, we would draw the conclusion
that the estimation presented in (9) clearly fails to support it. This is due to
the fact that the Zipf parameter is far from ¡1. Nevertheless, we can admit
the existence of a high degree of correlation between the population and the
rank, in that the R2 takes a value close to 1.

However, we should recall that these earlier studies have not included all
the available information on the metropolitan areas. Rather, it is common to

11



…nd that the strongest evidence in favor of Zipf’s law is adduced when only a
part of the sample is used. To analyze what occurs in such circumstances, we
have estimated the model (2) recursively. The initial sample size was T = 28.
Table 4 summarizes the main results obtained when we consider di¤erent
sample sizes. This table re‡ects the value of the estimation of parameter
¯2, the determination coe¢cient and the Durbin-Watson statistic for each
estimation of the model. For the sake of simplicity, we have chosen not to
present all the results obtained and, whilst the omitted results are available
upon request, their consideration does not change the conclusion that can be
drawn from the analysis of Table 4.

The results reported in this table invite us to conclude that the estimation
of the parameter ¯2 can take values which are very close to ¡1. The minimum
distance of this estimator to ¡1 is attained when the sample size considers
the 138 largest metropolitan areas (the last one included is Anchorage, AK).
In this case, ^̄2 is equal to ¡0:9996. Here, attention should be drawn to
the fact that the sample size which minimizes the distance of the estimation
of the Zipf parameter to 1 is qualitatively similar to that used in previous
papers that analyze whether Zipf’s Law holds. Thus, for example, Krugman
(1996) and Gabaix (1998), who used the values of the population of 1990,
consider the 135 largest US metropolitan areas.

Table 4 o¤ers other interesting insights. Thus, we can observe that the
R2 is always greater than 0:98. At the same time, we can also see that
the value of the estimator ^̄2 continuously decays from the initial value of
¡1:2379 when only the 28 largest metropolitan areas are used, to the value
of ¡0:8536 for the case where all the 256 metropolitan areas are used in the
estimation. Thus, a second conclusion would be that whilst Zipf’s law holds
for a certain sample size, it does not when all the observations are included.

Up to this point, we have followed the approach that has been previously
adopted in the literature, without giving any consideration to the results
presented in Sections 2 and 3. However, if we approach the analysis from a
time series perspective, the interpretation of the results of Table 4 changes
radically. Thus, if we …rst consider the last column of this Table, we can see
that the values of the Durbin-Watson statistic are always very low, denoting
the inappropriate nature of the estimated model. If we combine this result
with the fact that the R2 is very high, and further take into account the
results of the previous Section, we could explain this puzzle by admitting
the possibility that the relation we are estimating is spurious. In order to
provide support for this hypothesis, we have tested for the presence of a unit
root in the variable ln POP . To that end, we have estimated the following
model
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yt = ¹+ ¯ t+ ½ yt¡1 +
X̀

i=1

Ái¢yt¡i + et (10)

and have then obtained the pseudo t-ratio for testing whether the autore-
gressive parameter is 1 (in this regard, see Dickey and Fuller, 1979). The
parameter ` is commonly known as the lag truncation parameter and its
aim is to control the number of lags of ¢yt that it is necessary to include
in the model speci…cation so as to guarantee that there are no autocorrela-
tion problems. Although a number of methods for the selection of the lag
truncation parameter are available, we have chosen to use the k(t) procedure
recommended in Ng and Perron (1995). This method involves a general-to-
speci…c strategy, starting with a predetermined value of the lag truncation
parameter (kmax) and then testing the signi…cance of the single coe¢cient
associated with the last lag until a signi…cant statistic is encountered. The
single signi…cance of the lags is analyzed by comparing their t-ratios with the
value 1:65. When following this procedure, we have found that the value of
the ADF test when all 256 observations are used is ¡0:63. Thus, we should

accept the presence of a unit root in the variable ln
»

POP .
As we have already discussed in Section 2, the presence of a unit root in

the variable under analysis is totally incompatible with Zipf’s Law and, if we

combine the presence of a unit root in the variable ln
»

POP with the proximity
of the Durbin-Watson to 0, then we can con…rm the spurious nature of the
estimation reported in (9). Consequently, we can refute the conclusion which
maintains that Zipf’s Law holds for the USA, at least in the circumstances
where this law is analyzed using the 256 largest metropolitan areas.

5 Conclusions
In this paper we have provided some evidence in favor of the possible presence
of spurious relationships when studying Zipf’s law. First, we have shown that
it would be advisable for studies devoted to this issue to adopt a time series
approach, even though the original sample size has a cross-section nature.
Furthermore, if Zipf’s law really holds, then once the variable being studied
has been inversely ranked, it must be characterized as trend stationary. As
a consequence, a necessary condition in order for Zipf’s law to hold is that
the transformed variable shows a trend stationary pattern. The time series
literature on unit root tests provides us with an excellent framework within
which to carry out this analysis. On this basis, if we cannot reject the unit
root null hypothesis against the trend stationary alternative, we should never
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conclude that Zipf’s law holds, even in those case where the estimation of
the Zipf parameter is virtually ¡1.

Secondly, and as consequence of the imitation of time series behavior on
the part of the transformed variable, we have proved that the studies on
Zipf’s law may su¤er from the presence of spurious relationships. Moreover,
we have provided evidence, by way of some Monte Carlo analyses, that a
variable which has been generated randomly may lead us to wrongly accept
Zipf’s law. The probability of this phenomenon occurring depends mainly on
the total number of observations available. This result is clearly related to
the spurious detrending problems that are very well known in the time series
literature. The method to combat this problem is to use the Durbin-Watson
statistic. If Zipf’s law really holds, then this statistic should not show any
autocorrelation pattern; however, if this law has a spurious nature, then the
Durbin-Watson goes towards 0. Thus, we should never conclude in favor of
Zipf’s law when this statistic takes a value close to 0.

Finally, as an empirical illustration we have analyzed the case of the US
metropolitan areas, using the data projections for 1998. We have found that
whilst an appropriate selection of the sample size allows us to obtain an esti-
mation of the slope parameter very close to ¡1, the Durbin-Watson statistic
takes a value very close to 0: Furthermore, the unit root null hypothesis is
not reject for the inversely ranked population variable. Under these circum-
stances, the conclusion should be drawn that., in this case, Zipf’s law does
not hold, a …nding which challenges the dominant line of results habitually
presented in the literature.
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7 Appendix

In this Appendix we provide a theoretical argument which leads us to o¤er a
realistic approximation to the estimation of the parameter ¯2 in 3. To that
end, let us consider that r is a deterministic trend and that xt is generated
by a drifted random walk.

Let us consider that we dispose of a sample of dimension n and we want
to analyze the relationship between a time trend, a proxy of the rank, and
the inverse of a drifted random walk. These two variables can be represented
by fxm; ymgnm=1 = flnm; ln (n+ 1¡m)gnm=1, where xm is a deterministic
trend, that is to say, the rank, whilst ym is an asymptotic approximation to
the behavior of a drifted random walk. To see this, we should …rst consider
that this drifted random walk is de…ned as follows ym = ym¡1 + ¹ + um,
where fumgnm=1 is an innovation that satis…es the conditions stated in Phillips
(1986), for example. This leads us to ym = ¹m + Sm, where Sm =

Pm
i=1 ui.

If we take into consideration the asymptotic results of Phillips (1986), it is
straightforward to see that the ym is dominated by the trend, m. Thus, the
e¤ect of Sm is asymptotically negligible. Therefore, we have omitted this
term throughout this Section, given that its inclusion would not modi…ed
the results presented here. Furthermore, given that ln¹m = lnm+ ln ¹, we
will omit ln ¹, focusing on the …rst summand. Thus, if we inversely rank
the variable ym, we can approximate to its asymptotic behavior by way of
fln (n+ 1¡m)gnm=1. Finally, for reasons of simplicity in the derivation of
the limit values, we have considered the inverse regression to that presented
in 3. Once again, this does not involve any change in the limit values that
we will obtained, given the symmetry of the limit value.

Against this background, a direct application of the least squares principle
leads to:

^̄
2(n) =

n
nP

m=1

ln (n+ 1¡m) ln (m) ¡
nP

m=1

ln (n+ 1¡m)
nP

m=1

ln (m)

n
nP

m=1

ln2 m ¡
·

nP
m=1

ln (m)

¸2

Let us denote an =
nP

m=1

ln (n+ 1¡m) ln (m), bn =
·

nP
m=1

ln (m)

¸2
=

(ln n!)2 and cn =
nP

m=1

ln2 m. If we additionally consider that
nP

m=1

ln (n+ 1¡m) =
nP

m=1

ln (m), then the previous equation turns into:

^̄
2(n) =

nan ¡ bn
n cn ¡ bn
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Our aim is to calculate the lim
n!1

^̄
2(n). To that end, our strategy is based

on the following steps.

Step 1. The sequence D(n) = n cn ¡ bn is monotone increasing and lim
n!1

D(n) = 1. In particular, D(n) > 0; 8n > 1.

Proof . It is enough to compute D(n+ 1)¡D(n) for a given n 2 N .

D(n+ 1)¡D(n) = n (cn+1 ¡ cn) + cn+1 + (bn ¡ bn+1)

= n ln2 (n+ 1) +
nX

m=1

ln2m¡ ln (n+ 1) ln
£
(n + 1) (n !)2

¤

= n ln2 (n+ 1) +
nX

m=1

ln2m + ln2 (n+ 1) ¡ ln2 (n+ 1) ¡

2 ln (n+ 1) ln n ! = n ln2 (n+ 1) +
nX

m=1

ln2m¡
nX

m=1

2 ln (n+ 1) ln m

=
nX

m=1

£
ln2 (n+ 1) + ln2m¡ 2 ln (n+ 1) ln m

¤

=
nX

m=1

[ln (n+ 1)¡ lnm]2 =
nX

m=1

ln2
µ
n+ 1

m

¶

Thus, this shows that D(n+1)¡D(n) > 0; 8n ¸ 1 and, therefore, D(n)
is a monotone increasing sequence. The fact that lim

n!1
D(n) =1 is obvious

given that lim
n!1

[D(n+ 1)¡D(n)] ¸ lim
n!1

ln2 (n+ 1) =1.

Step 2. ^̄
2(n) is a bounded sequence. In particular, it holds that ¡1 ·

^̄
2(n) · 1, 8n 2 N

Proof.

In order to show that ^̄2(n) · 1 we should consider that this is the same
as n an¡bn

n cn¡bn · 1 and, by step 1, this last inequality is equivalent to nan ¡ bn ·
n cn ¡ bn. Hence, ^̄2(n) · 1 holds if and only if n (cn ¡ an) ¸ 0; 8n 2 N ,
with the latter being true if and only if cn ¡ an ¸ 0,8n 2 N . Somewhat
tedious calculations show that
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cn ¡ an =
nX

m=1

lnm ln

µ
m

n+ 1¡m

¶

=

( Pn=2
m=1 ln

2
¡
n+1¡m
m

¢
for even nP(n+1)=2

m=1 ln2
¡
n+1¡m
m

¢
for oddn

Therefore, cn ¡ an ¸ 0,8n 2 N and ^̄
2(n) · 1. Moreover, cn ¡ an >

0,8n > 1.
In order to prove the second inequality, ¡1 · ^̄

2(n),8n 2 N we can
proceed in a similar way. We omit the details for the sake of brevity.

Step 3. Let us consider the function (r; n) 2 < £ N 7¡! F (r; n) =
nP

m=1

lnm ln [(n+ 1¡m) mr] ¡ (1 + r) (ln n!)2

n
2 <. Then F is a con-

tinuous function on < £N which is strictly increasing as a function of
"r", for a …xed n 2 N . Moreover, if for a …xed r 2 <, F (r; n) > 0,
then it holds that F (r;m) > 0, 8m > n.

Proof.

It should be noted that F can be written as F (r; n) = an + r cn ¡
( 1 + r ) bn

n
=

¡
n cn¡bn

n

¢
r + n an ¡ bn

n
. Thus, F is obviously continuous. More-

over, the second assertion follows, in that, for a …xed n 2 N , F is an a¢ne
function of "r" and it holds that the term n cn¡ bn

n
¸ 0, by step 1. This last

assertion can be shown inductively.

Step 4. Let us de…ne the following set A = f r 2 <; F (r; n) < 0, 8n > 1g.
Then, it holds that

a) A is non-empty

b) A is bounded above.

Proof

a)Let us see that ¡1 2 A. Indeed, and taking into account the results of
Step 2, it holds that F (¡1; n) = ¡n cn¡ bn

n
+ nan¡ bn

n
= 1

n
( nan ¡ n cn) =

an ¡ cn < 0, 8n > 1.
b) Let us prove that 1 is an upper bound for A. First of all, we should

consider that F (1; n) = n cn¡ bn
n

+ n an ¡ bn
n

= cn+an ¡ 2 bn
n

¸ 0, 8n 2 N , with
this result coming from the direct consideration of the results of Step 2. Thus,
it holds that 1 =2 A. Further, by Step 3, it is true that F (r; n) > F (1; n) > 0,
8 r > 1, 8n > 1. Thus, for every r 2 A, it holds that r < 1 and, therefore,
A is bounded above.
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Step 5. Let B denote the following set of the reals,
B = f r 2 <; 9N(r) 2 N ; 8n ¸ N ( r ) , F (r; n) ¸ 0g Then, it holds
that:

a) B is non-empty

b) B is bounded below.

Proof

The Proof is similar to that o¤ered for Step 4 and is therefore omitted.

Step 6. Given a subset of the reals { and a real sequence (®n)n¸1, let us

denote sup {, inf {, lim
n!1

®n and lim
n!1
¹

®n as being the supremum of {,

the in…mum of {, the superior limit and the inferior limit of (®n)n¸1,
respectively. Then, it holds that:

a) supA · inf B

b) supA = inf B

c) supA · lim
n!1
¡

¡ ^̄2(n)

d) inf B ¸ lim
n!1

¡ ^̄2(n)

e) 9 lim
n!1

^̄
2(n)

f) lim
n!1

^̄
2(n) ' ¡ 2

3

Proof

a) Let r 2 A, s 2 B and suppose by contradiction that s · r.Then, by
using the results of Step 3, F (s; n) · F (r; n), 8n > 1. In particular, it holds
that F (s; n) < 0, 8n > 1. However, this result contradicts the fact that
s 2 B. Therefore, we have that r < s for each r 2 A, s 2 B. Thus, it holds
that supA · inf B:

b) Let us suppose, again by contradiction, that supA < inf B. Then,
if we take into account the de…nitions of A and B, and considering the last
assertion of Step 3, if follows that there exist `, `0, `00 2 < and n 2 @ such that
supA < `0 < ` < `00 < inf B and F (`0, n) ¸ 0; F (`00, n) < 0. However, this
again would lead to the following contradiction 0 · F (`0, n) < F (`, n) <

19



F (`00, n) < 0, by simply considering Step 3. Thus, we should conclude that
supA = inf B.

c) Let r 2 A. Then, F (r; n) < 0, 8n > 1. This means that n cn¡ bn
n

r +
nan¡ bn

n
< 0, 8n > 1 or, equivalently, r < ¡ ^̄2(n), 8n > 1 , what obviously

implies that r · lim
n!1
¡

¡ ^̄2(n) and, therefore, it holds that supA · lim
n!1
¡

¡ ^̄2(n).
d) Let s 2 B. Then, by de…nition, it is true that F (s; n) ¸ 0, 8n 2 N(s).

This means that s¸ ¡ ^̄2(n), 8n 2 N(s_). Thus, s¸ lim
n!1

®n ¡ ^̄
2(n) and,

as a consequence, it holds that infB ¸ lim
n!1

¡ ^̄2(n).
e) Using the results of c) and d), we have that sup A · lim

n!1
¡

¡ ^̄2(n) ·

lim
n!1

¡ ^̄2(n) · inf B . Furthermore, if we consider b), then if follows

that lim
n!1
¡

¡ ^̄2(n) = lim
n!1

¡ ^̄2(n) and, therefore, there exists the limit of

n
¡ ^̄2(n)

o
n¸1

. Obviously, it is also true that there exists the limit lim
n!1

^̄
2(n).

f) In order to provide a numerical value for lim
n!1

^̄
2(n) we have used

numerical approximation. The results, which are not included here but are
available from the authors upon request, reveal that the exact value of this
limit would be close to ¡2=3, which helps us to understand the results based
on our Monte Carlo simulations, con…rming that these are produced by the
so-called spurious detrending phenomenon.
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Table 1. Autocorrelation Function
T r1 r2 r3 r4 r5 r6 r7 r8 r9
25 0:79

(0:10)
0:65
(0:11)

0:55
(0:11)

0:45
(0:10)

0:36
(0:09)

0:28
(0:07)

0:19
(0:06)

0:11
(0:04)

0:02
(0:03)

50 0:86
(0:07)

0:77
(0:08)

0:70
(0:09)

0:64
(0:09)

0:58
(0:09)

0:53
(0:08)

0:49
(0:08)

0:44
(0:08)

0:40
(0:07)

75 0:89
(0:06)

0:82
(0:07)

0:76
(0:07)

0:71
(0:07)

0:67
(0:08)

0:63
(0:08)

0:59
(0:07)

0:56
(0:07)

0:53
(0:07)

100 0:91
(0:05)

0:84
(0:06)

0:80
(0:06)

0:75
(0:07)

0:72
(0:07)

0:69
(0:07)

0:65
(0:07)

0:62
(0:07)

0:60
(0:07)

150 0:93
(0:04)

0:88
(0:04)

0:84
(0:04)

0:81
(0:05)

0:78
(0:05)

0:75
(0:05)

0:72
(0:06)

0:70
(0:06)

0:68
(0:06)

200 0:94
(0:03)

0:90
(0:04)

0:86
(0:04)

0:84
(0:04)

0:81
(0:05)

0:79
(0:05)

0:77
(0:05)

0:75
(0:05)

0:73
(0:05)

250 0:95
(0:02)

0:91
(0:03)

0:88
(0:04)

0:86
(0:04)

0:83
(0:04)

0:81
(0:04)

0:80
(0:04)

0:78
(0:04)

0:76
(0:04)

300 0:95
(0:02)

0:92
(0:03)

0:89
(0:03)

0:87
(0:03)

0:85
(0:04)

0:83
(0:04)

0:82
(0:04)

0:80
(0:04)

0:79
(0:04)

500 0:97
(0:01)

0:94
(0:02)

0:92
(0:02)

0:91
(0:02)

0:89
(0:03)

0:88
(0:03)

0:87
(0:03)

0:85
(0:03)

0:84
(0:03)

1000 0:98
(0:01)

0:97
(0:01)

0:95
(0:01)

0:94
(0:01)

0:93
(0:02)

0:92
(0:02)

0:91
(0:02)

0:91
(0:02)

0:90
(0:02)

The values of this Table have been obtained as follows. First, we have generated
a T-dimension vector of observations of the variable ut by way of a positive trun-
cated niid(0; 1). Then, we have inversely sorted these values and, subsequently,
have calculated the coe¢cients of the autocorrelation function. This procedure
has been repeated 50; 000 times and the Table reports the mean value of these
autocorrelation coe¢cients, with the standard deviation reported in parenthesis.
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Table 2. Spurious result in the analysis of Zipf’s law

T ^̄
2 R2 DW ½̂

25 ¡0:66
(0:19)

0:936
(0:02)

0:227
(0:08)

1:261
(0:61)

50 ¡0:65
(0:14)

0:954
(0:01)

0:103
(0:04)

1:320
(0:34)

75 ¡0:65
(0:12)

0:961
(0:01)

0:067
(0:03)

1:277
(0:24)

100 ¡0:65
(0:11)

0:966
(0:01)

0:049
(0:02)

1:238
(0:18)

125 ¡0:65
(0:09)

0:971
(0:00)

0:032
(0:02)

1:191
(0:12)

200 ¡0:65
(0:08)

0:974
(0:00)

0:024
(0:02)

1:161
(0:10)

250 ¡0:65
(0:07)

0:976
(0:00)

0:019
(0:01)

1:141
(0:08)

300 ¡0:65
(0:06)

0:978
(0:02)

0:016
(0:01)

1:127
(0:07)

500 ¡0:65
(0:05)

0:981
(0:00)

0:010
(0:01)

1:092
(0:04)

1000 ¡0:66
(0:04)

0:985
(0:00)

0:005
(0:00)

1:059
(0:03)

This Table considers the presence of possible spurious relationships when study-
ing Zipf’s law for variable ut, with this variable having been generated by a (posi-
tive) truncated niid(0,1). These values are inversely ordered and transformed into
their natural logarithms, and model (2) is then estimated. The …rst column of this
Table re‡ects the di¤erent sample sizes considered. The second presents the mean
and the standard deviation (in parenthesis) of the estimated values of the Zipf pa-
rameter ¯2 in (2). The third and the fourth report the mean of the determination
coe¢cient and the mean of the Durbin-Watson statistic, respectively. All values
were obtained as a result of 50,000 replications.
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Table 3. Spurious Zipf’s law
³

T 10¡4 5£10¡4 10¡3 0.005 0.01 0.015 0.02 0.025 0.03 0.05 DW
25 0:2 0:9 1:7 8:8 17:6 26:0 34:0 41:5 48:0 67:7 0:29

(0:11)

50 0:3 1:6 3:2 15:1 30:3 45:0 57:8 68:0 75:7 91:2 0:11
(0:03)

75 0:4 2:1 4:3 21:9 43:0 61:9 76:1 85:2 90:6 97:9 0:06
(0:02)

100 0:5 2:6 5:5 27:4 54:3 75:6 88:1 94:0 96:9 99:5 0:04
(0:01)

150 0:8 4:0 8:0 39:4 76:1 93:6 98:2 99:4 99:8 100 0:02
(0:00)

200 1:1 5:3 10:5 52:0 90:6 98:8 99:8 100 100 100 0:02
(0:00)

250 1:3 6:5 12:9 64:3 97:4 99:9 100 100 100 100 0:01
(0:00)

300 1:6 7:7 15:3 75:5 99:4 100 100 100 100 100 0:01
(0:00)

500 2:4 12:4 24:9 98:8 100 100 100 100 100 100 0:01
(0:00)

1000 4:9 24:7 49:3 100 100 100 100 100 100 100 0:00
(0:00)

This Table reports the number of times (in %) that the estimation of the
parameter ¯2 in model (2) is lower than a value ³, when the variable being studied
has been generated by a (positive) truncated niid(0,1) distribution. The …rst row
includes the di¤erent values of ³, whilst the …rst column reports the di¤erent
sample sizes considered. 50; 000 replications were carried out for each of the
previous combinations of values.
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Table 4. Zipf’s law for the US metropolitan areas
t ^̄

2 R2 DW
28 ¡1:2379 0:98 0:93
38 ¡1:1822 0:98 0:71
48 ¡1:1710 0:99 0:69
58 ¡1:1606 0:99 0:67
68 ¡1:1116 0:98 0:43
78 ¡1:0843 0:98 0:33
88 ¡1:0575 0:98 0:27
98 ¡1:0425 0:98 0:25
108 ¡1:0309 0:98 0:24
118 ¡1:0214 0:98 0:23
128 ¡1:0115 0:99 0:21
138 ¡0:9996 0:99 0:20
148 ¡0:9851 0:98 0:17
158 ¡0:9707 0:98 0:15
168 ¡0:9572 0:98 0:13
178 ¡0:9426 0:98 0:12
188 ¡0:9311 0:98 0:11
198 ¡0:9204 0:98 0:10
208 ¡0:9114 0:98 0:09
218 ¡0:9038 0:98 0:09
228 ¡0:8963 0:98 0:08
238 ¡0:8902 0:98 0:08
248 ¡0:8838 0:98 0:08
258 ¡0:8759 0:98 0:07
268 ¡0:8659 0:98 0:07

This Table reports the results related to the analysis of the Zipf’s law for
the 256 biggest agglomeration areas of the USA. These results are obtained by
recursively estimating model (2). In each iteration, the sample size includes the
t-th biggest US agglomeration areas. This Table then presents the values of the
estimation of the Zipf parameter ( ^̄2), the coe¢cient of determination (R2) and
the Durbin-Watson statistic (DW ) of each of these estimations.
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