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ABSTRACT
The current studyproposes a newbi-factor rotationmethod, Schmid-Leimanwith iterative target rota-
tion (SLi), based on the iteration of partially specified target matrices and an initial target constructed
from a Schmid-Leiman (SL) orthogonalization. SLi was expected to ameliorate some of the limitations
of the previously presented SL bi-factor rotations, SL and SL with target rotation (SLt), when the fac-
tor structure either includes cross-loadings, near-zero loadings, or both. AMonte Carlo simulationwas
carried out to test the performance of SLi, SL, SLt, and the two analytic bi-factor rotations, bi-quartimin
and bi-geomin. The results revealed that SLi accurately recovered the bi-factor structures across the
majority of the conditions, and generally outperformed the other rotation methods. SLi provided the
biggest improvements over SL and SLt when the bi-factor structures contained cross-loadings and
pure indicators of the general factor. Additionally, SLi was superior to bi-quartimin and bi-geomin,
which performed inconsistently across the types of factor structures evaluated. Nomethod produced
a good recovery of the bi-factor structures when small samples (N = 200) were combined with low
factor loadings (0.30–0.50) in the specific factors. Thus, it is recommended that larger samples of at
least 500 observations be obtained.

The use of bi-factor analysis has dramatically increased
in the last decade (e.g. Chen, West, & Sousa, 2006; Reise,
2012). One of the reasons for this rise in popularity is the
ability of these models to separate the latent sources of
common variance by their degree of broadness, from the
more general to the more specific. Bi-factor models may
be used to assess the relative strength and potential useful-
ness of first-order and higher order factors for multitiered
constructs (McDonald, 1999; Zinbarg, Revelle, Yovel, &
Li, 2005), as well as to determine the impact of multidi-
mensionality (Reise, Cook, &Moore, 2015). Additionally,
they can be used to estimate the relative strength of gen-
eral and specific factors in the prediction of an external
criterion (Bandalos & Kopp, 2013). In its typical form,
the bi-factor model has one general factor and a num-
ber of specific factors, with the latter explaining com-
mon variance that is non-accounted for by the general
factor.

When there is insufficient prior knowledge for the
domain under investigation, an exploratory approach is
needed to uncover possible bi-factor structures (Jennrich
& Bentler, 2011). Given the specific restrictions of the
bi-factor model, traditional rotation methods (e.g. vari-
max, oblimin) fail to recover this structure, as they are
oriented toward finding simple structures (Reise, Moore,
& Maydeu-Olivares, 2011). In order to overcome this
challenge, three general strategies have been proposed:
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(1) exploratory bi-factor analysis using a Schmid-Leiman
(SL) orthogonalization (Schmid & Leiman, 1957), which
involves a reparameterization of a second-order oblique
exploratory factor analysis solution (Yung, Thissen, &
McLeod, 1999); (2) SL followed by a target rotation
applied to the bi-factor structure (Browne, 2001; Reise
et al., 2011); and (3) analytic bi-factor rotation methods
such as bi-factor quartimin or bi-factor geomin (Jennrich
& Bentler, 2011, 2012).

At the moment there is limited information regarding
the performance of the bi-factor rotation methods cur-
rently available. On the one hand, many of the previous
studies have considered a very specific set of models and
conditions (e.g. Asparouhov & Muthén, 2012). On the
other hand, the three types of rotation methods have nei-
ther been tested under similar conditions, nor directly
compared (e.g. Bandalos &Kopp, 2013; Reise et al., 2015),
making it difficult to ascertain their relative accuracy and
to offer practical guidelines. Furthermore, there is reason
to believe that each of these rotation methods has inher-
ent shortcomings in their formulation that may not make
them optimal to uncover exploratory bi-factor structures.
In light of this, in the current paper we will propose and
test a novel strategy that has not been applied to the bi-
factor case: the iteration of partially specified targetmatri-
ces (Moore, Reise, Depaoli, & Haviland, 2015). We call
this method SL with iterative target rotation (SLi).
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A brief review of the properties and known perfor-
mance of the aforementioned rotation methods will be
presented next, followed by the presentation of the newly
proposed bi-factor rotation. In order to better summa-
rize this literature, we will first describe four types of
factor structures that may be considered as theoretically
and practically relevant for this investigation. Following
McDonald (1999, 2000), a factor structure is said to be a
perfect independent cluster (IC) structure if (1) the specific
factors are properly identified (i.e. defined by at least three
items on orthogonal structures or by two items on oblique
structures) and (2) no cross-loadings are observed. If the
former condition is met, but cross-loadings are present
on the structure, McDonald (2000, p. 102) named those
structures as independent cluster basis (ICB) structures. In
addition, there can be bi-factor models with variables that
represent “pure” indicators of the general factor (i.e. items
that have zero loadings on the specific factors) (Mansolf
& Reise, 2016), and these will be called independent clus-
ter pure (ICP) structures. Finally, bi-factor structures that
contain both cross-loadings and pure indicators of the
general factor will be referred to as independent cluster
basis pure (ICBP) structures. The ICBP structures rep-
resent realistic factor structures that are often found by
practitioners, and are being introduced for the first time
in the bi-factor literature in this investigation in order to
highlight the relative strengths of the different rotation
methods.

Bi-factor rotationmethods

Schmid-Leiman rotation (SL)

A brief introduction to the SL transformation (Schmid-
Leiman, 1957) is presented in the following section. How-
ever, readers interested in a complete description of this
procedure and its relationships with the higher order fac-
tor models are referred to Yung, Thissen, and McLeod
(1999).

The SL method is a multistage procedure. In the first
step, the manifest variable correlation matrix (R) is fac-
tored with an oblique rotation method (e.g. promax,
oblimin, geomin):

R=�0 ��′
0 + �2

0 (1)

where �0 is the loading matrix of the manifest variables
on the first-order factors, � is the first-order factor cor-
relation matrix, and �2

0 is the diagonal matrix of unique
variances for the manifest variables. In a second step, the
higher order factor solution is obtained by factoring the
lower order factor correlation matrix (�):

� =λ1λ
′
1 +�2

1 (2)

where λ1 is a vector with the loadings of the first-order
factors on the second-order factor, and �1 is a diagonal
matrix with the square root of the unique variances for
the first-order factors, which is directly related to λ1:

�1 = [I − diag(λ1λ
′
1)]

1/2 (3)

where diag indicates that only the diagonal elements from
the second-order factor solution are used. Then, the pre-
vious model is parameterized as

R = λgλ
′
g + �s�

′
s + �2

0 (4)

where λg (= �0λ1) and�s (= �0�1) are called SL trans-
formed loadings of the manifest variables on the general
and the residualized first-order factors (i.e. after discount-
ing the effects of the general factor), respectively. In this SL
parameterization, latent factors are orthogonal and load-
ings are linearly dependent.

One limitation of the SLmethod is the assumption that
λg and�s follow only one particular structure. Indeed, all
the effects from the general factor to the manifest vari-
ables are assumed to be indirect. Because of this, Reise
et al. (2015) refer to SL as a “semi-restricted” or hierar-
chical bi-factor model. The more general unrestricted bi-
factor model follows the same Equation (4), but λg and
�s do not follow any specific relationship. These struc-
tures that do not contain linearly-dependent general and
specific factor loadings are known as non-hierarchical bi-
factor structures.

Reise et al. (2011, 2015) analyzed the performance of
SL under IC and ICB population structures. They found
that the “semi-restricted” model produced biased esti-
mates of the factor loadings when proportionality con-
straints were not met in a simple IC structure. In these
cases, loadings on the general factor were either underes-
timated or overestimated depending on the item. In ICB
structures, larger distortions were obtained. For example,
for items with large cross-loadings (e.g. .40) that broke
the proportionality constraints, SL raised an item’s com-
munality, causing an overestimation of the loading on the
general factor, whereas loadings on the specific factors
were underestimated (Reise et al., 2011, 2015).

Schmid-Leimanwith target rotation (SLt)

Despite the expected biases of the SL method, Reise,
Moore, and Haviland (2010) predicted that the impact
of proportionality on real-world data might be negligi-
ble when the goal was only to identify patterns of salient
and non-salient loadings. Following this line of reasoning,
Reise et al. (2011) showed that SL was a good method for
identifying the pattern of trivial and non-trivial loadings
and, thus, SL could be a useful tool for defining a partially
specified pattern matrix for a target rotation (Browne,
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1972, 2001). Target rotation, also called Procrustean rota-
tion, requires a partially specified target pattern matrix
(B) in which zeros indicate that the researcher anticipates
that the item will not have a salient loading on the factor,
while the remaining target values are not specified. The
target rotation minimizes the sum of all the squared dif-
ferences between each specified target value (bij = 0) and
the actual corresponding factor loading (λij).

In the first step of the Reise et al. (2011) procedure, a
cutoff is applied to obtain the target pattern matrix from
the SL loading matrix. For example, if the SL loading is
greater than or equal to .20, that target pattern loading is
marked as an unspecified element, and if the SL loading
is less than .20, that target pattern loading is marked as
a specified zero. In the second step, the target rotation is
applied. Using a cutoff of .15, Reise et al. (2011) showed
that for simple IC structures and sample sizes of 500 or
above, target misspecification occurred in a low percent-
age of cases. Additionally, for conditions where the target
transformation matrix was correctly specified, the recov-
ery rates were reasonable. However, further research has
shown that under ICB structures, cross-loading presence
can impair the performance of SL as a tool for correctly
specifying a bi-factor target matrix (Reise et al., 2015).

Analytic bi-factor rotations (bi-quartimin and
bi-geomin)

Jennrich and Bentler (2011, 2012) developed an analytic
rotation method appropriate for reproducing bi-factor
structures. They proposed to minimize the following cri-
terion that measures the departure from the bi-factor
structure:

B(�) = qmin(�2) =
I∑

i=1

m∑
j=2

m∑
j′= j+1

λ2
i jλ

2
i j′ (5)

where m is the number of factors, I is the total number
of items, and qmin (�2) is the bi-quartimin rotation
criterion, applied to the pattern matrix after excluding
the general factor (�2). When a perfect IC structure
is obtained, qmin (�2) = 0. It follows, therefore, that
the bi-quartimin criterion can only be achieved when all
cross-loadings in a factor model are zero. It must be noted
that B(�) does not depend on the first column of � (i.e.
the general factor), but when B(�) is used for rotation,
all the columns in � are rotated.

Because bi-quartimin rotation attempts to minimize
variable complexity by approximating to structures where
the items have very low or zero cross-loadings on all of
the specific factors, it is a method best suited for IC
structures. Indeed, Asparouhov and Muthén (2012) sim-
ulated IC hierarchical structures under optimal loading

size and different number of indicators per specific
factor, and concluded that exploratory structural equa-
tion models (ESEMs) with bi-quartimin rotation were
almost unbiased. However, bi-quartimin is expected to
produce biased estimations with ICB structures, and
initial studies evaluating its performance in the pres-
ence of cross-loadings have supported this expectation
(Bandalos & Kopp, 2013).

Another analytic approach developed by Jennrich and
Bentler (2012) was the bi-geomin rotation method. In this
case, the criterion minimized is

B(�)= geomin(�2) =
I∑

i=1

m∏
j=2

(
λ2
i j + ε

)1/m

(6)

where ε is a small positive value (i.e. .01) needed to
make the function differentiable (Browne, 2001; Jennrich
& Bentler, 2012).

The bi-geomin rotationmethod requires only one spe-
cific factor loading of zero per item in order to accom-
plish the criterion (i.e. B(�) = 0). Thus, this method
attempts to minimize variable complexity by approximat-
ing to structures that have one zero-element per row in the
patternmatrix of the specific factors. Because of this prop-
erty, Jennrich and Bentler (2012) expected bi-geomin to
have better functioning in the presence of cross-loadings.
In this line, Mansolf and Reise (2016) showed the the-
oretical superiority of bi-geomin to bi-quartimin with
ICB structures, an advantage that is borrowed from the
superior performance of geomin over quartimin with
these structures. Additionally, in a preliminary simulation
study Bandalos and Kopp (2013) found that bi-geomin
rotation provided a good recovery of ICB structures,
whereas bi-quartimin failed to recover the true factor
structure in these conditions. Nevertheless, for IC struc-
tures, higher samples sizes were necessary (e.g. 2,500) in
order for bi-geomin to achieve a correct solution.

There are some additional issues regarding the perfor-
mance of the analytic bi-factor rotations that should be
noted. Firstly, as the general factor is not rotated explic-
itly, both rotation methods are prone to local minima
solutions (Mansolf & Reise, 2016). Indeed, these analytic
bi-factor rotations can be conceptualized as a mixture
of two factor models: a one-factor model defined by the
general factor and an m–1 factor model, where m–1 is
the number of specific factors. Depending on the starting
values, different variance might be shifted to the general
factor, and local minima solutions may be obtained. Also,
Mansolf and Reise (2016) warn that the analytic bi-factor
rotations will tend to shift as much variance onto the
general factor as possible, leading in certain cases to the
collapse of the specific factors (i.e. for smaller loadings
on the specific factors).
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Secondly, analytic bi-factor rotations “break down”
when the SL constraints are met (Mansolf & Reise, 2016).
That is, when there is a perfect linear dependence between
the general and specific factor loadings, a first-order
model of m–1 factors can perfectly represent a bi-factor
structure of m factors, thus making the latter an overfac-
tored or overparameterized model that can produce Hey-
wood cases and other estimation problems. Therefore, the
analytic factor rotations can perform poorly when the SL
constraints nearly hold (Mansolf & Reise, 2016).

Schmid-Leimanwith iterative target rotation (SLi)

Moore et al. (2015) recently proposed, based on Browne
(2001), amethod for exploratory factor rotation grounded
on the iteration of partially specified factor structures
(ITR). In the ITR method, one begins by performing a
standard factor rotation and subsequently defines a par-
tially specified, empirically informed target matrix based
on the results of this rotation. For this task, a pre-specified
loading cutoff criterion (e.g. .20) is established. Then, an
iterative search procedure is used to update the target
matrix until convergence is reached.

The ITR rotation strategy appears to be particularly
useful for data that have a complex structure, such as
those with multiple cross-loadings (Moore et al., 2015).
This is due to the iterative nature of the method, which
has the potential to solve or help ameliorate the problems
of using an initially misspecified target matrix. Indeed,
Moore et al. (2015) analyzed the performance of ITR
with IC and ICB first-order factor structures and found
that ITR always outperformed the “one-shot” classical
rotations (e.g. quartimin), especially when more cross-
loadings were present.

Even though ITR is a promising strategy for factor rota-
tion, it has yet to be applied to the bi-factor case, where a
direct generalization of the method can be made. There-
fore, we propose in the current paper the use of ITR in
conjunction with SL, and call it the SLi method. SLi bi-
factor rotation, which can also be considered as an exten-
sion of Reise et al. (2011), starts with an initial SL rotation
and the obtained rotated matrix is used to specify an ini-
tial target matrix (similar to the SLt method). Then, after
the target rotation is performed, this new rotatedmatrix is
used to build a new updated target matrix, and the target
rotation is again performed. The procedure is repeated in
this fashion until the pattern of specified zeros in the tar-
get matrix corresponds to the non-salient loadings (e.g.
those <.20) in the latest estimated pattern matrix. Due to
its iterative approach, SLi should be less affected than SL
and SLt by the presence of cross-loadings and pure indi-
cators of the general factor. Moreover, it is expected to be
more robust to the issues that particularly affect analytic

bi-factor rotations (e.g. local minima, factor collapse, lin-
ear dependence of the general and specific loadings), as a
result of it being an SL-based method.

Goals of the current study

The present research had two main goals: (1) to evaluate
the performance of the newly proposed bi-factor rotation
method, SLi, and (2) to compare it with the four bi-factor
rotations currently in use, SL, SLt, bi-quartimin, and
bi-geomin. As described earlier, the latter four rotation
methods had not been studied together, and the current
information on their performance was scarce. Further,
each of these methods was known or expected to have
important shortcomings for particular types of factor
structures (see “Bi-factor rotation methods” section), and
there was reason to believe that due to its iterative use
of targets SLi would provide a better and more consis-
tent performance, in particular for the more complex
structures.

In order to achieve the stated goals, a Monte Carlo
simulation study was carried out with the manipulation
of a large set of variables that were known to affect the
performance of the rotation methods. Also, an empiri-
cal application of the five bi-factor rotations with a Qual-
ity of Life data set (Chen et al., 2006) was undertaken.
It should be noted that only bi-factor structures with
orthogonal factors were considered. As argued by Morin,
Arens, and Marsh (2016), these models: (a) ensure inter-
pretable results, and (b) are the most common form of bi-
factor methods, with well-known practical applications
(e.g. omega reliability coefficient).

Method

The current study considered a comprehensive set of fac-
tors and factor levels for the bi-factor models. The follow-
ing seven variables were manipulated using Monte Carlo
methods: (1) sample size (N: 200, 500, 2,000); (2) number
of variables per specific factor (VAR.SF: 4, 5, 6); (3) num-
ber of specific factors (NUM.SF: 4, 5, 6); (4) presence of
cross-loadings on the specific factors (CROSS.SF: no, yes);
(5) factor loadings on the specific factors (LOAD.SF: low,
medium, high); (6) factor loadings on the general factor
(LOAD.GF: low, medium, high); and (7) presence of
pure indicators of the general factor (PURE.GF: no, yes).
Therefore, the simulation was based on a 3 × 3 × 3 × 2
× 3× 3× 2 factorial design, for a total of 972 conditions.

The factor loadings had ranges from .30 to .50 for the
low condition, from .40 to .60 for the medium condition,
and from .50 to .70 for the high loading condition. In
each case, the loadings for the IC structures were gener-
ated with equal increments between loadings under the
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Table . Examples of the factor loadings and communalities simulated according to the type of structure.

Independent cluster (IC) Independent cluster basis (ICB) Independent cluster pure (ICP) Independent cluster basis pure (ICBP)

Item gf sf sf sf sf h gf sf sf sf sf h gf sf sf sf sf h gf sf sf sf sf h

 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
Avg. . . . .

Note. gf= general factor; sf= specific factor; h = communality; Avg.= average. IC: no cross-loadings on the specific factors and no pure indicators of the general
factor. ICB: cross-loadings but no pure indicators. ICP: pure indicators but no cross-loadings. ICBP: both cross-loadings and pure indicators; Cross-loadings appear
underlined; Near-zero loadings in the specific factors appear in italics.

specified range (e.g. the loadings for a factor containing
three items in the high range condition were .5, .6, and
.7), When cross-loadings were present, the last item for
each specific factor had a cross-loading of .40 in the next
specific factor. In order to hold constant the communality
of the item after adding the cross-loading, a small value
was subtracted from each of the remaining non-zero item
loadings. For the condition with pure indicators of the
general factor, the item in themiddle position of each spe-
cific factor (e.g. item 2 for a 4-item factor, item 3 for a
5-item factor) had a near-zero loading of .01 in its cor-
responding specific factor. Here, the loading of the pure
item in the general factor was increased so as to maintain
the communality equal towhat it was before its loading on
the specific factor was approximated to zero. An example
of population values for the four types of structures sim-
ulated (IC, ICB, ICP, ICBP) is presented in Table 1.

Data generation

For each of the simulated conditions, 50 sample data
matrices were simulated according to the common factor
model procedure. First, the reproduced population cor-
relation matrix (with communalities in the diagonal) was
computed

RR = ���T (7)

where RR is the reproduced population correlation
matrix, � is the population factor loading matrix, and �

is the population factor correlation matrix.
The population correlation matrix RP was then

obtained by inserting unities in the diagonal of RR,
thereby raising the matrix to full rank. The next step was

performing a Cholesky decomposition of RP, such that

RP = UTU (8)

whereU is an upper triangular matrix. The samplematrix
of continuous variables X was subsequently computed

X =ZU (9)

where Z is a matrix of random standard normal deviates
with rows equal to the sample size and columns equal to
the number of variables.

Accuracy criteria

The accuracy of the rotation methods in the recovery
of the population structure was evaluated according to
Tucker’s congruence coefficient (c.c.; Tucker, 1951)

c.c.jj

∑I
i=1 λ̂i jλi j√∑I

i=1 λ̂2
i j

∑I
i=1 λ2

i j

(10)

where λ̂i j is the estimated loading, λi j is the population
loading, I is the total number of items, i is the item num-
ber, and j is the factor number.

The congruence coefficient is an index of similarity
between factors that has boundaries of −1 and 1. A con-
gruence coefficient in the range of .85–.94 corresponds
to a fair similarity between factors, while a coefficient of
.95 or higher indicates a good level of similarity such that
the factors can be considered equal (Lorenzo-Seva, & ten
Berge, 2006). The procedure used to align the estimated
factors with the population factors before computing the
congruence coefficient was as follows.
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Firstly, in each sample, the direction of an estimated
factor was reverted if its average factor loading was neg-
ative, as no true population structure presented negative
factor loadings. Secondly, all the possible factor order
permutations were computed, retaining the solution that
minimized the average absolute deviation between the
estimated and the true solutions. Thirdly, an estimated
factor was reversed in the final solution if its factor con-
gruence coefficient was negative. All factor analyses were
performed in the R environment using the unweighted
least squares estimator. In order to obtain the correlated
factors solution needed for the initial step of the SL
methods a geomin rotation was carried out. The analytic
bi-factor rotations bi-quartimin and bi-geomin were
performed applying the gradient projection algorithm
implemented in the GPArotation package (Bernaards &
Jennrich, 2005). For each sample, the solution selected
for these rotation methods was the one that produced the
lowest discrepancy function from a total of 10 random
starts. In the case of the SLi method, Moore et al. (2015)
reported that ITR rotation converged within 7 iterations;
for the current study, a maximum of 20 iterations were
computed. In addition, loadings lower than .20 were
specified as zeros in the target matrices of the SLt and SLi
methods. Analyses of variance (ANOVAs) were carried
out with the IBM SPSS Statistics v. 20 program. According
to Cohen (1988), partial eta squared (η2

p) effect sizes of
.01 represent small effects, .06 medium effects, and .14 or
more, large effects.

Results

Monte Carlo simulation

An overall assessment of the accuracy of the bi-factor
rotation methods is presented in Table 2, which includes
the average congruence coefficients across the levels of the
independent variables and in total. Additionally, and in
order to better understand the performance of the meth-
ods, separate ANOVAs were computed for each method
where the congruence coefficient was the dependent vari-
able and the manipulated factors were the between-
subjects independent variables. The effect sizes resulting
from theANOVAs are shown inTable 3. To limit the num-
ber of results shown, only those interactions that attained
a large effect size for at least one of the methods were
included in Table 3.

The results in Table 2 show that SLi was the most
accurate and consistent method in recovering the bi-
factor structures. The SLi method produced an overall
congruence coefficient of .968, which was followed by SLt
(c.c. = .961), bi-geomin (c.c. = .946), SL (c.c. = .943),
and lastly, bi-quartimin (c.c. = .900). In addition, SLi

Table . Average congruence coefficients for the rotationmethods
across the manipulated variables.

Variable / Level SL SLt SLi Bi-quartimin Bi-geomin

N
 . . . . .
 . .967 .975 . .955
 .957 .982 .992 . .985

VAR.SF
 . . .959 . .
 . .963 .970 . .
 .963 .976 .976 . .951

NUM.SF
 . .962 .969 . .
 . .962 .969 . .951
 . .959 .967 . .955

CROSS.SF
No .966 .971 .969 .958 .
Yes . .951 .968 . .955

LOAD.SF
Low . . . . .
Medium . .967 .976 . .955
High .959 .979 .987 . .973

LOAD.GF
Low . .950 .958 . .
Medium . .961 .968 . .
High .953 .972 .978 . .960

PURE.GF
No .977 .974 .971 . .
Yes . . .966 . .966

STRUCTURE
IC .984 .971 .968 .953 .
ICB .969 .976 .974 . .
ICP . .972 .971 .963 .964
ICBP . . .961 . .968
TOTAL . .961 .968 . .

Note. N = sample size; VAR.SF = variables per specific factor; NUM.SF =
number of specific factors; CROSS.SF = cross-loadings in the specific factors;
LOAD.SF= loadings in the specific factors; LOAD.GF= loadings in the general
factor; PURE.GF = pure indicators of the general factor; SL = Schmid-Leiman;
SLt= Schmid-Leimanwith target rotation; SLi= Schmid-Leimanwith iterative
target rotation; IC (independent cluster): no cross-loadings and no pure indi-
cators; ICB (independent cluster basis): cross-loadings but no pure indicators;
ICP (independent cluster pure): pure indicators but no cross-loadings; ICBP
(independent cluster basis pure): both cross-loadings and pure indicators.
Congruence coefficients� . appear bolded and underlined.

obtained a congruence coefficient of “good” (�.95) for
17 of the 19 factor levels that were evaluated (89.5%),
thus exhibiting a more consistently accurate performance
than the SLt (78.9%), bi-geomin (52.6%), SL (31.6%), and
bi-quartimin (5.3%) rotation methods. As expected, the
biggest improvements of SLi in comparison to SL and
SLt came with structures that contained cross-loadings
(c.c.[SLi]= .968> c.c.[SLt]= .951> c.c.[SL]= .921) and
pure indicators of the general factor (c.c.[SLi] = .966 >

c.c.[SLt]= .949> c.c.[SL]= .910). Indeed, as Table 3 indi-
cates, whereas these variables had a substantial impact
in the performance of SLt (η2

p [CROSS.SF] = .124; η2
p

[PURE.GF] = .177), and particularly SL (η2
p [CROSS.SF]

= .548; η2
p [PURE.GF]= .725), their effect was very small

for SLi (η2
p [CROSS.SF] = .001; η2

p [PURE.GF] = .012).
In general, all three SL methods were highly affected by
the sample size (.283� η2

p � .431) and the loadings in the
specific factors (.305 � η2

p � .349), but the effect on the



422 F. J. ABAD ET AL.

Table . Univariate analysis of variance (ANOVA) effect sizes for the rotation methods.

Effect type/variables SL SLt SLi Bi-quartimin Bi-geomin

Main effects
N .283 .365 .431 .294 .372
VAR.SF .373 .192 . . .
NUM.SF . . . . .
CROSS.SF .548 . . .688 .
LOAD.SF .332 .305 .349 .438 .246
LOAD.GF . . . . .
PURE.GF .725 .177 . .241 .148

Two-way interactions
VAR.SF× CROSS.SF .220 . . . .
CROSS.SF× PURE.GF .351 .189 . .323 .
N× LOAD.SF .145 .200 .257 . .145
VAR.SF× PURE.GF .296 . . . .

Three-way interactions
VAR.SF× CROSS.SF× PURE.GF .168 . . . .

Note. N = sample size; VAR.SF = variables per specific factor; NUM.SF = number of specific factors; CROSS.SF = cross-loadings in the specific factors; LOAD.SF =
loadings in the specific factors; LOAD.GF = loadings in the general factor; PURE.GF = pure indicators of the general factor; SL = Schmid-Leiman; SLt = Schmid-
Leiman with target rotation; SLi= Schmid-Leiman with iterative target rotation. The dependent variable in the ANOVAs was the congruence coefficient. The effect
size statistic used was partial eta squared. Large effect sizes (� .) appear bolded and underlined. Only interactions with large effect sizes for at least one method
are shown.

number of variables per specific factors was much lower
for SLi (η2

p = .063), in comparison to SL (η2
p = .373) and

SLt (η2
p = .192).

Regarding the performance of the analytic bi-factor
rotations, bi-quartimin produced the worst results
of any other method evaluated. This rotation per-
formed poorly for the majority of the factor levels,
but was especially sensitive to the cross-loading factor
(η2

p = .688), a finding that is line with the theoreti-
cal expectations. Bi-geomin, on the other hand, per-
formed much better than bi-quartimin, particularly
when the factor structures contained cross-loadings
(c.c.[bi-geomin] = .955 >> c.c.[bi-quartimin] =
.842) or pure indicators of the general factor (c.c.[bi-
geomin] = .966 >> c.c.[bi-quartimin] = .878). In fact,
and contrary to the behavior of the other four methods,
bi-geomin actually performed better with cross-loadings
or pure indicators than without them (Table 2). Despite
these results, bi-geomin still produced subpar estimations
with small samples of 200 observations (c.c. = .899) or
with low loadings in the specific factors (c.c. = .910).

As can be seen in Table 3, the rotation methods were
affected by several interactions of the manipulated vari-
ables. The two-way interaction of sample size × loadings
on the specific factors was the most consistently salient
one, producing a large or near-large effect for all of the
methods (.128 � η2

p � .257). The results of this interac-
tion are plotted in Figure 1 and they show that the perfor-
mance of all the methods improved with larger samples,
but that the improvement was greater for lower loadings
in the specific factors. In the case of bi-quartimin and bi-
geomin, the accuracy in the recovery of the factor struc-
tures was particularly poor when small samples of 200
observations were combined with low factor loadings in
the specific factors (c.c. <.85).

An additional interaction that affected particularly
the SL (η2

p = .168) and SLt (η2
p = .104) methods was

the three-way interaction of variables per specific factor
× cross-loadings × pure indicators (Figure 2). The 3
two-way interactions (VAR.SF × CROSS.SF, VAR.SF ×
PURE.GF, and CROSS.SF × PURE.GF) contained in this
three-way interaction all had large or near-large effect
sizes for the aforementioned rotations (.102� η2

p � .351),
so they were analyzed in the context of the higher order
interaction. Also, and in order to better understand the
differences in performance between the methods, the
three-way interaction was plotted for the other three
methods (SLi, bi-quartimin, and bi-geomin), where it
had a small or negligible effect (η2

p � .013). It should be
noted that the two-way interaction of cross-loadings x
pure indicators did produce a large effect for bi-quartimin
(η2

p = .323).
The three-way interaction contained in Figure 2 can

be explained as a function of the two-way interaction of
cross-loading× pure indicators that in turn interacts with
the third factor, number of variables per specific factor.
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Figure . Two-way interaction of N x LOAD.SF with congruence
coefficient as dependent variable. Note. N, sample size; LOAD.SF,
loadings on the specific factors; SL, Schmid-Leiman; SLt, SL target;
SLi, SL with iterative target.
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Firstly, the combined levels of cross-loadings (no, yes) and
pure indicators (no, yes) generate the four types of struc-
tures considered in this study (IC, ICB, ICP, and ICBP),
and their two-way interaction can be clearly seen within
each rectangle in Figure 2 for the SL (η2

p = .351), SLt
(η2

p = .189), and bi-quartimin (η2
p = .323) rotations. This

interaction is evidenced by the substantial differences in
accuracy that these rotationmethods produce for the four
types of structures evaluated. In particular, it can be seen
that there was a notably poorer recovery of the ICBP fac-
tor structures for these rotations in comparison to their
recovery of the IC, ICB, and ICP structures. Addition-
ally, in the case of bi-quartimin, there was also a marked
decrease in accuracy for ICB in comparison to the con-
gruence coefficients obtained for IC or ICP. Secondly, the
three-way interaction emerged for the SL (η2

p = .168) and

SLt (η2
p = .104) methods because the differences in accu-

racy in the recovery of the four types of structures were
greatly diminished as the number of variables per specific
factor increased. In contrast, bi-quartimin produced sim-
ilar results for each level of number of variables per spe-
cific factor, which is why the three-way interaction was
not salient for this method (η2

p = .002).
The SLi and bi-geomin methods, on the other hand,

did not produce important interactions between the fac-
tors considered in Figure 2 (η2

p � .024 for the two-way
interactions and η2

p � .013 for the three-way interaction).
This was because their recovery accuracy was fairly simi-
lar for the four types of structures, regardless of the num-
ber of variables per specific factor. The SLi method, in
particular, showed the most stable estimations across the
IC, ICB, ICP, and ICBP structures, as bi-geomin showed
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much greater variability in the congruence coefficients
that it produced for the IC structures.

Quality of life data set

An empirical study was conducted by factor analyzing a
Quality of Life data set (Chen et al., 2006). This Qual-
ity of Life data set encompasses 403 observations and 17
items that are hypothesized to reflect a common general
factor (Quality of Life) and four specific factors (Cogni-
tion, Vitality, Mental Health, and Disease Worry).

There is some controversy regarding the possible bi-
factor structure underlying the Quality of Life data set,
in particular regarding the third specific factor Mental
Health. Using a confirmatory approach, Chen et al. (2006)
concluded that this specific factor could be absorbed by
the general factor and recommended that it be dropped.
In contrast, Jennrich and Bentler (2011) suggested based
on a bi-quartimin rotation that it might be retained as
two of its items produced salient loadings on this specific
factor. For the current study, the five bi-factor rotation
methods under investigation were applied to the Qual-
ity of Life data set by factorizing the covariance matrix
provided in Chen et al. (2006) with the package psych
(Revelle, 2016). In the case of the SLt and SLi meth-
ods, a cutoff of .20 (Jennrich & Bentler, 2011; Moore
et al., 2015) was used to distinguish between salient and
non-salient loadings for the specification of the target
matrices.

The factor loading matrices corresponding to the five
bi-factor rotation methods are shown in Table 4. As evi-
denced by Table 4, the factor loadings for the general fac-
tor (Quality of Life) and the first (Cognition) and fourth
(Disease Worry) specific factors are consistently high,
with no cross-loadings (�.20) for these items in any of
the rotations. Indeed, when congruence coefficients were
computed between each pair of rotationmethods for these
factors, they were extremely high: between .997 and 1.000
for Quality of Life, .983 and 1.000 for Cognition, and
between .972 and 1.000 for Disease Worry. In the case of
the second specific factor (Vitality), the congruence coef-
ficients between the SL, SLt, SLi, and bi-geomin meth-
ods were also especially high (.978 � c.c. � .997); how-
ever, they were somewhat lower for the four pairs that
contained the bi-quartimin rotation (.936 � c.c. � .957).
Interestingly, this factor had the only item (“Feel full of
pep?”) that achieved a cross-loading of at least .20 for any
of the rotations, and the previous simulation results had
shown that bi-quartimin was highly affected by the pres-
ence of cross-loadings.

As with previous factor analyses of this data set, the
greatest differences in factor loadings were obtained
for the third specific factor (Mental Health). Here, the

congruence coefficients between seven pairs of methods
were notably low (.290� c.c.� .685). The only three con-
gruence coefficients that showed good agreement were
between SLt and SLi (c.c. = .958), SLt and bi-geomin
(c.c. = .967), and between SLi and bi-geomin (c.c. =
.995). It is noteworthy in this case that the factor loadings
suggested by SLi and bi-geomin for this specific factor
include three items (“Feel downhearted and blue?,” “Feel
very nervous?,” and “Feel so down in the dumps nothing
could cheer you up?”) that are essentially pure indicators
of the general factor, as they produced negligible loadings
on the specific factor. If indeed the population structure
had these characteristics, the findings would be in line
with the simulation results of this study, which showed
that SLi and bi-geomin were the two most likely methods
to produce accurate recoveries of the factor loadings
when pure indicators were present. If researchers are
interested in reproducing the presented analysis, the
R code necessary for computing the SLi rotation of the
Quality of Life data set can be found in the Supplementary
Materials of this article.

Discussion

For hierarchically structured constructs that operate at
various levels of generality, bi-factor analysis has become
an essentialmodeling technique as a result of its capability
to separate the general and specific variances underlying
the observed data (Brunner, Nagy, &Wilhelm, 2012). Sev-
eral rotationmethods have been proposed for exploratory
bi-factor analysis, including the SL orthogonalization (SL;
Schmid & Leiman, 1957), SLt(SLt; Reise et al., 2011),
and two analytic bi-factor rotations, bi-quartimin and bi-
geomin (Jennrich & Bentler, 2011, 2012). However, at the
moment, there is limited information regarding the per-
formance of these rotations under varying data charac-
teristics and in comparison to each other. Furthermore,
there are concerns regarding the efficacy of these rota-
tions for certain types of factor structures that are based
on their theoretical formulations and the empirical evi-
dence that is available (Bandalos&Kopp, 2013;Mansolf &
Reise, 2016; Reise et al., 2011, 2015). Taking into consider-
ation the issues outlined previously, a new bi-factor rota-
tion was proposed in the current study based the use of
iterative targets in conjunction with an initial SL orthog-
onalization: The SLi method. To test the accuracy of this
new rotation, an extensive simulation study was under-
taken where seven relevant variables were manipulated,
thus permitting an in-depth comparison of the accuracy
of SLi against the other four bi-factor rotations. The most
important findings from this Monte Carlo study will be
discussed next, as well as the results obtainedwith aQual-
ity of Life data set.
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Main findings

The results pertaining to the SL rotation showed that it
produces the highest levels of accuracy of any method for
IC structures, but that it is much less effective with com-
plex structures, in particular those that combine cross-
loadings with pure indicators of the general factor. These
results are in line with the theoretical expectations, as the
latter structure presents the greatest departure from the
hierarchical model that is the basis for its formulation. In
particular, pure indicators constitute severe violations of
the hierarchical model assumed by SL rotation where the
general and specific factor loadings are linearly depen-
dent or proportional. Previous research had also shown
that SL produces biased estimates of the factor loadings
in the presence of cross-loadings (Reise et al., 2011, 2015).
Additionally, the number of variables per specific factor,
the factor loadings in the specific factors, and the sample
size, affect the performance of SL, which produces sub-
stantially lower levels of accuracy when these variables
have smaller values.

Using a one-shot target rotation with the SLt method
improves the performance of SL slightly for structures
with cross-loadings and more substantially for structures
with pure indicators. In particular, SLt is advantageous for
very complex structures that combine cross-loadings with
pure indicators. It appears, therefore, that SL can be a use-
ful tool to define a partially specified pattern matrix for
target rotation, as suggested by Reise et al. (2010, 2011),
and that using the SLt method can correct some of the
misspecifications that SL produces with these complex
structures. However, the performance of SLt with struc-
tures that combine cross-loadings and pure indicators is
still very variable andmostly below the levels that are con-
sidered to represent a good factorial recovery. This is true,
especially in those cases where there are also a small num-
ber of variables per specific factor. Regarding the other
independent variables, the accuracy of SLt is affected by
the sample size and the loadings in the specific factors in
a similar way as the SL method.

The SLi method was introduced in this study with the
aim of improving the performance provided by SLt with
the more complex structures, and the findings from the
Monte Carlo simulation suggest that indeed it is capable
of accomplishing this goal. The performance of SLi is
nearly identical to that of SLt for the majority of the data
structures, except for themost complex ones that combine
cross-loadings and pure indicators. In these cases, SLi is
much less variable and produces substantially higher lev-
els of accuracy than SLt, in particular when these types of
structures also have a small number of variables per factor.
Therefore, it can be concluded that using iterative targets
is a useful strategy for bi-factor rotation, particularly

when the population structures have diverse departures
from the ICmodel. These findings extend those of Moore
et al. (2015), which had proposed and evaluated the use of
iterative targets with first-order factor models. In general,
the evidence suggests that SLi is the most consistent and
accurate of the bi-factor rotations considered here.

The performances of the two analytic bi-factor rota-
tions, bi-quartimin and bi-geomin, are distinctly dif-
ferent. Bi-quartimin produces good accuracy levels for
structures that contain ICs or that deviate from them only
due to pure indicators of the general factor. However,
its performance is notably poor when cross-loadings are
introduced and even worse when they are combined with
pure indicators. The poor results of bi-quartimin with
cross-loadings are in line with Bandalos and Kopp (2013)
and reflect the major theoretical shortcoming of the
quartimin rotation: it attempts to minimize variable com-
plexity by searching for structures where the items have
very low or zero cross-loadings on all of the factors. Here,
the evidence suggests that when the population structure
deviates from the IC model (as it often does in practice)
the impact on the accuracy of bi-quartimin is extreme.
Bi-geomin, on the other hand, produces a unique pattern
of results that is unlike that of the other methods. With
IC structures bi-geomin obtains its worst accuracy levels,
which are also substantially below the ones of the other
methods evaluated. This result was expected, as the bi-
geomin criterion is minimized for structures that contain
at least one non-zero cross-loading. When cross-loadings
are introduced, the performance of bi-geomin shows a
notable improvement that includes much higher levels
of accuracy than bi-quartimin, in line with Mansolf and
Reise (2016), but that are still considerably lower than
those of the SL-based methods. Surprisingly, bi-geomin
produces its best performance with pure indicators,
achieving its highest accuracy and that of any method for
the most complex structures that combine cross-loadings
and pure indicators. This is a unique finding of this study
that points to the usefulness of this rotation for these
types of structures. Nonetheless, it should be mentioned
that bi-geomin is a method that performs considerably
different across sample sizes, and that is not really suited
for small samples.

From the results of this simulation study it is not pos-
sible to determine if the poor performance of the analytic
rotations for certain factor structures can be attributed in
part to themore correct rotation being contained in a local
minimum rather than the globalminimum (chosen here).
Analytic bi-factor rotations are prone to local minima
solutions because the general factor is not rotated explic-
itly (Mansolf & Reise, 2016). That is, analytic bi-factor
rotations utilize a two-stage process where in the first
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“gradient descent” step only the specific factors are
rotated, excluding the general factor. Then, in the sec-
ond “projection” step the obtained solution is projected in
order to obtain a proper factor loading matrix. Thus, the
general factor is only rotated implicitly (i.e. by projection
to a proper solution). For practical use, it has been sug-
gested that researchers examine the different local min-
ima and global minimum solutions (as there is no math-
ematical reason to prefer one over the other) and to
select themost interpretable one (Asparouhov &Muthén,
2009). However, it is unknown if this process would lead
to actually choosing the more correct or replicable solu-
tion in practice more often or not.

An empirical study based on a Quality of Life data
set (Chen et al., 2006) included in the study appears to
support the results of the Monte Carlo simulation. The
findings related to the congruence of the factor solutions
obtained by the different rotation methods show that for
complex factors (those that appear to have items with
cross-loadings or pure indicators) bi-quartimin and SL
are the methods that have the least agreement with the
others, suggesting that their solutions may not be accu-
rate estimations of the population structure. Additionally,
for these factors the methods with the highest agreement
are SLi and bi-geomin, which in the simulation were the
ones that performed the best for structures that contained
both cross-loadings and pure indicators. For strong fac-
tors that contained items without notable cross-loadings
and that had substantial loadings in both the general fac-
tor and their respective specific factors, all the methods
showed very high agreement with each other.

Limitations

As with any Monte Carlo simulations, the findings of
this study are only generalizable to the conditions that
were analyzed. Some additional limitations, as well as
recommendations for future research, will be addressed
next. First, the factor analyses in this study were carried
out using the unweighted least squares estimator over
Pearson correlations obtained from continuous variables.
More research is needed to understand how the bi-factor
rotations perform with other estimators (e.g. maximum
likelihood, weighted least squares), types of variables (e.g.
ordered-categorical), and measures of association (e.g.
polychoric correlations). Second, all the simulated struc-
tures were balanced, with equal numbers per factor of
variables, cross-loadings, and pure indicators. The study
of unbalanced structures could provide further insight
regarding the accuracy of the bi-factor rotations. Third,
iterative targets were evaluated in conjunction with an
initial SL orthogonalization based on a geomin rotation
for the first-order factor analysis. Additional research

is needed to determine how bi-factor rotations with
iterative targets would perform with an initial target
based on other methods, such as a bi-geomin rotation, or
with a SL orthogonalization based on other oblique rota-
tions like oblimin, which is implemented in the SCHMID
routine of the psych package (Revelle, 2016).

Another issue of importance related to iterative target
rotation is the selection of the factor loading cutoff value
needed to specify the target matrices. In the present study,
a theoretical cutoff value of .20 was used to determine if
a loading was to be considered as salient or non-salient.
At this moment it is unknown how using other cutoff
values would affect the recovery of the bi-factor struc-
tures. A possible alternative to this issue could be the use
of empirically derived cutoff values, like it is done with
promin rotation (Lorenzo-Seva, 1999) or with the stan-
dard error method (Moore, 2013). The combination of
empirical specifications of the target transformation with
empirical cutoff values could ultimately lead to an applica-
tion of target rotation methods that does not require any
additional input from the researcher.

Practical implications

The findings from this study suggest that there are impor-
tant differences in the levels of accuracy with which the
different rotationmethods currently available can recover
exploratory bi-factor structures. In light of this, it is
important for applied researchers to be cognizant of the
methods that can best aid them in uncovering these struc-
tures, those that should be avoided, and the conditions
where none are likely to perform well.

The SLi method, proposed for the first time in this
study, was the most accurate and consistent bi-factor
rotation across the wide range of conditions that were
explored, thus making it one of the methods that can be
recommended for applied research. In contrast, the orig-
inal SL rotation is not recommended due to its notable
poorer performance with structures that deviate from the
IC model. In the case of the SLt method, its performance
was mainly as good as or worse than SL with iterative
targets, making the latter the obvious choice for general
applied use. Regarding the analytic bi-factor rotations, bi-
quartimin is clearly a method that should be avoided due
it is markedly poor accuracy across the majority of factor
structures. Bi-geomin, on the other hand, can be recom-
mended for cases where the researchers expect complex
structures that contain both cross-loadings and pure indi-
cators of the general factor. It should be usedwith caution,
however, because bi-geomin requires larger samples and
tends to perform very poorly when the structures contain
ICs. Finally, no method is likely to produce a good recov-
ery of the bi-factor structures when small samples (N =



428 F. J. ABAD ET AL.

200) are combined with low factor loadings (0.30–0.50)
in the specific factors. If this situation is expected, it is
recommended that larger samples be obtained in order
to offset the detrimental effects of the low item loadings.
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