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A standard approach to item selection in computerized 
adaptive testing (Barrada, 2012; van der Linden & 
Glas, 2010) has been to select the item with the  
maximum Fisher information (MFI) as the next item 
(Lord, 1980):

 ( )∈= θ̂arg max ,
qi B i

j I  (1)

where Bq is the set of items that are evaluated for pos-
sible presentation, I is the Fisher information, and θ̂ is 
the estimated trait level.

In doing so, certain items tend to be used more 
often than others, while some are never presented, 
making item exposure rates somewhat uneven. This 
has resulted in two main problems: The first is eco-
nomic, given the money spent on developing the 
unused items; the second is security-related, because 
of the risk of item-sharing among the often-used 
items (Chang, 2004; Davey & Nering, 2002). Various 
alternative item selection rules have been proposed to 
remedy this situation, some dealing with underexpo-
sure, others focused on overexposure (see Georgiadou, 

Triantafillou, & Economides, 2007, for a review). 
Among those which have aroused most interest in 
the last years are stratified methods (Chang & Ying, 
1999).

The logic of stratified methods is to administer 
low-informative items at the beginning of the test, 
and to leave the administration of more highly infor-
mative items as the test goes on. In all the stratified 
methods, those items from the item pool that can be 
administered are determined according to their posi-
tion in the test length. We will follow the maximum 
information stratification with blocking method 
(MIS-B) proposed by Barrada, Mazuela, and Olea 
(2006), as it outperforms the original a-stratified 
method from Chang and Ying (1999) in both security 
and accuracy.

In the MIS-B method, Bq vary according to the item 
position in the test sequence (q). At the beginning of 
the test, only those items with low maximum Fisher 
information ( max

I ) are available. As the test goes on, 
the mean max

I  of the items administered increases, 
leaving the items with high a parameters and low  
c parameters ready for use at the end of the test. 
Stratifying by taking into account (blocking) the trait 
level point (θ) where max

I  is achieved ( maxθ ) makes the 
distribution of maxθ  as similar as possible between 
strata. The MIS-B method mimics the idea of the 
a-stratified method with b blocking (Chang, Qian, & 
Ying, 2001) changing a parameter to max

I  and b param-
eter to maxθ .
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With this method, the item selected will be the one 
with the smallest distance between the estimated trait 
level and maxθ :

 θ̂ θ∈= − max
arg min .

qi B i
j  (2)

Further details of the MIS-B method can be found in 
Barrada et al. (2006).

Stratified methods, compared with selection by 
means of maximum Fisher information, improve the 
security of the item bank, leading to an overlap rate 
near to the minimum possible overlap rate, while 
decreasing accuracy (Chang & Ying, 1999). Overlap 
rate is the mean proportion of items shared by two 
examinees (Way, 1998). Also, with these methods, the 
maintenance of the item bank is facilitated as item 
usage is not related to a high a parameter.

Defining the number of strata

To stratify the item pool, the number of strata (S) must 
be defined. The admissible values for S range from 1 
(no stratification) to Q (Q being the test length). Up 
to now, there has been no clear rule to set S, so this 
decision in each new study is based on common 
practice in the field, chosen S values usually ranging 
from 2 to 5 (e.g., Cheng, Chang, Douglas, & Guo, 2009; 
Deng, Ansley, & Chang, 2010; Han, 2012; Leung, 
Chang, & Hau, 2005; Yi & Chang, 2003). In other words, 
there is no clear guidance on the optimal number of 
strata. In a recent study, it has been shown that varying 
the number of strata in the MIS-B method changes 
the results in terms of accuracy and test security 
(Barrada, Abad, & Olea, 2011). In that paper, however, 
the number of strata was not the main focus of research, 
so no exhaustive manipulation of the number of 
strata was applied, and just 1, 2, and 5 strata were 
evaluated.

Barrada, Olea, Abad, and Ponsoda (2010) have noted 
that, when results of several methods differ simulta-
neously in accuracy and security, defining the best alter-
native is problematic, as no method dominates the other. 
A strategy for comparing item selection conditions in 
those conditions is to manipulate rmax (the maximum 
exposure rate that no item should surpass). The control 
of rmax is a common method for improving item bank 
security: It reduces the size of Bq, sometimes leaving 
items that would be overexposed if no restriction was 
applied out of the evaluable set (Barrada, Abad, & 
Veldkamp, 2009). The control of rmax can be combined 
with any function for evaluating items for selection. The 
conjunction of restriction of rmax and a-stratified method 
was first proposed by Leung, Chang, and Hau (2002).

Barrada et al. (2010) have noted that rmax should be 
manipulated on more than one level. As they have 

shown, the control of rmax on 10 levels, ranging from 
max

1
r  equal to the minimum possible value for rmax (test 
length divided by item bank size) to max

10
r  equal to 1 

(which is equivalent to not applying any restriction on 
the maximum exposure rate), allows for the compar-
ison of item selection conditions in all domains of the 
functions of RMSE and overlap rate. This idea has been 
applied by Barrada, Olea, and Abad (2008a) for com-
parison between rotating items banks and the restric-
tion on maximum exposure rates in a master bank and 
by Barrada et al. (2010) for the comparison of different 
item selection rules.

With this strategy, we obtain tables of results with 
RMSE and overlap rate for 10 different conditions, 
starting with maximum item exposure control and 
finishing with no item exposure control. We have one 
independent variable (rmax) and two dependent vari-
ables (RMSE and overlap). With these data, it is pos-
sible to obtain the curves that relate rmax with RMSE 
and rmax with the overlap rate. Also, with this informa-
tion it is possible to plot the graph that relates the  
overlap rate with RMSE. The preferred condition is 
the one that, with an equal RMSE value, offers a 
lower overlap rate; or, in the other sense, with an equal 
overlap rate value, leads to lower RMSE. When the 
selection of items by means of maximum Fisher  
information and by means of the MIS-B method 
were compared (item banks stratified in 5 strata), 
Barrada et al. (2010) found that MIS-B should be pre-
ferred when item bank security is a main concern and 
overlap rate must be near its minimum possible value. 
However, it is unclear if the optimal number of strata 
was used in the comparison.

Our proposal is to apply this strategy to the problem 
of the number of strata. As the question about the 
optimum number of strata cannot be answered theo-
retically, two simulation studies using the comparison 
method proposed by Barrada and colleagues (Barrada, 
Olea, & Abad, 2008; Barrada et al., 2010) were carried 
out. In the first study, we used banks with randomly 
generated item parameters. In the second, we used the 
estimated parameters of a currently operative bank. 
After these two studies, general discussion and conclu-
sions will be provided. Our goal is to provide evidence 
based guidance about the correct number of strata.

STUDY 1

Method

Item banks and test length

Ten item banks of 480 items were generated. The 
distributions for the parameters were: a ∼ N(1.2, 0.25); 
b ∼ N(0, 1); c ∼ N(.25, .02). We simulated two different 
test lengths (Q), 20 and 40 items.
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Trait level of the simulees, starting rule, and trait 
estimation

The trait level of the simulees was randomly generated 
from a population N(0, 1). For each of the 10 item 
banks, 5,000 simulees were sampled. The starting θ̂  
was chosen at random from the interval (–0.5, 0.5). 
Dodd’s (1990) procedure was applied for the trait level 
estimation until each examinee obtained correct and 
incorrect responses: when all the responses were cor-
rect, θ̂  was increased by (bmax – θ̂ )/2; if all the responses 
were incorrect, θ̂  was reduced by (θ̂  – bmin)/2 (where 
bmax and bmin correspond, respectively, to the max-
imum and minimum b parameter in the item bank). 
Once the constant pattern was broken or the test  
was finished, maximum-likelihood estimation was 
applied, with the restriction that θ̂  had to be in the 
interval [–4, 4].

Control of rmax

Following advice by Barrada et al. (2009), the item-
eligibility method (van der Linden & Veldkamp, 2004) 
was applied. The variable rmax was manipulated on 10 
levels, as in previous studies (Barrada, Olea, & Abad, 
2008; Barrada et al., 2010).

Item selection rules and stratification of the banks

We compared the MFI and the MIS-B item selection 
rules. For the MIS-B, we applied all the possible  
divisors of test length as number of strata. That means 
that, for the test of 20 items, S could be 1, 2, 4, 5, 10, 
or 20, and for the test of 40 items, S could be 1, 2, 4, 
5, 8, 10, 20, or 40. The number of items administered 
in each stratum was constant across strata and equal 
to /Q S .

Performance measures

Two dependent variables were used for the comparison 
between methods: RMSE and overlap rate. RMSE is a 
measure of accuracy, calculated with Equation 2:

 ( )
1

2
2

1

ˆ ,

r

g g

g

RMSE rθ θ
=

  = −   
∑  (3)

where r is the number of examinees, 
g

θ  is the (real) 
trait level of the g-th examinee and ˆ

g
θ  is the estimated 

trait level for that examinee.
Overlap rate is an indicator of test security. The fol-

lowing equation is the one used to calculate it (Chen, 
Ankenman, & Spray, 2003):

 2
,

er

n Q
T S

Q n
= +  (4)

where T  is the overlap rate, n is the item bank size and 
2

er
S  is the variance of the exposure rates of the items.

Results

Given that the results for the MFI are basically equiva-
lents to those reported in Barrada et al. (2010), we will 
pay special attention to the results from the MIS-B. The 
results for the MIS-B method are also similar to those 
from Barrada et al. (2010) except in the manipulation of 
the number of strata.

Relation between the overlap rate and rmax

The relation between the overlap rate and rmax can be 
seen in Figure 1. Results for each dot in the plot were 
based on 50,000 examinees (10 banks × 5,000 simulees). 
Several points should be noted. First, all the overlap 
rates are in the narrow interval of .03, as no restriction 
of rmax already lead to an overlap rate near the min-
imum possible value.

Second, a high restriction on rmax can be imposed 
without any effect on the overlap rate. The explanation 
for this is that, for all the different numbers of strata 
considered, the condition without restriction on rmax 
(i.e., rmax equal to 1), the maximum exposure rate was 
well below 1 (remember that initial trait level was not 
constant for all simulees). So, the points that are, for a 
given test length and number of strata, at the same 
height in Figure 1 can basically be considered replicas.

Third, the higher the number of strata, the higher the 
rmax values when the overlap rate starts to decrease. 
When only a few items have been administered, the 
number of different possible trait levels estimations 
and its distribution deviates importantly from the 
distribution of maxθ  in the bank. This implies that for 
the stratified methods the risk of overexposure is more 
severe at the beginning of the test and when the strata 
size is small (when the divergence between the 
distribution of maxθ  in the strata and the distribution of 
θ̂ is maximal). A high maximum exposure rate when 
rmax is equal to 1 means that high levels on rmax will 
imply real restrictions on item exposure.

Fourth, the effects of reducing rmax on the overlap 
accelerate as rmax approaches its lower limit (Barrada, 
Olea, & Abad, 2008; Barrada et al., 2010). As could be 
expected, all the conditions converged to the point of 
minimum overlap when maximum restriction on rmax 
was imposed.

Finally, the main comparison is between conditions 
with varying numbers of strata. The lines in Figure 1 
are not parallel, that is, the effect on overlap rate of 
restrictions on rmax depends on the combination of 
numbers of strata and level of rmax. When no restriction 
is imposed, maximum overlap rate is obtained with an 
extreme number of strata (20 and 1 strata for test length 
of 20 items; 40 and 1 strata with test length of 40 items) 
and the minimum overlap rate is achieved when the 
bank is divided into 4 or 5 strata. When rmax approaches 
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its minimum possible value, the number of strata that 
leads to the higher overlap rate changes: For instance, 
for both test lengths, with rmax values below .23 a single 
strata leads to a higher overlap than as many strata as 
possible, reversing the result found when rmax was 1.

Relation between the RMSE and rmax

Figure 2 shows the relation between rmax and RMSE. 
As could be expected, increasing the number of items 
administered improves accuracy. The higher the test 
length (or the lower the item bank size/test length 
ratio), the smaller the distance between conditions 
with a different number of strata: With 20 items 
administered the differences were no greater than 0.03 
and with a test of 40 items the differences were smaller 
than 0.01. When no restriction on rmax is applied,  
increasing the number of strata leads to reductions in 
RMSE, although for a test length of 40 items all the 
conditions with more than two strata show almost 
overlapping dots. The pattern that more strata lead to 
lower RMSE is maintained throughout the range of 
rmax, with the exception of rmax equal to its minimum. 

Importantly, a high restriction on rmax can be imposed 
without impact on RMSE. For all the different number 
of strata conditions, the point where reductions in rmax 
lead to increments in RMSE is lower than the rmax point 
where the overlap rate starts to decrease.

Relation between the overlap rate and the RMSE

Figure 3 depicts the relation between the overlap rate 
and RMSE. This plot informs about the number of 
strata that lead to a lower overlap rate holding the 
RMSE constant (or the reverse) and which therefore 
should be preferred. All the information provided in 
Figure 3 is a rearrangement of data from previous 
plots. There are three main aspects to be noted. First, it 
is possible to greatly reduce the overlap rate without 
any sacrifice in RMSE. In other words, for the MIS-B 
method there is no reason to prefer a rmax equal to 1 
instead of a rmax equal to .25, as the latter leads to better 
bank security with the same accuracy. The point where 
the RMSE bursts is near to the minimum possible 
overlap (Barrada, Olea, & Abad, 2008; Barrada et al., 
2010).

Figure 1. Relation of rmax and overlap rate for the randomly generated item banks and the MIS-B method. Top panel, test length 
of 20 items. Bottom panel, test length of 40 items.
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Second, and answering the main question of this 
study, the best option is to stratify with as many strata 
as possible, as that condition is represented by the 
lower line of the plot. Third, and qualifying this state-
ment, increasing the test length reduces the differences 
between the alternatives. With a test length of 20 items, 
fixing the number of strata to 20 means an appreciable, 
although small, benefit when compared with 10 strata. 
With a 40-item long test, the differences between as 
many strata as possible and a number of strata higher 
than five are negligible.

The comparison between the MIS-B and the MFI 
methods is shown in Figure 4. For simplicity, only lines 
for a common number of strata in published studies 
(5) and the maximum possible number of strata (Q) are 
shown. As could be expected, the MFI method allows 
for a higher accuracy, but with much higher overlap 
rate (dots in the lower right extreme of the figure).

The main conclusions from Barrada et al. (2010) still 
hold: The MIS-B should be preferred when an overlap 
rate near its minimum is required. Using the optimal 
number of strata increases the distance between the 

lines of the MIS-B and the MFI (mainly for a test length of 
20 items), but without changing the general pattern.

In this study we have studied the problem of the 
optimal number of strata with a randomly generated 
item bank. To test whether these results can be general-
ized, the same comparison was carried out with a 
currently operative item bank.

STUDY 2

Method

The method of this second study is equivalent to that 
of the first except in certain aspects which we describe 
now. For this study we used the item bank employed 
in eCAT-Grammar (Olea, Abad, Ponsoda, & Ximénez, 
2004), a CAT for assessing knowledge of English 
grammar. The bank has 197 items. Although the  
parameters of the bank have recently been updated 
(Abad, Olea, Aguado, Ponsoda, & Barrada, 2010), we 
used the originals. The mean, standard deviation, min-
imum, and maximum for the a, b and c parameters 
were (1.30, 0.32, 0.43, 2.20), (0.23, 1, –2.71, 3.42) and 

Figure 2. Relation of rmax and RMSE for the randomly generated item banks and the MIS-B method. Top panel, test length of 20 
items. Bottom panel, test length of 40 items.
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(.21, .03, .11, .29), respectively. Test length was fixed at 
20 items. For simplicity, only the conditions with 1, 5, 
10, and 20 strata were simulated. The MFI method was 
not incorporated.

Results

The principal interest of this study is to decide on the 
optimal number of strata for the MIS-B method. The 
proper plot to answer this is the one that relates overlap 
rate and RMSE. We will therefore restrict our attention 
to the plot by showing both variables simultaneously. 
This information can be seen in Figure 5.

The pattern of results is equivalent to that shown 
in Figure 3. A high reduction in overlap rate can be 
obtained without any increment in RMSE. The option 
whose line is lower is to stratify the item bank into as 
many strata as items to be presented. The differences 
between 10 and 20 strata are negligible.

Discussion and conclusions

As expected, the method proposed by Barrada and 
colleagues (Barrada, Olea, & Abad, 2008; Barrada  
et al., 2010) for the comparison of methods that differ 

simultaneously in terms of accuracy and security could 
be employed to determine the optimal number of 
strata. The pattern of results is highly coincident 
between both item banks, so we consider the results to 
be solid and generalizable. The general conclusion is 
that the best option is to stratify the item bank into as 
many strata as possible: When doing so, for the same 
levels of overlap, lower or equal RMSE is achieved. 
However, it must be noted that increments in the test 
length/item bank size ratio (20/480 vs. 40/480 in 
Study 1, or 20/197 vs. 20/480 in Studies 1 and 2) make 
the differences between conditions smaller. And,  
importantly, differences between the number of strata 
usually employed (S equal to 4 or 5) and as many strata 
as possible are almost trivial. So keeping the common 
practice implies little, if any, decrement in terms of 
accuracy or test security. This common practice can 
now be sustained by evidence.

However, some important limitations of the strati-
fied methods should be noted. It is usually assumed 
that the stratified methods, when compared with the 
MFI method, lead to a higher test security with a cost 
of a higher measurement error. It is supposed that the 
stratified methods should be preferred when overlap 

Figure 3. Relation of overlap rate and RMSE for the randomly generated item banks and the MIS-B method. Top panel, test 
length of 20 items. Bottom panel, test length of 40 items.
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rate is a main concern. Our results and those from 
Barrada et al. (2010) indicate that, for a range of overlap 
rate and when the test is short, it is possible to obtain an 
equivalent overlap rate between MFI and MIS-B with the 
former showing a lower RMSE. So, the stratified methods 
should not be “the default option” when security is a key 
element of the testing program. More doubts about the 
convenience of using the stratified methods are clear 

when other item selection rules, like the proportional 
method (Barrada, Olea, Ponsoda, & Abad, 2008), are 
considered (Barrada et al., 2010).

Our study share the limitations of all fixed length 
adaptive testing. We have shown RMSE averages. We 
cannot guarantee that all the examinees will be assessed 
with a similar accuracy and that all the accuracies will 
be over a desired minimum. This problem is specially 

Figure 4. Relation of overlap rate and RMSE for the randomly generated item banks, and the MIS-B and MFI methods.  
Top panel, test length of 20 items. Bottom panel, test length of 40 items.

Figure 5. Relation of overlap rate and RMSE for operational item bank.



8  J. R. Barrada et al.

evident when we consider results conditional on trait 
levels (e.g., Deng et al., 2010; Olea, Barrada, Abad, 
Ponsoda, & Cuevas, 2012). Trait estimation of exam-
inees high extreme trait levels will be worse than the 
average, as the b parameter is normally distributed in 
the item bank.

The used method for comparing the number of strata 
and different item selection rules (Barrada, Olea, & 
Abad, 2008; Barrada et al., 2010) is not sensitive to con-
ditional problems on test security (e.g., Stocking & 
Lewis, 2000). We have only considered overall overlap 
rate. It is possible to obtain a low overall overlap rate 
and, however, that examinees with a similar trait level 
share a high proportion of items. Just considering 
overall overlap rate is a common practice in this kind 
of simulation studies. And, for the proposed method 
of comparison, considering conditional overlap rates 
would mean switching from simple plots with two 
variables to much more complicated results. We con-
sider that the unconditional results, although limited, 
can help to make relevant decisions in operational 
testing programs. Clearly, further research is needed in 
the area of adaptive testing to allow for the evaluation 
of conditional results when multiple objectives (accu-
racy and security) must be maximized.
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