From the Albert algebra to Kac's ten-dimensional Jordan superalgebra

Alberto Elduque

On the occasion of Saïd Benayadi's 60th birthday

A bizarre result

In 2005, Kevin McCrimmon considered the Grassmann envelope of Kac's ten-dimensional simple Jordan superalgebra K_{10} and obtained, in his own words, the bizarre result that in characteristic 5 (but not otherwise), it is the Jordan algebra over a shaped cubic form over Γ_0 . This means that K_{10} satisfies the super version of the Cayley-Hamilton equation of degree 3.

This bizarre result led to the discovery of a new exceptional simple Lie superalgebra: $\mathfrak{el}(5;5)$, specific of characteristic 5.

It turns out that this bizarre result is a direct consequence of the fact that, in characteristic 5, K_{10} can be obtained from the *Albert algebra* using a semisimplification process in suitable tensor categories.

Outline

- Symmetric tensor categories
- 2 Semisimplification
- From algebras to superalgebras
- 4 From the Albert algebra to K_{10}

From the Albert algebra to Kac's ten-dimensional Jordan superalgebra

- 1 Symmetric tensor categories
- 2 Semisimplification
- From algebras to superalgebras
- ullet From the Albert algebra to K_{10}

Monoidal categories

A monoidal category is a category ${\mathfrak C}$ with a bifunctor

$$\otimes \colon \mathfrak{C} \times \mathfrak{C} \to \mathfrak{C}$$

such that:

• There is a unit object 1 with natural isomorphisms (unitors)

$$X \otimes \mathbf{1} \simeq X \simeq \mathbf{1} \otimes X$$
.

• There are natural isomorphisms (associators)

$$a_{X,Y,Z}$$
: $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$.

• Natural coherence conditions for the unitors and associators hold.

Monoidal functors

A functor $F\colon \mathfrak{C}\to\mathfrak{D}$ between monoidal categories is a monoidal functor if $F(\mathbf{1})\simeq \mathbf{1}$ and there are natural isomorphisms

$$J_{X,Y} \colon F(X) \otimes F(Y) \longrightarrow F(X \otimes Y)$$

with natural coherence conditions with associators.

Symmetric monoidal categories

A braiding in a monoidal category ${\mathfrak C}$ is a natural isomorphism

$$c_{X,Y} \colon X \otimes Y \longrightarrow Y \otimes X$$

satisfying natural compatibility conditions with unitors and associators.

A symmetric monoidal category is a monoidal category endowed with a symmetric braiding: $c_{Y,X} \circ c_{X,Y} = \mathrm{id}_{X \otimes Y}$.

Rigid symmetric monoidal categories

A symmetric monoidal category is $\ensuremath{\operatorname{rigid}}$ if every object X has a dual object X^* with

- an evaluation $\operatorname{ev}_X \colon X^* \otimes X \to \mathbf{1}$,
- a coevaluation $\operatorname{coev}_X \colon \mathbf{1} \to X \otimes X^*$.

such that the following compositions are the identity morphisms:

$$\begin{array}{cccc} X & \xrightarrow{\operatorname{coev}_X \otimes \operatorname{id}_X} & X \otimes X^* \otimes X & \xrightarrow{\operatorname{id}_X \otimes \operatorname{ev}_X} & X \\ X^* & \xrightarrow{\operatorname{id}_{X^*} \otimes \operatorname{coev}_X} & X^* \otimes X \otimes X^* & \xrightarrow{\operatorname{ev}_X \otimes \operatorname{id}_{X^*}} & X^* \end{array}$$

(Unitor and associator morphisms are omitted.)

Symmetric tensor categories

A symmetric tensor category $\mathfrak C$ over a field $\mathbb F$ is a rigid symmetric monoidal category with the following extra properties:

- It is abelian and even more: it is \mathbb{F} -linear and \otimes is 'bilinear'.
- It is locally finite: objects have 'finite length' and morphism spaces are finite-dimensional.
- $\operatorname{End}_{\mathfrak{C}}(1) = \mathbb{F} \operatorname{id}_1$.

Examples

 $\mathsf{Vec}_{\mathbb{F}}$: The category of finite-dimensional vector spaces.

RepH: The category of finite-dimensional representations of a triangular Hopf algebra.

Rep G: The category of finite-dimensional representations of an affine group scheme.

 $\mathsf{sVec}_\mathbb{F} :$ The category of finite-dimensional vector superspaces.

Algebras in a symmetric tensor category

An algebra in a symmetric tensor category $\mathfrak C$ is an object $\mathcal A$ endowed with a morphism $\mu\colon \mathcal A\otimes \mathcal A\to \mathcal A.$

The algebra (\mathcal{A}, μ) is

- commutative if $\mu \circ c_{\mathcal{A},\mathcal{A}} = \mu$,
- associative if $\mu \circ (\mu \otimes id_{\mathcal{A}}) = \mu \circ (id_{\mathcal{A}} \otimes \mu)$ (associator morphisms are omitted),
- Lie if it is anticommutative: $\mu \circ c_{\mathcal{A},\mathcal{A}} = -\mu$, and

$$\mu \circ (\mu \otimes \mathrm{id}_{\mathcal{A}}) \circ (\mathrm{id}_{\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}} + c_{\mathcal{A} \otimes \mathcal{A}, \mathcal{A}} + c_{\mathcal{A}, \mathcal{A} \otimes \mathcal{A}}) = 0,$$

- Jordan if
-

Superalgebras are algebras in $sVec_{\mathbb{F}}$.

From the Albert algebra to Kac's ten-dimensional Jordan superalgebra

- Symmetric tensor categories
- 2 Semisimplification
- From algebras to superalgebras
- ullet From the Albert algebra to K_{10}

Traces in symmetric tensor categories

Given a morphism $f \in \operatorname{End}_{\mathfrak{C}}(X)$ in a symmetric tensor category, its trace $\operatorname{tr}_X(f)$ is the following element in $\operatorname{End}_{\mathfrak{C}}(\mathbf{1}) \simeq \mathbb{F}$:

$$\mathbf{1} \xrightarrow{\operatorname{coev}_X} X \otimes X^* \xrightarrow{f \otimes \operatorname{id}_{X^*}} X \otimes X^* \xrightarrow{c_{X,X^*}} X^* \otimes X \xrightarrow{\operatorname{ev}_X} \mathbf{1}$$

The dimension of an object X is $\dim_{\mathfrak{C}}(X) := \operatorname{tr}_X(\operatorname{id}_X)$.

Negligible morphisms

A morphism $f\in \mathrm{Hom}_{\mathfrak{C}}(X,Y)$ in a symmetric tensor category is said to be negligible if

$$\operatorname{tr}_Y(f\circ g)=0\quad\text{for all}\quad g\in\operatorname{Hom}_{\mathfrak C}(Y,X).$$

Denote by $\mathcal{N}(X,Y)$ be the subspace of negligible morphims in $\mathrm{Hom}_{\mathfrak{C}}(X,Y).$

The subspaces $\mathcal{N}(X,Y)$ form a tensor ideal.

Semisimplification of a symmetric tensor category

This means that we can define a new category \mathfrak{C}^{ss} with the same objects as \mathfrak{C} , but with morphisms given by the quotient with the subspace of negligible morphisms:

$$\operatorname{Hom}_{\mathfrak{C}^{ss}}(X,Y) := \operatorname{Hom}_{\mathfrak{C}}(X,Y)/\mathcal{N}(X,Y).$$

 \mathfrak{C}^{ss} is called the semisimplification of \mathfrak{C} .

The natural functor $S\colon \mathfrak{C} \to \mathfrak{C}^{ss}$ which is the identity on objects, and sends any morphism f to its class [f] modulo negligible morphisms is a braided, monoidal, \mathbb{F} -linear functor.

Semisimplification

The semisimplification \mathfrak{C}^{ss} is semisimple: any object is a direct sum of finitely many simple objects.

The simple objects in \mathfrak{C}^{ss} correspond to the indecomposable objects in \mathfrak{C} of nonzero dimension.

Any indecomposable object in $\mathfrak C$ with $\dim_{\mathfrak C}(X)=0$ becomes isomorphic to the zero object in $\mathfrak C^{ss}$.

Verlinde category

Definition

Let \mathbb{F} be a field of characteristic p>0 and let $\operatorname{Rep} \mathsf{C}_p$ be the category of finite-dimensional representations of the cyclic group of order p (or of the associated constant group scheme).

This is a symmetric tensor category and its semisimplification is called the Verlinde category Ver_p .

The Verlinde category Ver_p also appears as the semisimplification of

$$\operatorname{\mathsf{Rep}} \pmb{\alpha}_p \cong \operatorname{\mathsf{Rep}} \mathbb{F}[t]/(t^p).$$

An algebra in Rep α_p is just an algebra with a nilpotent derivation d such that $d^p=0$.

From the Albert algebra to Kac's ten-dimensional Jordan superalgebra

- Symmetric tensor categories
- 2 Semisimplification
- 3 From algebras to superalgebras
- ullet From the Albert algebra to K_{10}

Semisimplification of Rep C_p

 $\operatorname{char} \mathbb{F} = p$. Fix a generator σ of C_p .

The indecomposable objects in $\operatorname{Rep} \mathsf{C}_p$ are, up to isomorphism, the modules

$$L_i = \mathsf{span}\left\{v_0, \dots, v_{i-1}\right\}$$

for $i = 1, \ldots, p$, with

$$\sigma(v_j) = v_j + v_{j+1}, \ j = 0, \dots, i-2, \quad \sigma(v_{i-1}) = v_{i-1}.$$

Any object ${\mathcal A}$ in $\operatorname{Rep} {\mathsf C}_p$ decomposes, nonuniquely, as

$$\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \cdots \oplus \mathcal{A}_p$$

where A_i is a direct sum of copies of L_i , i = 1, 2, ..., p.

Semisimplification of Rep C_p . Properties

- ullet L_1,\ldots,L_{p-1} are simple objects in Ver_p , while L_p is isomorphic to 0.
- Ver_p is semisimple: any object is isomorphic to a direct sum of copies of L_1, \ldots, L_{p-1} .
- $\operatorname{End}_{\operatorname{Ver}_p}(L_i) = \mathbb{F}[\operatorname{id}_{L_i}] \neq 0$ for $i = 1, \dots, p-1$, $\operatorname{End}_{\operatorname{Ver}_p}(L_p) = 0$, and $\operatorname{Hom}_{\operatorname{Ver}_p}(L_i, L_j) = 0$ for $1 \leq i \neq j \leq p-1$.
- $L_1 \otimes L_i$ and $L_i \otimes L_1$ are isomorphic to L_i , for $i=1,\ldots,p$, both in Rep C_p and in Ver_p .
- $L_{p-1} \otimes L_{p-1}$ is isomorphic to L_1 in Ver_p .

Ver_p and $\mathsf{sVec}_\mathbb{F}$

The F-linear functor

$$\begin{split} F \colon \mathsf{sVec}_{\mathbb{F}} &\longrightarrow \mathsf{Ver}_{p} \\ X_{\bar{0}} \oplus X_{\bar{1}} &\mapsto X_{\bar{0}} \oplus (X_{\bar{1}} \otimes L_{p-1}) \\ f_{\bar{0}} \oplus f_{\bar{1}} &\mapsto [f_{\bar{0}} \oplus (f_{\bar{1}} \otimes \mathrm{id}_{L_{p-1}})], \end{split}$$

provides an equivalence of symmetric tensor categories between ${\sf sVec}_{\mathbb F}$ and the full tensor subcategory of ${\sf Ver}_p$ generated by L_1 and L_{p-1} .

This subcategory is the whole Ver_p if p=3.

From algebras in Rep C_p to superalgebras

If (A, μ) is an algebra in Rep C_p (i.e., an algebra endowed with an automorphism of order p), then $(A, [\mu])$ is an algebra in Ver_p.

Fix a decomposition $\mathcal{A} = \mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_p$, where \mathcal{A}_i is a direct sum of copies of L_i for $i = 1, \ldots, p$.

 $\mathcal{A}':=\mathcal{A}_1\oplus\mathcal{A}_{p-1}$ is endowed with a natural multiplication μ' inherited from μ such that

 $(\mathcal{A}',[\mu'])$ is a subalgebra of $(\mathcal{A},[\mu])$ in Ver_p , that lies in the subcategory "s $\mathrm{Vec}_{\mathbb{F}}$ ".

From algebras in Rep C_p to superalgebras

Write $A_{\bar{0}}=\mathcal{A}_1$, and fix a subspace $A_{\bar{1}}$ of \mathcal{A}_{p-1} such that $\mathcal{A}_{p-1}=A_{\bar{1}}\oplus (\sigma-1)(\mathcal{A}_{p-1})$.

Then, $A:=A_{\bar 0}\oplus A_{\bar 1}$ is an object in ${
m sVec}_{\Bbb F}$, and the image of the morphism in ${
m Rep}\,{
m C}_p$:

$$\iota_{\mathcal{A}} \colon F(A) = A_{\bar{0}} \oplus (A_{\bar{1}} \otimes L_{p-1}) \longrightarrow \mathcal{A}$$

$$a_{\bar{0}} \mapsto a_{\bar{0}} \in \mathcal{A}_{1},$$

$$a_{\bar{1}} \otimes v_{i} \mapsto (\sigma - 1)^{i}(a_{\bar{1}}) \in \mathcal{A}_{p-1}$$

is $\mathcal{A}' := \mathcal{A}_1 \oplus \mathcal{A}_{p-1}$.

Through the equivalence F, the multiplication in the "superalgebra" $(\mathcal{A}',[\mu'])$ induces a multiplication in the vector superspace $A=A_{\bar{0}}\oplus A_{\bar{1}}$.

What this multiplication looks like?

From algebras in Rep C_p to superalgebras. Recipe

Recall our decomposition

$$\mathcal{A} = A_{\bar{0}} \oplus \mathcal{A}_2 \oplus \cdots \mathcal{A}_{p-2} \oplus A_{\bar{1}} \oplus (\sigma - 1)(\mathcal{A}_{p-1}) \oplus \mathcal{A}_p.$$

Recipe

Take projections relative to the decomposition above, and define a multiplication m $(m(x \otimes y) := x \diamond y)$ on $A := A_{\bar{0}} \oplus A_{\bar{1}}$ as follows:

$$\begin{split} x_{\bar{0}} \diamond y_{\bar{0}} &= \operatorname{proj}_{A_{\bar{0}}} \mu(x_{\bar{0}} \otimes y_{\bar{0}}) \\ x_{\bar{0}} \diamond y_{\bar{1}} &= \operatorname{proj}_{A_{\bar{1}}} \mu(x_{\bar{0}} \otimes y_{\bar{1}}) \\ x_{\bar{1}} \diamond y_{\bar{0}} &= \operatorname{proj}_{A_{\bar{1}}} \mu(x_{\bar{1}} \otimes y_{\bar{0}}) \\ x_{\bar{1}} \diamond y_{\bar{1}} &= \operatorname{proj}_{A_{\bar{0}}} \mu(x_{\bar{1}} \otimes (\sigma - 1)^{p-2} (y_{\bar{1}})) \end{split}$$

for all $x_{\bar{0}}, y_{\bar{0}} \in A_{\bar{0}}$ and $x_{\bar{1}}, y_{\bar{1}} \in A_{\bar{1}}$.

The algebra (A, m) is an algebra in $SVec_{\mathbb{F}}$ (a superalgebra).

From algebras in Rep C_p to superalgebras. Recipe

Summarizing:

- (A, μ) is an algebra in Rep C_p .
- Split it suitably:

$$\mathcal{A} = A_{\bar{0}} \oplus \mathcal{A}_2 \oplus \cdots \mathcal{A}_{p-2} \oplus A_{\bar{1}} \oplus (\sigma - 1)(\mathcal{A}_{p-1}) \oplus \mathcal{A}_p.$$

- $(A, [\mu])$ contains a nice subalgebra $(A', [\mu'])$.
- Use our recipe to define a multiplication m on $A=A_{\bar 0}\oplus A_{\bar 1}$, which becomes a superalgebra.
- Recall our functor $F : \mathsf{sVec}_{\mathbb{F}} \to \mathsf{Ver}_p$.

Theorem

(A, m) is the superalgebra that corresponds to $(A', [\mu'])$. That is, the algebra in Ver_p obtained by means of

$$F(A) \otimes F(A) \xrightarrow{\cong} F(A \otimes A) \xrightarrow{F(m)} F(A)$$

is isomorphic (through $\iota_{\mathcal{A}}$) to the subalgebra $(\mathcal{A}', [\mu'])$.

From algebras in Rep C_p to superalgebras

In case $\mathcal{A}=\mathcal{A}_1\oplus\mathcal{A}_{p-1}\oplus\mathcal{A}_p$, this algebra in Ver_p is isomorphic to $(\mathcal{A},[\mu])$. In this situation, we will say that the algebra \mathcal{A} semisimplifies to the superalgebra $A=A_{\bar{0}}\oplus A_{\bar{1}}$, or that A is obtained by semisimplification of \mathcal{A} .

From the Albert algebra to Kac's ten-dimensional Jordan superalgebra

- Symmetric tensor categories
- 2 Semisimplification
- 3 From algebras to superalgebras
- lacktriangledown From the Albert algebra to K_{10}

From the Albert algebra to K_{10}

A. Elduque, P. Etingof, A.S. Kannan, From the Albert algebra to Kac's ten-dimensional Jordan superalgebra via tensor categories in characteristic 5.

J. Algebra 666 (2025), 387-414.

3.7.11goz.ta **333** (2323), 337 .2.1

The Albert algebra is the algebra of 3×3 Hermitian matrices over the (split) Cayley algebra: $\mathbb{A}=H_3(\mathcal{C})$, with multiplication given by

$$X \cdot Y = \frac{1}{2}(XY + YX).$$

The Albert algebra

$$\mathbb{A} = \mathbb{F}E_1 \oplus \mathbb{F}E_2 \oplus \mathbb{F}E_3 \oplus \iota_1(\mathcal{C}) \oplus \iota_2(\mathcal{C}) \oplus \iota_3(\mathcal{C}),$$

with

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\iota_1(a) = 2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \bar{a} \\ 0 & a & 0 \end{pmatrix}, \quad \iota_2(a) = 2 \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ \bar{a} & 0 & 0 \end{pmatrix}, \quad \iota_3(a) = 2 \begin{pmatrix} 0 & \bar{a} & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The Albert algebra

The group of automorphisms $\operatorname{Aut}(\mathbb{A})$ contains the subgroup

$$\{\varphi \in \operatorname{Aut}(\mathbb{A}) \mid \varphi(E_i) = E_i \ \forall i\} \simeq \operatorname{Spin}(\mathcal{C}).$$

Lemma

Over a field of characteristic 5, \mathbb{A} is endowed with an order 5 automorphism in $\mathrm{Spin}(\mathcal{C})$, such that

- $\iota_1(\mathcal{C})$ splits as $3L_1 \oplus L_5$,
- $\iota_i(\mathcal{C})$ splits as $2L_4$ for i=2,3,

and hence \mathbb{A} splits as

$$\mathbb{A} = 6L_1 \oplus 4L_4 \oplus L_5.$$

From the Albert algebra to Kac's ten-dimensional Jordan superalgebra

Theorem

In characteristic 5, the Albert algebra \mathbb{A} semisimplifies to Kac's ten-dimensional simple Jordan superalgebra K_{10} .

The semisimplification process explains the bizarre property.

From E_8 to $\mathfrak{el}(5;5)$

The exceptional split simple Lie algebra of type E_8 can be obtained, using a famous construction by Tits, as

$$\mathfrak{Der}(\mathcal{C}) \oplus (\mathcal{C}_0 \otimes \mathbb{A}_0) \otimes \mathfrak{Der}(\mathbb{A}),$$

using the Cayley algebra \mathcal{C} and the Albert algebra \mathbb{A} .

The order 5 automorphism of \mathbb{A} extends to an automorphism of E_8 , and the outcome is that E_8 semisimplifies to the exceptional Lie superalgebra $\mathfrak{el}(5;5)$, specific of characteristic 5.

Thank you!