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Abstract. The item selection rule (ISR) most commonly used in computerized adaptive testing (CAT) is to select the item with maximum Fisher
information for the current trait estimation (PFI). Several alternative ISRs have been proposed. Among them, Fisher information considered in an
interval (FI*I), Fisher information weighted with the likelihood function (FI*L), Kullback-Leibler information considered in an interval (KL*I)
and Kullback-Leibler weighted with the likelihood function (KL*L) have shown a greater precision of trait estimation at the early stages of CAT.
A new ISR is proposed, Fisher information by interval with geometric mean (FI*IG), which tries to rectify some detected problems in FI*I. We
evaluate accuracy and item bank security for these six ISRs. FI*IG is the only ISR which simultaneously outperforms PFI in both variables. For
the other ISRs, there seems to be a trade-off between accuracy and security, PFI being the one with worse accuracy and greater security, and the
ISRs using the likelihood function the reverse.
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One of the goals when applying a test is the accurate and
efficient evaluation of the trait level (h) of the examinees.
One of the means developed for this (Lord, 1971; Owen,
1975) is computerized adaptive testing (CAT). In contrast
to the case of paper and pencil tests, in CATs not all the
examinees receive identical items. The item (q + 1)th pre-
sented varies according to the pattern of responses to the
q items already administered. In general, a CAT can be
described (Olea & Ponsoda, 2003; van der Linden & Glas,
2000a) as an iterative process of [estimation of the trait level
(ĥ) – selection of the optimal item for ĥ – response to the
item], until a previously established criterion (e.g., measure-
ment error below a certain level or application of a specific
number of items) is met.

The probability of a correct response to an item is deter-
mined by the trait level of the examinee and by the param-
eters that characterize the item. In the three-parameter
logistic model (3PLM), this probability is calculated using:

P hð Þ ¼ cþ 1� c
1þ e�1:7a h�bð Þ ; ð1Þ

where

a is the discrimination parameter;
b is the location parameter; and
c is the pseudo-guessing parameter.

For the other two steps of the cycle, estimation of the
trait level and item selection, several alternatives have been
proposed. The estimation of h is carried out from the
responses to the items already administered. The majority
of statistical estimation procedures seek the trait level where

the probability of the pattern of responses is maximum. The
Bayesian methods (Bock & Mislevy, 1982; Owen, 1975;
Samejima, 1969) include suppositions about the probability
distribution of the examinee population, while the
maximum-likelihood method (Birnbaum, 1968) does not.
For a comparison between them, Wang and Vispoel
(1998) can be consulted. The likelihood function, necessary
for all of them, is obtained as indicated in:

L h; x; gð Þ ¼
Yn

i¼1
P gi

i hð Þ 1� P 1�gi
i hð Þ

� �� �xi
; ð2Þ

where

n is the item bank size;
xi is the indicator of presentation (1)/nonpresentation
(0) of items; and
gi is the indicator of correct response (1)/noncorrect
response (0) of items.

Several item selection rules (ISRs) have been also pro-
posed. Among them, the most common consists in selecting
the nonpresented item with maximum Fisher information
(PFI) for ĥ (Lord, 1977). For 3PLM, the Fisher information
function (FIF) can be calculated with:

I hð Þ ¼ 2:89a2 1� cð Þ
cþ e1:7a h�bð Þð Þ 1þ e�1:7a h�bð Þð Þ2

: ð3Þ

As the value of FIF for ĥ increases, the measurement error
of the estimation decreases. Asymptotically, as the number
of items presented is increased, the measurement error of h
is Iq hð Þ1=2 (Bradley & Gart, 1962). Iq is the information
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accumulated with the q items administered. This calculation,
as shown in equation (4), is the sum of the information given
by each one of the presented items.

Iq hð Þ ¼
Xn

j¼1
xjIj hð Þ: ð4Þ

Hence, PFI seems to be the optimum rule for reducing the
variance of the estimator. This ISR, however, presents
some limitations in two of the goals to be optimized in
CATs: the accuracy of trait level estimation and the secu-
rity of the item bank. Throughout this study, we shall
understand as a secure item bank that one in which exam-
inees have low probability of knowledge, before being
tested, of any of the items they will be required to answer.
We shall present the limitations of PFI for each of these
goals, together with the alternatives that have been pro-
posed for the reduction of these shortcomings.

Problems Relative to Accuracy

The problems associated with accuracy have at least three
sources:

1. The selection of items based on PFI (hereafter referred
to simply as PFI) will be much more inadequate the
larger it becomes jĥq � hj. It has been established that

E jĥqþ1 � hj
� �

< E jĥq � hj
� �

, in such a manner that

the incidence of this problem will decrease as the num-
ber of items presented is increased (Lord, 1983).

2. It is possible to find several local maxima for the likeli-
hood function with items calibrated according to the
three-parameter model (Samejima, 1977). However,
PFI only assesses the FIF for a precise value, ĥ. This
means excluding the possible multiplicity of maxima
from the selection algorithm. As was the case with the
previous problem, the possible incidence of this one
decreases as the number of items administered increases.

3. The Fisher information can be described as the capacity
of an item to discriminate between two adjacent points of
trait level. However, for an effective estimation of h, it is
better to discriminate not only between close trait levels,
but also between distant levels, especially in the initial
stages of test administration (Chang & Ying, 1996).

With the aim of overcoming these inconveniences, other
ISRs have been proposed, whose theoretical justification we
shall proceed to describe.

ISRs Alternative to PFI Focused
on the Improvement of Accuracy

The different ISRs can be described as particular cases of a
general rule (Veerkamp & Berger, 1997):

maxi2Bn

Z hmax

hmin

V i hð ÞW h; x; gð Þd hð Þ: ð5Þ

The (q + 1)th selected item will be that which, belong-
ing to the set of nonadministered items (Bn), offers the
maximum value for the criterion integral.W is the weighting
function, which is conditional on the vector of items
previously presented (x), to the correct or noncorrect
response to them (g), and to the h value. V(h) is the valuat-
ing function. Thus, for example, in the PFI case:

W h; x; gð Þ ¼ 1; h ¼ ĥ
0; h 6¼ ĥ

�
; ð6Þ

V hð Þ ¼ I hð Þ: ð7Þ

PFI evaluates FIF for a single point, ĥ. However, in the
initial items of a CAT, it would seem appropriate to consider
the information of trait levels relatively distant from ĥ. Thus,
the alternative rules will obtain the information for an inter-
val of values of h, with different valuating functions (FIF
and Kullback-Leibler (KL) function) and different weighting
criteria (likelihood function and interval).

This gives rise to four alternative ISRs, which will be
assessed in the course of this work, though they are not
the only ones proposed (e.g., van der Linden, 1998, presents
other ISRs that offer promising results).

ISRs Based on the FIF

These ISRs employ as a basis the same valuating function as
is used with PFI. The difference is to be found in the weight-
ing function, which allows the criterion integral to take into
account more than just IðĥÞ. Two criteria have been pro-
posed for W. The first is the likelihood function, which
would give rise to FIF by likelihood – FI*L (Veerkamp &
Berger, 1997). The second proposal will be called FIF by
interval – FI*I (Veerkamp & Berger, 1997). The interval
is the confidence interval of h given IqðĥÞ.

ISRs Based on the KL Function

The valuating function adopted for these ISRs is the KL
function, which is intended to solve the third problem previ-
ously described, since it provides knowledge of the capacity
for discriminating between any two trait levels.

KL hjjhsð Þ ¼ P hsð Þ ln
P hsð Þ
P hð Þ

	 


þ 1� P hsð Þð Þ ln 1� P hsð Þ
1� P hð Þ

	 

; ð8Þ

where hs indicates that h needs to be separated from hs.
For a more detailed description of the KL function

applied in CATs, see Chang and Ying (1996) and Eggen
(1999).

The weighting criteria suggested are the same as those
for the ISRs based on FIF, which gives rise to two new
ISRs: KL function by likelihood function – KL*L and KL
function by interval – KL*I (Chang & Ying, 1996).
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Of all the studies carried out to date on this topic
(Barrada, Olea, & Ponsoda, 2004; Barrada, Olea, Ponsoda,
& Abad, 2006; Chang & Ying, 1996; Chen & Ankenmann,
2004; Chen, Ankenmann, & Chang, 2000; Cheng & Liou,
2000; Veerkamp & Berger, 1997), only those of Barrada
et al. (2004) and Chen et al. (2000) include all of these ISRs.
These authors find similar results to those partially reported
in previous works: (a) slight advantages of the alternative
ISRs, mainly of those using the likelihood function, in com-
parison to PFI, which decrease as the number of items pre-
sented increases and (b) the improvements tend to be located
mainly at low h levels.

Problems Relative to Exposure Control

The second limitation of item selection by PFI concerns
item exposure control. With this ISR, few items are pre-
sented to a high proportion of examinees, while a substantial
part of the items bank is hardly used. In fact, the bank in use
would be clearly smaller than the real bank size, and this has
two disadvantages. On the one hand, it can lead to a security
problem with the overexposed items, whose content may be
known before their administration, thus making them a
source of measurement error. On the other hand, the infra-
exposed items means wasted funds, as the investment
involved in their development is not recovered.

Moreover, PFI poses the problem of a high overlap rate
between examinees (Way, 1998). The overlap rate is the pro-
portion of items shared by two randomly selected examinees
(Chang & Zhang, 2002). The higher its value, the more vul-
nerable the item bank, since an examinee has greater probabil-
ity of being informed about items that will be administered to
him/her (Chang, 2004). Control of exposure and overlap are
related variables, since improvements in one imply improve-
ments in the other (Chen, Ankenmann, & Spray, 2003).

ISRs Alternative to PFI Focused on Security
of the Item Bank

In the last 20 years, several ISRs aimed at improving expo-
sure control have been proposed (Barrada, Olea, Ponsoda, &
Abad, 2008; Barrada, Veldkamp, & Olea, in press; Chang &
Ansley, 2003; Chang & Ying, 1999; Chen & Lei, 2005;
Cheng & Liou, 2003; Davey & Fan, 2000; Davey &
Parshall, 1995; Li & Schafer, 2005; McBride & Martin,
1983; Revuelta & Ponsoda, 1998; Stocking & Lewis,
1998; Sympson & Hetter, 1985; van der Linden &
Veldkamp, 2004), each one with its own logic and limita-
tions. Given the goals of this study, a fuller description of
them is not necessary here. For more detail, the reader can
consult Georgiadou, Triantafillou, and Economides (2007).

The results found to date with the different alternative
ISRs focused on improving item bank security have led
some authors to assume as true the following relation:
Improvements in the accuracy of measurement imply a dete-
rioration of security, and vice versa, as explicitly stated by
Chang and Ansley (2003) or Stocking and Lewis (2000).
It falls to test administrators, therefore, to choose a point

between these inversely related variables. At the moment
there is no clear criterion for guiding this decision.

Security of the Bank and Rules Alternative
to PFI Focused on Improving Accuracy

The item selection logic of the ISRs alternative to PFI allows
us to suppose that they might present, simultaneously,
improvements in both accuracy and security. For an itembank
calibrated according to 3PLM, it is possible to find items with
low exposure rate, when selecting with PFI, with suitable per-
formance in the criterion integral when broad h areas are con-
sidered.We can see this with an example in Figure 1 for FI*I.

Figure 1a shows FIF for two items. Item 1 would clearly
be selected for h values around 0. However, the information
function for this item is more peaked, so that, for values out-
side the interval (�0.3, 0.7), Item 2 would be preferable.
Figure 1b shows the difference between Item 1 and 2 in
the mean information for an interval focused on 0 (continu-
ous line), in such a way that positive values imply the selec-
tion of the first item and negative values the selection of the
second. For interval widths greater than 1.1, Item 2, of low
value in the a parameter, would be preferable.

However, it is also possible to find conditions in which
items of low exposure rate and maximally informative for
values close to ĥ cease to be selected when their perfor-
mance for a wide range of trait levels is taken into account.
In Figure 1c, we can see how Item 2 is that which provides
most information for h = 0. This item would no longer be
selected when the interval width was greater than 1.3, as
Item 3, of higher value in the a parameter, would be chosen.
This can be considered as a perversion of selection logic for
FI*I: what was sought was a rule that, at the beginning of
the test, selected items with appropriate performance for a
wide region of h values, not a rule that selected items with
the maximum of their information distant from ĥ. In fact,
some results (Barrada, Olea et al., 2006; Chen &
Ankenmann, 2004) suggest that this could be the selection
pattern with FI*L, KL*L, and FI*I.

In order to avoid FI*I risks, a modification of it was
developed (Barrada, Olea et al., 2006), aimed at simulta-
neously improving measurement accuracy and bank security.

FI*IG

In Figure 1, it can be seen how the items with the highest
maximum FIF value are also those with the greatest variance
in FIF values. An ISR that incorporates, directly or indirectly,
the variance of the Fisher information for the different h
points, penalizing it, would reduce or eliminate cases such
as that illustrated in Panels c and d. This can be achieved
through the use of the geometric mean. The geometric mean
of a data set of z elements is the multiplicatory of the z values
raised to the (1/z)th power. For data sets with the same arith-
metic mean, the one with the higher geometric mean will be
that with the lower variance. For instance, the sets (4, 6) and
(1, 9) both have an arithmetic mean of 5, while the geometric
mean of the former is 4.9 and that of the latter is 3.
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Fisher information by interval with geometric mean,
FI*IG, has a similar approach to that of FI*I, and attempts
to develop it and overcome some of its limitations. Putting
this ISR into effect requires a slight modification in equation
(5). It is no longer possible to integrate in an interval; rather,
it is necessary to use the multiplicatory, as shown in equa-
tion (9). Otherwise, all the variables and functions of the
equation are identical to those used for FI*I. The k values
indicate the quadrature points employed:

maxi2Bn

Yk

j¼0
V hj

� �
W h; x; gð Þ

hj ¼ hmin þ
jðhmax � hminÞ

k
; k ¼ 80: ð9Þ

Panels b and d of Figure 1 (dotted line) show the effect
of applying FI*IG. In comparison to what occurred with
FI*I, for no interval considered in Panel d Item 3 is selected,
and the above-mentioned problem does not arise. In Panel b
we see how, as FI*IG penalizes the variance, the interval
necessary for selecting an item with lower a parameter is
smaller, in comparison to the case of FI*I.

Goal of the Present Study

We see, with these examples, how FI*I and FI*IG: (a) take
into account the global performance of the valuating func-

tion; (b) under specific conditions, select items that would
not be selected with PFI; and (c) converge to PFI as the
interval considered is narrowed. Similar examples can be
generated for the other alternative rules.

We can expect differences in the exposure control
because of the first two points, but these will be limited,
because of the third point. As we have described for FI*I,
with a logic easily be generalized to the other ISRs pre-
sented, there are reasons for expecting both a possible
improvement and a possible deterioration of security. Previ-
ous results (Barrada, Olea et al., 2006; Chen & Ankenmann,
2004) indicate that, in fact, the security is deteriorated with
the ISR based on the likelihood function and with FI*I.
Until now, no study has compared all the alternative ISR
with PFI at the same time. Here is the first two goals of
our study: to evaluate all of them simultaneously and to
identify the pattern of items selected with each ISR.

The other main goal of the study is to evaluate perfor-
mance, in accuracy and security, for FI*IG, with different
simulation conditions than the ones reported in Barrada,
Olea et al. (2006) and comparing it with other five different
ISRs. The combination of the two trends presented in Panels
b and d of Figure 1, the elimination of overselection of high
a-parameter items and the favoring of the selection of low
a-parameter items, leads us to expect that IF*IG will present
better exposure control. As FI*IG evaluates FIF not just for
ĥ, but for the interval where it is maximally probable to find
h, improvements in accuracy are also expected.

Figure 1. Examples of information function and selected items according to the integration interval width. Parameters (a,
b, and c): Item 1 ~ (2, 0, and 0.4); Item 2 ~ (1, 0, and 0); and Item 3 ~ (2, 1, and 0.2).
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Simulation Study

Method

A study was carried out for evaluating the accuracy and
security obtained with the six ISRs described: PFI, FI*L,
KL*L, FI*I, KL*I, and FI*IG.

Item Banks

As Wingersky and Lord (1984) and Chang, Qian, and Ying
(2001) point out, in practice, a and b parameters are usually
positively correlated. Bearing this in mind, two kinds of item
bank were generated: one with noncorrelated a and b param-
eters and the other with rab = .5. Ten item banks were con-
structed for each kind, each with 500 items. The item
parameters were generated randomly from the following dis-
tributions: a ~ N(1.2, 0.25); b ~ N(0, 1); and c ~ N(0.25,
0.02).

Start

The simulation began with an initial trait level (ĥ0) randomly
selected from the interval (�0.5, 0.5). Before the administra-
tion of any item it is impossible to calculate the likelihood
function, and the width of the interval for FI*I, KL*I, and
FI*IG is infinity. To make it possible to apply, with effect
from the very first item, the rules alternative to PFI, the like-
lihood function was calculated using two fictitious items,
one correct and the other incorrect, both with the same (a,
b, and c) parameters equal to ð0:5; ĥ0; and 0Þ, and the inter-
val for the interval rules was fixed at ðĥ0 � 3; ĥ0 þ 3Þ.
After administration of the first item, the fictitious items
were no longer used.

Estimation/Assignment of Trait Level

Maximum-likelihood estimation has no solution in real
numbers when there is a constant response pattern, all cor-
rect or all incorrect responses. Therefore, until there was
at least one correct and one incorrect response, h was
assigned using the method proposed by Dodd (1990). When
all the responses were correct, ĥ was increased by
ðbmax � ĥÞ=2. If all the responses were incorrect, ĥ was
reduced by ðĥ� bminÞ=2. In these formulas bmax and bmin

refer to the highest and lowest b parameters, respectively,
of the entire item bank. Once the constant pattern was bro-
ken, we applied maximum-likelihood estimation (Birnbaum,
1968), as indicated in:

ĥ ¼ maxh2H L h; x; gð Þð Þ; ð10Þ

H ¼ h : h ¼ �4þ k � 1ð Þ=100 8k 2 N ; k � 801f g:
ð11Þ

In this way, unlike with other numerical approximation
methods, the problem of possible multiple local maxima is
avoided (Veerkamp & Berger, 1997).

Trait Level of the Simulees and Test Length

Trait level of the examinees was randomly extracted from a
population N(0, 1). For each combination of simulated bank
per ISR, 5,000 simulees were generated. In each simulation,
up to 20 items were applied. Data for subsequent analysis
were saved for every five items. Previous results have
shown that, for this test length, accuracy differences between
ISRs are small.

Evaluation Criteria

Five dependent variables were used for the comparison
between the different ISRs: root mean square error (RMSE)
relative to the measurement accuracy (equation (12));
overlap rate for evaluating item bank security (equation
(13)), according to the formula developed by Chen et al.
(2003); mean values of the a and c parameters administered,
with the aim of analyzing the kind of item that tends to be
selected by each ISR; and the correlation between the item
exposure rates for each pair of ISRs, as indicative of the
convergence between them:

RMSE

RMSE ¼
Xr

g¼1
ĥg � hg

� �2�
r

 !1=2

; ð12Þ

where r is the number of replicates-examinees;

Overlap Rate

T̂ ¼ n
q

S2
er þ

q
n
; ð13Þ

where

T̂ is the large-sample approximation of the overlap rate
(Chen et al., 2003);
q is the number of items administered; and
S2
er is the variance of the item exposure rates.

Chang and Zhang (2002) and Chen et al. (2003) have
demonstrated that, necessarily, q=n � T̂ � 1.

Application of ISRs

The criterion function for PFI can be calculated directly with
the FIF for ĥ, as indicated in equation (3). For the rest of the
ISRs, the values and functions applied in this study for equa-
tions (5) and (9) are described in Table 1. For the ISRs based
on intervals, a was set at 0.05.
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The criterion integral for FI*I, developed, can be
expressed as follows (Veerkamp & Berger, 1997):Z hmax

hmin

I hð Þdh ¼ 1:7a
1� cð Þ c ln

P hminð Þ
P hmaxð Þ

	 
�

þ P hmaxð Þ � P hminð Þ


: ð14Þ

For the other ISRs, the criterion function cannot be
solved analytically. We calculated it using quadrature points,
as described in equation (15) for FI*L, KL*L, and KL*I,
and in equation (9) for FI*IG:

Xk

j¼0
V hj

� �
W hj; x; g
� �

hj ¼ hmin þ
jðhmax � hminÞ

k
; k ¼ 80: ð15Þ

Results

We present the results divided in five sections: (a) accuracy,
(b) security, (c) relation between these two variables, (d)
mean values of the a and c parameters, and (e) correlation
between the item exposure rates.

Accuracy

Figure 2 shows the different RMSE values conditional on
the number of items presented, for both kinds of item bank.
Logically, as the number of items presented is increased,
RMSE decreases. The slope of accuracy improvement is
smaller the greater the number of items administered. Of
the rules evaluated, the ones based on the likelihood func-
tion are those that achieve the best measurement accuracy.
Among them, the one with the lowest RMSE is KL*L.
The performance of FI*I and KL*I varies depending on
the presence or the absence of correlation between the a
and b parameters. When rab = 0, the RMSE of KL*I is very
similar to that obtained with PFI, while the measurement
error for FI*I is almost identical to that obtained with
KL*L. However, when rab = .5, these rules have an RMSE
equivalent or superior to that obtained with PFI. With more
than five items administered, the RMSE obtained with
FI*IG is always smaller than that of PFI. With uncorrelated
a and b parameters this difference is minimal, being greater

when parameters covary. The difference in RMSE between
ISRs becomes smaller as the number of items presented
increases, though the relative accuracy ranking remains
practically constant.

Security

Overlap results for the different ISRs and item bank kinds
are shown in Figure 3. Functions are almost indistinguish-
able for the item banks with correlated and uncorrelated
parameters. Differences between ISRs are greater at the
beginning of the CAT, and the order in overlap remains con-
stant in all the evaluated conditions, except for a slight
change for five items presented, when the order is reversed
between KL*L and FI*L, on the one hand, and between PFI

Figure 2. RMSE according to the number of items admin-
istered and the item bank kind.

Table 1. Description of the different ISRs for the selection of the qth item (U is the standard cumulative distribution and
the other symbols correspond to the description of the text)

FI*L KL*L FI*I and FI*IG KL*I

V(hj) I(h) KL hjjjĥ
� �

I(h) KL hjjĥ
� �

Wn(xi, gi, hj) L(hj, x, g) L(hj, x, g) 1 1

hmin �4 �4 max ĥ� 3; ĥ� U�1 :975ð Þffiffiffiffiffiffiffi
I ĥð Þ

p
 !

ĥ� U�1 :975ð Þffiffiffiffiffiffi
q�1
p

hmax 4 4 min ĥþ 3; ĥþ U�1 :975ð Þffiffiffiffiffiffiffi
I ĥð Þ

p
 !

ĥþ U�1 :975ð Þffiffiffiffiffiffi
q�1
p
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and FI*IG, on the other. All the rules alternative to PFI show
an overlap rate higher than that obtained with PFI, with the
exception of IF*IG, which shows the best results in security,
followed by PFI and KL*I. The rules based on the likeli-
hood function have intermediate values, and the ISR with
highest overlap is FI*I. When passing from 5 to 10 items
administered, the overlap rate decreases, especially for
FI*I, and subsequently remains basically constant.

Relation Between Accuracy and Security

It can be observed from our presentation of data on accuracy
and security that the two variables tend to relate inversely:
Greater accuracy implies less security. The data obtained
seem to support a trade-off between these variables. We
can find an exception for IF*IG, which achieves simulta-
neous improvements for the two variables, and for FI*I, in
the case of banks with correlated parameters, with poor per-
formance in security without improvements in accuracy. For
a more direct study of this relationship, we show the scatter
plots of RMSE and overlap in Figure 4. For correct interpre-
tation of the plots, it must be taken into account that the
scale in each one is different. It is therefore necessary to
attend to the values of the axis.

We can consider an inadequately performing ISR as that
for which at least one other ISR can be found offering,
simultaneously, better results in accuracy and security. With
this definition, three out of six of the ISRs evaluated show
inadequate performance. In Figure 4, it can be seen how

PFI presents better results than KL*I, for both kinds of bank
and for any number of items administered. By comparison
with FI*I, when the a and b parameters are uncorrelated,
KL*L achieves better results for the two variables. When
the parameters are correlated, these improvements are
offered by PFI, FI*L, and KL*L. The ISR commonly
employed in CATs, PFI, also seems to present inadequate
performance: FI*IG, when more than five items are pre-
sented, has better accuracy and security levels. This result
is more marked with rab = .5.

Average of the a and c Parameters of the Presented
Items

Figure 5 shows these values for the banks with uncorrelated
a and b parameters. For banks with rab = .5, these values are
not interpretable, and are therefore omitted. All ISRs, with
the exception of FI*IG, tend to administer, at the beginning
of the test, items with the a parameter clearly above the
mean of this parameter in the bank. Except for the case of
FI*IG, as the number of items administered is increased
and the items with higher a parameters have already been
selected, items with lower a parameters are progressively
administered. With FI*IG, highly discriminative items are
left available for more advanced phases of the test. Because
of this, the average of the a parameter when more than 10
items are administered is higher for FI*IG than for the rest
of the ISRs. For any number of items presented, all the
ISRs, discarding FI*IG, tend to select items with higher
a-parameter values than PFI, with the exception of KL*L
for five items. This trend is more marked for FI*L and for
FI*I.

With regard to the c parameter, the studied ISRs tend to
select items with a value in this parameter below 0.25, the
mean in the item bank. As with the a parameter, but in
reverse, as the test progresses and items with low c value
are exhausted, the average in this parameter increases. In
comparison to PFI, the other ISRs show smaller values in
this variable when five items have been presented. The trend
to select low c-parameter items is more accentuated for
KL*L, for FI*I, and particularly for FI*IG. When more than
10 items have been administered, the alternative rules have
exhausted the items of low c value, so that they present a
higher average value in this variable. These combinations
of average values of the a and c parameters could explain
the differences in overlap rate between ISRs. FI*L, KL*L,
FI*I, and KL*I tend to select, more clearly than PFI, items
with high value in the a parameter and low value in the c, an
odd combination of values, which raises the overlap rate of
these ISRs. For these ISRs, it seems that there are no differ-
ent selection strategies over the course of the test, but rather
that the differences in the characteristics of the selected
items are due simply to exhaustion of the available bank.
Nevertheless, this is not the case for FI*IG. This ISR seeks
different combinations of parameters according to the phase
of the test. At the beginning, items with low a and c param-
eters, changing to items with high a-parameter values and
low importance in the c parameter as the test advances. This
variable pattern makes the overlap rate of IF*IG the smallest
of the ISRs studied.

Figure 3. Overlap rate according to the number of items
administered and the item bank kind.
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Correlation Between Item Exposure Rates for the
Different ISRs

It was expected that the ISRs alternative to PFI would tend
to select different items from PFI at the beginning of the test,
converging with PFI as the number of items administered

increased. To evaluate this we calculated, for each pair of
ISRs, the correlation between the item exposure rate of
the items, as shown in Table 2.

There are three particularly notable findings. First, the
correlations increase as the number of items administered
increases, confirming the idea of convergence between ISRs

Figure 4. Scatter plots of RMSE and overlap rate according to the number of items administered and the item bank kind.
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as the test progresses. Second, the coincidence in the items-
selected pattern, for all the ISRs except FI*IG, is very high,
even with five items administered. In Table 2 it can be seen,
for instance, that the correlation between PFI and KL*I is .9
or .89 with just five items presented. Despite being ISRs
with different valuating and weighting functions, the similar-
ity in the pattern of items selected is very high (Veldkamp,
2003). Third, the ISR most differentiated from the others in
its item selection patterns is FI*IG, as could be expected
from what is shown in Figure 5. The correlation between
exposure rates for PFI and IF*IG goes from �.03, when five
items are selected, to .71, with 20 selected, markedly inferior
to the correlation between the rest of the ISRs with PFI.

Discussion

There were two main goals in this study. On the one hand, to
investigate simultaneously the accuracy and security
obtained with several ISRs. On the other hand, we set out
to examine the performance of a newly proposed ISR, IF*IG,
designed to solve some of the possible problems with FI*I.
We thus assessed the RMSE, overlap rate, pattern of selected
items, and coincidence between item exposure rates.

If we do not take into account the performance of FI*IG,
we have found a trade-off between accuracy and security for
the different ISRs. PFI is the rule with the greatest measure-
ment error and the smallest overlap. At the other extreme
is KL*L. This result is qualified by the kind of item
bank employed. The trade-off is clearer when the a and b

Figure 5. Average values of the a and c parameters of the
administered items according to the number of items
administered, for the item banks with rab = 0.

Table 2. Correlation between item exposure rates of the different ISRs according to the number of items administered and
the item bank kind

rab = 0 rab = .5

PFI FI*L KL*L FI*I KL*I PFI FI*L KL*L FI*I KL*I

q = 5 FI*L .85 .83
KL*L .78 .87 .78 .88
FI*I .73 .85 .79 .68 .79 .71
KL*I .90 .90 .89 .79 .89 .90 .89 .77
FI*IG �.03 �.03 �.03 �.02 �.03 �.03 �.02 �.02 �.02 �.03

q = 10 FI*L .94 .93
KL*L .90 .94 .90 .94
FI*I .89 .94 .91 .86 .91 .86
KL*I .96 .95 .94 .90 .96 .96 .93 .90
FI*IG .31 .32 .37 .32 .32 .33 .34 .39 .30 .33

q = 15 FI*L .96 .95
KL*L .93 .96 .93 .96
FI*I .93 .96 .94 .91 .94 .91
KL*I .98 .97 .96 .94 .97 .97 .95 .93
FI*IG .60 .60 .63 .60 .60 .60 .60 .64 .55 .59

q = 20 FI*L .97 .97
KL*L .95 .97 .95 .97
FI*I .94 .97 .95 .93 .95 .93
KL*I .98 .98 .97 .95 .98 .98 .97 .95
FI*IG .71 .71 .73 .70 .71 .71 .71 .73 .66 .70
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parameters are uncorrelated. With rab = .5, FI*I, in compar-
ison to PFI, shows a high overlap rate, but without improve-
ments in measurement accuracy. This result indicates that
including the covariation between parameters, a variable
not usually included, is relevant for the study of ISR
performance.

In the case of FI*IG, the mentioned trade-off does not
hold, since, in comparison to PFI, it achieves simultaneous
improvements in RMSE and overlap. The difference in
accuracy, with uncorrelated parameters, is very small,
though it does hold for different test lengths. With correlated
parameters, the difference in RMSE is greater. The relevance
of this new ISR lies not only in the size of the improve-
ments, but also in the fact of its breaking the trade-off
assumed by many authors.

We can consider as inadequate any ISR for which there
exists another rule that simultaneously improves its perfor-
mance in accuracy and security. Following this criterion,
we could discard the FI*I and KL*I rules. Also, and impor-
tantly, we could discard PFI, since FI*IG obtains better
results for both variables.

As in the stratified methods (alpha stratified: Chang &
Ying, 1999; maximum information stratified: Barrada,
Mazuela, & Olea, 2006), with FI*IG the items with low
a-parameter value are presented at the beginning of the test.
This could be an additional advantage when the security of
the item bank is broken. With few items administered, the
effect of knowing beforehand the content and response of
an item is greater the higher the discrimination of the item
(Chang & Ying, 2008). Likewise, in this way, the risk of
capitalization on item calibration error can be reduced
(van der Linden & Glas, 2000b).

Despite having different formulations, with different val-
uating and weighting functions, and different values of hmin

and hmax, all the ISRs show high coincidence in the selected
items, as in the Chen et al. (2000) and Chen and Ankenmann
(2004) studies. The only ISR with a differentiated selection
pattern at the beginning of the test, which converges as the
number of items administered increases, is FI*IG.

The FI*IG application for which we have opted in this
study, described in Table 1 and in equation (9), could be
modified, so as to control the speed with which this rule
converges with PFI. In this way, we could seek a continuous
increase in the a-parameter average of the items adminis-
tered, in contrast to what occurs with the current method.
This could represent a possible future research line.

All the ISRs presented obtain an overlap rate above the
limits usually considered as acceptable (Way, 1998). It
remains for future research to examine the effects of incor-
porating additional methods of exposure control (Chen &
Ankenmann, 2004).
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