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Abstract

This article introduces two new item selection methods, the modified posterior-weighted
Kullback—Leibler index (MPWKL) and the generalized deterministic inputs, noisy “and” gate
(G-DINA) model discrimination index (GDI), that can be used in cognitive diagnosis computer-
ized adaptive testing. The efficiency of the new methods is compared with the posterior-
weighted Kullback-Leibler (PWKL) item selection index using a simulation study in the context
of the G-DINA model. The impact of item quality, generating models, and test termination rules
on attribute classification accuracy or test length is also investigated. The results of the study
show that the MPWKL and GDI perform very similarly, and have higher correct attribute classi-
fication rates or shorter mean test lengths compared with the PWKL. In addition, the GDI has
the shortest implementation time among the three indices. The proportion of item usage with
respect to the required attributes across the different conditions is also tracked and discussed.
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Recent developments in psychometrics put an increasing emphasis on formative assessments
that can provide more information to improve learning and teaching strategies. In this regard,
cognitive diagnosis models (CDMs) have been developed to detect mastery and nonmastery of
attributes or skills in a particular content area. In contrast to the unidimensional item response
models (IRTs), CDMs provide a more detailed evaluation of the strengths and weaknesses of
students (de la Torre, 2009). Computerized adaptive testing (CAT) has been developed as an
alternative to paper-and-pencil test, and provides better ability estimation with a shorter and tai-
lored test for each examinee (Meijer & Nering, 1999; van der Linden & Glas, 2000). Most of
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the research in CAT has been conducted in the traditional IRT context. However, a small num-
ber of research has recently been done in the context of cognitive diagnosis computerized adap-
tive testing (CD-CAT; e.g., Cheng, 2009; Hsu, Wang, & Chen, 2013; McGlohen & Chang,
2008; Wang, 2013; Xu, Chang, & Douglas, 2003).

One of the main components of CAT is the item selection method. By choosing more appro-
priate methods, better estimates of the examinees’ abilities or attribute vectors can be expected.
Because of the discrete nature of attributes, some of the concepts in traditional CAT such as
Fisher information are not applicable in CD-CAT. The goal of this study is to introduce two
new indices, the modified posterior-weighted Kullback—Leibler index (MPWKL) and the gen-
eralized deterministic inputs, noisy ‘‘and’” gate (G-DINA) model discrimination index (GDI),
as item selection methods in CD-CAT, and evaluate their efficiency under the G-DINA frame-
work. Their efficiency is compared with the posterior-weighted Kullback—Leibler index
(PWKL; Cheng, 2009). The effects of different factors are also investigated: The item quality
is manipulated, reduced versions of the G-DINA model are used for generating item response
data, and fixed-test lengths and minimum of the maximum (minimax) of the posterior distribu-
tion of attribute vectors (Hsu et al., 2013) are used as stopping rules in the test administration.
With respect to the stopping rules, the former provides a comparison of the efficiency of the
three indices under different fixed-test lengths, whereas the latter provides tailored tests with
different test lengths for each examinee.

The remaining sections of the article are laid out as follows: The next section gives a back-
ground in the G-DINA model and its reduced versions. In addition, the item selection indices
are discussed, and the use of the GDI as an item selection method is illustrated. In the
““Simulation Study’” section, the design and the results of the simulation study are presented,
and the efficiency of the indices under different conditions is compared. Finally, ‘‘Discussion
and Conclusion” section presents with a discussion of the findings of this work and directions
for future research.

CDMs

CDMs aim to determine whether examinees have or have not mastered a set of specific attri-
butes. The presence or absence of the attributes is represented by a binary vector. Let o; = {a;}
be the examinee’s binary attribute vector for k=1,2, ..., K attributes. The kth element of the
vector is 1 when the examinee has mastered the kth attribute, and it is 0 when the examinee has
not mastered it. Similarly, let X; = {x;;} be the binary response vector of examinee i for a set of
Jitems in whichi=1,2, ...,Nandj=1,2, ...,J. In CDM, the required attributes for each item
are represented in a Q-matrix (Tatsuoka, 1983), which is a J X K matrix. The element of the jth
row and the kth column, gy, is 1 if the kth attribute is required to answer the jth item correctly,
and 0 otherwise.

A general CDM called generalized deterministic inputs, noisy “‘and’’ gate (G-DINA) model
was proposed by de la Torre (2011). It is a generalization of the deterministic inputs, noisy
“and’’ gate (DINA; de la Torre, 2009; Haertel, 1989; Junker & Sijtsma, 2001) model, and it
relaxes some of the strict assumptions of the DINA model. Instead of two, the G-DINA model
partitions examinees into 25 groups, where K} is the number of required attributes for item ;.
The mathematical representation of the model consists of the combination of the baseline prob-
ability, the main effects due to the attribute £, the interaction effects due to the attributes & and
k' (k# k"), and other higher order interaction effects (for more details, see de la Torre, 2011).

A few of commonly encountered CDMs are constrained versions of, and therefore, are sub-
sumed by the G-DINA model (de la Torre, 2011). These include the DINA model, the determi-
nistic input, noisy “‘or’’ gate (DINO; Templin & Henson, 2006) model, and the additive CDM
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(4-CDM,; de la Torre, 2011). As constrained CDMs, the DINA model assumes that lacking one
of the required attributes is as the same as lacking all of the required attributes; the DINO model
assumes that having one of the required attributes is as the same as having all of the required
attributes; and the 4-CDM assumes that the impacts of mastering the different required attri-
butes are independent of each other.

CAT

CAT has become a popular tool to estimate examinees’ ability levels with shorter test lengths.
The main goal of CAT is to construct an optimal test for each examinee. Appropriate items to
each examinee’s ability level are selected from an item bank, and the ability level is estimated
during or end of the test administration. Therefore, different tests including different items with
different lengths can be created for different examinees. Weiss and Kingsbury (1984) listed the
components of CAT, which include item selection method and calibrated item pool. In addition,
CAT can be used with different psychometric frameworks such as IRT or CDM. The Fisher
information statistic (Lehmann & Casella, 1998) is widely used in the traditional CAT; how-
ever, it cannot be applied in CD-CAT because it requires continuous ability levels, whereas the
attribute vectors in cognitive diagnosis are discrete. Fortunately, the Kullback—Leibler (K-L)
information, which is an alternative information statistic, can work under both continuous and
discrete cases. This study focuses on item selection methods in the cognitive diagnosis context,
which include K-L—based indices.

The PWKL. The K-L information is a measure of distance between the two probability density
functions, f{x) and g(x), where f{x) is assumed to be the true distribution of the data (Cover &
Thomas, 1991). The function measuring the distance between f'and g is given by

k(r.0)= [ [le(25) |rwax. (1)

Larger information allows easier differentiation between the two distributions or likelihoods
(Lehmann & Casella, 1998). Xu et al. (2003) used the K-L information as an item selection
index in CD-CAT. Cheng (2009) proposed the PWKL, which computes the index using
the posterior distribution of the attribute vectors as weights. Her simulation study showed that
the PWKL outperformed the K-L information in terms of estimation accuracy. The PWKL is
given by

= [ P(x;=x|a"
PWKL,-(&ft))=; ;log W P =xla ) (o) | (2)

where P(X; = x|a.) is the probability of the response x to item j given the attribute vector «,,
and fn'l(-’)(ac) is the posterior probability of examinee i given the responses to the ¢ items. The
posterior distribution after 7th response can be written as

0
() (@)L (X e )
where XY) is the vector containing the responses of examinee i to the ¢ items, Trl(-o)(ac) is the

prior probability of e, and L(th)|ac) is the likelihood of th) given the attribute vector .. The
(t + 1)th item to be administered is the item that maximizes the PWKL.

Downloaded from apm.sagepub.com at Univ Autonoma de Madrid on July 5, 2015


http://apm.sagepub.com/

170 Applied Psychological Measurement 39(3)

The MPWKL. The PWKL is calculated by summing the distances between the current estimate
of the attribute vector and the other possible attribute vectors using the K-L information, and it
is weighted by the posterior distribution of the attribute vectors. By using the current estimate
() , it assumes that the point estimate is a good summary of the posterior distribution 17( ) ().
However, this may not be the case particularly when the test is still relatively short. Instead of
using a point estimate, the new PWKL propose modifying by considering the entire posterior
distribution, which involves 2% attribute vectors. The resulting new index can be referred to as
the MPWKL and can be computed as

MPWKL§;)=Z[Z lng( f{ i':;d)))P(X xlog)m ([>(a‘)]fn’§')(ad)]. (3)

d=1

Compared with the PWKL, by using the posterior distribution, the MPWKL does not require
estimating the attribute vector agt). Using an estimate in the numerator of Equation 2 is tanta-

mount to assigning a single attribute vector (i.e., &Et)) a probability of 1, which may not accu-
rately describe the posterior distribution at the early stages of the testing administration. In
contrast, the numerator in Equation 3 considers all the possible attribute vectors, and weights

them accordingly, hence, the extra summation and posterior probability. Because the MPWKL

uses the entire posterior distribution Tr( ) (o) rather than just an estimate a()

to be more informative than the PWKL.

it can be expected

The GDI. The GDI, which measures the (weighted) variance of the probabilities of success of an
item given a particular attribute distribution, was first proposed by de la Torre and Chiu (2010)
as an index to implement an empirical Q-matrix validation procedure. However, in this article,
the index is used as an item selection method for CD-CAT. To define the index, let the first K;‘
attributes be required for item j, and define o; as the reduced attribute vector consisting of the
first Kj* attributes, for c=1,2, ..., 2% . For example, if a g-vector is defined as (1,1,0,0,1) for
K/* =3 number of required attributes, the reduced attribute vector is (aj,a,05). Also, define
m(a;) as the probability of e, and P(Xj; = 1|a ;) as the success probability on item j given o
The GDI for item j is defined as

K*
27

w (o) [P(x,=1]a) - 7], )

= vl . . .
where P; = Zz ) (o) PCX; =1 \a*) is the mean success probability. In CD-CAT applications,

-4

the posterior probability of the reduced attribute vector w(’)(a ) is used in place of w(a;). This
implies that the discrimination of an item is not static, and changes as the posterior dlstrlbutlon
changes with ¢. The GDI measures the extent to which an item can differentiate between the
different reduced attribute vectors based on their success probabilities, and is minimum (i.e.,
equal to zero) when P(Xj; = 1|a;) = P(X; = 1|a;) = P(X; = 1|a;,\,;j) =P; (or, trivially, when the

posterior distribution is degenerate). It also attaches greater importance to reduced attribute vec-
tors with higher (). As such, a larger GDI indicates a greater ability to differentiate between
reduced attribute vectors that matter. The GDI is computed for each candidate item in the pool,
and the candidate item with the largest GDI is selected.

The GDI has two important properties. First, instead of the original attribute vector, a, it
uses the reduced attribute vector, a;. Consequently, the GDI can be implemented more
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Table I. GDils for Different Distribution, Item Discrimination, and Q-Vectors.

Low discrimination High discrimination
Dominant
Condition o qioo diio qin G100 qiio qin
| None 0.090 0.068 0.039 0.160 0.120 0.070
2 (1,0,0) 0.007 0.004 0.002 0.013 0.006 0.003
3 (1,1,0) 0.007 0.010 0.002 0.013 0.019 0.003
4 (L 0.007 0.010 0.012 0.013 0.019 0.022

Note. Numbers in bold represent the highest GDI in each condition for fixed item discrimination. GDI = G-DINA
model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy “and” gate.

efficiently than can the PWKL or MPWKL. For example, if K' = 5 and K} =2, computing the
GDI involves 2% =4 terms, whereas the PWKL and MPWKL involve 25'= 32 and 2% x 2% =
1,024 terms, respectively.

Second, the GDI takes both the item discrimination and the posterior distribution into
account. This property is illustrated using the example in Table 1. It involves K = 3, and six
items, three of which are of low discrimination (LD), and the other three are of high discrimina-
tion (HD). For the low-discriminating items, the difference between the lowest and the highest
probabilities of success is .4; for the high-discriminating items, this difference is .8. In addition,
these items involve one of the following g-vectors: ¢j00, ¢110, and g;;;. Four distributions are
considered: (1) all attribute vectors are equally probable, as in, w(e.) = 0.125; in (2), (3), and
(4), the attribute vector, namely, (1,0,0), (1,1,0), or (1,1,1), respectively, has a probability of
.965 and was deemed dominant, whereas each of the remaining attribute vectors has a probabil-
ity of .005. In Condition 1, the impact of the posterior distribution is discounted, whereas in
Conditions 2, 3, and 4, one-attribute vector is highly dominant. In this table, the GDI was com-
puted using the DINA model.

Several results can be noted. First, for a fixed g-vector, the high-discriminating items had
higher GDI values compared with the low-discriminating items regardless of the posterior dis-
tribution. Second, when there was no dominant attribute vector, one-attribute items had the
highest GDI values for a fixed item discrimination. In contrast, when one-attribute vector was
highly dominant, the items with g-vectors matching the dominant attribute vectors had the high-
est GDI values. Finally, it can also be observed that the low-discriminating items with g-vectors
that match the dominant attribute vectors can at times be preferred over the high-discriminating
items with g-vectors that do not. For example, for attribute vector (1,1,0), the GDI for the low-
discriminating item with g0 is 0.010. This is higher than the GDI for the high-discriminating
item with ¢y, which is 0.003.

Based on the properties of the three indices discussed earlier, the authors expect the GDI and
the MPWKL will be more informative than the PWKL. In addition, they expect the GDI to be
faster than the PWKL in terms of implementation time, which in turn will be faster than MPWKL.

Simulation Study

The simulation study aimed to investigate the efficiency of the MPWKL and the GDI compared
with the PWKL under the G-DINA model context considering a variety of factors, namely, item
quality, generating model, and test termination rule. The correct attribute and attribute vector
classification rates, and a few descriptive statistics (i.e., minimum, maximum, mean, and coeffi-
cient of variation [CV]), of the test lengths were calculated based on the termination rules to
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Table 2. Item Parameters.

Item quality P(0) P(1)

HD-LV U(0.05, 0.15) U(0.85, 0.95)
HD-HV U(0.00, 0.20) U(0.80, 1.00)
LD-LV U(0.15, 0.25) U(0.75, 0.85)
LD-HV U(0.10, 0.30) U(0.70, 0.90)

Note. HD-LV = high discrimination—low variance; HD-HV = high discrimination-high variance; LD-LV = low
discrimination—low variance; LD-HV = low discrimination—high variance.

compare the efficiency of the item selection indices. In addition, the time required to administer
the test was also recorded for each of the item selection indices. Finally, the item usage in terms
of the required attributes was tracked and reported in each condition.

Design

Data generation. Different item qualities and reduced CDMs were considered in the data gener-
ation. First, due to documented impact of item quality on attribute classification accuracy (e.g., de
la Torre, Hong, & Deng, 2010), different item discriminations and variances were used in the data
generation. Two levels of item discrimination, HD and LD, were combined with two levels of var-
iance, high variance (HV) and low variance (LV), in generating the item parameters. Thus, a total
of four conditions, HD-LV, HD-HV, LD-LV, and LD-HV, were considered in investigating the
impact of item quality on the efficiency of the indices. The item parameters were generated from
uniform distributions. For HD items, the highest and lowest probabilities of success, P(0) and
P(1), were generated from distributions with means of .1 and .9, respectively; for LD items, these
means were 0.2 and 0.8. For HV and LV items, the ranges of the distribution were 0.1 and 0.2,
respectively. The distributions for P(0) and P(1) under different discrimination and variance con-
ditions are given in Table 2. The mean of the distribution determines the overall quality of the
item pool, whereas the variance determines the overall quality of the administered items.

Second, to investigate whether the efficiency of the indices is consistent across different
models, item responses were generated using three reduced models: the DINA model, the DINO
model, and the A-CDM. For the DINA and DINO models, the probability of success was set as
shown in Table 2. For the 4-CDM, in addition to the success probabilities given in Table 2,
intermediate success probabilities were obtained by allowing each of the required attributes to
contribute equally. The four item qualities and three reduced models resulted in the 12 condi-
tions of the simulation study. The number of attributes was fixed to K = 5.

To design a more efficient simulation study, only a subset of the attribute vectors was consid-
ered. The six attribute vectors were «y = (0, 0, 0, 0, 0), &; =(1, 0, 0, 0, 0), @, = (1, 1, 0, 0, 0),
a;=(1,1,1,0,0), a4 =(1, 1,1, 1,0),and @5 = (1, 1, 1, 1, 1), representing no mastery, mastery
of a single attribute only, mastery of two attributes only, and so forth. For each attribute vector,
1,000 examinees were generated for a total of 6,000 examinees in each condition.

Test termination rules. Two test termination rules were considered in the simulation study:
fixed-test lengths and minimax of the posterior distribution of the attribute vectors. The former
allowed for a comparison of the efficiency of the indices with respect to classification accuracy
when the CAT administration was stopped after a prespecified test length was reached for each
examinee; the latter allowed for the comparison of the efficiency of the indices in terms of test
lengths when the CAT administration was terminated after the largest posterior probability of
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an attribute vector was at least as large as a prespecified minimax value, which corresponds to
the first criterion by Hsu et al. (2013). Three fixed-test lengths, 10, 20, and 40 items, were con-
sidered for the first termination rule, and four minimax values, 0.65, 0.75, 0.85, and 0.95, were
used for the second rule.

Item pool and item selection methods. The Q-matrix was created to have 40 items from each of
2X— 1 =31 possible g-vectors, resulting in 1,240 items in the pool. Three different item selec-
tion indices were considered: PWKL, MPWKL, and GDI. For greater comparability, the first
item administered to each examinee was chosen at random, and this item was fixed across the

three indices. In the case of PWKL, when &,(»t) was not unique, a random attribute vector was
chosen from the modal attribute vectors.

Let oy and &, be the kth true and estimated attribute in attribute vector / for examinee i,
respectively. For each of the six attribute vectors considered in this design, the correct attribute
classification (CAC) rates, and the correct attribute vector classification (CVC) rates were com-
puted as

| L0 s
CACj= —— I ikl = Ai ,
"= 1,000 ; ; [otiks = Qg
and
| o0 s
Cv(C, = 1,000 ; kl:[l][aikl:aikl], (5)
where [=0, 1, ..., 5, and [ is the indicator function. Using appropriate weights (described later),

the CAC and CVC were computed assuming the attributes were uniformly distributed for the
fixed-test length conditions. The minimum, maximum, mean, and CV of the test lengths were
calculated, again with appropriate weights where needed, when the minimax of the posterior
distribution was used as the stopping criterion. This study focused on attribute vectors that were
uniformly distributed. To accomplish this, the results based on the six attribute vectors needed
to be weighted appropriately. For K = 5, the vector of the weights are 1/32, 5/32, 10/32, 10/32,
5/32, and 1/32, which represented the proportions of zero-, one-, two-, three-, four-, and five-
attribute mastery vectors among the 32 attribute vectors. CV was calculated by taking the ratio
of the standard deviation to the mean.

Results
Fixed-Test Length

The sampling design of this simulation study can allow for results to be generalized to different
distributions of the attribute vectors. This study focused on attribute vectors that were uniformly
distributed. To demonstrate the efficiency of using such a design, a small study comparing two
sampling procedures for the DINA model with HD-LV items was carried out. In the first proce-
dure, which is the current sampling design, only six selected attribute vectors, each with 1,000
replicates, were used; in the second procedure, 32,000 attribute vectors were generated uni-
formly. The CAC and the CVC in the former and the latter were computed using weighted and
simple averages, respectively. Table 3 shows that despite working with fewer attribute vectors,
using selected attribute vectors can give the CAC and the CVC that were almost identical to
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Table 3. Classification Accuracies Based on Two Sampling Procedures.

CAC CvC
Item quality J Weighted Simple Weighted Simple
HD-LV 10 0.969 0.969 0.875 0.876
20 0.999 0.999 0.996 0.996
40 1.000 1.000 1.000 1.000

Note. CAC = correct attribute classification; CVC = correct attribute vector classification; HD-LV = high
discrimination—low variance.

those obtained using a much larger sample drawn randomly, and this was true across the differ-
ent test lengths. These findings can be expected to hold across other CDMs and item qualities.

For all conditions, the CAC rates were, as expected, higher than the CVC rates, but both mea-
sures showed similar patterns. For this reason, only the CVC rates were reported in this article.
However, the results in their entirety can be requested from the first author. The CVC results
using fixed-test lengths as a stopping rule under the different factors are presented in Table 4 for
all the generating models. Differences in the CVC rates were evaluated using two cut points,
0.01 and 0.10. Differences below 0.01 were considered negligible, between 0.01 and 0.10 were
considered slight, and above 0.10 were considered substantial.

Using the DINA and the DINO as generating models in conjunction with a short test length
(i.e., 10 items), the differences in the CVC rates of the MPWKL and the GDI were mostly neg-
ligible regardless of the item quality. The only exception is the one condition, with 10 LD-LV
items, where the CVC rate of the GDI was slightly higher than the MPWKL. Under the same
conditions, the CVC rates of the two indices were substantially higher than the PWKL regard-
less of the item quality. When the test lengths were longer (i.c., 20- and 40-item tests), all of
the three indices generally performed similarly using the DINA and DINO models. However,
in one condition (i.e., 20-item test with LD items and the DINA model), the MPWKL and the
GDI had slightly higher CVC rates compared with the PWKL.

Using the A-CDM as a generating model, the three indices had mostly similar CVC rates.
Interestingly, using 10-item tests with HD-LV items, the PWKL had slightly higher CVC rates
compared with the MPWKL and the GDI.

Additional findings can be culled from Table 4. First, as expected, increasing the test length
improved the classification accuracy regardless of the item selection index, item quality, and
generating model. Using a long test (i.e., 40-item test) provided a CVC rate of almost 1.00 for
all of the indices. However, a clear distinction can be seen on the efficiency of the indices when
shorter test lengths, in particular 10-item test, were used. For example, using the DINA model
and HD-LV items, the 10-item test yielded a maximum CVC rate of 0.89 for the MPWKL and
the GDI. In comparison, the PWKL had only a CVC rate of 0.75 under the same condition.

Second, the item quality had an obvious impact on the CVC rates: higher discrimination and
higher variance resulted in higher classification accuracy. As can be seen from the results, HD
items resulted in better rates compared with LD items regardless of the variance. Similarly,
items with HV showed higher classification rates compared with LV items. Consequently, HD-
HV items had the best classification accuracy, whereas LD-LV items had the worst classifica-
tion accuracy regardless of the item selection index and generating model. To illustrate, using
the DINA model and a 10-item test, the highest and the lowest CVC rates of 0.98 and 0.60,
were obtained with HD-HV and LD-LV items, respectively, for both the MPWKL and GDI; in
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Table 4. CVC Rates.

DINA DINO A-CDM
Item quality J PWKL MPWKL GDI PWKL MPWKL GDI PWKL MPWKL GDI

HD-LV 10 0.752 0878  0.887 0.749 0.855 0.849 0.839 0817 0826
20 0.989 0996 0996 0.986 0.995 0.996 0.992 0992  0.991
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HD-HV 10 0.854 0979 0981 0870 0979 0981 0.963 0.967  0.962
20 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LD-LV 10 0.454 0589  0.604 0.44I 0.551 0.557 0515 0524 0511
20 08l14 0892 0.890 0.803 0872  0.871 0.855 0.857  0.859
40 0.987 0.995 0.995 0.984 0.993 0.992 0.987 0990  0.990

LD-HV 10 0.569 0.723 0.719  0.596 0.703 0.704 0.658 0.666  0.660
20 0917 0962 0962 0.924 0.969  0.966 0.948 0.953 0.951
40  0.999 1.000 0.999 1.000 1.000 1.000 0.998 0999  0.999

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy “and” gate; DINO =
deterministic input, noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; PWKL = posterior-
weighted Kullback-Leibler index; MPWKL = modified posterior-weighted Kullback-Leibler index; GDI = G-DINA
model discrimination index; G-DINA = generalized DINA; HD-LV = high discrimination—low variance; HD-HV = high
discrimination—high variance; LD-LV = low discrimination—low variance; LD-HV = low discrimination—high variance.

comparison, the CVC rates were 0.85 and 0.45 for HD-HV and LD-LV items, respectively, for
the PWKL.

To investigate how the item selection indices behaved for different attribute vectors, the
CVC rates for each attribute vector were calculated. Only the results for 10-item test with HD-
HV and LD-LV items are presented (see Figure 1). Across the different item quality conditions,
the CVC rates of the MPWKL and GDI were more similar for the different attribute vectors,
whereas they were more varied for the PWKL. A few conclusions can be drawn from this fig-
ure. First, for HD-HV items, the indices performed similarly for ey, and s when the DINA
model was used. However, under the same condition, the MPWKL and the GDI had higher
CVC rates compared with the PWKL for the other four attribute vectors. Using the same item
quality, the indices performed similarly for g and o¢; when the DINO model was used; how-
ever, the CVC rates using the PWKL were lower for a,, a3, oy, and as compared with the
other two indices. It can also be noted that the classification accuracy of the PWKL was more
varied than those of the MPWKL and GDI across the attribute vectors. As can be seen from the
graphs, the CVC rate of the PWKL could range from around 0.65 to 1.00, whereas these rates
were mostly 1.00 for the MPWKL and the GDI. The three indices had almost the same results
when the A-CDM was involved.

Second, although the CVC rates were lower, the results for LD-LV items were similar to
those for HD-HV items. The MPWKL and the GDI had higher CVC rates than the PWKL for
@, 0], 0, and oz when the DINA model was used. In contrast, the PWKL outperformed the
MPWKL and GDI for ey and a5 in the same condition. Using the same item quality and the
DINO model, the PWKL had higher CVC rates for oy and ;. However, the MPWKL and GDI
had higher rates for the other four attribute vectors. Again, the CVC rates of the PWKL had
higher variability (0.26-0.82) compared with those of the MPWKL and the GDI (0.56-0.65).
Finally, the efficiency of the indices was similar for the 4-CDM, but the extreme attribute vec-
tors oy and a5 can be better estimated than the remaining attribute vectors.
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Minimax of the Posterior Distribution

For a fixed minimax of the posterior distribution, descriptive statistics of the test lengths are
shown in Tables 5 to 7 for the DINA, DINO, and 4-CDM, respectively. Differences in the mean
were evaluated using two cut points, 0.5 and 1, and differences below 0.5 were considered neg-
ligible, between 0.5 and 1 slight, and above 1 substantial.

Using the DINA and DINO models, the mean test lengths of the MPWKL and the GDI were
generally similar (i.e., the differences were negligible), and they were substantially shorter
compared with the test lengths of the PWKL. This was true regardless of the minimax value
and item quality. The largest mean test length differences occurred when LD-LV items were
involved—these differences were greater than 2.0 and 1.8 for the DINA and DINO models,
respectively. However, when the 4-CDM was used, all the three indices performed similarly
except in the HD-HV and 0.85 minimax value condition, where the PWKL had a slightly lon-
ger test length compared with the MPWKL and GDI.

It can also be noted that, as expected, increasing the minimax value resulted in longer test
lengths regardless of the item selection index, item quality, and generating model. The change
in the mean test length as a result of increasing the minimax value from 0.65 to 0.95 was sub-
stantial for all of the conditions except for one—there was only a slight change when the
MPWKL and the GDI were used with HD-HV items. In addition, as in the fixed-test length,
the item quality had an impact on the efficiency of the indices: Using items with higher dis-
crimination or higher variance resulted in shorter tests. Consequently, HD-HV and LD-LV
items had the shortest and the longest tests, respectively. In this study, using the minimax value
0f 0.95, GDI, and DINA model, HD-HV items resulted in tests with a mean of 7.22; in contrast,
for LD-LV items, this mean was 19.46. Finally, generating model can have an impact on the
mean test lengths, but this moderated by the choice of the item selection index—with the GDI,
the DINA or DINO models consistently required shorter tests than the A-CDM, but this pattern
was not as obvious with the other two indices.

Other findings can be gleaned from Tables 5 to 7. First, the minimum test lengths of the three
indices were similar for most of the conditions. Second, increasing the minimax of the posterior
distribution generally resulted in higher minimum and maximum test lengths, especially at the
two extreme minimax values. However, using HD-HV items with the DINA model, the mini-
mum values remained the same for the three indices. Third, the item quality had an impact on the
minimum, maximum, and CV of the test lengths: HD-HV items provided the smallest minimum,
maximum, and CV values, whereas LD-LV items provided the largest statistics for all of the
indices. Finally, using the 4-CDM, the indices had the smallest maximum and CV values; how-
ever, they had the highest minimum test lengths compared with the DINA and DINO models.

The mean test lengths for each attribute vector were calculated, and the results using HD-HV
and LD-LV items, and 0.65 as the minimax value are shown in Figure 2. For the DINA model,
the PWKL required longer tests, on the average, for the attribute vectors e, o, and e, com-
pared with the MPWKL and GDI; however, these two indices required longer tests for as. In
contrast, the MPWKL and GDI required longer tests for «, and the PWKL required longer tests
for o, a3, oy, and a5 with the DINO as the generating model. Using the 4-CDM, the mean test
lengths were similar for each attribute vector.

Item Usage

To gain a better understanding of how different models utilize the items in the pool, the overall
item usage in terms of the number of required attributes was recorded for each condition. Only
the results for the fixed-test lengths with HD-HV and LD-LV items are shown in Table 8.
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For the DINA and DINO models, items that required one, two, and three attributes were gen-
erally used more often compared with those which required four and five attributes regardless
of the item selection index and item quality. The PWKL mostly used two-attribute items for the
same models except in one condition, where a 10-item test with LD-LV items and the DINA
were used. The MPWKL and GDI had a similar pattern of item usage (i.e., one-attribute items
were mostly used for 10- and 20-item tests with LD-LV items) across different test lengths and
item qualities for the DINA except in one condition where a 10-item test with HD-HV items
was used. However, for the 4-CDM, one-attribute items were mostly used with a proportion of
at least 0.92 regardless of the item selection index and item quality.

To get a deeper understanding of the differences in item usage among the models, the items
were grouped based on their required attributes. To accomplish this, an additional simulation
study was carried out using the same factors except for one: item quality. For this study, the
lowest and highest success probabilities were fixed across all of the items, specifically, P(0) =
.1 and P(1) = .9. This design aimed to eliminate the effect of the item quality on item usage.
Due to the space constraint, only the results for the GDI, 20-item test, and a3 are shown in
Figure 3. Overall, the DINA model showed the following pattern of item usage: It uses items
that required the same attributes as the examinee’s true attribute mastery vector, and items that
required single attributes which were not mastered by the examinee. For a3, the DINA model
used the items that required (1,1,1,0,0), and items that required either (0,0,0,1,0) or (0,0,0,0,1).
In contrast, the DINO showed a different pattern of item usage: It uses items that required the
same attributes as the examinee’s true nonmastery vector, and items that required single attri-
butes, which were mastered by the examinee. Again for a3, the DINO model used items that
required (0,0,0,1,1) and items that required (1,0,0,0,0), (0,1,0,0,0), and (0,0,1,0,0). The 4-CDM
used items that required single attributes regardless of the true attribute vector. The same pat-
tern was observed for the other attribute vectors.

To further investigate how the models converged into those patterns of item usage, the test
administrations were divided into periods each comparing of five items. The item usage was
recorded in each period. Only the results for the GDI, 20-item test, and «3 are shown (refer to
Figure 4). In the first period, which includes the first five items, one-attribute items were used
mostly regardless of the generating model and examinees’ true attribute vector. In the second,
third, and fourth periods (items from 6 to 10, 11 to 15, and 16 to 20, respectively), the most
common item types gradually became more similar to the previous patterns of item usage for
the DINA and DINO models. However, the A-CDM favored one-attribute item at the rate of
almost 1.00 in each period. Again, the same pattern was observed for the other attribute vectors
in this study.

Average Time

The average item administration time per examinee was recorded separately for each index.
The CAT administration code was written in Ox (Doornik, 2011) and run on a computer with
processor of 2.5 GHz. Only the average times in milliseconds using 10 HD-LV items and the
DINA model are shown in Table 9. The table shows that the MPWKL was the slowest, and the
GDI was the fastest index in terms of the administration time: the PWKL, the MPWKL, and
the GDI took 6.43, 20.18, and 4.53 ms, respectively. In other words, the GDI was 4.45 faster
than the MPWKL, and 1.42 faster than the PWKL. As mentioned earlier, the GDI works with
the reduced attribute vectors, and involves fewer terms compared with the PWKL and the
MPWKL. The dimensions in the PWKL and the MPWKL grow exponentially as the number of
attribute K increases. However, the GDI does not have the same problem as long as the number
of required attributes K" remains small. The advantage of the GDI can be expected to be more

Downloaded from apm.sagepub.com at Univ Autonoma de Madrid on July 5, 2015


http://apm.sagepub.com/

"9dUBLIBA YSIy—UOIBUIWIIDSIP MO| = AH-(JT ‘9OUBLIBA MO|—UORBUIWIISIP MO| = AT~ ‘@duelieA ySiy—uoneuiwridsip ydiy = AH-H ‘9dUeLieA moj—uoneuiwiidsip ysiy
= AT-QH ‘[epow sisoudeip aAnIUS0d = |AD ‘WAD 2ANIPPE = |dD-Y @388  Jo, Asiou ‘andul snsiuiwasisp = QNI 9183  pue, Asiou ‘sandul onsiuiwaap = YNIQ ‘YNIQ pazifetausd
= VNIQ-D Xdpul UoNBUIWLISIP [9pow YNI-D = [dD X3pul 43|qIa-32eq|Ny| paiySiom-=ioLia1sod paipouw = THAAIA Xopul 43]q1a7->2eq|nY| paiydiam-ioLiaisod = THAAd 910N

000 000 100 100 80 000 000 100 100 860 000 000 100 100 860 OF
000 100 TOO TOO 960 000 100 TOO TOO 960 000 100 TOO TOO 960 OC
000 00 €00 €00 760 000 TOO €00 €00 T6O 000 TOO €00 €00 60 Ol INReR
000 000 100 100 80 000 000 100 €00 960 000 000 100 900 €60 OF
000 100 TOO0 TOO 960 000 100 TOO TOO 960 000 100 TOO TOO S60 OC
000 00 €00 €00 T6O0 000 TOO €00 €00 T6O 000 TOO €00 €00 60 Ol AH-QH Was-v
00 800 LTO L£0 9T0 TOO0 800 ZTO LE0 9TO TOO OI'0 OE0 9€0 TTO OF
00 SO0 TTO +EO LE£O 100 SO0 TTO 9€0 SEO0 CO0 600 6T0 €€0 LTO  OC
00 +00 910 O0£0 6,0 100 %00 LI'0O TEO 9¥0 <TOO I1'0 TEO TEO €CO Ol INReR
100 £00 60 I1¥0 TCO 100 900 €20 6¥0 1TO 100 SO0 $TO 90 HTO OF
00 800 9T0 I¥0 €20 100 900 9TO OO 8TO 100 900 ¥TO b0 STO OC
[00 SO0 O0€0 8CO0 9€0 100 #00 LTO 8€0 OE0 100 £0O €CO #¥0O 920 Ol AH-QH ONIa
00 00 6C0 S€0 8CO0 OO0 L00 O£O SE0 ZTO TOO 800 I€0 HEO STO OF
00 SO0 TTO +EO 8€0 100 H#00 €20 SEO LEO COO LOO 8TO ¥EO 6TO0  OC
00 €00 SI'0 6C0 TSO 100 €00 910 O£0 0SSO <TOO 800 +#E0O OO0 920 Ol INReR
00 SO0 O0£0 6£0 #TO 100 SO0 ZTO0 Y0 H#TO 100 00 810 60 8CO0 OF
00 SO0 6T0 LE£O0 LTO 100 €00 OE0 6E0 LTO 100 00 TTO 80 STO OC
00 €00 80 +EO HEO 100 <COO I€0 ZZO 8€0 100 900 €TO SO STO Ol AH-QH VvNIQ
S ¥ € 4 _ S 4 € 4 I S 4 3 4 _ [ Auenbwsy  |spoly anup
$9InqL.3E paJinbad jo uaquinN
Ias TIMAW TIMd

‘a3es) W) |[e4dAQ jo uonuodoud ay] g djqel

183

Downloaded from apm.sagepub.com at Univ Autonoma de Madrid on July 5, 2015


http://apm.sagepub.com/

184 Applied Psychological Measurement 39(3)
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Figure 3. Overall proportion of item usage for a3, GDI, and | = 20.
Note. GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy
“and” gate; DINO = deterministic input, noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model.
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Figure 4. The proportion of item usage in different periods for a3, GDI, and | = 20.
Note. GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy
“and” gate; DINO = deterministic input, noisy “or” gate; A-CDM = additive CDM; CDM = cognitive diagnosis model.
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Table 9. Average Test Administration Time per Examinee (J = 10, HD-LV, and DINA).

PWKL MPWKL GDI
Time (in ms) 6.43 20.18 4.53
Ratio (relative to GDI) 1.42 4.45 —

Note. HD-LV = high discrimination—low variance; DINA = deterministic inputs, noisy “and” gate; PWKL = posterior-
weighted Kullback-Leibler index; MPWKL = modified posterior-weighted Kullback—Leibler index; GDI = G-DINA
model discrimination index; G-DINA = generalized DINA.

apparent with the 4-CDM because mostly one-attribute items are picked by the different
indices.

Discussion and Conclusion

Compared with traditional unidimensional IRT models, CDMs provide more information that
can be used to inform instruction and learning. These models can reveal examinees’ strengths
and weaknesses by diagnosing whether they have mastered a specific set of attributes. CAT is a
tool that can be used to create tests tailored for different examinees. This allows for a more effi-
cient determination of what students know and do not know. In this article, two new item selec-
tion indices, the MPWKL and the GDI, were introduced, and their efficiency was compared
with the PWKL. In addition, a more efficient simulation design was proposed in this study.
This design can allow for results to be generalized to different distributions of attribute vectors,
despite involving a smaller sample size.

Based on the factors manipulated in the simulation study, the two new indices performed
similarly, and they both outperformed the PWKL in terms of classification accuracy and test
length. The study also showed that items with HD or HV provided better classification rates or
shorter test lengths. Moreover, generating models can have an impact on the efficiency of the
indices: For the DINA and DINO models, the results were more distinguishable; however, the
efficiency of the indices was essentially the same for the A-CDM, except in a few conditions.

Although this study showed that the proposed indices, particularly the GDI, are promising,
more research needs to be done to determine their viability. First, some constraints on the design
of the Q-matrix and the size of the item pool need to be investigated. The Q-matrix in this study
involved all the possible g-vectors. However, in practice, this may not be the case, particularly,
when the CDMs are retrofitted to existing data. Therefore, it would be important to examinee
how the indices perform when only a subset of the g-vectors exists in the pool. The current study
uses a large item pool, which may not be always possible in real testing situations. Considering
smaller item pools, with or without constraints on the Q-matrix specifications, can lead to a bet-
ter understanding of how the proposed indices perform under more varied conditions.

Second, although diagnostic assessments are primarily designed for low-stakes testing situa-
tions, their use for high-stakes decisions cannot be totally precluded. Because test security is a
critical issue in high-stakes testing situations, item exposure in CD-CAT needs also to be con-
trolled. At present, there are procedures for item exposure control in the context of CD-CAT.
For example, Wang, Chang, and Huebner (2011) proposed item exposure control methods for
fixed-test lengths in CD-CAT. However, the performance of these methods with the proposed
indices has yet to be investigated. In addition, controlling the exposure of the items with the
MPWKL and the GDI can also be examined when different termination rules are involved.
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Third, each data set was generated using a single CDM in this study. However, as with previ-
ous indices, the MPWKL and the GDI are sufficiently general that it can simultaneously be
applied to any CDMs subsumed by the G-DINA model. As such, it would be interesting to
examine how the new indices will perform when the item pool is made up of various CDMs,
which reflects what can be expected in practice—different items might require different pro-
cesses (i.e., CDMs). Finally, to keep the scope of this work manageable, a few simplifications
about factors affecting the performance of CD-CAT indices were made. These include fixing
the number of attributes, using a single method in estimating the attribute vectors, and assuming
that the item parameters were known. To obtain more generalizable conclusions, future research
should consider varying these factors.
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