Algunos objetos excepcionales

Alberto Elduque

Universidad de Zaragoza

23 de febrero de 2006

- 1 La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudenthal
- Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- Superálgebras de composición
- Epílogo

Álgebras de Lie

$$\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$$

 $(x, y) \mapsto [x, y]$

- [x, x] = 0 (anticonmutatividad),
- [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (identidad de Jacobi).

Sophus Lie

Grupos clásicos

$$SL(n) = \{g \in GL(n) : \det g = 1\}$$
 (grupo especial lineal),

$$SO(n) = \{g \in SL(n) : g^tg = I_n\}$$
 (grupo especial ortogonal),

$$Sp(2n) = \{g \in GL(2n) : g^t J_n g = J_n\}$$
 (grupo simpléctico).

$$(I_n =$$
matriz identidad, $J_n = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.)

W. Killing

Álgebras de Lie clásicas

$$\mathfrak{sl}(n) = \{x \in \mathfrak{gl}(n) : \operatorname{tr}(x) = 0\}$$
 (álgebra de Lie especial lineal), $\mathfrak{so}(n) = \{x \in \mathfrak{gl}(n) : x^t + x = 0\}$ (álgebra de Lie ortogonal), $\mathfrak{sp}(2n) = \{x \in \mathfrak{gl}(2n) : x^t J_n + J_n x = 0\}$ (álgebra de Lie simpléctica).

Elie Cartan

Clasificación de Killing-Cartan (1887-1894)

Álgebras de Lie simples finito dimensionales sobre ${\mathbb C}$

- Cuatro familias infinitas: A_n , B_n , C_n , D_n ,
- Cinco excepciones: E_6 , E_7 , E_8 , F_4 , G_2 .
 - 78, 133, 248, 52, 14.

Cartan (1914)

$$\mathfrak{der}(\mathbb{O}) = \{d \in \mathsf{End}(\mathbb{O}) : d(xy) = d(x)y + xd(y), \ \forall x, y \in \mathbb{O}\}$$

es un álgebra simple de tipo G_2 .

- 1 La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudentha
- Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- 8 Superálgebras de composición
- 9 Epílogo

Cuaternios (1843)

$$\mathbb{H} = \mathbb{R}1 + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k,$$

$$i^2 = j^2 = k^2 = -1,$$

$$ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j.$$

Hamilton y sus cuaternios

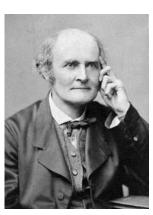
Octoniones (1843-1845)

Los cuaternios se obtienen duplicando adecuadamente los complejos:

$$\mathbb{H} = \mathbb{C} \oplus \mathbb{C}j$$
.

Duplicando de nuevo se obtienen los octoniones (Graves – Cayley):

$$\mathbb{O} = \mathbb{H} \oplus \mathbb{H}I$$
.



Arthur Cayley

Álgebras de composición

Álgebras de Hurwitz

$$A \times A \rightarrow A$$
, $(x, y) \mapsto xy$

$$q:A\to k$$

$$x \mapsto q(x)$$

$$1 \in A$$

$$1x = x1 = x$$

$$q(xy) = q(x)q(y)$$

Teorema de Hurwitz

Teorema (Hurwitz, Jacobson)

 $\dim A = 1, 2, 4 u 8.$

A. Hurwitz

N. Jacobson

- 1 La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudentha
- 5 Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- 8 Superálgebras de composición
- 9 Epílogo

Álgebras de Jordan

$$x \cdot y = \frac{1}{2}(xy + yx)$$

$$\begin{cases} x \cdot y = y \cdot x \\ x^2 \cdot (y \cdot x) = (x^2 \cdot y) \cdot x \end{cases}$$
 (álgebra de Jordan)

Clasificación (Jordan-von Neumann-Wigner)

- Cuatro familias infinitas: $H_n(\mathbb{R})$, $H_n(\mathbb{C})$, $H_n(\mathbb{H})$, $JSpin_n = \mathbb{R}1 \oplus \mathbb{R}^n$.
- Una excepción: $H_3(\mathbb{O})$.

F_4 , E_6

Chevalley-Schafer (1950)

- $\mathfrak{der}(H_3(\mathbb{O}))$ es un álgebra de Lie simple de tipo F_4 ,
- $\mathfrak{str}_0(H_3(\mathbb{O}))$ es un álgebra de Lie simple de tipo E_6 .

¿Modelos de E_7 y E_8 ?

F_4 , E_6

Chevalley-Schafer (1950)

- $\mathfrak{der}(H_3(\mathbb{O}))$ es un álgebra de Lie simple de tipo F_4 ,
- $\mathfrak{str}_0(H_3(\mathbb{O}))$ es un álgebra de Lie simple de tipo E_6 .

¿Modelos de E_7 y E_8 ?

- La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudenthal
- 5 Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- 8 Superálgebras de composición
- 9 Epílogo

Tits (1966)

- A álgebra de Hurwitz (dimensión 1, 2, 4 u 8),
- J álgebra simple de Jordan de grado 3 (dimensión 6, 9, 15 o 27),

$$\mathcal{T}(A,J) = \mathfrak{der}(A) \oplus (A_0 \otimes J_0) \oplus \mathfrak{der}(J)$$

es álgebra de Lie y . . .

Cuadrado Mágico de Freudenthal

		$\operatorname{dim} J$					
		6	9	15	27		
dim A	1	A_1	A_2	C_3	F_4		
	2	A_2	$A_2 \oplus A_2$	A_5	E_6		
	4	C_3	A_5	D_6	E ₇		
	8	F_4	E_6	E_7	E_8		

H. Freudenthal

Construcciones simétricas del Cuadrado Mágico

- Vinberg (1966): mediante dos álgebras de Hurwitz y sus álgebras de Lie de derivaciones,
- Allison y Faulkner (1993): mediante álgebras estructurables,
- Barton y Sudbery, y Landsberg y Manivel (2000-2002, independientemente): mediante dos álgebras de Hurwitz y sus álgebras de Lie de trialdad.

- La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudenthal
- 5 Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- Superálgebras de composición
- 9 Epílogo

Okubo (1978)

$$\mathfrak{sl}(3): \qquad \qquad x*y = \omega xy - \omega^2 yx - \frac{\omega - \omega^2}{3} \operatorname{tr}(xy)1,$$

$$q(x) = \frac{1}{2} \operatorname{tr}(x^2), \quad q(x,y) = \operatorname{tr}(xy).$$

$$(\omega = \operatorname{raíz\ cúbica\ de\ 1})$$

Entonces:

$$q(x * y) = q(x)q(y),$$

y además

$$q(x * y, z) = q(x, y * z)$$

Okubo (1978)

$$\mathfrak{sl}(3): \hspace{1cm} x*y = \omega xy - \omega^2 yx - \frac{\omega - \omega^2}{3} \operatorname{tr}(xy) 1,$$

$$q(x) = \frac{1}{2} \operatorname{tr}(x^2), \quad q(x,y) = \operatorname{tr}(xy).$$

$$(\omega = \operatorname{raíz\ cúbica\ de\ 1}).$$

Entonces:

$$q(x*y) = q(x)q(y),$$

y además

$$q(x * y, z) = q(x, y * z)$$

Okubo (1978)

$$\mathfrak{sl}(3): \qquad \qquad x*y = \omega xy - \omega^2 yx - \frac{\omega - \omega^2}{3} \operatorname{tr}(xy)1,$$

$$q(x) = \frac{1}{2} \operatorname{tr}(x^2), \quad q(x,y) = \operatorname{tr}(xy).$$

$$(\omega = \operatorname{raíz\ cúbica\ de\ 1}).$$

Entonces:

$$q(x*y)=q(x)q(y),$$

y además

$$q(x*y,z)=q(x,y*z).$$

Myung-Okubo (1980): álgebras para-Hurwitz

A álgebra de Hurwitz con norma q, - su involución estándar

$$x * y = \bar{x}\bar{y}$$
.

Entonces de nuevo:

$$\begin{cases} q(x*y) = q(x)q(y), \\ q(x*y,z) = q(x,y*z). \end{cases}$$

Álgebras de composición simétricas

$$A \times A \rightarrow A,$$
 $q: A \rightarrow k$ $(x,y) \mapsto x * y$ $x \mapsto q(x)$

verificando

$$q(x*y) = q(x)q(y), \quad q(x*y,z) = q(x,y*z).$$

Clasificación (Okubo, Osborn, Myung, Pérez-Izquierdo, E.)

Toda álgebra de composición simétrica es

- un álgebra para-Hurwitz (dimensión 1, 2, 4 u 8), o
- un álgebra de Okubo (dimensión 8).

Álgebras de composición simétricas

$$A \times A \rightarrow A,$$
 $q: A \rightarrow k$ $(x,y) \mapsto x * y$ $x \mapsto q(x)$

verificando

$$q(x*y) = q(x)q(y), \quad q(x*y,z) = q(x,y*z).$$

Clasificación (Okubo, Osborn, Myung, Pérez-Izquierdo, E.)

Toda álgebra de composición simétrica es

- un álgebra para-Hurwitz (dimensión 1, 2, 4 u 8), o
- un álgebra de Okubo (dimensión 8).

- La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudentha
- 5 Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- 8 Superálgebras de composición
- 9 Epílogo

Nueva construcción del Cuadrado Mágico (2004)

- S y S' álgebras de composición simétricas,
- $\mathfrak{tri}(S) = \{(d_0, d_1, d_2) \in \mathfrak{so}(S, q)^3 : d_0(x * y) = d_1(x) * y + x * d_2(y) \ \forall x, y \in S\}.$

$$\mathfrak{g}(S,S')=\mathfrak{tri}(S)\oplus\mathfrak{tri}(S')\oplus 3$$
 copias de $S\otimes S'$

es álgebra de Lie, con corchete muy sencillo, y se recupera así el Cuadrado Mágico:

De nuevo el Cuadrado Mágico

Nota:

Tres construcciones diferentes de E_8 :

$$\mathfrak{g}(P,P), \quad \mathfrak{g}(P,O), \quad \mathfrak{g}(O,O),$$

siendo P un álgebra para-Hurwitz de dimensión 8 y O un álgebra de Okubo.

- La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudentha
- 5 Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- 8 Superálgebras de composición
- 9 Epílogo

Superálgebras de Lie

$$\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus\mathfrak{g}_{\bar{1}}$$

- $\mathfrak{g}_{\bar{0}}$ es álgebra de Lie,
- $\mathfrak{g}_{\bar{1}}$ es un *módulo* para $\mathfrak{g}_{\bar{0}}$,
- $\mathfrak{g}_{\bar{1}} \times \mathfrak{g}_{\bar{1}} \to \mathfrak{g}_{\bar{0}}$ producto jconmutativo!
- se verifica la identidad de Jacobi.

Clasificación de Kac (1977)

Superálgebras de Lie simples finito dimensionales sobre $\mathbb C$

- Diez familias infinitas: A(m, n), B(m, n), C(n), D(m, n), P(n), Q(n), W(n), S(n), $\tilde{S}(n)$, H(n),
- Tres excepciones: $D(2,1;\alpha)$, G(3), F(4). 17, 31, 40.

Benkart-E. (2003)

En la construcción de Tits $\mathcal{T}(A, J)$, el álgebra de Jordan J puede ser sustituida por ciertas *superálgebras de Jordan* de dimensiones 3 y 4 obteniendo un rectángulo mágico:

					dim J		
		6	9	15	27	3	4
dim S	1	A_1	A_2	C_3	F_4	A_1	B(0,1)
	2	A_2	$A_2 \oplus A_2$ A_5	A_5	E_6	B(0,1)	A(1,0)
	4	C_3	A_5	D_6	E_7	B(1, 1)	$D(2,1;\alpha)$
	8	F ₄	E_6	<i>E</i> ₇	<i>E</i> ₈	G(3)	F(4)

- La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudentha
- 5 Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- 8 Superálgebras de composición
- 9 Epílogo

Superálgebras de composición

- Sólo sobre cuerpos de característica 3 existen *superálgebras de composición simétricas*, que tienen dimensión 3 o 6.
- En la construcción $\mathfrak{g}(S,S')$ del Cuadrado Mágico se pueden emplear estas superálgebras,

Un cuadrado supermágico (2006)

			dim S'					
		1	2	4	8	3	6	
dim S	1	A_1	$ ilde{A}_2$	<i>C</i> ₃	F_4	A(1,1)	(21, 14)	
	2		$ ilde{A}_2 \oplus ilde{A}_2$	$ ilde{A}_5$	$ ilde{E}_6$	(11, 14)	(35, 20)	
	4			D_6	E_7	(24, 26)	(66, 32)	
	8				E_8	(55, 50)	(133, 56)	
	3					(21, 16)	(36, 40)	
	6						(78, 64)	

Las superálgebras de Lie que aparecen así están todas asociadas, de un modo u otro, a los octoniones o sus generalizaciones.

- 1 La clasificación de Killing-Cartan
- Álgebras de composición
- Álgebras de Jordan
- 4 El Cuadrado Mágico de Freudentha
- Álgebras de composición simétricas
- 6 De nuevo el Cuadrado Mágico
- Superálgebras de Lie
- Superálgebras de composición
- 9 Epílogo

Okubo

"El dicho de que Dios es un matemático, de modo que incluso con poca evidencia experimental, una teoría matemática bonita tiene una gran probabilidad de ser correcta, se ha atribuido a Dirac. El álgebra de octoniones es ciertamente una entidad matemática preciosa y es posible que otras álgebras no asociativas (además, por supuesto, de las álgebras de Lie) puedan jugar un papel esencial en la Teoría Última, todavía por descubrir."

Dimensiones de los objetos excepcionales

- Octoniones: 8,
- álgebras de Lie simples excepcionales: 14, 52, 78, 133, 248,
- álgebra de Jordan excepcional: 27,
- superálgebras de Lie simples excepcionales: 17, 31, 40,
- . . .

Número de la medalla de la Academia: 29.

Dimensiones de los objetos excepcionales

- Octoniones: 8,
- álgebras de Lie simples excepcionales: 14, 52, 78, 133, 248,
- álgebra de Jordan excepcional: 27,
- superálgebras de Lie simples excepcionales: 17, 31, 40,
- . . .
- Número de la medalla de la Academia: 29.

Superálgebra F(4):

$$\mathfrak{f}(4) = (\mathfrak{sl}(2) \oplus \mathfrak{so}(\mathbb{O}_0)) \oplus (V \otimes \mathbb{O}).$$

En esta situación, sobre cuerpos de característica 3, siempre podemos eliminar $\mathfrak{sl}(2)$ y V, obteniendo:

$$\mathfrak{b}=\mathfrak{so}(\mathbb{O}_0)\oplus\mathbb{O}.$$

- b es álgebra de Lie simple (descubierta por Brown en 1982 de modo totalmente diferente),
 - sólo aparece en característica 3
- está claramente relacionada con los octoniones, y
- tiene dimensión 29.

Superálgebra F(4):

$$\mathfrak{f}(4) = (\mathfrak{sl}(2) \oplus \mathfrak{so}(\mathbb{O}_0)) \oplus (V \otimes \mathbb{O}).$$

En esta situación, sobre cuerpos de característica 3, siempre podemos eliminar $\mathfrak{sl}(2)$ y V, obteniendo:

$$\mathfrak{b}=\mathfrak{so}(\mathbb{O}_0)\oplus\mathbb{O}.$$

- b es álgebra de Lie simple (descubierta por Brown en 1982 de modo totalmente diferente),
- sólo aparece en característica 3,
- está claramente relacionada con los octoniones, y
- tiene dimensión 29.

Superálgebra F(4):

$$\mathfrak{f}(4) = (\mathfrak{sl}(2) \oplus \mathfrak{so}(\mathbb{O}_0)) \oplus (V \otimes \mathbb{O}).$$

En esta situación, sobre cuerpos de característica 3, siempre podemos eliminar $\mathfrak{sl}(2)$ y V, obteniendo:

$$\mathfrak{b}=\mathfrak{so}(\mathbb{O}_0)\oplus\mathbb{O}.$$

- b es álgebra de Lie simple (descubierta por Brown en 1982 de modo totalmente diferente),
- sólo aparece en característica 3,
- está claramente relacionada con los octoniones, y
- tiene dimensión 29.

Superálgebra F(4):

$$\mathfrak{f}(4) = (\mathfrak{sl}(2) \oplus \mathfrak{so}(\mathbb{O}_0)) \oplus (V \otimes \mathbb{O}).$$

En esta situación, sobre cuerpos de característica 3, siempre podemos eliminar $\mathfrak{sl}(2)$ y V, obteniendo:

$$\mathfrak{b}=\mathfrak{so}(\mathbb{O}_0)\oplus\mathbb{O}.$$

- b es álgebra de Lie simple (descubierta por Brown en 1982 de modo totalmente diferente),
- sólo aparece en característica 3,
- está claramente relacionada con los octoniones, y
- tiene dimensión 29.

Superálgebra F(4):

$$\mathfrak{f}(4) = (\mathfrak{sl}(2) \oplus \mathfrak{so}(\mathbb{O}_0)) \oplus (V \otimes \mathbb{O}).$$

En esta situación, sobre cuerpos de característica 3, siempre podemos eliminar $\mathfrak{sl}(2)$ y V, obteniendo:

$$\mathfrak{b}=\mathfrak{so}(\mathbb{O}_0)\oplus\mathbb{O}.$$

- b es álgebra de Lie simple (descubierta por Brown en 1982 de modo totalmente diferente),
- sólo aparece en característica 3,
- está claramente relacionada con los octoniones, y
- tiene dimensión 29.

