
This paper describes several simulation studies that examine the effects of capitalization on
chance in the selection of items and the ability estimation in CAT, employing the 3-parameter
logistic model. In order to generate different estimation errors for the item parameters, the
calibration sample size was manipulated (! = 500, 1000 and 2000 subjects) as was the ratio of
item bank size to test length (banks of 197 and 788 items, test lengths of 20 and 40 items),
both in a CAT and in a random test. Results show that capitalization on chance is particularly
serious in CAT, as revealed by the large positive bias found in the small sample calibration
conditions. For broad ranges of θ, the overestimation of the precision (asymptotic Se) reaches
levels of 40%, something that does not occur with the RMSE (θ). The problem is greater as
the item bank size to test length ratio increases. Potential solutions were tested in a second
study, where two exposure control methods were incorporated into the item selection algorithm.
Some alternative solutions are discussed.
Keywords: computerized adaptive testing, capitalization on chance, item parameter estimation.

Se describen varios estudios de simulación para examinar los efectos de la capitalización del
azar en la selección de ítems y la estimación de rasgo en Tests Adaptativos Informatizados
(TAI), empleando el modelo logístico de 3 parámetros. Para generar diferentes errores de
estimación de los parámetros de los ítems, se manipuló el tamaño de la muestra de calibración
(N = 500, 1000 y 2000 sujetos), así como la ratio entre tamaño del banco y longitud del test
(bancos de 197 y 788 ítems, longitudes del test de 20 y 40 ítems), ambos tanto en un TAI como
en un test aleatorio. Los resultados muestran que la capitalización del azar es especialmente
importante en el TAI, donde se obtuvo un sesgo positivo en las condiciones de escaso tamaño
de la muestra. Para rangos amplios de θ, la sobrestimación de la precisión (Se asintótico)
alcanza niveles del 40%, algo que no ocurre con los valores de RMSE (θ). El problema es
mayor a medida que se incrementa la ratio entre el tamaño del banco de ítems y la longitud
del test. Varias soluciones fueron puestas a prueba en un segundo estudio, donde se incorporaron
dos métodos para el control de la exposición en los algoritmos de selección de los ítems. Se
discuten también algunas soluciones alternativas.
Palabras clave: tests adaptativos informatizados, capitalización del azar, estimación de los
parámetros de los ítems.
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The problem of capitalization on chance is common in
different psychometric contexts when items or tests have
to be selected based on their estimated parameters. An
example of this problem occurs when items are selected to
optimize test reliability using the classical indices of
discrimination. In a subsequent administration, these same
items, which were chosen because they had the highest
correlation with the rest of the test, may not result in a test
as reliable as in the first administration when item
parameters were estimated. This happens because items
with overestimated discrimination indices in the first
administration have a higher probability of being selected.
Capitalization also takes place in the estimation of the
number of factors to retain in exploratory factor analysis
models, in the evaluation of the fit of structural equation
models, or in the estimation of the partial regression
coefficients in regression models.

The effects of capitalization on chance are directly related
to the estimation errors of the parameters included in the
statistical model, and depend primarily (though not
exclusively) on the available sample size and the estimation
method employed (Li & Lissitz, 2004). In item response
theory (IRT), Bayesian estimation methods have proven to
be effective when sample size is small, by incorporating into
the estimation procedure information on the prior distribution
of the parameters (Baker, 1992; Gao & Chen, 2005).

The study of capitalization on chance in IRT models,
initially pointed out by Lord (1980), was studied by
Hambleton and colleagues in the 90s (Hambleton & Jones,
1994; Hambleton, Jones, & Rogers, 1993). These authors
described the consequences of capitalization on chance when
the usual IRT models are applied to dichotomous data
obtained through the administration of random tests. The
largest problem is produced by the positive estimation errors
of the discrimination parameters (a). In many applied
contexts, the items presented are those with a high
discrimination parameter, which may increase the risk of
selecting items that, on average, have positive estimation
errors. If this happens, and if these errors are not considered
in the estimation of the ability level (θ), the precision of the
estimated ability levels may not be realistic. These authors
also showed that the problem was greater when the calibration
samples were smaller (! = 400) and when the item bank
size to test length ratio was greater. This latter result entails
important problems for the application of CATs, because the
ratios tend to be higher than those available for the assembly
of optimal tests. Many of the operative CATs have banks
with over 500 or 1,000 items (Wise & Kingsbury, 2000).

The basic idea of a CAT is to adapt the psychometric
properties of the presented items to the ability level the
examinee shows throughout the test. CATs are more efficient
than fixed-length tests because they provide more reliable
trait estimates for tests of the same length and are shorter
(and need less administration time) when CATs and fixed-
length tests have the same reliability (Ponsoda & Olea, 2003).

With respect to these advantages, many authors refer to
the advantages of CATs, in comparison to conventional
fixed-length tests, in terms of the efficiency in the precision
with which θ parameters are estimated (e.g., Haley, Ni,
Hambleton , Slavin, & Jette, 2006; Hambleton, Zaal, &
Pieters, 1991; Luecht, Champlain, & Nungester, 1998;
Nicewander & Thomasson, 1999). It is not very unusual to
find statements as “For example, a 15-item CAT version of
the Mathematics Knowledge test from the ASVAB has a
reliability of .93 compared to .89 for the 25-item paper-and-
pencil version. This means that the CAT is 40 % shorter
than the conventional test but has, on average, 5% higher
measurement precision” (Nicewander & Thomasson, 1999,
p. 239) or “In our study using a 10-item test, the average
TIF [test information function] for the CAT is roughly 2.4
times larger (240% as efficient) than with a random selection
of items. Translated as a reduction in test length, a 10-item
CAT can provide the same precision as a 25-item test that
uses a random selection of items” (Haley et al., 2006, p.
1179). One of the key objectives of the current study is to
analyze the degree of overestimation of the benefits attributed
to CATs (related to the precision of trait estimates) due to
capitalization on chance.

All of the procedures used for item selection in CAT
involve optimization strategies, as they seek to reach either
a minimum or a maximum on the established criterion. The
item selection procedures most commonly used are Fisher’s
maximum information criterion (Lord, 1977, 1980) and, in
Bayesian CATs, the minimum variance criterion of the
expected posterior distribution (Owen, 1975). If the 3
parameter logistic model is used in the calibration of the
bank, the probability of answering an item correctly is
(Birnbaum, 1968):

(1)

where a is the discrimination parameter, b is the difficulty
parameter, c is the pseudo-guessing parameter and θ is the
ability parameter for the subject.

For this model, Fisher’s information function for an
item can be computed using Equation 2 (Lord, 1977):

(2)

The test information function for each ability level is
the sum of the information functions of the administered
items. From the previous equations, one can verify that the
information function of a test for a particular level of ability
depends on: a) the discrimination parameter of the items
(the larger the a parameters, the greater the information will
be); b) the pseudo-guessing parameters (the smaller they
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are, the greater the information); c) the proximity between
the θ ability level and the b parameters of the items; and d)
the length of the test (each item adds a positive quantity to
the sum). It is therefore understood that an item will
maximally reduce the uncertainty about the subject’s ability
parameter if its difficulty is adjusted to the ability level, if
it’s highly discriminative, and if its pseudo-guessing
parameter is close to zero.

The problem that arises in the administration of CATs
is that the item parameters that are estimated in the process
of calibration of the bank are considered to be true
parameters instead of parameter estimates; thus the
estimation error involved in each estimate is disregarded.
The effects on Equation 2 of the estimation errors of the
three item parameters are not the same (van der Linden &
Glas, 2000). The a parameter in the numerator of Equation
2 is squared, making its effect on the information function
greater than in the other two parameters. Given the
particularly relevant role of the discrimination parameter
in the application of CATs, the problem of capitalization
on chance can be expected to be especially important in
the conditions where these parameters are overestimated.

The pioneers in the study of the problem of
capitalization on chance in CATs have been van der Linden
and Glas. In one study, van der Linden and Glas (2000)
manipulated the size of the calibration sample of an item
bank. They studied the effects of the estimation errors
generated in the different sample conditions on the exposure
rates of the items and on the precision of the θ estimates.
Some of the findings of this study were:

– The items calibrated in the smaller samples had higher
exposure rates for all θ levels, especially when ! = 250.

– This pattern of results held even when a lax stopping
criterion was in use (40 items administered).

– These effects were robust with respect to the different
criteria used for item selection (including maximum
information and the minimum variance criterion of the
expected posterior distribution) and the different methods
applied for ability estimation (maximum likelihood and
Bayesian). This result is consistent with those obtained in
a later work by Li and Schafer (2003).

– Items with a below-average discrimination parameter
had virtually no exposure in any of the conditions or for
any of the ability levels.

– Under certain conditions of high bank size to test
length ratio (for example, 1200/20), the average absolute
error of estimation of θ was higher than in the conditions
where the ratio was smaller.

– Incorporating an exposure control method, such as the
Sympson-Hetter method (Sympson & Hetter, 1985), in the
item selection algorithm only partially alleviated the problem.

In connection with this result, Willse (2002) constructed
item pools from 1-PL, 2-PL and 3-PL models, and he
compared several procedures for item selection in their ability
to prevent capitalization on chance:

– a-stratified. Separating the bank into strata based on
item´s a-parameter. When the CAT begins, more informative
items are selected from the lower stratum. As the CAT
progress, items are selected from the upper strata.

– b-matching. Selecting the item with b-parameter closer
to the current θ estimate.

– Separate item-selection/items-scoring. Each bank was
calibrated twice. The first item parameter estimates was
used in the item selections. The second one was used to
estimate ability and information.

– 1PL only CAT. The item parameters were estimated
with this model, assuming identical slopes for all items.

Among the dependent variables selected, measures of
information inflation (RMSE and bias of test information)
were obtained. A-stratified and b-matching methods
produced essentially unbiased estimates of information. The
b-matching procedure was determined to be the best
alternative to the maximum information CAT.

Regarding possible solutions, van der Linden and Glas
(2001) and Glas (2005) tested various methods in order to
reduce the effects of capitalization, including cross-validation
techniques and item cloning procedures.

We believe that the problem of capitalization on chance
in CAT deserves a more systematic analysis, because new
in-depth studies might reach a different conclusion regarding
the benefits that are traditionally attributed to CATs. The
two major studies that have been conducted on capitalization
on chance in CATs (van der Linden & Glas, 2000, 2001)
had as their starting point the same calibrated item bank:
100 items from an evaluation of English proficiency in
Dutch schools, calibrated with the 2PL model. In addition,
the distribution of parameters in this item bank was
idiosyncratic: the mean of the a parameters was .777, the
mean of the b parameters was -.970 (with a maximum
difficulty of 1.262), and the correlation between both
parameters was positive and significant. Therefore, some
of the results of these studies should be tested in other
conditions, in order to assess their degree of generalization.
In addition, as it will be argued later, we believe that the
effects of capitalization should be studied on both the
empirical and asymptotic errors that are made in the
estimation of θ, because an indicator of empirical error
(e.g., root mean squared error) is not always sensitive to
the effects of capitalization (Li & Schafer, 2003). With this
in mind, we have made some different choices compared
to previous studies, which we now justify.

First, the item bank that we use is eCAT-Grammar, a
CAT that evaluates knowledge of written English and which
is administered via the Internet for personnel selection and
competency assessment of university students (Olea, Abad,
Ponsoda, & Ximénez, 2004). This bank differs from the
van der Linden and Glas item bank in important respects,
as it has a larger number of items, and the items have a
higher mean level of discrimination and more variability
in difficulty.
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Second, the model we use is the 3-parameter logistic
model, which is the model initially used to calibrate the
item bank. Thus, in contrast to the previous cited works,
the errors for the pseudo-guessing parameters will also enter
into the analyses.

Third, the estimation method for the item parameters
will be marginal Bayesian maximum likelihood (Mislevy,
1986). Other methods have more limitations regarding the
consistency/bias of their estimators. This choice provides
the most efficient estimation if the prior distributions of the
parameters are established appropriately (Gao & Chen, 2005;
Swaminathan, Hambleton, Sireci, Xing, & Rizavi, 2003).
Also, more consistent with the real conditions of testing,
the simulated calibration samples will not be smaller than
500 subjects.

Fourth, the results of the CAT will be compared with
those of a random test (RT) of the same length. The basic
procedure for item selection in the administration of the
adaptive test will be one that is empirically employed in
eCAT-Grammar, the maximum information method, with
the additional restrictions required by the selected exposure
control method.

Fifth, we will include measures of precision of the
ability estimates that have not been used in previous studies.
Successive replicas of the test will be generated, which will
allow us to study the root mean squared error (RMSE)
conditioned upon the levels of θ, and its two components
(bias and estimated standard error) separately. In addition,
we study the effects of capitalization on the asymptotic
error (estimated standard error or information levels) as
well, because these are the measures of precision that are
obtained in actual CAT administrations.

Sixth, the effects of adding to the item selection algorithm
an exposure control method are also considered. From among
the considerable number of control exposure methods
available (Barrada, in press; Georgiadou, Triantafillou, &
Economides, 2007), two methods of exposure control were
selected. The first one was a well known, the b-matching
method (Hulin, Drasgow, & Parsons, 1983): to select the
item with a difficulty parameter that most closely matches
the current estimate of the examinee´s ability. This method
was the best in the Willse dissertation, because it does not
consider the a parameter in the item selection. The main
problem with the b-matching method is the increment in the
measurement error, when comparaed with the selection by
means of the Fisher information function (Barrada, Abad, &
Olea, 2011; Li & Schafer, 2005). The second method selected
was the progressive method (Revuelta & Ponsoda, 1998), as
it is efficient both in preserving ability estimate precision
and in increasing the security of the item bank. The general
idea behind the progressive method is the use, at the
beginning of the CAT, of a random or nearly random item
selection strategy that gives a more active role to item
information as the test progresses. We used the extension of
the progressive method presented by Barrada, Olea, Ponsoda,

and Abad (2008), where an acceleration parameter that
controls the speed at which the change from random to
information-guided item selection takes place is included.
The distribution of the a parameters of the items selected
with the b-matching and the progressive methods is more
similar to the original item bank distribution than that obtained
when selecting items without an exposure control method,
or with a method such as the Sympson-Hetter. Therefore,
the use of these control exposure methods should reduce the
selection of items with an overestimated a parameter.

The main objective of our simulation studies is to describe
how errors in the estimation of item parameters and
capitalization on chance affects ability estimation error in
adaptive and random tests (i.e., with randomly selected items).
We are interested in describing the psychometric characteristics
of the items administered in both types of tests. We will pay
special attention to the consequences of the estimation errors
of the discrimination parameters and their effects on the bias
and precision of the estimated θ levels. To that end, item
estimation errors are manipulated from calibrating the item
banks using different sample sizes. In addition to sample size,
another independent variable considered in the simulation
studies is the ratio between item bank size and the test length.
The main four hypotheses are listed below:

a) The effects of capitalization (i.e., an overestimation
of the precision) will be observed to a greater degree in
the CAT than in the random test.

b) In the CAT, these effects will be more pronounced
in smaller item calibration sample sizes.

c) They will also be more pronounced in larger bank
size to test length ratios.

d) If an exposure control method is incorporated into
the item selection algorithm, the problems caused by
capitalization will be mitigated.

Method

Item banks

Two different item banks were created, one with 197
and a second with 788 items. Ten replicas were made of
each item bank. The parameters of the item banks were
based on the actual item bank on which eCAT-Grammar
operates, which is composed of 197 four-option items. The
parameters for each replica of the bank were obtained by
a random draw from a multivariate distribution having as
means the a, b and c means of the parameter estimates,
and as variance and covariance matrix the empirical variance
and covariance matrix observed between the parameter
estimates in the bank. Although the parameters of the bank
have been recently updated (Abad, Olea, Aguado, Ponsoda,
& Barrada, 2010), we used the original ones (Olea et al.,
2004). With the same procedure, a second bank 4-times the
size of the real bank (788 items) was also created. Values



were truncated at the minimum and maximum values that
were obtained from the calibration of the first bank.

Both banks were calibrated under three different sample
size conditions (500, 1,000 and 2,000 simulated subjects).
The 3-parameter logistic model (normal metric) and the
marginal Bayesian maximum likelihood procedure
implemented in the BILOG program (Mislevy & Bock,
1990) were applied for their calibration. A !(0,1)
distribution was assumed for the prior distribution of θ.
The prior distributions assumed for the item parameters
were a log-normal distribution (0.75, 0.12) for the a
parameters, a !(0, 2) distribution for the b parameters, and
a beta distribution (α = 76, β = 226)1 for the c parameters.
Thus, c parameters have as mean the reciprocal of the
number of options and as standard deviation the value .025.

Types of tests

1) Random test (RT). Items were randomly selected
from the corresponding bank.

2) Two computerized adaptive tests were considered:
– CAT without exposure control. The following

conditions were established in the adaptive algorithm: a) A
level of was randomly selected from the uniform distribution
(-.5 , .5) at the beginning of the CAT; b) the maximum
likelihood method was applied for ability estimation,
incorporating the Dodd (1990) procedure as long as the
response patterns were constant, and with the restriction that
remained inside the interval (-4, 4); c) the selection of items
was based on the maximum information criterion, which
was evaluated according to Fisher’s function.

– CAT with exposure control. From the wide variety
of control methods available, we decided to use: a) the b-
matching method, and b) the progressive method with an
acceleration parameter equal to 1 (Barrada et al., 2008).
Other choices related to item selection were the same
applied in the no exposure control condition.

For both types of tests, three lengths were established:
20, 30 and 40 items. Thus, 6 different ratios of bank size
to test length were obtained. A thousand simulees were
generated for each one of 9 θ levels, ranging from -2 to 2
in steps of 0.5.

Dependent variables

a) RMSE and bias of the administered items, with
special attention given to the bias obtained for the a
parameter.

b) P(â > a): Proportion of the items administered that
have positive estimation errors in the a parameter (a
proportion greater than .5 would indicate that capitalization
on chance is present).

c) RMSE associated with the estimation of θ̂. Its two
additive components (bias and standard deviation) are also
considered.

d) Estimated standard error, Se, computed as the inverse
of the square root of the information obtained for each
ability level. Two types of estimated standard errors will
be obtained for each condition, one from the item
parameters and the other from their estimates.

e) Relative efficacy: For each θ, the relative efficacy
is defined as the ratio between the estimated information
(Ie) and the real information (Ir). Ie values were calculated
from item parameter estimates (â, b̂, ĉ), while the Ir values
were computed from item parameter values. A ratio above
unity would indicate overestimation in precision if the
parameter estimates of the items were to be employed in
a real CAT administration

Results2

Parameter recovery

Table 1 contains (for different bank sizes and calibration
sample sizes) the true item parameter distribution (lower
lines), RMSE, bias, and Pearson´s correlation between true
and estimated parameters.

As expected, the results indicate good recovery of the
b difficulty parameter in the different calibration conditions
(r = .99). The recovery of the a discrimination parameter
is better as the sample size increases, reaching a .83
correlation when the calibration is done with 1,000 subjects;
the bias(a) is larger in the largest (i.e., 788) item bank
condition. The recovery of the c parameter is not good even
in the largest sample size condition, a result obtained in
some classic studies (e. g., Hulin, Lissak, & Drasgow, 1982).

Parameter estimation errors and capitalization
on chance

Figure 1 shows, for each θ, the RMSE values of the a
parameter for the items administered in the CAT and in the
random test (RT), for each calibration condition. In the
random test, RMSE(a) values are fixed for the different θ
values, so only one point for each condition is shown at
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1 ALPHA and BETA as defined in BILOG (Zimowski, Muraki, Mislevy, & Bock, 2003).
2 The high number of studied conditions prevents us from providing results from all of them. For this reason, we will not show

results from the condition that included a sample size of 2,000 or 30 and 40 items as the stopping criterion. The complete set of results
can be requested from the first author.



the left of the figure. First, it can be observed that the
estimation errors decrease as the size of the calibration
sample increases. Second, for a specific sample size, the
RMSE(a) values of the administered items are in general
lower in the RT than in the CAT condition, indicating that
in this condition the selected items have larger estimation
errors in the discrimination parameter. Third, the RMSE(a)
values of the selected items in the CAT are larger for the
medium and medium-high ability levels.

Figure 2 shows, for the same conditions, the RMSE
values corresponding to the b parameter of the items
administered in the CAT and in the RT. It is can be

observed, again, the clear effect of the sample size in the
estimation errors of the difficulty parameter. However, the
CAT condition does not show a larger systematic estimation
error than the RT condition for this parameter; for a specific
sample size, the CAT selects items with a larger estimation
error at the extreme levels, but not in the central part of
the θ distribution.

Figure 3 shows, for the same conditions, the RMSE
values obtained for the c parameter of the items administered
in the CAT and in the RT. The estimation errors of the
pseudo-guessing parameters are larger in the items
administered in the CAT for the lower θ levels. At these
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Figure 1. RMSE(a) for CAT and random test across bank size (197: open symbols and dashed lines; 788: solid symbols and solid lines)
and calibration sample size (500: circle; 1,000: triangle).

Table 1
True item parameter distribution, RMSE, bias and Pearson’s correlation between true and estimated parameters for a, b
and c parameters across bank size (197, 788) and calibration sample size (500, 1000)

a parameter b parameter c parameter
197 788 197 788 197 788

Mean 1.30 1.30 .23 .22 .21 .21
SD .31 .31 .98 .98 .03 .03

500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

RMSE 0.25 0.19 0.25 0.19 0.15 0.14 0.16 0.13 0.04 0.04 0.04 0.04
Bias 0.01 0.01 0.05 0.03 0.04 0.03 0.04 0.01 0.01 0.01 0.01 0.01
r .73 .83 .74 .83 .99 .99 .99 .99 .48 .54 .48 .53
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Figure 3. RMSE(c) for CAT and random test across bank size (197: open symbols and dashed lines; 788: solid symbols and solid lines)
and calibration sample size (500: circle; 1,000: triangle).

Figure 2. RMSE(b) for CAT and random test across bank size (197: open symbols and dashed lines; 788: solid symbols and solid lines)
and calibration sample size (500: circle; 1,000: triangle).
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Figure 4. Proportion of applied items with â > a for the CAT and the random test across bank size (197: open symbols and dashed
lines; 788: solid symbols and solid lines) and calibration sample size (500: circle; 1,000: triangle).

Figure 5. Bias of the a parameter for the applied items of the CAT and random test across bank size (197: open symbols and dashed
lines; 788: solid symbols and solid lines) and calibration sample size (500: circle; 1,000: triangle).
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ability levels, items have lower difficulty parameters and c
parameters play a more important role. It is also possible
to verify that in the CAT changes in calibration sample size
do not produce an effect in the RMSE(c) values of the items
administered at very low levels of θ. Moreover, in general,

estimation errors reach higher levels in the RT than in the
CAT condition.

Figure 4 shows, for each θ level and calibration sample
condition, the proportion of items administered in the CAT
for which the estimator (â) exceeds the corresponding

Figure 6. RMSE(θ) values in the CAT (upper panel) and the random test (lower panel) across bank size (197: open symbols and dashed
lines; 788: solid symbols and solid lines) and calibration sample size (500: circle; 1,000: triangle; true parameter: square).



parameter (a), P(â > a). In the case of no capitalization on
chance (and assuming the absence of bias in the estimation
of this parameter), the expected proportion would be .5. In
fact, P(â > a) values are around this figure in the four RT
conditions. Figure 4 provides strong support for the presence
of capitalization when there is an adaptive selection of
items. Specifically, three points stand out:

1) For almost all of the θ level range, the capitalization
is larger in the smaller calibration sample condition.

2) The effects of capitalization on chance are not the
same for the different levels of ability: with the largest item
bank (788 items), the problem occurs to a greater degree for
the central levels of θ. For some of them, when calibration
sample size is 500, the proportion of administered items with
overestimated a is above .9. These results also hold for greater
sample sizes, for the central θ levels (approximately, between
-1 and + 1.5).

3) The effects are small for extreme levels of θ.
If we analyze the problem in terms of bias, Figure 5

shows the mean differences between the discrimination
parameter estimates and the true parameters of the items
administered in the CAT and RT conditions. A positive bias
can be seen in the items selected by the CAT. Bias is larger
in the smaller calibration sample, especially at the central
levels of θ. In contrast, the bias of the a parameter in the
RT is practically irrelevant.

Effects on the precision of the θ estimates

In order to describe the incidence of capitalization on
chance on the ability estimates, the RMSE(θ) and bias(θ)
values conditioned on the ability levels were computed.
Figure 6 shows the RMSE values obtained for the ability
estimates in the CAT (upper panel) and the RT (lower panel)
for the different ratios between bank size and test length.
Two additional lines were added to each figure showing
what may be understood as the “true RMSE” or the RMSE
obtained when the parameters of the items replace their
estimates when selecting items and computing the ability
level.

Some interesting results should be noted. First, as
expected, for both CAT and RT, the RMSE(θ) function
provides smaller values for the “true RMSE” condition that
for the other conditions (in which we used the estimates
of item parameters), because the estimation errors of the
item parameters play no role in ability estimation or item
selection. Also, as anticipated, RMSE(θ) values are smaller
in the CAT than in the RT condition. For the RT, very
imprecise estimates were obtained for extreme levels of θ.

The upper panel shows the joint incidence of the
estimation errors of the three item parameters for ability
estimation in a CAT. RMSE(θ) values become higher for
very low levels of θ than for very high levels, because the
incidence of the estimation errors of the c parameter become
higher, as we have seen in Figure 3, for low ability levels.

In addition, the greatest differences are observed between
the two sample calibration sizes at extreme θ levels. This
result could be due to the higher estimation errors of b
parameters for the items that are very easy or very difficult.
However, no differences in RMSE(θ) are seen in the θ range
[-0.5, + 1.5] between the different calibration conditions.

Figure 7 shows the bias(θ) values obtained for the same
simulated conditions, for both the CAT (upper panel) and
RT (lower panel). A clear conclusion from the figure is that
the bias obtained in the RT exceeds that obtained in the
CAT condition, because in a random test item difficulties
do not match ability estimates as well as they do in a CAT.
Also, the bias found indicates that low θ levels are
underestimated and high θ levels are overestimated,
something characteristic of the maximum likelihood method
which was used for the estimation of the ability parameters
(Warm, 1989).

With respect to the bias associated with estimations
made from the CAT, the “true bias” function shows what
is expected when there are no estimation errors in the item
parameters. The bias function obtained for the sample
conditions indicate that the CAT gives essentially unbiased
estimates of ability (bias values range from -0.2 and + 0.1),
that is not uncommon when the CAT length is above 10
items. The close similarity a CAT achieves between the
difficulty of the items and the ability levels is the main
explanation for these results, which implies that the
RMSE(θ) values are mostly due to random rather than to
systematic errors.

The problem of capitalization on chance, which was
evident when we studied the positive bias in the
discrimination parameters of the CAT, does not show itself
in the bias and RMSE of the θ estimates. Even though these
results will be discussed later, lets observe now what
happens if we obtain the estimated standard errors associated
with the ability levels. Figure 8 shows the values obtained
from Fisher’s information formula. The black lines refer to
the standard error obtained in the “estimated” parameter
conditions; that is, when the estimated parameters of the
items are considered. The grey symbols refer to the standard
error produced when the information is obtained with the
“true” item parameters in each of the sample conditions.
In the RT (represented in the lower panel), the estimated
standard error that is obtained considering the real item
parameters is in general below the estimated standard error
obtained with the estimated parameters; obviously, both are
higher to the corresponding ones obtained in the CAT.
However, the estimated standard error obtained in the
administration of the CAT (upper panel) shows that those
obtained from the parameter estimates is less than those
obtained from the item parameters within the range of θ
from approximately -1 to 2. Quite likely, this estimated
standard error, obtained from the parameter estimates, would
be close to what researchers would find in applied contexts.
Thus, this empirical measure of ability precision does show
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the effects of the capitalization on chance due to the
adaptive selection of items with overestimated discrimination
parameters.

The effect can be seen more clearly if we obtain for
each ability the relative efficacy, defined as the ratio

between the information obtained with estimates, Ie, and
the information obtained with the item parameters, Ir (see
Figure 9). If there were no estimation errors of the item
parameters, the ratio between both functions for each θ
value would be 1. Both panels show, for both types of tests,
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Figure 7. Bias of θ for the CAT (upper panel) and random test (lower panel) across bank size (197: open symbols and dashed lines;
788: solid symbols and solid lines) and calibration sample size (500: circle; 1,000: triangle; true parameter: square).
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some effects of the item estimation errors for extreme levels
of θ. In addition, an important overestimation in the
precision of the CAT can be seen in the range of θ between
-1 and 2 when, as in empirical contexts, the estimated item

parameters are used to obtain the values of the information.
It therefore seems clear that this overestimation is produced
by capitalization on chance, because it increases with a
smaller calibration sample size. For a sample size of 1,000

Figure 8. Theoretical estimated standard error of θ for the CAT (upper panel) and random test (lower panel) computed with estimated
item parameters (black color) and true item parameters (grey color) across bank size (197: open symbols and dashed lines; 788: solid
symbols and solid lines) and calibration sample size (500: circle; 1,000: triangle).



subjects, the overestimation produced for the range of θ
values between -1 and 2 is approximately between 12 and
24%. If a calibration sample of 500 subjects is used
(something that is common in applied situations where the
3-parameter model is used), the information is overestimated

about 30%. In some conditions (sample size of 500 subjects,
for θ equal to 1) the overestimation is close to 40%. If we
observe the results obtained for the RT (lower panel) the
problem is much less relevant and affects a much smaller
range of ability values.
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Figure 9. Relative efficacy: I(estimated parameters)/I(true parameters) for the CAT (upper panel) and random test (lower panel) across
bank size (197: open symbols and dashed lines; 788: solid symbols and solid lines) and calibration sample size (500: circle; 1,000: triangle).
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Figure 10. Proportion of applied items with â > a for the CAT across item selection method (maximum information – MI: continuous
line and solid symbols; progressive – PG: discontinuous line with solid symbols; b-matching – BM: discontinuous line with open
symbols) and calibration sample size (500: circle; 1,000: triangle).

Figure 11. RMSE(θ) values for the CAT across item selection method (maximum information – MI: continuous line and solid symbols;
progressive – PG: discontinuous line with solid symbols; b-matching – BM: discontinuous line with open symbols) and calibration
sample size (500: circle; 1,000: triangle; true parameter: square).



Effects of including item exposure control

We will now describe the results of a CAT with and
without exposure control using the b-matching method and
the progressive method. The proportion of selected items
with a positive bias in the a parameter will be studied first.
Figure 10 describes the results obtained for each sample
size (500 and 1,000 subjects) and the types of CATs. Figure
11 shows the mean values of the RMSE(θ) obtained in the
simulation. Figure 12 shows the mean values of relative
efficacy obtained for each θ level.

The most notable results are the following:
a) Introducing restrictions in the exposure control of

the items in the maximum information procedure reduces
the proportion of administered items that have a positive
bias in their discrimination parameter. As expected, applying
de b-matching method a similar proportion of items with
overestimated and underestimated a parameter are selected.
For most of the ability values, the reduction ranges between
5% and 10% with the progressive method.

b) When the progressive method is applied, there were
no differences in the precision of the θ estimations between
both conditions, as reflected by the RMSE function.
However, the b-matching method produces higher levels
of RMSE(θ) than any other item selection methods.

c) At the θ levels where the capitalization occurred,
when the control exposure method is used, a reduction in
the overestimation of the precision is observed, as assessed
from the relative efficacy of the asymptotic errors. This is
especially important in the implementation of the b-matching
method.

Discussion

The present work explores the incidence of the
estimation errors of the item parameters, employing the 3-
parameter logistic model, in the ability estimates provided
by a CAT. It includes a study of the empirical and
asymptotic errors as well as the bias produced when the
selection of items is performed by an adaptive algorithm.

As expected, the study of parameter recoverability
revealed problems in the estimations of the a and c
parameters, with the first one being especially sensitive to
the sample size used in the calibration of the item banks.

In the simulated conditions, the estimation errors of the
items that are selected in a CAT are very different from
those randomly selected. Regarding the first hypothesis
(more capitalization in the CAT than in the RT), the most
relevant result is that the RMSE(a) values are higher in the
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Figure 12. Relative efficacy: I(estimated parameters)/I(true parameters) for the CAT across item selection method (maximum information
– MI: continuous line and solid symbols; progressive – PG: discontinuous line with solid symbols; b-matching – BM: discontinuous
line with open symbols) and calibration sample size (500: circle; 1,000: triangle).



CAT, especially for θ levels above 0. For broad ranges of
θ, in the CAT condition, it was also found that higher rates
(and greater than .5) of items with an overestimated a were
administered. It becomes obvious, therefore, that the
problem of capitalization is produced to a greater degree
in the adaptive selection of items than in the random
selection, where the problem is basically irrelevant.

With respect to the incidence of the capitalization on
chance in the estimation of the ability levels of the subjects,
we have verified that the problem does not occur in the
RMSE(θ) levels. This can explain to a certain extent some
of the “unexpected” results obtained in previous works (Li
& Schafer, 2003). The empirical error (RMSE and bias)
associated with the ability estimates is sensitive to the
estimation errors of the item parameters, but it seems
unaffected by the overestimation of the discrimination
parameter. One of the contributions of the present work is
the study of the effects of the capitalization on the estimated
standard error (Se) of ability. It is in this measure of
precision where the effects of the overestimation in the a
parameter are detected, sometimes reaching levels close to
40% in the overestimation of the precision of the θ
estimates. This result is relevant because, as it was remarked
upon in the introduction, it is common to use the measure
of information (or the estimated standard error of estimation)
to evaluate the efficiency of the CATs with respect to fixed
tests of the same length (e. g., Haley et al., 2006; Hambleton
et al, 1991; Nicewander & Tomasson, 1999). In other words,
some of the advantages of the CAT with respect to
conventional tests are not as important as they have been
typically considered.

With respect to our second hypothesis (more
capitalization in small sample size calibration), the most
important results related to the condition of ! = 500 in
comparison to the other sample sizes are: a) greater
RMSE(a), RMSE(b) and RMSE(c), if we exclude in the
latter case the results obtained when θ = -2.5; b) a greater
proportion of items selected that have a positive error in
the discrimination parameter; c) higher levels of bias(a);
d) higher levels of RMSE(θ), although only slightly higher
for the central range of θ; e) imperceptible differences in
the bias(θ); and f) a higher relative efficacy (Ie/Ir) in the
levels of ability between -1 and 2. It should be noted that
the levels of θ that produce greater relative efficacy in the
condition of smaller sample size corresponds to the range
of values where the â estimates had a greater positive bias,
and where the proportion of items with an overestimated
a was higher. Therefore, it can be concluded that the largest
capitalization on chance corresponds to the ! = 500
condition.

Concerning the effects of the different ratios between
the bank size and the test length (third hypothesis), the
conditions of greater ratio produced: a) higher values of
RMSE(a) and RMSE(b), despite similar values of RMSE(c)
for the smallest ratios; b) greater values in P(â > a); c)

higher levels of bias(a) and imperceptible differences in
bias(b) and bias(c); d) higher values of RMSE(θ), although
only slightly higher for the central range of θ; e)
imperceptible differences in bias(θ), except for very extreme
levels of θ; and f) values of relative efficacy (Ie/Ir) higher
than (in quantity and in ranges of ability values) under
conditions of smaller ratios.

The b-matching method as procedure of item selection
almost eliminates the problem of capitalization on chance,
although this greatly increases the estimation error of θ.
Therefore, from a practical point of view, this may not be
a satisfactory solution. The implementation of modified
progressive method (Barrada et al., 2008) can be a good
alternative because reduces the problem without loss in
ability precision. Another option would be to combine the
b-matching method, at the beginning of the test, with the
maximum information criterion, for the last part of the test
(Barrada et al., 2011; Leung, Chang, & Hau, 2005).

There is still a need to develop parameter estimation
procedures that can tackle the problem from its root,
reducing the estimation errors of the item parameters,
especially for the discrimination parameter. More attention
should be given to the Bayesian alternatives (Tsutakawa &
Jonson, 1990) or those based in the expected response
functions (Mislevy, Wingersky, & Seehan, 1994). The results
from some of the previous works are encouraging (Glas,
2005).

In summary, we have described the problem of
capitalization on chance in CAT and some of its effects on
the precision of the ability estimations. We have seen that,
amongst the estimation errors of the item parameters, the
positive errors of a have the largest effect on the precision
of the ability estimates. We have also verified the effect of
the calibration sample size although our smaller sample
size (500) is not unusually small. It seems reasonable then
to expect that the capitalization problem would be even
greater for smaller sample sizes. It also becomes evident
that larger ratios between the bank size and the CAT length
increase the problem, something that should be taken into
account in the recommendations about the sizes of the item
banks that are appropriate for CAT. A part of the percentage
of the efficacy in precision that is attributed to CATs is due
to capitalization on chance, but for the same test length
they are still more reliable than fixed tests.
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