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Monoidal categories

A monoidal category is a category C with a bifunctor

⊗ : C × C → C

such that:
There is a unit object 1 with natural isomorphisms (unitors)

X ⊗ 1 ≃ X ≃ 1 ⊗ X.

There are natural isomorphisms (associators)

aX,Y,Z : (X ⊗ Y ) ⊗ Z ≃ X ⊗ (Y ⊗ Z).

Natural coherence conditions for the unitors and associators hold.
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Monoidal functors

A functor F : C → D between monoidal categories is a monoidal functor
if F (1) ≃ 1 and there are natural isomorphisms

JX,Y : F (X) ⊗ F (Y ) −→ F (X ⊗ Y )

with natural coherence conditions with associators.
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Symmetric monoidal categories

A braiding in a monoidal category C is a natural isomorphism

cX,Y : X ⊗ Y −→ Y ⊗ X

satisfying natural compatibility conditions with unitors and associators.

A symmetric monoidal category is a monoidal category endowed with a
symmetric braiding: cY,X ◦ cX,Y = idX⊗Y .
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Rigid symmetric monoidal categories

A symmetric monoidal category is rigid if every object X has a dual
object X∗ with

an evaluation evX : X∗ ⊗ X → 1,
a coevaluation coevX : 1 → X ⊗ X∗,

such that the following compositions are the identity morphisms:

X
coevX⊗idX−−−−−−−→ X ⊗ X∗ ⊗ X

idX⊗evX−−−−−−→ X

X∗ idX∗ ⊗coevX−−−−−−−−→ X∗ ⊗ X ⊗ X∗ evX⊗idX∗−−−−−−→ X∗

(Unitor and associator morphisms are omitted.)
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Symmetric tensor categories

A symmetric tensor category C over a field F is a rigid symmetric
monoidal category with the following extra properties:

It is abelian and even more: it is F-linear and ⊗ is ‘bilinear’.

It is locally finite: objects have ‘finite length’ and morphism spaces
are finite-dimensional.

EndC(1) = F id1.
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Examples

VecF: The category of finite-dimensional vector spaces.

RepH: The category of finite-dimensional representations of a
triangular Hopf algebra.

Rep G: The category of finite-dimensional representations of an
affine group scheme.

sVecF: The category of finite-dimensional vector superspaces.
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Algebras in a symmetric tensor category
An algebra in a symmetric tensor category C is an object A endowed
with a morphism µ : A ⊗ A → A.

The algebra (A, µ) is
commutative if µ ◦ cA,A = µ,
associative if µ ◦ (µ ⊗ idA) = µ ◦ (idA ⊗ µ) (associator morphisms
are omitted),
Lie if it is anticommutative: µ ◦ cA,A = −µ, and

µ ◦ (µ ⊗ idA) ◦ (idA⊗A⊗A + cA⊗A,A + cA,A⊗A) = 0,

Jordan if ....
.......

Superalgebras are algebras in sVecF.
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Traces in symmetric tensor categories

Given a morphism f ∈ EndC(X) in a symmetric tensor category, its
trace trX(f) is the following element in EndC(1) ≃ F:

1 coevX−−−−→ X ⊗ X∗ f⊗idX∗−−−−−→ X ⊗ X∗ cX,X∗
−−−−→ X∗ ⊗ X

evX−−→ 1

The dimension of an object X is dimC(X) := trX(idX).
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Negligible morphisms

A morphism f ∈ HomC(X, Y ) in a symmetric tensor category is said to
be negligible if

trY (f ◦ g) = 0 for all g ∈ HomC(Y, X).

Denote by N (X, Y ) be the subspace of negligible morphims in
HomC(X, Y ).

The subspaces N (X, Y ) form a tensor ideal.
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Semisimplification of a symmetric tensor category

This means that we can define a new category Css with the same objects
as C, but with morphisms given by the quotient with the subspace of
negligible morphisms:

HomCss(X, Y ) := HomC(X, Y )/N (X, Y ).

Css is called the semisimplification of C.

The natural functor S : C → Css which is the identity on objects, and
sends any morphism f to its class [f ] modulo negligible morphisms is a
braided, monoidal, F-linear functor.
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Semisimplification

The semisimplification Css is semisimple: any object is a direct sum of
finitely many simple objects.

The simple objects in Css correspond to the indecomposable objects in C
of nonzero dimension.

Any indecomposable object in C with dimC(X) = 0 becomes isomorphic
to the zero object in Css.
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Verlinde category

Definition
Let F be a field of characteristic p > 0 and let Rep Cp be the category of
finite-dimensional representations of the cyclic group of order p (or of
the associated constant group scheme).
This is a symmetric tensor category and its semisimplification is called
the Verlinde category Verp.

The Verlinde category Verp also appears as the semisimplification of

Rep αp
∼= RepF[t]/(tp).

An algebra in Rep αp is just an algebra with a nilpotent derivation d
such that dp = 0.
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Semisimplification of Rep Cp

Fix a generator σ of Cp.

The indecomposable objects in Rep Cp are, up to isomorphism, the
modules

Li = span {v0, . . . , vi−1}

for i = 1, . . . , p, with

σ(vj) = vj + vj+1, j = 0, . . . , i − 2, σ(vi−1) = vi−1.

Any object A in Rep Cp decomposes, nonuniquely, as

A = A1 ⊕ A2 ⊕ · · · ⊕ Ap,

where Ai is a direct sum of copies of Li, i = 1, 2, . . . , p.
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Semisimplification of Rep Cp. Properties

L1, . . . , Lp−1 are simple objects in Verp, while Lp is isomorphic to 0.

Verp is semisimple: any object is isomorphic to a direct sum of
copies of L1, . . . , Lp−1.

EndVerp(Li) = F[idLi ] ̸= 0 for i = 1, . . . , p − 1, EndVerp(Lp) = 0,
and HomVerp(Li, Lj) = 0 for 1 ≤ i ̸= j ≤ p − 1.

L1 ⊗ Li and Li ⊗ L1 are isomorphic to Li, for i = 1, . . . , p, both in
Rep Cp and in Verp.

Lp−1 ⊗ Lp−1 is isomorphic to L1 in Verp.
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Verp and sVecF

The F-linear functor

F : sVecF −→ Verp

X0̄ ⊕ X1̄ 7→ X0̄ ⊕ (X1̄ ⊗ Lp−1)
f0̄ ⊕ f1̄ 7→ [f0̄ ⊕ (f1̄ ⊗ idLp−1)],

provides an equivalence of symmetric tensor categories between sVec and
the full tensor subcategory of Verp generated by L1 and Lp−1.

This subcategory is the whole Verp if p = 3.
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From algebras in Rep Cp to superalgebras

If (A, µ) is an algebra in Rep Cp (i.e., an algebra endowed with an
automorphism of order p), then (A, [µ]) is an algebra in Verp.

Fix a decomposition A = A1 ⊕ · · · ⊕ Ap, where Ai is a direct sum of
copies of Li for i = 1, . . . , p.
A′ := A1 ⊕ Ap−1 is endowed with a natural multiplication µ′ inherited
from µ such that

(A′, [µ′]) is a subalgebra of (A, [µ]) in Verp, that lies in the subcategory
“sVecF”.
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From algebras in Rep Cp to superalgebras
Write A0̄ = A1, and fix a subspace A1̄ of Ap−1 such that
Ap−1 = A1̄ ⊕ (σ − 1)(Ap−1).

Then, A := A0̄ ⊕ A1̄ is an object in sVecF, and the image of the
morphism in Rep Cp:

ιA : F (A) = A0̄ ⊕ (A1̄ ⊗ Lp−1) −→ A
a0̄ 7→ a0̄ ∈ A1,

a1̄ ⊗ vi 7→ δi(a1̄) ∈ Ap−1

is A′ := A1 ⊕ Ap−1.

Through the equivalence F , the multiplication in the “superalgebra”
(A′, [µ′]) induces a multiplication in the vector superspace A = A0̄ ⊕ A1̄.

What this multiplication looks like?
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From algebras in Rep Cp to superalgebras. Recipe
Recall our decomposition

A = A0̄ ⊕ A2 ⊕ · · · Ap−2 ⊕ A1̄ ⊕ (σ − 1)(Ap−1) ⊕ Ap.

Recipe
Take projections relative to the decomposition above, and define a
multiplication m (m(x ⊗ y) := x ⋄ y) on A := A0̄ ⊕ A1̄ as follows:

x0̄ ⋄ y0̄ = projA0̄
µ(x0̄, y0̄)

x0̄ ⋄ y1̄ = projA1̄
µ(x0̄, y1̄)

x1̄ ⋄ y0̄ = projA1̄
µ(x1̄, y0̄)

x1̄ ⋄ y1̄ = projA0̄
µ

(
x1̄, (σ − 1)p−2(y1̄)

)
for all x0̄, y0̄ ∈ A0̄ and x1̄, y1̄ ∈ A1̄.

The algebra (A, m) is an algebra in sVec (a superalgebra).
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From algebras in Rep Cp to superalgebras. Recipe
Summarizing:

(A, µ) is an algebra in Rep Cp.
Split it suitably:
A = A0̄ ⊕ A2 ⊕ · · · Ap−2 ⊕ A1̄ ⊕ (σ − 1)(Ap−1) ⊕ Ap.
(A, [µ]) contains a nice subalgebra (A′, [µ′]).
Use our recipe to define a multiplication m on A = A0̄ ⊕ A1̄, which
becomes a superalgebra.
Recall our functor F : sVec → Verp.

Theorem
The algebra in Verp obtained by means of

F (A) ⊗ F (A)
∼=−−→ F (A ⊗ A) F (m)−−−→ F (A)

is isomorphic to the subalgebra (A′, [µ′]).
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From algebras in Rep Cp to superalgebras

In case A = A1 ⊕ Ap−1 ⊕ Ap, this algebra in Verp is isomorphic to
(A, [µ]). In this situation, we will say that the algebra A semisimplifies
to the superalgebra A = A0̄ ⊕ A1̄, or that A is obtained by
semisimplification of A.
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Exceptional contragredient Lie superalgebras in low
characteristics

A.S. Kannan
New constructions of exceptional simple Lie superalgebras with
integer Cartan matrix in characteristics 3 and 5 via tensor categories.
Transform. Groups 29 (2004), no. 3, 1065-1103.

Kannan obtained each of the exceptional contragredient Lie
superalgebras specific of characteristics 3 and 5 by choosing suitable
degree p nilpotent derivations on exceptional simple Lie algebras, in a
case by case analysis.

In characteristic 3, most of the exceptional simple contragredient Lie
superalgebras appear in an extended Freudenthal magic square
(Cunha-E. 2007).
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From octonions to composition superalgebras

A. Daza-García, A. Elduque, U. Sayin
From octonions to composition superalgebras via tensor categories.
Rev. Mat. Iberoam. 40 (1) (2024), 129-152.

Only over fields of characteristic 3 there are nontrivial composition
superalgebras: B(4, 2) of dimension 6, and B(1, 2) of dimension 3.
These algebras appeared for the first time in Shestakov’s classification of
the prime alternative superalgebras (1997).

They are the only ‘exceptional’ unital composition superalgebras
(E.-Okubo 2002).

From algebras to superalgebras via tensor categories 28/32



From octonions to composition superalgebras

Theorem
Both B(4, 2) and B(1, 2) are obtained by semisimplication of the algebra
of split octonions, using suitable order 3 automorphisms of this latter
algebra.

As a consequence, all the Lie superalgebras in the extended Freudenthal
magic square can be obtained by semisimplification of the simple Lie
algebras of types F4, Er, r = 6, 7, 8.
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From the Albert algebra to Kac’s ten-dimensional Jordan
superalgebra

A. Elduque, P. Etingof, A.S. Kannan,
From the Albert algebra to Kac’s ten-dimensional Jordan
superalgebra via tensor categories in characteristic 5..
J. Algebra 666 (2025), 387-414.

The split Albert algebra (exceptional Jordan algebra) over a field of
characteristic 5 is endowed with an order 5 automorphism that splits it as

A = 6L1 ⊕ 4L4 ⊕ L5.
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From the Albert algebra to Kac’s ten-dimensional Jordan
superalgebra

Theorem
In characteristic 5, the Albert algebra A semisimplifies to Kac’s
ten-dimensional simple Jordan superalgebra K10.

In 2005, Kevin McCrimmon considered the Grassmann envelope of Kac’s
ten-dimensional simple Jordan superalgebra K10 and obtained, in his
own words, the bizarre result that in characteristic 5 (but not otherwise),
it is the Jordan algebra over a shaped cubic form over Γ0. This means
that K10 satisfies the super version of the Cayley-Hamilton equation of
degree 3.

The semisimplification process explains this bizarre property.
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From the Albert algebra to Kac’s ten-dimensional Jordan
superalgebra

The exceptional split simple Lie algebra of type E8 can be obtained,
using a famous construction by Tits, as

Der(O) ⊕
(
O0 ⊗ A0

)
⊗ Der(A),

using the split octonions O and the split Albert algebra A.

The order 5 automorphism of A extends to an automorphism of E8, and
the outcome is that E8 semisimplifies to the exceptional Lie superalgebra
el(5; 5), specific of characteristic 5.

Thank you!

From algebras to superalgebras via tensor categories 32/32


	Symmetric tensor categories
	Semisimplification
	From algebras to superalgebras
	Examples

