The extended Freudenthal magic square via tensor categories

Alberto Elduque

(Based on joint work with A. Daza-García and U. Sayin)

Let \mathfrak{g} be a Lie algebra over a field \mathbb{F} , containing a subalgebra isomorphic to $\mathfrak{sl}_2(\mathbb{F})$ that admits a $\mathbb{Z}/2$ -grading of the form:

$$\mathfrak{g} = (\mathfrak{sl}_2(\mathbb{F}) \oplus \mathfrak{d}) \oplus (\mathbb{F}^2 \otimes T).$$

In this case, T becomes a so-called symplectic triple system, and the bracket of odd elements works as follows:

$$[u \otimes x, v \otimes y] = (x \mid y)\gamma_{u,v} + \langle u \mid v \rangle d_{x,y}$$

for all $u, v \in \mathbb{F}^2$ and $x, y \in T$, for a skew-symmetric bilinear form $(\cdot | \cdot)$ on T and a symmetric bilinear map $T \times T \to \mathfrak{d}$, $(x, y) \mapsto d_{x,y}$; where $\langle u | v \rangle$ is, up to scalars, the unique $\mathfrak{sl}_2(\mathbb{F})$ -invariant bilinear form on \mathbb{F}^2 , and $\gamma_{u,v} = \langle u | \cdot \rangle v + \langle v | \cdot \rangle u$. It was realized (E. 2006) that, in case the characteristic of \mathbb{F} is 3, then the $\mathbb{Z}/2$ -graded vector space $\mathfrak{d} \oplus T$, with bracket given by the bracket in \mathfrak{d} , the action of \mathfrak{d} in T, and by $[x, y] = d_{x,y}$ for $x, y \in T$, endows $\mathfrak{d} \oplus T$ with a structure of Lie superalgebra.

This led to the construction of a family of new simple contragredient Lie superalgebras specific of characteristic 3.

A surprising generalization

Arun S. Kannan has considered recently (2022) a much more general and surprising way of passing from Lie algebras to Lie superalgebras.

Kannan considered, over fields of characteristic 3, exceptional simple Lie algebras endowed with a nilpotent derivation d with $d^3 = 0$. In the situation in the previous slide, one may take d equal to the adjoint action of $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{F})$.

This allows to view the Lie algebra as a Lie algebra in the category Rep α_3 of representations of the affine group scheme

$$\boldsymbol{\alpha}_3: R \mapsto \{r \in R \mid r^3 = 0\}$$

(that is, the kernel of the Frobenius endomorphism of the additive group scheme \mathbb{G}_a).

The semisimplification of Rep α_3 is the Verlinde category Ver₃, which is equivalent to the category of vector superspaces, obtaining in this way a path from Lie algebras to Lie superalgebras.

- 1 Symmetric tensor categories
- 2 Semisimplification
- 3 From algebras to superalgebras in characteristic 3
- From octonions to composition superalgebras
- 5 The extended Freudenthal magic square

The extended Freudenthal magic square via tensor categories

- 2 Semisimplification
- 3 From algebras to superalgebras in characteristic 3
- 4 From octonions to composition superalgebras
- 5 The extended Freudenthal magic square

A monoidal category is a category ${\mathfrak C}$ with a bifunctor

$$\otimes: \mathfrak{C} \times \mathfrak{C} \to \mathfrak{C}$$

such that:

• There is a unit object 1 with natural isomorphisms (unitors)

$$X \otimes \mathbf{1} \simeq X \simeq \mathbf{1} \otimes X.$$

• There are natural isomorphisms (associators)

$$a_{X,Y,Z}: (X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z).$$

• Natural coherence conditions for the unitors and associators hold.

A functor $F : \mathfrak{C} \to \mathfrak{D}$ between monoidal categories is a monoidal functor if $F(\mathbf{1}) \simeq \mathbf{1}$ and there are natural isomorphisms

$$J_{X,Y}: F(X) \otimes F(Y) \longrightarrow F(X \otimes Y)$$

with natural coherence conditions with associators.

A braiding in a monoidal category ${\mathfrak C}$ is a natural isomorphism

$$c_{X,Y}: X \otimes Y \longrightarrow Y \otimes X$$

satisfying natural compatibility conditions with unitors and associators.

A symmetric monoidal category is a monoidal category endowed with a symmetric braiding: $c_{Y,X} \circ c_{X,Y} = id_{X \otimes Y}$.

A symmetric monoidal category is rigid if every object X has a dual object X^\ast with

- an evaluation $ev_X : X^* \otimes X \to \mathbf{1}$,
- a coevaluation $\operatorname{coev}_X : \mathbf{1} \to X \otimes X^*$,

such that the following compositions are the identity morphisms:

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{coev}_X \otimes \operatorname{id}_X} & X \otimes X^* \otimes X & \xrightarrow{\operatorname{id}_X \otimes \operatorname{ev}_X} & X \\ X^* & \xrightarrow{\operatorname{id}_{X^*} \otimes \operatorname{coev}_X} & X^* \otimes X \otimes X^* & \xrightarrow{\operatorname{ev}_X \otimes \operatorname{id}_{X^*}} & X^* \end{array}$$

(Unitor and associator morphisms are omitted.)

A symmetric tensor category \mathfrak{C} over a field \mathbb{F} is a rigid symmetric monoidal category with the following extra properties:

- \bullet It is abelian and even more: it is $\mathbb F\text{-linear}$ and \otimes is 'bilinear'.
- It is locally finite: objects have 'finite length' and morphism spaces are finite-dimensional.
- $\operatorname{End}_{\mathfrak{C}}(1) = \mathbb{F}\operatorname{id}_1.$

 $Vec_{\mathbb{F}}$: The category of finite-dimensional vector spaces.

- Rep*H*: The category of finite-dimensional representations of a triangular Hopf algebra.
- Rep G: The category of finite-dimensional representations of an affine group scheme.
- $sVec_F$: The category of finite-dimensional vector superspaces.

Algebras in a symmetric tensor category

An algebra in a symmetric tensor category \mathfrak{C} is an object \mathcal{A} endowed with a morphism $\mu : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$.

The algebra (\mathcal{A},μ) is

- commutative if $\mu \circ c_{\mathcal{A},\mathcal{A}} = \mu$,
- associative if $\mu \circ (\mu \otimes id_A) = \mu \circ (id_A \otimes \mu)$ (associator morphisms are omitted),
- Lie if it is anticommutative: $\mu \circ c_{\mathcal{A},\mathcal{A}} = -\mu$, and

$$\mu \circ (\mu \otimes \mathrm{id}_{\mathcal{A}}) \circ (\mathrm{id}_{\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}} + c_{\mathcal{A} \otimes \mathcal{A}, \mathcal{A}} + c_{\mathcal{A}, \mathcal{A} \otimes \mathcal{A}}) = 0,$$

• Jordan if

•

Superalgebras are algebras in $\mathsf{sVec}_{\mathbb{F}}.$

The extended Freudenthal magic square via tensor categories

2 Semisimplification

- 3 From algebras to superalgebras in characteristic 3
- 4 From octonions to composition superalgebras
- 5 The extended Freudenthal magic square

Given a morphism $f \in \operatorname{End}_{\mathfrak{C}}(X)$ in a symmetric tensor category, its trace $\operatorname{tr}_X(f)$ is the following element in $\operatorname{End}_{\mathfrak{C}}(1) \simeq \mathbb{F}$:

$$\mathbf{1} \xrightarrow{\operatorname{coev}_X} X \otimes X^* \xrightarrow{f \otimes \operatorname{id}_{X^*}} X \otimes X^* \xrightarrow{c_{X,X^*}} X^* \otimes X \xrightarrow{\operatorname{ev}_X} \mathbf{1}$$

The dimension of an object X is $\dim_{\mathfrak{C}}(X) := \operatorname{tr}_X(\operatorname{id}_X)$.

A morphism $f\in {\rm Hom}_{\mathfrak C}(X,Y)$ in a symmetric tensor category is said to be negligible if

$$\operatorname{tr}_Y(f \circ g) = 0$$
 for all $g \in \operatorname{Hom}_{\mathfrak{C}}(Y, X)$.

Denote by $\mathcal{N}(X,Y)$ be the subspace of negligible morphims in $\operatorname{Hom}_{\mathfrak{C}}(X,Y).$

The subspaces $\mathcal{N}(X, Y)$ form a tensor ideal.

This means that we can define a new category \mathfrak{C}^{ss} with the same objects as \mathfrak{C} , but with morphisms given by the quotient with the subspace of negligible morphisms:

$$\operatorname{Hom}_{\mathfrak{C}^{ss}}(X,Y) := \operatorname{Hom}_{\mathfrak{C}}(X,Y)/\mathcal{N}(X,Y).$$

 \mathfrak{C}^{ss} is called the semisimplification of \mathfrak{C} .

The natural functor $S: \mathfrak{C} \to \mathfrak{C}^{ss}$ which is the identity on objects, and sends any morphism to its class modulo negligible morphisms is a braided, monoidal, \mathbb{F} -linear functor.

The semisimplification \mathfrak{C}^{ss} is semisimple: any object is a direct sum of finitely many simple objects.

The simple objects in \mathfrak{C}^{ss} correspond to the indecomposable objects in \mathfrak{C} of nonzero dimension.

Any object in \mathfrak{C} with $\dim_{\mathfrak{C}}(X) = 0$ becomes isomorphic to the zero object in \mathfrak{C}^{ss} .

Definition

Let \mathbb{F} be a field of characteristic p > 0 and let $\operatorname{Rep} C_p$ be the category of finite-dimensional representations of the cyclic group of order p (or of the associated constant group scheme).

This is a symmetric tensor category and its semisimplification is called the Verlinde category Ver_p .

The Verlinde category Ver_p also appears as the semisimplification of $\mathrm{Rep}\,\pmb{\alpha}_p.$

The extended Freudenthal magic square via tensor categories

2 Semisimplification

3 From algebras to superalgebras in characteristic 3

4 From octonions to composition superalgebras

5 The extended Freudenthal magic square

Fix a generator σ of C₃.

The indecomposable objects in $\operatorname{Rep} C_3$ are, up to isomorphism,

$$V_0 = \mathbb{F}, \qquad V_1 = \mathbb{F}v_0 + \mathbb{F}v_1, \qquad V_2 = \mathbb{F}w_0 + \mathbb{F}w_1 + \mathbb{F}w_2,$$

where the action of σ is trivial on $V_0,$ and

 $\sigma(v_0) = v_0 + v_1, \ \sigma(v_1) = v_1; \ \sigma(w_0) = w_0 + w_1, \ \sigma(w_1) = w_1 + w_2, \ \sigma(w_2) = w_2.$

Any object \mathcal{A} in Rep C₃ decomposes, nonuniquely, as

$$\mathcal{A}=\mathcal{A}_0\oplus\mathcal{A}_1\oplus\mathcal{A}_2,$$

where A_i is a direct sum of copies of V_i , i = 0, 1, 2.

Semisimplification of Rep C₃ (char $\mathbb{F} = 3$). Properties

- End_{Ver₃}(V_i) = $\mathbb{F}[id_{V_i}] \neq 0$ for i = 0, 1, End_{Ver₃}(V_2) = 0, Hom_{Ver₃}(V_i, V_j) = 0 for $i \neq j$.
- V_0 and V_1 are simple objects in Ver₃, while V_2 is isomorphic to 0.
- Ver₃ is semisimple: any object is isomorphic to a direct sum of copies of V_0 and V_1 .
- $V_0 \otimes V_i$ and $V_i \otimes V_0$ are isomorphic to V_i , for i = 0, 1, both in Rep C₃ and in Ver₃; while $V_1 \otimes V_1$ is isomorphic to V_0 in Ver₃.
- The braiding in Ver₃, for objects X, Y, is given by $[c_{X,Y}]$, where $c_{X,Y}$ is the (swap) braiding in Rep C₃. Then, identifying $V_0 \otimes V_0 \simeq V_0$, $V_0 \otimes V_1 \simeq V_1 \simeq V_1 \otimes V_0$, and $V_1 \otimes V_1 \simeq V_0$, we have

$$[c_{V_0,V_0}] = [\mathrm{id}_{V_0}], \quad [c_{V_0,V_1}] = [\mathrm{id}_{V_1}] = [c_{V_1,V_0}], \quad [c_{V_1,V_1}] = -[\mathrm{id}_{V_0}].$$

The categories sVec_ ${\mathbb F}$ and Ver_3 are equivalent through the (F-linear braided monoidal) functor

$$F: \mathsf{sVec}_{\mathbb{F}} \longrightarrow \mathsf{Ver}_{3}$$
$$X_{\bar{0}} \oplus X_{\bar{1}} \mapsto X_{\bar{0}} \oplus (X_{\bar{1}} \otimes V_{1})$$
$$f_{\bar{0}} \oplus f_{\bar{1}} \mapsto [f_{\bar{0}} \oplus (f_{\bar{1}} \otimes \mathrm{id}_{V_{1}})],$$

 ${\boldsymbol{F}}$ is a monoidal functor with natural isomorphism

$$J: F(\cdot) \otimes F(\cdot) \to F(\cdot \otimes \cdot)$$

given by $J_{X,Y} = [j_{X,Y}]$, where $j_{X,Y}$ is the following morphism in Rep C₃:

$$\begin{split} j_{X,Y} : \left(X_{\bar{0}} \oplus (X_{\bar{1}} \otimes V_{1}) \right) \otimes \left(Y_{\bar{0}} \oplus (Y_{\bar{1}} \otimes V_{1}) \right) &\longrightarrow \\ \left((X_{\bar{0}} \otimes Y_{\bar{0}}) \oplus (X_{\bar{1}} \otimes Y_{\bar{1}}) \right) \oplus \left(\left((X_{\bar{0}} \otimes Y_{\bar{1}}) \oplus (X_{\bar{1}} \otimes Y_{\bar{0}}) \right) \otimes V_{1} \right) \\ & x_{\bar{0}} \otimes y_{\bar{0}} \mapsto x_{\bar{0}} \otimes y_{\bar{0}}, \\ & x_{\bar{0}} \otimes (y_{\bar{1}} \otimes v) \mapsto (x_{\bar{0}} \otimes y_{\bar{1}}) \otimes v, \\ & (x_{\bar{1}} \otimes v) \otimes y_{\bar{0}} \mapsto (x_{\bar{1}} \otimes y_{\bar{0}}) \otimes v, \\ & (x_{\bar{1}} \otimes u) \otimes (y_{\bar{1}} \otimes v) \mapsto \lambda(u \otimes v) x_{\bar{1}} \otimes y_{\bar{1}}, \end{split}$$

where λ sends symmetric tensors to 0, and $v_0 \otimes v_1$ to 1.

From algebras in $\operatorname{Rep} C_3$ to superalgebras

If (\mathcal{A}, μ) is an algebra in Rep C₃ (i.e., **an algebra endowed with an automorphism of order** 3), then $(\mathcal{A}, [\mu])$ is an algebra in Ver₃ and, up to isomorphism, there is a unique superalgebra $(A = A_{\bar{0}} \oplus A_{\bar{1}}, m)$ such that F(A), with the product given by

$$F(A) \otimes F(A) \xrightarrow{J_{A,A}} F(A \otimes A) \xrightarrow{F(m)} F(A)$$

is isomorphic to $(\mathcal{A}, [\mu]).$

To obtain this superalgebra, fix a splitting

$$\mathcal{A} = A_{\bar{0}} \oplus A_{\bar{1}} \oplus (\sigma - \mathrm{id})(A_{\bar{1}}) \oplus \mathcal{A}_2$$

where

•
$$A_{\bar{0}}$$
 is a direct sum of copies of V_0 ,

- $A_{ar{1}} \oplus (\sigma \mathrm{id})(A_{ar{1}})$ is a direct sum of copies of V_1 ,
- A_2 is a direct sum of copies of V_2 , and hence trivial in Ver₃.

Recipe

Take projections relative to this splitting, and define a multiplication m on $A:=A_{\bar 0}\oplus A_{\bar 1}$ as follows:

$$\begin{split} m(x_{\bar{0}} \otimes y_{\bar{0}}) &= \operatorname{proj}_{A_{\bar{0}}} \mu(x_{\bar{0}} \otimes y_{\bar{0}}) \\ m(x_{\bar{0}} \otimes y_{\bar{1}}) &= \operatorname{proj}_{A_{\bar{1}}} \mu(x_{\bar{0}} \otimes y_{\bar{1}}) \\ m(x_{\bar{1}} \otimes y_{\bar{0}}) &= \operatorname{proj}_{A_{\bar{1}}} \mu(x_{\bar{1}} \otimes y_{\bar{0}}) \\ m(x_{\bar{1}} \otimes y_{\bar{1}}) &= \operatorname{proj}_{A_{\bar{0}}} \mu(x_{\bar{1}} \otimes (\sigma - \operatorname{id})(y_{\bar{1}})) \end{split}$$

Theorem

The superalgebra (A, m) is, up to isomorphism, the unique superalgebra such that $(\mathcal{A}, [\mu])$ and $(F(A), F(m) \circ J_{A,A})$ are isomorphic algebras in Ver₃.

If p > 3, the Verlinde category Ver_p is no longer equivalent to $\operatorname{sVec}_{\mathbb{F}}$, but contains a full subcategory equivalent to $\operatorname{sVec}_{\mathbb{F}}$, generated by the indecomposable objects in $\operatorname{Rep} C_p$ of dimension 1 and p - 1.

This was used by Kannan to obtain the simple Lie superalgebra $\mathfrak{el}(5;5)$ by semisimplification of the simple Lie algebra of type E_8 .

In characteristic 3, Kannan has obtained all the exceptional simple contragredient Lie superalgebras. These include mostly the superalgebras in the extended Freudenthal magic square (Cunha-E. 2007).

The extended Freudenthal magic square via tensor categories

- Symmetric tensor categories
- 2 Semisimplification
- **3** From algebras to superalgebras in characteristic 3
- From octonions to composition superalgebras
- 5 The extended Freudenthal magic square

A composition algebra over a field $\mathbb F$ is a triple $(\mathcal C, \mu, \mathbf{n}),$ where

- $\mu:\mathcal{C}\otimes\mathcal{C}\to\mathcal{C},\ \mu(x\otimes y)=xy$ is the multiplication of $\mathcal{C},$
- $\mathbf{n}: \mathcal{C} \to \mathbb{F}$ is a nonsingular multiplicative quadratic form, called the norm.

Unital composition algebras (also termed Hurwitz algebras) over a field are the analogues of the classical algebras or real and complex numbers, quaternions, and octonions. In particular their dimension is restricted to 1, 2, 4 or 8.

Hurwitz algebras of dimension 8 are called Cayley algebras or octonion algebras.

Composition algebras in a symmetric tensor category $(char \neq 2)$

A composition algebra in a symmetric tensor category \mathfrak{C} is an object \mathcal{A} endowed with morphisms $\mu : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ and $\mathbf{n} : \mathcal{A} \otimes \mathcal{A} \to \mathbf{1}$, such that the following conditions are satisfied:

Symmetry: $\mathbf{n} \circ c_{\mathcal{A},\mathcal{A}} = \mathbf{n}$, where $c_{\mathcal{A},\mathcal{A}} \in \operatorname{End}_{\mathfrak{C}}(\mathcal{A} \otimes \mathcal{A})$ is the symmetric braiding.

Multiplicativity: The following equality of morphisms $\mathcal{A}^{\otimes 4} \to \mathbf{1}$ holds:

$$\mathbf{n} \circ (\mu \otimes \mu) \circ (\mathrm{id} + c_{13}) = (\mathbf{n} \otimes \mathbf{n}) \circ c_{23}$$

Nondegeneracy: The composition

$$\mathcal{A} \xrightarrow{\mathrm{id}_{\mathcal{A}} \otimes \mathrm{coev}_{\mathcal{A}}} \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}^* \xrightarrow{\mathbf{n} \otimes \mathrm{id}_{\mathcal{A}^*}} \mathcal{A}^*$$

is an isomorphism.

Order 3 automorphisms of Cayley algebras (char $\mathbb{F} = 3$)

If a Cayley algebra C over a field of characteristic 3 has an order 3 automorphism, then it is split (isotropic norm), and hence it contains a canonical basis with multiplication:

	e_1	e_2	u_1	u_2	u_3	v_1	v_2	v_3
e_1	e_1	0	u_1	u_2	u_3	0	0	0
e_2	0	e_2	0	0	0	v_1	v_2	v_3
u_1	0	u_1	0	v_3	$-v_{2}$	$-e_1$	0	0
u_2	0	u_2	$-v_{3}$	0	v_1	0	$-e_1$	0
u_3	0	u_3	v_2	$-v_1$	0	0	0	$-e_1$
v_1	v_1	0	$-e_2$	0	0	0	u_3	$-u_2$
v_2	v_2	0	0	$-e_2$	0	$-u_3$	0	u_1
v_3	v_3	0	0	0	$-e_2$	u_2	$-u_1$	0

The 'Peirce component' $\mathbb{F}u_1 + \mathbb{F}u_2 + \mathbb{F}u_3$ generates \mathcal{C} .

Theorem (E. 2018)

Let $(\mathcal{C}, \mu, \mathbf{n})$ be a Cayley algebra over a field \mathbb{F} of characteristic 3, and let σ be an order 3 automorphism of $(\mathcal{C}, \mu, \mathbf{n})$. Then $(\mathcal{C}, \mu, \mathbf{n})$ is the split Cayley algebra and one of the following conditions holds, up to conjugation:

- 1. $(\sigma id)^2 = 0$ and $\sigma(u_i) = u_i$, i = 1, 2, $\sigma(u_3) = u_3 + u_2$.
- 2. There is a quadratic étale subalgebra \mathcal{K} of \mathcal{C} fixed elementwise by σ . If \mathbb{F} is algebraically closed, we have $\sigma(u_i) = u_{i+1}$ (indices modulo 3).

3.
$$\sigma(u_i) = u_i$$
, $i = 1, 2$, $\sigma(u_3) = u_3 + v_3 - (e_1 - e_2)$.

4.
$$\sigma(u_i) = u_i$$
, $i = 1, 2$, $\sigma(u_3) = u_3 + u_2 + v_3 - (e_1 - e_2)$.

Semisimplification of Cayley algebras (char $\mathbb{F} = 3$)

Each order 3 automorphism of a Cayley algebra allows us to look at it as an algebra in Rep C₃, and hence apply our recipe to get a unital composition superalgebra, obtaining the following possibilities, according to the type of the automorphism in the previous slide:

- 1. The six-dimensional composition superalgebra B(4,2).
- 2. A two-dimensional composition algebra.
- 3. The three-dimensional composition superalgebra B(1,2).
- 4. Again the three-dimensional composition superalgebra B(1,2).

B(4,2) and B(1,2) were 'discovered' by Shestakov (1997) in his classification of the prime alternative superalgebras. They are the only 'exceptional' unital composition superalgebras (E.-Okubo 2002).

The extended Freudenthal magic square via tensor categories

- Symmetric tensor categories
- 2 Semisimplification
- 3 From algebras to superalgebras in characteristic 3
- 4 From octonions to composition superalgebras
- 5 The extended Freudenthal magic square

Let $(\mathcal{C}, \mu, \mathbf{n})$ be a Hurwitz algebra over a field \mathbb{F} of characteristic not 2. Its triality Lie algebra is

$$\begin{split} \mathfrak{tri}(\mathcal{C},\bullet,\mathbf{n}) &:= \{ (d_0,d_1,d_2) \in \mathfrak{so}(\mathcal{C},\mathbf{n})^3 \mid \\ d_0(x \bullet y) &= d_1(x) \bullet y + x \bullet d_2(y) \; \forall x, y \in \mathcal{C} \} \end{split}$$

with $x \bullet y = \overline{x} \overline{y}$. ($\overline{x} = \mathbf{n}(x, 1) - x$ is the canonical involution.)

This is a Lie algebra with componentwise Lie bracket, and the cyclic permutation

$$\theta: (d_0, d_1, d_2) \mapsto (d_2, d_0, d_1)$$

is an automorphism (triality automorphism).

Symmetric construction of Freudenthal magic square

The vector space

$$\mathfrak{g}(\mathcal{C},\mathcal{C}') = (\mathfrak{tri}(\mathcal{C}) \oplus \mathfrak{tri}(\mathcal{C}')) \oplus (\oplus_{i=0}^2 \iota_i(\mathcal{C} \otimes \mathcal{C}')),$$

where $\iota_i(\mathcal{C}\otimes\mathcal{C}')$ is just a copy of $\mathcal{C}\otimes\mathcal{C}'$ (i=0,1,2) becomes a Lie algebra with:

- the Lie bracket in $\mathfrak{tri}(\mathcal{C})\oplus\mathfrak{tri}(\mathcal{C}')$ (a Lie subalgebra of \mathfrak{g}),
- $[(d_0, d_1, d_2), \iota_i(x \otimes x')] = \iota_i(d_i(x) \otimes x'),$

•
$$[(d'_0, d'_1, d'_2), \iota_i(x \otimes x')] = \iota_i(x \otimes d'_i(x')),$$

• $[\iota_i(x\otimes x'), \iota_{i+1}(y\otimes y')] = \iota_{i+2}((x \bullet y)\otimes (x' \bullet y')),$

•
$$\begin{bmatrix} \iota_i(x \otimes x'), \iota_i(y \otimes y') \end{bmatrix} = \mathbf{n}'(x', y')\theta^i(t_{x,y}) + \mathbf{n}(x, y)\theta'^i(t'_{x',y'}) \in \operatorname{tri}(\mathcal{C}) \oplus \operatorname{tri}(\mathcal{C}'), \\ (t_{x,y} := \left(s_{x,y}, \frac{1}{2}(r_y l_x - r_x l_y), \frac{1}{2}(l_y r_x - l_x r_y)\right), \text{ with} \\ s_{x,y} : z \mapsto \mathbf{n}(x, z)y - \mathbf{n}(y, z)x, \ l_x : z \mapsto x \bullet z, \text{ and } r_x : z \mapsto z \bullet x). \end{bmatrix}$$

Freudenthal magic square

			411110			
	$\mathfrak{g}(\mathcal{C},\mathcal{C}')$	1	2	4	8	
$\dim \mathcal{C}$	1	A_1	2 A_2 $A_2 \oplus A_2$ A_5 E_6	C_3	F_4	
	2	A_2	$A_2 \oplus A_2$	A_5	E_6	
	4	C_3	A_5	D_6	E_7	
	8	F_4	E_6	E_7	E_8	

 $\dim \mathcal{C}'$

(Vinberg, Allison-Faulkner, Barton-Sudbery, Landsberg-Manivel)

Extended Freudenthal magic square in characteristic 3

The previous symmetric construction of Freudenthal magic square works if the Hurwitz algebras are replaced by Hurwitz superalgebras:

$\mathfrak{g}(\mathcal{C},\mathcal{C}')$	\mathbb{F}	${\cal K}$	\mathcal{Q}	\mathcal{C}	B(1,2)	B(4,2)
\mathbb{F}	A_1	$ ilde{A}_2$	C_3	F_4	6 8	21 14
${\cal K}$		$ ilde{A}_2 \oplus ilde{A}_2$	\tilde{A}_5	\tilde{E}_6	11 14	35 20
\mathcal{Q}			D_6	E_7	24 26	66 32
C				E_8	55 50	133 56
B(1,2)					21 16	36 40
B(4,2)						78 64

Lie superalgebras in the extended magic square

	B(1,2)	B(4,2)
\mathbb{F}	$\mathfrak{psl}_{2,2}$	$\mathfrak{sp}_6 \oplus (14)$
${\cal K}$	$(\mathfrak{sl}_2\oplus\mathfrak{pgl}_3)\oplus((2)\otimes\mathfrak{psl}_3)$	$\mathfrak{pgl}_6\oplus(20)$
\mathcal{Q}	$(\mathfrak{sl}_2 \oplus \mathfrak{sp}_6) \oplus ((2) \otimes (13))$	$\mathfrak{so}_{12}\oplus spin_{12}$
С	$(\mathfrak{sl}_2\oplus\mathfrak{f}_4)\oplus ((2)\otimes (25))$	$\mathfrak{e}_7 \oplus (56)$
B(1,2)	$\mathfrak{so}_7\oplus 2spin_7$	$\mathfrak{sp}_8 \oplus (40)$
B(4, 2)	$\mathfrak{sp}_8 \oplus (40)$	$\mathfrak{so}_{13}\oplus spin_{13}$

Any order 3 automorphism of a Cayley algebra $(\mathcal{C}, \mu, \mathbf{n})$ induces an order 3 automorphism of its triality Lie algebra $\mathfrak{tri}(\mathcal{C}, \bullet, \mathbf{n})$ commuting with the triality automorphism.

Therefore, starting with an order 3 automorphism σ of a Cayley algebra $(\mathcal{C}, \mu, \mathbf{n})$ such that its semisimplification is isomorphic to either B(1, 2) or B(4, 2), there is an order 3 automorphism induced in $\mathfrak{g}(\mathcal{C}, \mathcal{C}')$, where we combine the order 3 automorphism on \mathcal{C} and the identity automorphism in \mathcal{C}' . This allows us to consider $\mathfrak{g}(\mathcal{C}, \mathcal{C}')$ as a Lie algebra in Rep C₃.

The same arguments work if both \mathcal{C} and \mathcal{C}' are Cayley algebras endowed with order 3 automorphisms. We also get an induced order 3 automorphism of $\mathfrak{g}(\mathcal{C},\mathcal{C}')$. These order 3 automorphisms allow us to see $\mathfrak{g}(\mathcal{C},\mathcal{C}')$ as a Lie algebra in Rep C₃.

$\mathfrak{g}(\mathcal{C},\mathcal{C}')$ as a Lie algebra in $\operatorname{\mathsf{Rep}}\mathsf{C}_3$

Theorem

 $\mathfrak{g}(\mathcal{C},\mathcal{C}')^{ss}$ and $\mathfrak{g}(\mathcal{C}^{ss},\mathcal{C}'^{ss})$ are isomorphic.

Corollary

All the Lie superalgebras in the extended Freudenthal magic square are thus obtained, in a unified way, by semisimplification of Lie algebras in Freudenthal magic square.

Remark

The Lie superalgebras $\mathfrak{g}(B(1,2), B(1,2))$, $\mathfrak{g}(B(1,2), B(4,2))$, and $\mathfrak{g}(B(4,2), B(4,2))$, are all obtained here by semisimplification of the Lie algebra $\mathfrak{g}(\mathcal{C}, \mathcal{C}')$ of type E_8 . Arun Kannan, using Rep α_3 instead of Rep C₃, obtained $\mathfrak{g}(B(1,2), B(1,2))$ by semisimplification of E_6 .

References

A. Kannan

New Constructions of Exceptional Simple Lie Superalgebras in Low Characteristics Via Tensor Categories,

Transformation Groups (published online August 17, 2022: https://doi.org/10.1007/s00031-022-09751-7) arXiv:2108.05847

A. Daza-García, A. Elduque, and U. Sayin From octonions to composition superalgebras via tensor categories, to appear in Revista Matemática Iberoamericana, arXiv:2205.06559

Thank you!